DE102007017403A1 - Producing ammonia synthesis gas, comprises reacting cracking gas at specific temperature and pressure in a hydrogen, carbon monoxide and carbon dioxide, removing e.g. carbon dioxide and argon from raw synthesis gas and condensing - Google Patents

Producing ammonia synthesis gas, comprises reacting cracking gas at specific temperature and pressure in a hydrogen, carbon monoxide and carbon dioxide, removing e.g. carbon dioxide and argon from raw synthesis gas and condensing Download PDF

Info

Publication number
DE102007017403A1
DE102007017403A1 DE200710017403 DE102007017403A DE102007017403A1 DE 102007017403 A1 DE102007017403 A1 DE 102007017403A1 DE 200710017403 DE200710017403 DE 200710017403 DE 102007017403 A DE102007017403 A DE 102007017403A DE 102007017403 A1 DE102007017403 A1 DE 102007017403A1
Authority
DE
Germany
Prior art keywords
synthesis gas
gas
bar
carbon dioxide
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE200710017403
Other languages
German (de)
Other versions
DE102007017403B4 (en
Inventor
William Dr. Davey
Rolf Felmet
Arne Schadt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Global E&C Solutions Germany GmbH
Original Assignee
Lurgi GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lurgi GmbH filed Critical Lurgi GmbH
Priority to DE200710017403 priority Critical patent/DE102007017403B4/en
Publication of DE102007017403A1 publication Critical patent/DE102007017403A1/en
Application granted granted Critical
Publication of DE102007017403B4 publication Critical patent/DE102007017403B4/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Producing ammonia synthesis gas, comprises reacting cracking gas at 25-50[deg] C and at a pressure of 35-70 bar in a hydrogen, carbon monoxide and carbon dioxide as well as relatively low methane and argon containing raw synthesis gas with hydrogen/carbon monoxide volume ratio of 1-5, removing carbon dioxide, carbon monoxide, methane and argon from the raw synthesis gas, and condensing the ammonia-synthesis gas, which is produced by addition of nitrogen, before the feeding into the ammonia synthesis at a pressure of 150-200 bar under simultaneous increase of the temperature to 300-500[deg] C. Process for the production of ammonia synthesis gas from hydrocarbon containing additives by catalytic steam reforming in the presence of water vapor or by non-catalytic partial oxidation with oxygen in the presence of water vapor or by autothermal reforming with oxygen containing gas of a catalyst obtained cracking gas, comprises reacting the cracking gas at 25-50[deg] C and at pressure of 35-70 bar in a hydrogen, carbon monoxide and carbon dioxide as well as relatively low methane and argon containing raw synthesis gas with hydrogen/carbon monoxide volume ratio of 1-5, absorptively removing carbon dioxide, carbon monoxide, methane and argon from the raw synthesis gas, and condensing the ammonia-synthesis gas, which is produced by addition of nitrogen, before the feeding into the ammonia synthesis at a pressure of 150-200 bar under simultaneous increase of the temperature to 300-500[deg] C, where the pressure of 30-50 bar possessing raw synthesis gas is pre-condensed before the absorptive removal of carbon dioxide, carbon monoxide, methane and argon at a pressure of 70-100 bar and then carbon dioxide, carbon monoxide, methane and argon are physisorptively removed from the raw synthesis gas. An independent claim is included for a device for the production of ammonia synthesis gas, comprising a two housing radial wave compressor arranged between the conversion step and the ammonia synthesis plant (11), with 4-7 condensation steps in the first housing and 7-9 compression steps in the second housing and a physisorptively carried out absorption plant (6) situated between the housings (8), for removing the carbon dioxide, carbon monoxide, methane and argon from the raw synthesis gas.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Herstellen von NH3-Synthesegas aus Kohlenwasserstoffe enthaltenden Einsatzstoffen durch katalytisches Dampfreformieren in Gegenwart von Wasserdampf oder durch nicht-katalytische, partielle Oxidation mit Sauerstoff in Gegenwart von Wasserdampf oder durch autothermes Reformieren mit Sauerstoff enthaltendem Gas an einem Katalysator gewonnenem Spaltgas, das durch Konvertieren bei Temperaturen von 25 bis 50°C und Drücken von 35 bis 70 bar[a] in ein H2, CO und CO2 sowie relativ geringe Anteile CH4 und Ar enthaltendes Rohsynthesegas mit H2/CO-Volumenverhältnissen von 1 bis 5 umgesetzt wird, CO2, CO, CH4 und Ar aus dem Rohsynthesegas absorptiv entfernt werden und das durch Zugabe von N2 erzeugte NH3-Synthesegas vor der Aufgabe in die NH3-Synthese auf Drücke von 150 bis 200 bar[a] bei gleichzeitigem Anstieg der Temperaturen auf 300 bis 500°C verdichtet wird.The invention relates to a method and apparatus for producing NH 3 synthesis gas from hydrocarbons-containing feedstocks by catalytic steam reforming in the presence of steam or by non-catalytic, partial oxidation with oxygen in the presence of water vapor or by autothermal reforming with oxygen-containing gas on a Catalyst obtained cracking gas, which by converting at temperatures of 25 to 50 ° C and pressures of 35 to 70 bar [a] in a H 2 , CO and CO 2 and relatively small proportions of CH 4 and Ar containing crude synthesis gas with H 2 / CO- Volume ratios of 1 to 5 is reacted, CO 2 , CO, CH 4 and Ar are absorptively removed from the Rohsynthesegas and the NH 3 synthesis gas generated by adding N 2 before the task in the NH 3 synthesis to pressures of 150 to 200 bar [a] is compressed with simultaneous increase in temperatures to 300 to 500 ° C.

Beim Dampfreformieren werden die Kohlenwasserstoffe bei Temperaturen von 650 bis 900°C und bei Drücken von 10 bis 60 bar[a] mit Wasserdampf an einem Katalysator zu einem Gemisch aus H2, CO und H2O mit geringen Anteilen an CO2 gespalten. Bei dem anschließenden Konvertieren wird CO mit Wasserdampf zu CO2 und H2 umgesetzt. Die nicht-katalytische, partielle Oxidation von Kohlenwasserstoffen erfolgt bei Temperaturen von 1200 bis 1450°C und Drücken von 30 bis 70 bar[a] mit Sauerstoff in Gegenwart von Wasserdampf. Das autotherme Reformieren wird in Gegenwart von O2 enthaltendem Gas an einem körnigen Festbettkatalysator, z. B. auf Nickelbasis, bei Temperaturen von 900 bis 1200°C und Drücken von 40 bis 80 bar[a] durchgeführt. Das erzeugte Rohsynthesegas enthält, trocken gerechnet, 55 bis 75 Vol.% H2, 15 bis 30 Vol.% CO und 5 bis 30 Vol.% CO2, wobei die H2/CO-Volumenverhältnisse im Bereich von 1,6 bis 4 liegen.In steam reforming, the hydrocarbons are split at temperatures of 650 to 900 ° C and at pressures of 10 to 60 bar [a] with steam on a catalyst to a mixture of H 2 , CO and H 2 O with small amounts of CO 2 . In the subsequent conversion, CO is converted with water vapor to CO 2 and H 2 . The non-catalytic, partial oxidation of hydrocarbons takes place at temperatures of 1200 to 1450 ° C and pressures of 30 to 70 bar [a] with oxygen in the presence of water vapor. The autothermal reforming is carried out in the presence of O 2 -containing gas on a granular fixed bed catalyst, for. B. on nickel base, at temperatures of 900 to 1200 ° C and pressures of 40 to 80 bar [a] performed. The crude synthesis gas produced contains, calculated dry, 55 to 75 vol.% H 2 , 15 to 30 vol.% CO and 5 to 30 vol.% CO 2 , wherein the H 2 / CO volume ratios in the range of 1.6 to 4 lie.

Im allgemeinen liegen die H2/CO-Volumenverhältnisse des durch Konvertieren des Spaltgases gewonnenen Rohsynthesegases im Bereich von 1 bis 5, je nach Einsatzstoff, Rückführung von CO2 und Betriebsbedingungen. Ein Erhöhen der Temperaturen, ein Senken der Drücke und ein Verringern des als Dampf pro Kohlenstoff im Einsatzstoff definierten Verhältnisses senkt die H2/CO-Volumenverhältnisse.In general, the H 2 / CO volume ratios of the crude synthesis gas obtained by converting the cracked gas are in the range from 1 to 5, depending on the starting material, recycling of CO 2 and operating conditions. Increasing the temperatures, lowering the pressures, and decreasing the ratio defined as steam per carbon in the feed will lower the H 2 / CO volume ratios.

Die Drücke des Spaltgases, die in der Regel im Bereich von 30 bis 70 bar[a] liegen, werden auf dem Weg über das Konvertieren des Spaltgases und das Reinigen des gewonnenen Rohsynthesegases von CO2, CO, CH4 und Ar auf Werte im Bereich von 20 bis 55 bar[a] abgebaut. Da aber andererseits die NH3-Synthese mit mittleren Drücken von 150 bis 200 bar[a] bei korrespondierenden Temperaturen von 300 bis 500°C arbeitet, ist es erforderlich, die Drücke des NH3-Synthesegases vor der Zufuhr zur NH3-Synthese entsprechend zu erhöhen. Für diesen Zweck wird üblicherweise ein zweihäusiger radialer Einwellenverdichter eingesetzt, bei dem in jedem Gehäuse acht bis neun hintereinander geschaltete, jeweils aus Laufrad und Leitteil gebildete Verdichtungsstufen, angeordnet sind, da die Druckerhöhung pro Verdichtungsstufe vergleichsweise niedrig ist. Die pro Verdichtungsstufe erzeugte Druckerhöhung ist eine direkte Funktion der pro Verdichtungsstufe gesteigerten Gasdichte, die wiederum vom Molekulargewicht abhängig ist. In dem vorstehend angeführten Druckbereich besitzt das NH3-Synthesegas ein Molekulargewicht von 8 bis 9. Ein Nachteil des zweihäusigen radialen Einwellenverdichters besteht darin, dass im Hinblick auf die für das NH3-Synthesegas erforderlichen Enddrücke bei großen Volumenströmen von > 5000 bis 10000 m3/h die einzelnen Laufräder hohen Drehzahlen und großen Drücken unterliegen, wodurch beachtliche Vibrationen der Wellen verursacht werden, mit der Folge, dass die notwenigen Enddrücke nicht erreicht werden können.The pressures of the cracking gas, which are usually in the range of 30 to 70 bar [a], are converted to values in the range by converting the cracked gas and purifying the recovered crude synthesis gas of CO 2 , CO, CH 4 and Ar reduced from 20 to 55 bar [a]. On the other hand, since the NH 3 synthesis with average pressures of 150 to 200 bar [a] works at corresponding temperatures of 300 to 500 ° C, it is necessary, the pressures of the NH 3 synthesis gas before feeding to the NH 3 synthesis accordingly to increase. For this purpose, a two-axis radial single-shaft compressor is usually used, in which eight to nine consecutively connected, each formed of impeller and the guide section compression stages are arranged in each housing, since the pressure increase per compression stage is relatively low. The pressure increase generated per compression stage is a direct function of the gas density increased per compression stage, which in turn is dependent on the molecular weight. In the above-mentioned pressure range, the NH 3 synthesis gas has a molecular weight of 8 to 9. A disadvantage of the two-axis radial single-shaft compressor is that in view of the end pressures required for the NH 3 synthesis gas at large flow rates of> 5000 to 10000 m 3 / h The individual wheels are subject to high speeds and high pressures, causing considerable vibration of the waves, with the result that the necessary end pressures can not be achieved.

Bei den eingangs angeführten Verfahren zum Herstellen von NH3-Synthesegas beträgt der Druck bei der Absorption von CO2, CO, CH4 und Ar etwa 25 bar[a] und liegt damit deutlich unterhalb des für eine physisorptive Entfernung von CO2, CO und CH4 geeigneten Drucks von etwa 50 bar[a]. Das bedeutet, dass sich CO2 nur chemisorptiv aus dem Rohsynthesegas entfernen lässt, während CO über einem für die Methanbildung geeigneten Katalysator in CH4 umgewandelt wird, danach CH4 und Ar dem NH3-Synthesegas zugesetzt und aus diesem mit reinem Abgas entfernt werden müssen. Für den Fall der Behandlung relativ großer Rohsynthesegas-Volumenströme, d. h. von > 5000 bis 10000 m3/h, müssen die die Absorptionsstufe umfassende Teilanlage und die Anlagenteile, wie Behälter, Rohrleitungen, Pumpen oder dergl. Ausrüstungsteile bei Einsatz chemischer Absorptionsmittel extrem groß ausgelegt werden.In the initially mentioned method for producing NH 3 synthesis gas, the pressure for the absorption of CO 2 , CO, CH 4 and Ar is about 25 bar [a], which is well below that for physisorptive removal of CO 2 , CO and CH 4 suitable pressure of about 50 bar [a]. This means that CO 2 can only be chemisorptively removed from the crude synthesis gas while CO is converted to CH 4 over a catalyst suitable for methane formation, then CH 4 and Ar must be added to the NH 3 synthesis gas and removed from it with pure exhaust gas , In the case of the treatment of relatively large raw synthesis gas volume flows, ie from> 5000 to 10000 m 3 / h, the subsystem comprising the absorption stage and the equipment parts such as containers, pipelines, pumps or the like equipment must be made extremely large when using chemical absorbents ,

Aus LUEGER Lexikon der Technik, Bd. 16, S. 28 ist bekannt, Spaltgas durch die Vergasung von Koks mit Luft (Sauerstoff) und Wasserdampf zu erzeugen und den darin enthaltenen Schwefel mit Ammoniumsulfid-Lösung zu entfernen. Nach dem Konvertieren des Spaltgases zu Rohsynthesegas erfolgt eine Kompression des Gases auf 25 bar[a]. In einer anschließenden Druckwasserreinigung wird CO2 mit Wasser entfernt, danach das Gas von 25 bar[a] auf 325 bar[a] verdichtet und dann in einer Wasserstoff-Reinigung CO2 mit ammoniakalischer Kupferlösung entfernt. Nach der Zugabe von N2 wird das NH3-Synthesegas einer Ammoniakfabrik zugeführt.It is known from LUEGER Lexikon der Technik, vol. 16, p. 28, to generate fission gas by the gasification of coke with air (oxygen) and water vapor and to remove the sulfur contained therein with ammonium sulfide solution. After the fission gas has been converted to crude synthesis gas, the gas is compressed to 25 bar [a]. In a subsequent pressure water cleaning CO 2 is removed with water, then compresses the gas from 25 bar [a] to 325 bar [a], and then removed in a hydrogen purification CO 2 with an ammoniacal copper solution. After the addition of N 2 , the NH 3 synthesis gas is fed to an ammonia factory.

Es ist die Aufgabe der vorliegenden Erfindung, das eingangs beschriebene Verfahren und die Vorrichtung zur Durchführung des Verfahren so zu verbessern, dass eine Erzeugung, insbesondere von > 3000 t NH3 pro Tag aus entsprechend großen Rohsynthesegas-Volumenströmen problemlos möglich ist.It is the object of the present invention, the method described above and the Device for carrying out the method to improve so that a generation, in particular of> 3000 t NH 3 per day from correspondingly large Rohsynthesegas volume flows is easily possible.

Gelöst ist diese Aufgabe dadurch, dass das Drücke von 30 bis 50 bar[a] besitzende Rohsynthesegas vor dem absoptiven Entfernen von CO2, CO, CH4 und Ar, d. h. unmittelbar nach dem Konvertieren auf Drücke von 70 bis 100 bar[a] vorverdichtet wird und anschließend CO2, CO, CH4 und Ar physisorptiv aus dem Rohsynthesegas entfernt werden. Durch die Vorverdichtung wird das Molekulargewicht des Rohsynthesegases auf Wert von 12 bis 15 angehoben mit der Folge, dass die Bauform des Einwellenverdichters durch die Verringerung der Anzahl der Verdichtungsstufen im ersten Gehäuse auf 4 bis 7 kleiner ausgelegt werden kann. Auch erlaubt die Möglichkeit des physisorptiven Entfernens von CO2, CO, CH4 und Ar aus dem Rohsynthesegas eine vergleichsweise kleinere Auslegung der Teilanlage und der Anlagenteile für die Absorption. Auf die Anwendung von reinem Abgas aus der NH3-Synthese zur Entfernung von CH4 und Ar kann ganz verzichtet werden.This problem is solved in that the pressures of 30 to 50 bar [a] possessing Rohsynthesegas before the absoptive removal of CO 2 , CO, CH 4 and Ar, ie directly after the conversion to pressures of 70 to 100 bar [a] precompressed and then CO 2 , CO, CH 4 and Ar are physisorptively removed from the crude synthesis gas. Due to the pre-compression, the molecular weight of the raw synthesis gas is raised to the value of 12 to 15, with the result that the design of the single-shaft compressor can be made smaller by reducing the number of compression stages in the first housing to 4 to 7. Also, the possibility of physisorptive removal of CO 2 , CO, CH 4 and Ar from the raw synthesis gas allows a comparatively smaller design of the unit and the equipment for the absorption. The use of pure exhaust gas from the NH 3 synthesis to remove CH 4 and Ar can be completely dispensed with.

Die Vorrichtung zur Durchführung des Verfahrens besteht aus einem zweihäusigen radialen Einwellenverdichter, bei dem zwischen den beiden Gehäusen eine physisorptiv arbeitende Absorptionsanlage für die Absorption von CO2, CO, CH4 und Ar aus dem Rohsynthesegas angeordnet ist, wobei in einer erster Stufe CO2 mit Methanol, Dimethylether oder mittels der Selexol-Wäsche und in einer weiteren Stufe CO, CH4 und Ar mit flüssigem N2 entfernt werden. In der EP-B-0307983 ist die Gaswäsche mit flüssigem N2 zum Herstellen eines NH3-Synthesegases beschrieben.The apparatus for carrying out the method consists of a two-axis radial single-shaft compressor, in which between the two housings a physisorptiv absorption system for the absorption of CO 2 , CO, CH 4 and Ar is arranged from the raw synthesis gas, wherein in a first stage CO 2 with Methanol, dimethyl ether or by means of Selexol laundry and in a further stage CO, CH 4 and Ar with liquid N 2 are removed. In the EP-B-0307983 is described the gas scrubbing with liquid N 2 for producing a NH 3 synthesis gas.

Die Erfindung ist nachstehend durch zwei Ausführungsbeispiele und je einem Grundfließbild näher erläutert. Es zeigen:The Invention is hereinafter by two embodiments and each explained in more detail a basic flow diagram. Show it:

1 ein Grundfließbild einer Anlage zum Herstellen von NH3-Synthesegas nach dem Stand der Technik 1 a Grundfließbild a plant for producing NH 3 synthesis gas according to the prior art

2 ein Grundfließbild einer Anlage zur Herstellung von NH3-Synthesegas gemäß der Erfindung 2 a Grundfließbild a plant for the production of NH 3 synthesis gas according to the invention

In 1 wird über Leitung (1) entschwefeltes Erdgas, im wesentlichen bestehend aus, trocken gerechnet, 3 Vol.% H2, 0,1 Vol.% CO, 91 Vol.% CH4, 1,5 Vol.% CO2 und 204 ppm Ar, in einem Volumenstrom von 74 t/h einem außen beheizten Röhrenofen (2) aufgegeben und in diesem unter Zusatz von Luft bei einem Druck von 40 bar[a] und bei einer Temperatur von 800°C in Gegenwart von Wasserdampf katalytisch zu H2, CO und CO2 gespalten. Das den Röhrenofen (2) mit einem Druck von 35 bar[a] und einer Temperatur von 960°C verlassende Spaltgas enthält, trocken gerechnet, 55 Vol.% H2, 23 Vol.% N2, 14 Vol.% CO, 7 Vol.% CO2 sowie noch 0,6 Vol.% CH4 und 0,3 Vol.% Ar und strömt über Leitung (3) in Konverter (4), in dem CO bei einer Temperatur von 400°C und einem Druck von 32 bar[a] katalytisch nahezu vollständig zu H2 und CO2 umgewandelt wird. Das über Leitung (5) aus dem Konverter (4) austretende, eine Temperatur von 35°C und einen Druck von 35 bar[a] aufweisende Rohsynthesegas enthält, trocken gerechnet, 60 Vol.% H2, 18 Vol.% CO2, 0,3 Vol.% CO, 0,5 Vol.% CH4, 0,3 Vol.% Ar und 21 Vol.% N2 und wird in die chemisorptiv arbeitende Absorptionsanlage (6) geleitet. Das über Leitung (7) die Absorptionsanlage (6) verlassende, trocken gerechnet, 73 Vol.% H2, 26 Vol.% N2, 1,1 Vol.% CH4 und 0,3 Vol.% Ar enthaltende NH3-Synthesegas besitzt eine Temperatur von 25°C und eine Druck von 28 bar[a] und wird dem ersten mit neun Verdichtungsstufen ausgestatteten Gehäuse (8) eines zweihäusigen radialen Einwellenverdichters aufgegeben und in diesem auf einen Druck von 70 bar[a] vorverdichtet. Anschließend wird das NH3-Synthesegas in dem zweiten mit neun Verdichtungsstufen ausgerüsteten Gehäuse (9) des Einwellenverdichters auf einen Druck von 175 bar[a] verdichtet und über Leitung (10) der Ammoniaksynthese-Anlage (11) zugeführt. Über Leitung (12) wird das erzeugte NH3 aus dem Prozess ausgeleitet.In 1 is over line ( 1 ) desulfurized natural gas, consisting essentially of, dry calculated, 3 vol.% H 2 , 0.1 vol.% CO, 91 vol.% CH 4 , 1.5 vol.% CO 2 and 204 ppm Ar, in a volumetric flow 74 t / h of an externally heated tube furnace ( 2 ) and in this with the addition of air at a pressure of 40 bar [a] and at a temperature of 800 ° C in the presence of water vapor catalytically cleaved to H 2 , CO and CO 2 . The tube furnace ( 2 ) with a pressure of 35 bar [a] and leaving a temperature of 960 ° C leaving gap, calculated dry, 55 vol.% H 2 , 23 vol.% N 2 , 14 vol.% CO, 7 vol.% CO 2 and 0.6 vol.% CH 4 and 0.3 vol.% Ar and flows over line ( 3 ) in converter ( 4 ), in which CO is catalytically almost completely converted to H 2 and CO 2 at a temperature of 400 ° C and a pressure of 32 bar [a]. The over line ( 5 ) from the converter ( 4 ), a temperature of 35 ° C and a pressure of 35 bar [a] containing crude synthesis gas contains, calculated dry, 60 vol.% H 2 , 18 vol.% CO 2 , 0.3 vol.% CO, 0.5 Vol.% CH 4 , 0.3 vol.% Ar and 21 vol.% N 2 and is in the chemisorptive absorption system ( 6 ). The over line ( 7 ) the absorption system ( 6 ), dry calculated, 73 vol.% H 2 , 26 vol.% N 2 , 1.1 vol.% CH 4 and 0.3 vol.% Ar containing NH 3 synthesis gas has a temperature of 25 ° C and a Pressure of 28 bar [a] and is the first housing equipped with nine compression stages ( 8th ) of a two-axis radial single-shaft compressor and pre-compressed in this to a pressure of 70 bar [a]. Subsequently, the NH 3 synthesis gas in the second housing equipped with nine compression stages ( 9 ) of the single-shaft compressor to a pressure of 175 bar [a] and compressed via line ( 10 ) of the ammonia synthesis plant ( 11 ). Via line ( 12 ), the generated NH 3 is discharged from the process.

Bei dem Grundfließbild gemäß 2 wird über Leitung (13) entschwefeltes Erdgas, enthaltend, trocken gerechnet, 3 Vol.% H2, 0,1 Vol.% CO, 91 Vol.% CH4, 1,5 Vol.% CO2 und 204 ppm Ar, in eine Volumenstrom von 278 t/h in einen außen beheizten Röhrenofen (14) eingeleitet und in diesem autotherm bei einem Druck von 40 bar[a] und einer Temperatur von 800°C in Gegenwart von Wasserdampf katalytisch zu H2, CO und CO2 gespalten. Das Spaltgas, das einen Druck von 35 bar[a], eine Temperatur von 960°C und eine Zusammensetzung von, trocken gerechnet, 66 Vol.% H2, 18 Vol.% CO, 12 Vol.% CO2, sowie noch 2 Vol.% CH4 und 0,5 Vol.% Ar besitzt, wird über Leitung (15) dem Konverter (16) aufgegeben. Über Leitung (17) strömt das eine Temperatur von 35°C und einen Druck 35 bar[a] besitzende Roh-Synthesegas, enthaltend, trocken gerechnet, 70 Vol.% H2, 24 Vol.% CO2, 2,4 Vol.% CO, 1,8 Vol.% CH4, 0,5 Vol.% Ar und 1,5 Vol.% N2, in das erste Gehäuse (18) ein zweihäusigen radialen Einwellenverdichters. Nach einer Vorverdichtung auf einen Druck von 80 bar[a] wird das Rohsynthesegas über Leitung (19) in eine physisorptiv arbeitenden Absorptionsanlage (20), in deren erster Stufe CO2 mittels Methanol und in deren weiterer Stufe CO, CH4 und Ar mittels flüssigem N2 absorbiert werden, geleitet. Das, trocken gerechnet, 75 Vol.% H2, 25% N2, und 20 ppm Ar enthaltende und einen Druck von 75 bar[a] besitzende NH3-Synthesegas fließt in einem Volumenstrom von 170 t/h über Leitung (21) in das zweite Gehäuse (22) des Einwellenverdichters und wird auf einen Druck von 196 bar[a] verdichtet und dabei die Temperatur auf 165°C erhöht. Über Leitung (23) wird das NH3-Synthesegas in die Ammoniaksynthese-Anlage (24) geleitet und das produzierte NH3 über Leitung (25) aus dem Prozess ausgeleitet.In the basic flow diagram according to 2 is over line ( 13 ) Desulfurized natural gas containing, calculated dry, 3 vol.% H 2 , 0.1 vol.% CO, 91 vol.% CH 4 , 1.5 vol.% CO 2 and 204 ppm Ar, in a volumetric flow of 278 t / h in an externally heated tube furnace ( 14 ) and catalytically split in this autothermic at a pressure of 40 bar [a] and a temperature of 800 ° C in the presence of water vapor to H 2 , CO and CO 2 . The cracked gas, the pressure of 35 bar [a], a temperature of 960 ° C and a composition of, calculated dry, 66 vol.% H 2 , 18 vol.% CO, 12 vol.% CO 2 , and still 2 Vol.% CH 4 and 0.5 Vol.% Ar, is via line ( 15 ) the converter ( 16 ) given up. Via line ( 17 ) flows a temperature of 35 ° C and a pressure 35 bar [a] possessing raw synthesis gas containing, calculated dry, 70 vol.% H 2 , 24 vol.% CO 2 , 2.4 vol.% CO, 1 , 8 vol.% CH 4 , 0.5 vol.% Ar and 1.5 vol.% N 2 , in the first housing ( 18 ) a two-axis radial single-shaft compressor. After pre-compression to a pressure of 80 bar [a], the crude synthesis gas is passed via line ( 19 ) into a physisorptive absorption system ( 20 ), in the first stage of CO 2 by means of methanol and in the further stage CO, CH 4 and Ar are absorbed by means of liquid N 2 , passed. The dry calculated, 75 vol.% H 2 , 25% N 2 , and containing 20 ppm Ar and a pressure of 75 bar [a] possessing NH 3 synthesis gas flows in a flow of 170 t / h via line ( 21 ) in the second housing ( 22 ) of the single-shaft compressor and is compressed to a pressure of 196 bar [a] while the temperature is raised to 165 ° C. Via line ( 23 ), the NH 3 synthesis gas is introduced into the ammonia synthesis plant ( 24 ) and the produced NH 3 via line ( 25 ) discharged from the process.

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • - EP 0307983 B [0009] EP 0307983 B [0009]

Claims (3)

Verfahren zum Herstellen von NH3-Synthesegas aus Kohlenwasserstoffe enthaltenden Einsatzstoffen durch katalytisches Dampfreformieren in Gegenwart von Wasserdampf oder durch nicht-katalytische partielle Oxidation mit Sauerstoff in Gegenwart von Wasserdampf oder durch autothermes Reformieren mit Sauerstoff enthaltendem Gas an einem Katalysator gewonnenem Spaltgas, das durch Konvertieren bei Temperaturen von 25 bis 50°C bei Drücken von 35 bis 70 bar[a] in ein H2, CO und CO2 sowie relativ geringe CH4 und Ar enthaltendes Rohsynthesegas mit H2/CO-Volumenverhältnissen von 1 bis 5 umgesetzt wird, CO2, CO, CH4 und Ar aus dem Rohsynthesegas absorptiv entfernt werden und das durch Zugabe von N2 erzeugte NH3-Synthesegas vor der Aufgabe in die NH3-Synthese auf Drücke von 150 bis 200 bar[a] unter gleichzeitigem Anstieg der auf Temperaturen von 300 bis 500°C verdichtet wird, dadurch gekennzeichnet, dass das Drücke von 30 bis 50 bar[a] besitzende Rohsynthesegas vor dem absorptiven Entfernen von CO2, CO, CH4 und Ar auf Drücke von 70 bis 100 bar[a] vorverdichtet wird und dann CO2, CO, CH4 und Ar physisorptiv aus dem Rohsynthesegas entfernt werden.A process for preparing NH 3 synthesis gas from hydrocarbons-containing feedstocks by catalytic steam reforming in the presence of water vapor or by non-catalytic partial oxidation with oxygen in the presence of water vapor or by autothermal reforming with oxygen-containing gas on a catalyst obtained cracking gas by conversion at Temperatures of 25 to 50 ° C at pressures of 35 to 70 bar [a] in a H 2 , CO and CO 2 and relatively low CH 4 and Ar-containing crude synthesis gas with H 2 / CO volume ratios of 1 to 5 is reacted, CO 2 , CO, CH 4 and Ar are absorptively removed from the crude synthesis gas and the NH 3 synthesis gas produced by addition of N 2 before the task in the NH 3 synthesis to pressures of 150 to 200 bar [a] with simultaneous increase of Temperatures of 300 to 500 ° C is compressed, characterized in that the pressures of 30 to 50 bar [a] possessing Rohsynthesegas before the absorptive Removing CO 2 , CO, CH 4 and Ar is precompressed to pressures of 70 to 100 bar [a] and then CO 2 , CO, CH 4 and Ar are physisorptively removed from the crude synthesis gas. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperaturen des NH3-Synthesegases auf 100 bis 200°C erhöht wird.A method according to claim 1, characterized in that the temperatures of the NH 3 synthesis gas is increased to 100 to 200 ° C. Vorrichtung zum Herstellen von NH3-Synthesegas nach Anspruch 1, gekennzeichnet durch einen zwischen der Konvertierungsstufe (16) und der NH3-Syntheseanlage (24) angeordneten zweihäusigen radialen Einwellenverdichter mit 4 bis 7 Verdichtungsstufen im ersten Gehäuse (18) und 7 bis 9 Verdichterstufen im zweiten Gehäuse (22) und einer zwischen den Gehäusen befindlichen physiosorptiv betriebenen Absorptionsanlage (20) zum Entfernen von CO2, CO, CH4 und Ar aus dem Rohsynthesegas.Apparatus for producing NH 3 synthesis gas according to claim 1, characterized by an intermediate between the conversion stage ( 16 ) and the NH 3 synthesis plant ( 24 ) arranged two-axis radial single-shaft compressor with 4 to 7 compression stages in the first housing ( 18 ) and 7 to 9 compressor stages in the second housing ( 22 ) and a physically located between the housings physiosorptive absorption system ( 20 ) for removing CO 2 , CO, CH 4 and Ar from the raw synthesis gas.
DE200710017403 2007-04-13 2007-04-13 Process and apparatus for producing NH3 synthesis gas Expired - Fee Related DE102007017403B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200710017403 DE102007017403B4 (en) 2007-04-13 2007-04-13 Process and apparatus for producing NH3 synthesis gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710017403 DE102007017403B4 (en) 2007-04-13 2007-04-13 Process and apparatus for producing NH3 synthesis gas

Publications (2)

Publication Number Publication Date
DE102007017403A1 true DE102007017403A1 (en) 2009-06-10
DE102007017403B4 DE102007017403B4 (en) 2012-05-31

Family

ID=40620931

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200710017403 Expired - Fee Related DE102007017403B4 (en) 2007-04-13 2007-04-13 Process and apparatus for producing NH3 synthesis gas

Country Status (1)

Country Link
DE (1) DE102007017403B4 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000993B1 (en) * 1977-08-22 1982-12-08 Imperial Chemical Industries Plc Ammonia production process
EP0307983B1 (en) 1987-09-16 1991-06-12 Metallgesellschaft Ag Process for obtaining an ammonia synthesis gas
DE19753903C2 (en) * 1997-12-05 2002-04-25 Krupp Uhde Gmbh Process for the removal of CO¶2¶ and sulfur compounds from technical gases, in particular from natural gas and raw synthesis gas
DE10226209A1 (en) * 2002-06-13 2004-01-08 Lurgi Ag Plant and process for the decomposition of a synthesis gas
DE102004042418A1 (en) * 2004-09-02 2006-03-23 Clariant Gmbh Process for the purification of gases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000993B1 (en) * 1977-08-22 1982-12-08 Imperial Chemical Industries Plc Ammonia production process
EP0307983B1 (en) 1987-09-16 1991-06-12 Metallgesellschaft Ag Process for obtaining an ammonia synthesis gas
DE19753903C2 (en) * 1997-12-05 2002-04-25 Krupp Uhde Gmbh Process for the removal of CO¶2¶ and sulfur compounds from technical gases, in particular from natural gas and raw synthesis gas
DE10226209A1 (en) * 2002-06-13 2004-01-08 Lurgi Ag Plant and process for the decomposition of a synthesis gas
DE102004042418A1 (en) * 2004-09-02 2006-03-23 Clariant Gmbh Process for the purification of gases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUEGER, LEXIKON DER TECHNIK, DEUTSCHE VERLAGS-ANSTALT, 1970, Bd. … 16, S. 28,29 *
LUEGER, LEXIKON DER TECHNIK, DEUTSCHE VERLAGS-ANSTALT, 1970, Bd. 16, S. 28,29

Also Published As

Publication number Publication date
DE102007017403B4 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
DE10334590B4 (en) Process for the production of hydrogen from a methane-containing gas, in particular natural gas and plant for carrying out the process
EP1337466B1 (en) Method for producing ammonia on the basis of a nitrogen-hydrogen mixture from natural gas
EP3176152B1 (en) Method for preparing urea
WO2008058636A1 (en) Process for obtaining carbon dioxide
DE102008002963A1 (en) Polygenerationssysteme
DE2024301C3 (en) Process for the production of methanol
EP2125163A1 (en) Production of gas products from raw synthesis gas
DE19625093A1 (en) Process for the production of carbon monoxide and hydrogen
DE69921777T2 (en) REMOVAL OF AMMONIA AND CYANINE HYDROGEN FROM SYNTHESEGAS WITH THE PREPARATION OF CLEAN WATER
DE102006032104A1 (en) Process for the production of hydrogen and hydrogen-containing gas mixtures
EP2864242A1 (en) Method for producing co, h2 and methanol synthesis gas from a synthesis gas, in particular from acetylene off gas
EP3102309B1 (en) Method for producing a high-molecular compound from synthesis gas using an indirectly heated co2 tsa
EP2598464B1 (en) Process for producing a methane-containing gas from synthesis gas and methane production plant for carrying out the process
DE10116152A1 (en) Process for the production of ammonia from methanol
DE102007017403A1 (en) Producing ammonia synthesis gas, comprises reacting cracking gas at specific temperature and pressure in a hydrogen, carbon monoxide and carbon dioxide, removing e.g. carbon dioxide and argon from raw synthesis gas and condensing
EP3333124B1 (en) Installation and method for the production of synthesis gas
DE102014209635A1 (en) Synthesis of synthesis gas with two autothermal reformers
EP3818009A1 (en) Method for avoiding voc and hap emissions from synthesis gas-processing systems
EP4066921A1 (en) Method and installation for producing methanol and ammonia
DE102015004214A1 (en) Process for the production of synthesis gas from a CO2-rich, hydrocarbon-containing feed gas
DE3206513A1 (en) Process for the production of ammonia synthesis gas
DE3101067A1 (en) "Process for generating ammonia synthesis gas according to the steam-reforming process"
EP4098609A1 (en) Method and installation for the production of pure hydrogen by means of steam reforming with reduced carbon dioxide emissions
EP3647264A1 (en) Method and system for the production of a purified and converted synthesis gas
DE3501459A1 (en) Process for generating H2/CO synthesis gas and CO

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20120901

R081 Change of applicant/patentee

Owner name: AIR LIQUIDE GLOBAL E&C SOLUTIONS GERMANY GMBH, DE

Free format text: FORMER OWNER: LURGI GMBH, 60439 FRANKFURT, DE

Effective date: 20140505

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee