DE102005062004A1 - Meßwandler vom Vibrationstyp - Google Patents

Meßwandler vom Vibrationstyp Download PDF

Info

Publication number
DE102005062004A1
DE102005062004A1 DE200510062004 DE102005062004A DE102005062004A1 DE 102005062004 A1 DE102005062004 A1 DE 102005062004A1 DE 200510062004 DE200510062004 DE 200510062004 DE 102005062004 A DE102005062004 A DE 102005062004A DE 102005062004 A1 DE102005062004 A1 DE 102005062004A1
Authority
DE
Germany
Prior art keywords
measuring tube
transducer according
longitudinal axis
inner part
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200510062004
Other languages
English (en)
Inventor
Christof Huber
Ennio Bitto
Christian Schütze
Martin Dr. Anklin-Imhof
Dieter Mundschin
Michael Lambrigger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Priority to DE200510062004 priority Critical patent/DE102005062004A1/de
Priority to EP06830199.3A priority patent/EP1963794B1/de
Priority to PCT/EP2006/069077 priority patent/WO2007074015A1/de
Priority to CN2006800488625A priority patent/CN101346612B/zh
Priority to DK06830199.3T priority patent/DK1963794T3/en
Priority to CN2006800487336A priority patent/CN101346611B/zh
Priority to RU2008130101/28A priority patent/RU2405128C2/ru
Priority to JP2008546342A priority patent/JP5096366B2/ja
Priority to DK06819845.6T priority patent/DK1963793T3/en
Priority to JP2008546341A priority patent/JP5096365B2/ja
Priority to EP06819845.6A priority patent/EP1963793B1/de
Priority to RU2008130103/28A priority patent/RU2406072C2/ru
Priority to CA2633527A priority patent/CA2633527C/en
Priority to PCT/EP2006/069076 priority patent/WO2007074014A1/de
Priority to CA2633518A priority patent/CA2633518C/en
Priority to US11/635,502 priority patent/US7325462B2/en
Priority to US11/636,555 priority patent/US7360451B2/en
Publication of DE102005062004A1 publication Critical patent/DE102005062004A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • G01F1/8418Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means

Abstract

Der Meßwandler umfaßt ein Wandler-Gehäuse sowie ein im Wandler-Gehäuse angeordnetes Innenteil. Dieses weist zumindest ein gekrümmtes, im Betrieb zumindest zeitweise vibrierendes Meßrohr (10) zum Führen des Mediums sowie einen unter Bildung einer Kopplungszone (11#) einlaßseitig am Meßrohr (10) und unter Bildung einer Kopplungszone (12#) auslaßseitig am Meßrohr (10) fixierten Gegenschwinger (20) auf. Das Innenteil ist zumindest mittels zweier Verbindungsrohrstücke (11, 12) im Wandler-Gehäuse schwingfähig gehaltert, über die das Meßrohr (10) im Betrieb mit der Rohrleitung kommuniziert und die zueinander sowie zu einer gedachten Längsachse (L) des Meßwandlers so ausgerichtet sind, daß das Innenteil im Betrieb um die Längsachse (L) pendeln kann. Meßrohr (10) und Gegenschwinger (20) sind ferner so ausgebildet und zueinander ausgerichtet, daß sowohl ein von der gedachten Längsachse (L) beabstandeter Massenschwerpunkt M¶10¶ des Meßrohrs (10) als auch ein von der gedachten Längsachse (L) beabstandeter Massenschwerpunkt M¶20¶ des Gegenschwingers (20) in einem gemeinsamen von der gedachten Längsachse (L) und dem Meßrohr (10) aufgespannten Bereich des Meßwandlers liegen und daß der Massenschwerpunkt M¶10¶ des Meßrohrs (10) weiter von der Längsachse (L) entfernt ist als der Massenschwerpunkt M¶20¶ des Gegenschwingers (20).

Description

  • Die Erfindung betrifft einen, insb. für eine Verwendung in einem Coriolis-Massedurchflußmesser geeigneten, Meßwandler vom Vibrationstyp.
  • Zur Ermittlung eines Massedurchflusses eines in einer Rohrleitung strömenden Mediums, insb. einer Flüssigkeit oder eines anderen Fluids, werden oftmals solche Meßgeräte verwendet, die mittels eines Meßwandlers vom Vibrationstyp und einer daran angeschlossener Steuer- und Auswerteelektronik, im Fluid Corioliskräfte bewirken und von diesen abgeleitet ein den Massedurchfluß repräsentierendes Meßsignal erzeugen.
  • Solche Meßwandler, insb. auch deren Verwendung in Coriolis-Massedurchflußmessern, sind bereits seit langem bekannt und im industriellen Einsatz. So sind z.B. in der DE-A 10 2004 023 600, der US-B 66 66 098, US-B 64 77 902, der US-A 57 05 754, der US-A 55 49 009 oder der US-A 52 87 754 Coriolis-Massedurchflußmesser mit jeweils einem Meßwandler vom Vibrationstyp beschrieben, welcher Meßwandler auf einen Massedurchfluß eines in einer Rohrleitung strömenden Mediums reagiert, und welcher Meßwandler ein Wandler-Gehäuse sowie ein im Wandler-Gehäuse angeordnetes Innenteil umfaßt. Das Innenteil weist zumindest ein gekrümmtes, im Betrieb zumindest zeitweise vibrierendes Meßrohr zum Führen des Mediums, sowie einen unter Bildung einer ersten Kopplungszone einlaßseitig am Meßrohr und unter Bildung einer zweiten Kopplungszone auslaßseitig am Meßrohr fixierten Gegenschwinger auf, der im Betrieb im wesentlichen ruht oder zum Meßrohr gegengleich, also gleichfrequent und gegenphasig, oszilliert.
  • Das Innenteil ist ferner zumindest mittels zweier Verbindungsrohrstücke im Wandler-Gehäuse schwingfähig gehaltert, über die das Meßrohr im Betrieb mit der Rohrleitung kommuniziert.
  • Gekrümmte, z.B. U-, V- oder Ω-artig geformte, vibrierende Meßrohre können bekanntlich, angeregt zu Biegeschwingungen gemäß einer ersten Eigenschwingungsform, im hindurchströmenden Medium Corioliskräfte bewirken. Als erste Eigenschwingungsform des Meßrohrs wird bei derartigen Meßwandlern üblicherweise jene Eigenschwingungsform gewählt, bei denen das Meßrohr bei einer niedrigsten natürlichen Resonanzfrequenz um eine gedachte Längsachse des Meßwandlers nach Art eines endseitig eingespannten Auslegers pendelt. Die so im hindurchströmenden Medium erzeugten Corioliskräfte wiederum führen dazu, daß den angeregten, pendelartigen Auslegerschwingungen des sogenannten Nutzmodes Biegeschwingungen gemäß wenigstens einer zweiten Eigenschwingungsform gleichfrequent überlagert werden. Bei Meßwandlern der beschriebenen Art entsprechen diese durch Corioliskräfte erzwungenen Auslegerschwingungen, dem sogenannten Coriolismode, üblicherweise jener Eigenschwingungsform, bei denen das Meßrohr auch Drehschwingungen um eine senkrecht zur Längsachse ausgerichtete gedachte Hochachse ausführt. Aufgrund der Überlagerung von Nutz- und Coriolismode weisen die mittels der Sensoranordnung einlaßseitig und auslaßseitig erfaßten Schwingungen des Meßrohrs eine auch vom Massedurchfluß abhängige, meßbare Phasendifferenz auf.
  • Häufig werden die Meßrohre derartiger, z.B. in Coriolis-Massedurchflußmessern eingesetzte, Meßwandler im Betrieb auf einer momentanen Resonanzfrequenz der ersten Eigenschwingungsform, insb. bei konstantgeregelter Schwingungsamplitude, angeregt. Da diese Resonanzfrequenz insb. auch von der momentanen Dichte des Fluids abhängig ist, kann z.B. mittels marktüblicher Coriolis- Massedurchflußmesser neben dem Massedurchfluß auch die Dichte von strömenden Fluiden gemessen werden.
  • Ein Vorteil einer gekrümmten Rohrform besteht z.B. darin, daß aufgrund thermisch bedingter Ausdehnungen, insb. auch bei der Verwendung von Meßrohren mit einem hohen Ausdehnungskoeffizienten, praktisch keine oder nur sehr gerinfügige mechanische Spannungen im Meßrohr selbst und/oder in der angeschlossenen Rohrleitung hervorgerufen werden. Ein weiterer Vorteil gekrümmter Meßrohre ist aber auch darin zu sehen, daß das Meßrohr relativ lang ausgeführt und somit eine hohe Empfindlichkeit des Meßwandlers auf den zu messenden Massedurchfluß bei einer relativ kurzen Einbaulänge und bei relativ niedriger Erregerenergie erzielt werden kann. Diese Umstände ermöglichen es, das Meßrohr auch aus Materialien mit einem hohen Ausdehnungskoeffizienten und/oder hohen Elastizitätsmodul, wie z.B. Edelstahl, herzustellen. Im Vergleich dazu wird bei Meßwandlern vom Vibrations-Typ mit geradem Meßrohr, letzteres zur Vermeidung von axialen Spannungen und zur Erzielung einer ausreichenden Meßempfindlichkeit üblicherweise aus einem Material gefertigt, das zumindest einen niedrigeren Ausdehnungskoeffizienten und ggf. auch einen niedrigeren Elastizitätsmodul als Edelstahl aufweist. Daher werden für diesen Fall bevorzugt Meßrohre aus Titan oder Zirkonium verwendet, die jedoch aufgrund des höheren Materialpreises und des üblicherweise auch höheren Bearbeitungsaufwands weitaus teurer als die aus Edelstahl gefertigten sind. Zudem weist ein' Meßwandler mit einem einzigen Meßrohr gegenüber einem mit zwei parallel durchströmten Meßrohren bekanntlich den weiteren großen Vorteil auf, daß dem Verbinden der Meßrohre mit der Rohrleitung dienende Verteilerstücke nicht erforderlich sind. Solche Verteilerstücke sind zum einen aufwendig zu fertigen und zum anderen stellen sie auch Strömungskörper mit einer ausgeprägten Neigung zur Ansatzbildung oder zum Verstopfen dar.
  • Aufgrund der im Nutzmode zumeist eher schmalen Bandbreite von Gegenschwingern weisen Meßwandler mit einem einzigen gekrümmten Meßrohr bei Anwendung mit in einem weiten Bereich schwankender Mediumsdichte allerdings oftmals den Nachteil auf, insb. auch im Vergleich zu solchen Meßwandlern mit zwei parallelen Meßrohren, daß infolge von mit der Dichte schwankender Imbalance des Innenteils der Nullpunkt des Meßwandler und somit auch die Meßgenauigkeit des jeweiligen In-Line-Meßgeräts gleichermaßen erheblich schwanken und insoweit entsprechend verringert sein kann. Dies liegt u.a. darin begründet, daß auch mittels des im allgemeinen einzigen Gegenschwingers solche Querkräfte nur unvollständig zu neutralisieren und somit von der angeschlossenen Rohrleitung weitgehend fern gehalten werden können, die aufgrund wechselseitiger lateraler Bewegungen des Mediums führenden einzigen Meßrohrs im Meßwandler induziert werden, und die infolge stark schwankender Mediumsdichte im Vergleich zu den seitens des Gegenschwingers aufbringbaren Gegenkräften eher breitbandig sind. Solch residuale Querkräfte wiederum können dazu führen, daß das oben erwähnte Innenteil, gesamtheitlich um die Längsachse des Meßwandlers pendelnd, auch lateral zu schwingen beginnt. Diese lateralen Schwingungen des Innenteils erzwingen dementsprechend auch eine zusätzliche elastische Verformung des Verbindungsrohrstücks und können so folglich auch in der angeschlossenen Rohrleitung unerwünschte Vibrationen bewirken. Außerdem können aufgrund solcher lateraler Schwingungen des Innenteils auch im nicht von Fluid durchströmten Meßrohr dem Coriolismode sehr ähnliche, jedenfalls aber gleichfrequente und somit von diesem praktisch nicht unterscheidbare Auslegerschwingungen angestoßen werden, was wiederum das eigentlich den Massedurchfluß repräsentierende Meßsignal unbrauchbar machen würde.
  • Dies zeigt sich auch bei Meßwandlern, die gemäß dem beispielsweise in der US-A 57 05 754 oder der US-A 52 87 754 vorgeschlagenen Prinzip realisiert sind. Bei dort beschriebenen Meßwandlern werden die seitens des vibrierenden einzigen Meßrohrs erzeugten, eher mittel- oder hochfrequent oszillierenden Querkräfte mittels eines einzigen, im Vergleich zum Meßrohr eher schweren, gleichwohl aber im Vergleich zum Meßrohr eher hochfrequent abgestimmten Gegenschwingers und ggf. einer relativ weichen Ankopplung des Meßrohrs an die Rohrleitung, also praktisch mittels eines mechanischen Tiefpasses, von der Rohrleitung, fernzuhalten gesucht. Ungünstigerweise steigt hierbei jedoch die zur Erzielung einer ausreichend robusten Dämpfung der Querkräfte erforderliche Masse des Gegenschwingers überproportional mit der Nennweite des Meßrohrs. Dies stellt einen großen Nachteil für solche Meßwandler hoher Nennweite dar, da eine Verwendung solch massiger Bauteile nämlich stets einen erhöhten Montageaufwand sowohl bei der Fertigung als auch beim Einbau des Meßgeräts in die Rohrleitung bedeutet. Außerdem läßt es sich hierbei nur noch sehr aufwendig sicherstellen, daß die mit zunehmender Masse ja auch immer niedriger werdende kleinste Eigenfrequenz des Meßwandlers nach wie vor weitab von den ebenfalls eher niedrigen Eigenfrequenzen der angeschlossenen Rohrleitung liegt. Somit ist eine Verwendung eines derartigen Meßwandlers in industriell einsetzbaren In-Line-Meßgeräten der beschriebenen Art, beispielsweise Coriolis-Massedurchflußmeßgeräten, bislang eher auf relativ geringe Meßrohr-Nennweiten bis etwa 10 mm begrenzt. Meßwandler der vorbeschriebenen Art werden im übrigen auch seitens der Anmelderin selbst mit der Serienbezeichnung "PROMASS A" für einen nominellen Nennweitenbereich von 1–4 mm am Markt angeboten und haben sich dort im besonderen auch bei Anwendungen mit sehr niedrigen Durchflußraten und/oder hohem Druck bewährt.
  • Demgegenüber sind bei den in der US-B 66 66 098, der US-B 64 77 902, oder der 55 49 009 gezeigten Meßwandlern die beiden – hier im wesentlichen geraden – Verbindungsrohrstücke zueinander sowie zu einer gedachten Längsachse des Meßwandlers so ausgerichtet, daß das mittels Meßrohr und Gegenschwinger sowie der daran entsprechend angebrachten Schwingungserregern und Schwingungssensoren gebildete Innenteil im Betrieb um die Längsachse pendeln kann. Anders gesagt, kann das gesamte Innenteil im Betrieb Pendelschwingungen, bedingt durch, insb. dichteabhängige, Inbalancen zwischen Meßrohr 10 und Gegenschwinger 20, um die Längsachse L ausführen, die, je nach Ausprägung der Inbalance zu den Auslegerschwingungen des Meßrohrs 10 oder zu denen des Gegenschwingers 20 gleichphasig sind. Dabei sind die Torsionssteifigkeiten der Verbindungsrohrstücke vorzugsweise so aufeinander und auf das von beiden getragene Innenteil abgestimmt, daß letzteres im wesentlichen drehweich um die Längsachse aufgehängt ist.
  • Dies wird bei dem in der der US-B 66 66 098 beispielsweise dadurch erreicht, daß die Torsionssteifigkeit der Verbindungsrohrstücke so bemessen ist, daß eine jeweilige Eigenfrequenz eines einlaßseitigen und eines auslaßseitigen Torsionsschwingers, der mittels des jeweiligen Verbindungsrohrstücks und einem zugehörigen, als weitgehend starr und im wesentlichen formstabil anzusehenden, um die Längsachse drehschwingenden endseitigen Massenanteil des Innenteils inhärent gebildet ist, jeweils im Bereich der Schwingungsfrequenz des im Nutzmode schwingenden Meßrohrs liegt. Zudem sind zumindest bei dem in der US-B 66 66 098 vorgeschlagenen Meßwandler Meßrohr und Gegenschwinger so aufeinander abgestimmt, daß sie zumindest im Nutzmode in etwa auf gleicher Resonanzfrequenz schwingen. Meßwandler der vorbeschriebenen Art werden im übrigen auch seitens der Anmelderin selbst mit der Serienbezeichnung "PROMASS H" für einen nominellen Nennweitenbereich von 8–50 mm am Markt angeboten und haben sich dort im besonderen auch bei Anwendungen mit im Betrieb in erheblichem Maße veränderlicher Mediumsdichte bewährt. Die Pendelbewegung des Innenteils wird dadurch besonders ausgeprägt oder zumindest begünstigt, daß sowohl ein von der gedachten Längsachse beabstandeter Massenschwerpunkt des Meßrohrs als auch ein von der gedachten Längsachse beabstandeter Massenschwerpunkt des Gegenschwingers in einem gemeinsamen von der gedachten Längsachse und dem Meßrohr aufgespannten Bereich des Meßwandlers liegen.
  • Allerdings haben Untersuchungen inzwischen gezeigt, daß der Nullpunkt von Meßwandlern der vorgenannten Art bei sehr kleinen Massendurchflußraten und Medien mit einer von der kalibrierten Referenzdichte erheblich abweichenden Dichte nach wie vor erheblichen Schwankungen unterliegen kann. Experimentelle Untersuchungen an gemäß der US-B 66 66 098 konfigurierten Meßwandlern, bei denen – wie vorgeschlagen – ein vergleichsweise schwerer Gegenschwinger verwendet worden ist, haben zwar erkennen lassen, daß so durchaus eine gewisse Verbesserung der Nullpunktstabilität und insoweit eine Verbesserung der Meßgenauigkeit von In-Line-Meßgeräten der beschriebenen Art erzielbar wäre, allerdings nur in eher unzureichendem Maße. Allenfalls ist bei den in der der US-B 66 66 098 vorgeschlagenen Konfigurationen eine signifikante Verbesserung der Meßgenauigkeit praktisch nur unter Inkaufnahme der bezüglich der US-A 57 05 754 oder der US-A 52 87 754 bereits diskutierten Nachteile erzielbar.
  • Ein Aufgabe der Erfindung besteht daher darin, die Dichteabhängigkeit des Nullpunkts und insoweit die Nullpunktstabilität von Meßwandlern der vorgenannten Art zu verbessern, und zwar so, daß der Meßaufnehmer einerseits über einen weiten Mediumsdichtebereich dynamisch gut ausbalanciert ist und anderseits trotzdem im Vergleich zu den in der US-A 57 05 754 oder der US-A 52 87 754 vorgeschlagen Meßwandlern von geringerer Masse ist. Im besonderen soll dabei das in der US-B 66 66 098 vorgeschlagene Kompensationsprinzip mit den im wesentlichen auf die Nutzfrequenz des Meßrohrs abgestimmten endseitigen inhärenten Torsionsschwingern und auf Nutzfrequenz abgestimmtem Gegenschwinger nach wie vor wirksam angewendet werden können.
  • Zur Lösung der Aufgabe besteht die Erfindung in einem Meßwandler vom Vibrationstyp für ein in einer Rohrleitung strömendes Medium. Der Meßwandler umfaßt ein Wandler-Gehäuse sowie ein im Wandler-Gehäuse angeordnetes Innenteil. Das Innenteil weist zumindest ein gekrümmtes, im Betrieb zumindest zeitweise vibrierendes Meßrohr zum Führen des Mediums, sowie einen unter Bildung einer ersten Kopplungszone einlaßseitig am Meßrohr und unter Bildung einer zweiten Kopplungszone auslaßseitig am Meßrohr fixierten Gegenschwinger auf, und ist zumindest mittels zweier Verbindungsrohrstücke im Wandler-Gehäuse schwingfähig gehaltert. Die wenigstens zwei Verbindungsrohrstücke, über die das Meßrohr zudem im Betrieb mit der Rohrleitung kommuniziert, sind zueinander sowie zu einer gedachten Längsachse des Meßwandlers so ausgerichtet sind, daß das Innenteil im Betrieb um die Längsachse L pendeln kann. Meßrohr und Gegenschwinger sind so ausgebildet und zueinander ausgerichtet, daß sowohl ein von der gedachten Längsachse beabstandeter Massenschwerpunkt des Meßrohrs als auch ein von der gedachten Längsachse beabstandeter Massenschwerpunkt des Gegenschwingers in einem gemeinsamen von der gedachten Längsachse und dem Meßrohr aufgespannten Bereich des Meßwandlers liegen. Desweiteren sind Meßrohr und Gegenschwinger so ausgebildet und zueinander ausgerichtet, daß der Massenschwerpunkt des Meßrohrs weiter von der Längsachse entfernt ist, als der Massenschwerpunkt des Gegenschwingers.
  • Nach einer ersten Ausgestaltung der Erfindung ist vorgesehen, daß jeder der vorgenannten Massenschwerpunkte einen Abstand zur gedachten Längsachse aufweisen, der größer als 10% eines größten Abstandes zwischen Meßrohr und gedachter Längsachse ist.
  • Nach einer zweiten Ausgestaltung der Erfindung ist vorgesehen, daß jeder der vorgenannten Massenschwerpunkte einen Abstand zur gedachten Längsachse aufweist, der kleiner als 90% eines größten Abstandes zwischen Meßrohr und gedachter Längsachse ist.
  • Nach einer dritten Ausgestaltung der Erfindung ist vorgesehen, daß jeder der vorgenannten Massenschwerpunkte einen Abstand zur gedachten Längsachse aufweist, der größer als 30 mm ist.
  • Nach einer vierten Ausgestaltung der Erfindung ist vorgesehen, daß ein Verhältnis des Abstands eines jeden der vorgenannten Massenschwerpunkte zu einem Durchmesser des Meßrohrs jeweils größer als eins ist. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist vorgesehen, daß das Verhältnis des Abstands eines jeden der vorgenannten Massenschwerpunkte zu einem Durchmesser des Meßrohrs jeweils größer als zwei ist und kleiner als zehn.
  • Nach einer fünften Ausgestaltung der Erfindung ist vorgesehen, daß ein Durchmesser des Meßrohrs größer als 1 mm und kleiner als 100 mm ist.
  • Nach einer sechsten Ausgestaltung der Erfindung ist vorgesehen, daß die Längsachse des Meßwandlers die beiden Kopplungszonen miteinander imaginär verbindet.
  • Nach einer siebenten Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger eine Masse aufweist, die größer ist als eine Masse des Meßrohrs. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist vorgesehen, daß ein Verhältnis der Masse des Gegenschwingers zur Masse des Meßrohrs größer als zwei ist.
  • Nach einer achten Ausgestaltung der Erfindung ist vorgesehen, daß das Meßrohr im wesentlichen U-förmig oder V-förmig ausgebildet ist.
  • Nach einer neunten Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger mittels seitlich des Meßrohrs angeordneter Gegenschwinger-Platten gebildet ist.
  • Nach einer zehnten Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger mittels seitlich des Meßrohrs angeordneter Gegenschwinger-Platten gebildet ist, und daß der Gegenschwinger mittels wenigstens zweier Gegenschwinger-Platten gebildet ist, von denen eine erste Gegenschwinger-Platte linksseitig des Meßrohrs und eine zweite Gegenschwinger-Platte rechtsseitig des Meßrohrs angeordnet sind.
  • Nach einer elften Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger mittels seitlich des Meßrohrs angeordneter Gegenschwinger-Platten gebildet ist, und daß jede der wenigstens zwei Gegenschwinger-Platten eine zwischen einer bezüglich der Längsachse distalen Konturlinie sowie einer bezüglich der Längsachse proximalen Konturlinie imaginär verlaufende, gekrümmte Schwerelinie aufweist. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger mittels seitlich des Meßrohrs angeordneter Gegenschwinger-Platten gebildet ist, und daß die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten zumindest im Bereich eines Mittelabschnitts bezüglich der Längsachse einen konkaven Verlauf aufweist. Nach einer anderen Weiterbildung dieser Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger mittels seitlich des Meßrohrs angeordneter Gegenschwinger-Platten gebildet ist, und daß die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten zumindest im Bereich der Kopplungszonen bezüglich der Längsachse jeweils einen konvexen Verlauf aufweist. Ferner ist vorgesehen, daß die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten zumindest im Bereich eines Mittelabschnitts des Gegenschwingers im wesentlichen U- oder V-förmig ausgebildet ist und/oder daß die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten im wesentlichen parallel zu einer Schwerelinie des Meßrohrs ist, die imaginär innerhalb von dessen Lumen verläuft.
  • Nach einer zwölften Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger mittels seitlich des Meßrohrs angeordneter Gegenschwinger-Platten gebildet ist, und daß jede der wenigstens zwei Gegenschwinger-Platten eine äußere Seitenfläche aufweist, von der ein erster Rand durch eine bezüglich der Längsachse distale Kontur gebende Kante sowie ein zweiter Rand von einer bezüglich der Längsachse proximale Kontur gebende Kante gebildet ist. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist vorgesehen, daß jede der wenigstens zwei Gegenschwinger-Platten so ausgebildet und im Meßwandler plaziert ist, daß sowohl die distale als auch die proximale Kontur gebende Kante eines jeden der wenigstens zwei Gegenschwinger-Platten zumindest im Bereich eines Mittelabschnitts des Gegenschwingers einen von Null verschiedenen Abstand zur Längsachse aufweisen. Dabei kann jede der wenigstens zwei Gegenschwinger-Platten so ausgebildet sein, daß zumindest im Bereich eines Mittelabschnitts des Gegenschwingers eine örtliche Platten-Höhe jeweils kleiner ist als jeweils im Bereich der beiden Kopplungszonen, wobei die örtliche Platten-Höhe daselbst jeweils einem kleinsten Abstand zwischen der distalen und der proximalen Kontur gebende Kante eines jeden der wenigstens zwei Gegenschwinger-Platten entspricht. Ferner ist vorgesehen, daß jede der wenigstens zwei Gegenschwinger-Platten so ausgebildet ist, daß sie im Bereich des Mittelabschnitts des Gegenschwingers eine kleinste Platten-Höhe aufweist und/oder daß die Platten-Höhe eines jeden der wenigstens zwei Gegenschwinger-Platten jeweils ausgehend von einer Kopplungszone zum Mittelabschnitt des Gegenschwingers hin, insb. monoton oder kontinuierlich, abnimmt.
  • Nach einer dreizehnten Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger mittels seitlich des Meßrohrs angeordneter Gegenschwinger-Platten gebildet ist, und daß jede der wenigstens zwei Gegenschwinger-Platten eine bogen- oder bügelförmige Kontur aufweist.
  • Nach einer vierzehnten Ausgestaltung der Erfindung ist vorgesehen, daß der Gegenschwinger mittels seitlich des Meßrohrs angeordneter Gegenschwinger-Platten gebildet ist, und daß jede der wenigstens zwei den Gegenschwinger bildenden Platten im wesentlichen parallel zum Meßrohr angeordnet ist.
  • Nach einer fünfzehnten Ausgestaltung der Erfindung ist vorgesehen, daß Meßrohr und Gegenschwinger einlaßseitig mittels wenigstens eines ersten Kopplers und auslaßseitig mittels wenigstens eines zweiten Kopplers miteinander mechanisch verbunden sind.
  • Nach einer sechzehnten Ausgestaltung der Erfindung ist vorgesehen, daß die Verbindungsrohrstücke im wesentlichen gerade Rohrsegmente aufweisen. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist vorgesehen, daß die Verbindungsrohrstücke so zueinander ausgerichtet sind, daß die Rohrsegmente im wesentlichen parallel zur gedachten Längsachse verlaufen. Dabei können die Verbindungsrohrstücke so zueinander ausgerichtet sein, daß die im wesentlichen geraden Rohrsegmente zueinander und/oder mit der gedachten Längsachse im wesentlichen fluchten.
  • Nach einer siebzehnten Ausgestaltung der Erfindung ist vorgesehen, daß das Meßrohr im Betrieb zumindest zeitweise Biegeschwingungen relativ zu Gegenschwinger und Längsachse ausführt.
  • Nach einer achtzehnten Ausgestaltung der Erfindung ist vorgesehen, daß Meßrohr und Gegenschwinger im Betrieb zumindest zeitweise und zumindest anteilig gleichfrequente Biegeschwingungen um die Längsachse ausführen. Gemäß einer Weiterbildung dieser Ausgestaltung der Erfindung ist ferner vorgesehen, daß dies solche Biegeschwingungen um die Längsachse sind, die zumindest anteilig zueinander außerphasig, insb. im wesentlichen gegenphasig, sind.
  • Nach einer neunzehnten Ausgestaltung der Erfindung ist vorgesehen, daß das im Wandler-Gehäuse schwingfähig gehalterte Innenteil einen natürlichen Lateralschwingungsmode aufweist, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke, zumindest zeitweise relativ zum Wandler-Gehäuse und lateral um die Längsachse schwingt.
  • Nach einer zwanzigsten Ausgestaltung der Erfindung ist vorgesehen, daß das im Wandler-Gehäuse schwingfähig gehalterte Innenteil einen Pendelschwingungsmode aufweist, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke, zumindest zeitweise um die gedachte Längsachse pendelt. Gemäß einer Weiterbildung dieser Ausgestaltung der Erfindung ist ferner vorgesehen, daß zumindest eine natürliche Eigenfrequenz des Pendelschwingungsmodes kleiner ist als eine niedrigste Schwingungsfrequenz, mit der das Meßrohr momentan vibriert und/oder daß zumindest eine momentane natürliche Eigenfrequenz des Pendelschwingungsmodes stets kleiner ist als eine momentan niedrigste natürliche Eigenfrequenz des Meßrohrs.
  • Nach einer einundzwanzigsten Ausgestaltung der Erfindung ist vorgesehen, daß das im Wandler-Gehäuse schwingfähig gehalterte Innenteil sowohl einen Pendelschwingungsmode, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke, zumindest zeitweise um die gedachte Längsachse pendelt, als auch einen natürlichen Lateralschwingungsmode aufweist, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke, zumindest zeitweise relativ zum Wandler-Gehäuse und lateral um die Längsachse schwingt, aufweist und daß der Lateralschwingungsmode des Innenteils eine niedrigste Eigenfrequenz aufweist, die größer ist als eine niedrigste Eigenfrequenz des Pendelschwingungsmode des Innenteils. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist ferner vorgesehen, daß ein Verhältnis der niedrigsten Eigenfrequenz des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils größer als 1,2 ist und/oder daß ein Verhältnis der niedrigsten Eigenfrequenz des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils kleiner als 10 ist. Insbesondere kann vorgenanntes Verhältnis der niedrigsten Eigenfrequenz des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils dabei größer als 1,5 und kleiner als 5 gehalten sein.
  • Nach einer zweiundzwanzigsten Ausgestaltung der Erfindung ist vorgesehen, daß das im Wandler-Gehäuse schwingfähig gehalterte Innenteil einen Pendelschwingungsmode aufweist, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke, zumindest zeitweise um die gedachte Längsachse pendelt, und daß zumindest eine natürliche Eigenfrequenz des Pendelschwingungsmodes des Innenteils kleiner ist als eine niedrigste Schwingungsfrequenz ist, mit der das Meßrohr momentan vibriert, und/oder daß zumindest eine momentane natürliche Eigenfrequenz des Pendelschwingungsmodes des Innenteils stets kleiner ist als eine momentan niedrigste natürliche Eigenfrequenz des Meßrohrs. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist vorgesehen, daß ein Verhältnis der niedrigsten Eigenfrequenz des Meßrohrs zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils größer als 3 ist und/oder kleiner als 20 ist. Insbesondere kann das Verhältnis der niedrigsten Eigenfrequenz des Meßrohrs zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils dabei größer als 5 und kleiner als 10 gehalten sein.
  • Nach einer dreiundzwanzigsten Ausgestaltung des erfindungsgemäßen Meßwandlers umfaßt dieser weiters eine Erregeranordnung zum Vibrierenlassen von Meßrohr und Gegenschwinger.
  • Nach einer vierundzwanzigsten Ausgestaltung des erfindungsgemäßen Meßwandlers umfaßt dieser weiters eine Sensoranordnung zum Erfassen von Schwingungen zumindest des Meßrohrs.
  • Ein Grundgedanke der Erfindung ist es, insb. auch im Gegensatz zu den in der US-B 66 66 098 gezeigten Meßwandlern, den Massenschwerpunkt des Gegenschwingers im Vergleich zum Massenschwerpunkt des Meßrohrs näher zur Längsachse hin zu verlegen. Dadurch wird erreicht, daß der Gegenschwinger ohne weiteres wesentlich schwerer ausgebildet werden kann, als das Meßrohr, gleichwohl aber auch die eingangs erwähnten mittels des Innenteils und den Verbindungsrohrstücken gebildeten inhärenten endseitigen Torsionsschwinger ohne weiteres auch in der in der US-B 66 66 098 vorgeschlagenen Abstimmung betrieben werden können. Es hat sich hierbei zu dem gezeigt, daß es für die Ausbalancierung des Meßwandlers zwar wichtig sein kann, wie auch in der US-B 66 66 098 diskutiert, die Massenverteilung von Meßrohr und Gegenschwinger und insoweit die Lage der Massenschwerpunkte im wesentlich gleich auszubilden. Vielmehr kommt es aber auch darauf an, daß im Betrieb jene Momente, die aus der Bewegung des vibrierenden Meßrohrs resultieren, möglichst unter einem gleichen Wirkwinkel in die endseitigen Kopplungszonen jeweils eingeleitet werden, wie jene Momente, die durch den gleichfalls vibrierenden Gegenschwinger erzeugt werden. Dies im besonderen auch im Hinblick auf eine möglichst vollständige Transformation allfälliger lateraler Imbalancen in eher unkritische Pendelbewegungen des Innenteils in der in der US-B 66 66 098 vorgeschlagenen Weise. Umgekehrt können so auch die Transformation solcher lateraler Imbalancen in andere, eher schädliche Schwingungsformen des Innenteils so weitgehend, zumindest aber erheblich wirkungsvoller vermieden werden. Durch die Verlegung der Massenschwerpunkte in der genannten Weise kann ein Arbeitsbereich des Meßwandlers, insb. auch im Vergleich zu dem des in der US-B 66 66 098 gezeigten, insoweit deutlich erhöht werden, daß ein zwischen den beiden vorgenannten Wirkwinkeln infolge schwankender Mediumsdichte zwangsläufig eintretender Winkelversatz sowohl negativ als auch positiv ausfallen kann. Infolgedessen kann in vorteilhafter Weise erreicht werden, daß der Winkelversatz bei gleicher Schwankungsbreite vergleichsweise nur geringe Absolutbeträge annimmt. Somit kann eine optimale Anpassung der Schwingungseigenschaften des Meßwandlers, insb. dessen Innenteils, an das im Betrieb zu messende Medium, insb. den zu erwartenden Schwankungen von dessen Dichte, vorgenommen und insoweit eine erhebliche Verbesserung der dichteabhängigen Nullpunktbeeinflußbarkeit erreicht werden.
  • Gleichwohl kann das in der US-B 66 66 098 vorgeschlagenen Kompensationsprinzip nicht nur weiterhin umgesetzt, sondern auch dahingehend weiter verbessert werden, daß der Gegenschwinger nicht nur etwas schwerer, sondern im besonderen auch etwas bieg- und verwindungssteifer ausgebildet werden kann. Ferner konnte bereits bei einem vergleichsweise geringen Massezuwachs in der Größenordnung von etwa 10% gegenüber dem eingangs erwähnten Meßwandler vom Typ "PROMASS H" eine Verbesserung der Empfindlichkeit von mehr als 50% und insoweit auch eine entsprechende Verbesserung der Meßgenauigkeit erzielt werden. Im besonderen konnte neben der Verbesserung der dichteabhängigen Nullpunktbeeinflußbarkeit auch bei großer Abweichung von der kalibrierten Referenzdichte des Meßwandlers auch eine erhebliche Verbesserung der Meßgenauigkeit des In-Line-Meßgeräts bei kleinen Durchflußraten festgestellt werden.
  • Der erfindungsgemäße Meßwandler zeichnet sich des weiteren dadurch aus, daß bei Verwendung eines Gegenschwingers der vorbeschriebenen Art mit entsprechend hoher Masse die beiden Verbindungsrohrstücke ohne weiteres entsprechend kurz gehalten und somit auch eine Einbaulänge des Meßwandlers insgesamt, bei einer im wesentlichen gleichbleibend hohen Güte der dynamischen Schwingungsentkopplung, erheblich verringert werden können. Außerdem kann der Meßwandler trotz seiner kurzen Einbaulänge nach wie vor vergleichsweise leicht ausgeführt werden.
  • Nachfolgend werden die Erfindung und weitere Vorteile anhand eines Ausführungsbeispiels erläutert, das in den Figuren der Zeichnung dargestellt ist. Gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen. Falls es der Übersichtlichkeit dienlich ist, wird auf bereits erwähnte Bezugszeichen in nachfolgenden Figuren verzichtet.
  • 1a, b zeigen ein In-Line-Meßgerät für in Rohrleitungen strömende Medien in verschiedenen Seitenansichten;
  • 2 zeigt teilweise geschnitten in perspektivischer Ansicht einen für ein In-Line-Meßgerät gemäß den 1a, 1b geeigneten Meßwandler vom Vibrations-Typ; und
  • 3 zeigt den Meßwandler gemäß den 2 in einer Seitenansicht.
  • In den 1a, b ist ein in eine Rohrleitung, beispielsweise eine Prozeßleitung einer industriellen Anlage, einfügbares, beispielsweise als Coriolis-Massendurchflußmeßgerät, Dichtemeßgerät, Viskositätsmeßgerät oder dergleichen ausgebildetes, In-Line-Meßgerät dargestellt, das dem Messen und/oder Überwachen wenigstens eines Parameters, beispielsweise einem Massendurchfluß, einer Dichte, einer Viskosität etc., eines in der Rohrleitung strömenden Mediums dient. Das In-Line-Meßgerät umfaßt dafür einen Meßwandler vom Vibrationstyp der im Betrieb entsprechend vom zu messenden Medium durchströmt ist. In den 2 und 3 ist ein entsprechendes Ausführungsbeispiel für einen solchen Meßwandler vom Vibrationstyp schematisch dargestellt. Darüber hinaus sind der prinzipielle mechanische Aufbau sowie dessen Wirkungsweise mit den denen der in den US-B 66 66 098 gezeigten Meßwandler durchaus vergleichbar. Der Meßwandler dient dazu, in einem hindurchströmenden Medium mechanische Reaktionskräfte, z.B. massedurchflußabhängige Coriolis-Kräfte, dichteabhängige Trägheitskräfte und/oder viskositätsabhängige Reibungskräfte, zu erzeugen, die meßbar, insb. sensorisch erfaßbar, auf den Meßwandler zurückwirken. Abgeleitet von diesen Reaktionskräften können so in der dem Fachmann bekannten Weise z.B. ein Massedurchfluß m, eine Dichte ρ und/oder eine Viskosität η des Mediums gemessen werden. Der Meßwandler umfaßt dafür ein Wandler-Gehäuse 100 sowie ein im Wandler-Gehäuse 100 angeordnetes, die physikalisch-elektrische Konvertierung des wenigstens einen zu messenden Parameters eigentlich bewirkendes Innenteil.
  • Zum Führen des Mediums umfaßt das Innenteil ein – hier einziges – gekrümmtes Meßrohr 10, das im Betrieb vibrieren gelassen und dabei, um eine statische Ruhelage oszillierend, wiederholt elastisch verformt wird. Das Meßrohr 10 und insoweit auch eine innerhalb von Lumen imaginär verlaufende Schwerelinie des Meßrohrs 10 können beispielsweise im wesentlichen Ω-, U-förmig oder wie in der 2 gezeigt im wesentlichen V-förmig ausgebildet sein. Da der Meßwandler für eine Vielzahl unterschiedlichster Anwendungen, insb. im Bereich der industriellen Meß- und Automatisierungstechnik einsetzbar sein soll, ist ferner vorgesehen, daß das Meßrohr je nach Verwendung des Meßwandlers einen Durchmesser aufweis, der im bereich zwischen etwa 1 mm und etwa 100 mm liegt.
  • Zur Minimierung von auf das Meßrohr 10 wirkenden Störeinflüssen wie auch zur Reduzierung von seitens des Meßwandlers an die angeschlossene Rohrleitung abgegebener Schwingungsenergie ist im Meßwandler des weiteren ein Gegenschwinger 20 vorgesehen. Dieser ist, wie auch in 2 gezeigt, vom Meßrohr 10 seitlich beabstandet im Meßwandler angeordnet und unter Bildung einer – praktisch ein Einlaßende des Meßrohrs 10 definierenden – ersten Kopplungszone 11# einlaßseitig und der unter Bildung einer – praktisch ein Auslaßende des Meßrohrs 10 definierenden – zweiten Kopplungszone 12# auslaßseitig jeweils am Meßrohr 10 fixiert. Der – im gezeigten Ausführungsbeispiel im wesentlichen parallel zum Meßrohr 10 verlaufende, ggf. auch koaxial zu diesem angeordnete – Gegenschwinger 20 kann beispielsweise rohrförmig oder auch im wesentlichen kastenförmig. auch ausgeführt sein. Für letzteren Fall kann der Gegenschwinger 20 – wie auch in 2 dargestellt – beispielsweise mittels links- und rechtsseitig des Meßrohrs 10 angeordneten Platten gebildet sein.
  • Wie aus einer Zusammenschau der 2 und 3 ersichtlich, ist der Gegenschwinger 20 mittels wenigstens eines einlaßseitigen ersten Kopplers 31 am Einlaßende 11# des Meßrohrs 10 und mittels wenigstens eines auslaßseitigen, insb. zum Koppler 31 im wesentlichen identischen, zweiten Kopplers 32 am Auslaßende 12# des Meßrohrs 10 gehaltert. Als Koppler 31, 32 können hierbei z.B. einfache Knotenplatten dienen, die in entsprechender Weise einlaßseitig und auslaßseitig jeweils an Meßrohr 10 und Gegenschwinger 20 befestigt sind. Ferner kann – wie bei dem in hier gezeigten Ausführungsbeispiel vorgeschlagen – ein mittels in Richtung der Längsachse voneinander beabstandeten Knotenplatten zusammen mit überstehenden Enden des Gegenschwinger 20 einlaßseitig und auslaßseitig jeweils gebildeter, vollständig geschlossener Kasten oder ggf. auch teilweise offener Rahmen als Koppler 31 bzw. als Koppler 32 dienen.
  • Zum Hindurchströmenlassen des zu messenden Mediums ist das Meßrohr 10 ferner über ein einlaßseitig im Bereich der ersten Kopplungszone 11# einmündendes erstes Verbindungsrohrstück 11 und über ein auslaßseitig im Bereich der zweiten Kopplungszone 12# einmündendes, insb. zum ersten Verbindungsrohrstück 11 im wesentlichen identisches, zweites Verbindungrohrstück 12 entsprechend an die das Medium zu- bzw. abführende – hier nicht dargestellte – Rohrleitung angeschlossen, wobei jedes der beiden Verbindungsrohrstücke 11, 12 Rohrsegmente aufweisen, die im wesentlichen gerade sind. In vorteilhafter Weise können das Meßrohr 10 und zusammen mit den beiden Verbindungsrohrstücken 11, 12 einstückig ausgeführt sein, so daß zu deren Herstellung z.B. ein einziges rohrförmiges Halbzeug dienen kann. Anstelle dessen, daß Meßrohr 10, Einlaßrohrstück 11 und Auslaßrohrstück 12 jeweils durch Segmente eines einzigen, einstückigen Rohres gebildet sind, können diese, falls erforderlich aber auch mittels einzelner, nachträglich zusammengefügter, z.B. zusammengeschweißter, Halbzeuge hergestellt werden. Zur Herstellung des Meßrohrs 10 kann im übrigen praktisch jedes der für solche Meßwandler üblichen Materialien, wie z.B. Stahl, Hastelloy, Titan, Zirkonium, Tantal etc., verwendet werden.
  • Wie in den 2 und 3 ferner dargestellt, ist das, insb. im Vergleich zum Meßrohr 10 biege- und torsionssteifes, Wandlergehäuse 100, insb. starr, an einem bezüglich der ersten Kopplungszone #11 distalen Einlaßende des einlaßseitigen Verbindungsrohrstücks 11 sowie an einem bezüglich der ersten Kopplungszone #11 distalen Auslaßende des auslaßseitigen Verbindungsrohrstück 12 fixiert. Insoweit ist also das gesamte Innenteil nicht nur vom Wandlergehäuse 100 vollständig umhüllt, sondern infolge seiner Eigenmasse und der Federwirkung beider Verbindungsrohrstücke 11, 12 im Wandler-Gehäuse 100 auch schwingfähig gehaltert. Zusätzlich zur Aufnahme des Innenteils kann das Wandlergehäuse 100 zudem auch dazu dienen, ein Elektronikgehäuse 200 des In-line-Meßgeräts mit darin untergebrachter Meßgerät-Elektronik zu haltern. Für den Fall, daß der Meßwandler lösbaren mit der Rohrleitung zu montieren ist, ist ferner dem einlaßseitigen Verbindungsrohrstück 11 an einem Einlaßende ein erster Flansch 13 und dem auslaßseitigen Verbindungsrohrstück 12 an einem Auslaßende ein zweiter Flansch 14 angeformt. Die Flansche 13, 14 können dabei, wie bei Meßwandlern der beschriebenen Art durchaus üblich auch zumindest teilweise endseitig in das Wandlergehäuse 100 integriert sein. Falls erforderlich können die Verbindungsrohrstücke 11, 12 im übrigen aber auch direkt mit der Rohrleitung, z.B. mittels Schweißen oder Hartlötung, verbunden werden.
  • Im Betrieb des Meßwandlers wird das Meßrohr 10, wie bei derartigen Meßwandlern vom Vibrations-Typ üblich, zu Auslegerschwingungen bei einer Erregerfrequenz fexc, so angeregt, daß es sich im sogenannten Nutzmode, um die Längsachse L des Meßwandlers oszillierend, im wesentlichen gemäß einer natürlichen ersten Eigenschwingungsform ausbiegt. Infolgedessen führt also das Meßrohr 10 im Betrieb zumindest zeitweise Biegeschwingungen relativ zu Gegenschwinger 20 und Längsachse L aus. Gleichzeitig wird auch der Gegenschwinger 20 zu Auslegerschwingungen angeregt, und zwar so, daß er zumindest anteilig außerphasig, insb. im wesentlichen gegenphasig, zum im Nutzmode schwingenden Meßrohr 10 oszilliert. Im besonderen werden Meßrohr 10 und Gegenschwinger 20 dabei so angeregt, daß sie im Betrieb zumindest zeitweise und zumindest anteilig gleichfrequente, jeoch im wesentlichen gegenphasige Biegeschwingungen um die Längsachse L ausführen. Die Biegeschwingungen können dabei so ausgebildete sein, daß sie von gleicher modaler Ordnung und somit zumindest bei ruhendem Fluid im wesentlichen gleichförmig sind. Anders gesagt, Meßrohr 10 und Gegenschwinger 20 bewegen sich dann nach der Art von gegeneinander schwingenden Stimmgabelzinken. Nach einer weiteren Ausgestaltung der Erfindung, ist die Erreger- oder auch Nutzmodefrequenz, fexc, dabei so eingestellt, daß sie möglichst genau einer, insb. niedrigsten natürlichen Eigenfrequenz des Meßrohrs 10 entspricht. Bei einer Verwendung eines aus Edelstahl gefertigten Meßrohrs mit einer Nennweite von 29 mm, einer Wandstärke von etwa 1,5 mm, einer gestreckten Länge von etwa 420 mm und einer gesehnten Länge von 305 mm gemessen vom Einlaßend #11 zum Auslaßende 12# ist, würde die niedrigste Resonanzfrequenz desselben beispielsweise bei einer Dichte von praktisch Null, z.B. bei vollständig mit Luft gefülltem Meßrohr, in etwa 490 Hz betragen. In vorteilhafter Weise ist ferner vorgesehen, daß auch eine niedrigste natürliche Eigenfrequenz, f20, des Gegenschwingers 20 in etwa gleich der niedrigsten natürlichen Eigenfrequenz, f10, des Meßrohrs und insoweit auch in etwa gleich der Erregerfrequenz, fexc, ist.
  • Zum Erzeugen mechanischer Schwingungen des Meßrohrs 10 und des Gegenschwingers 20 umfaßt der Meßwandler ferner eine, insb. elektrodynamische, Erregeranordnung 40. Diese dient dazu, eine, beispielsweise von einer im Elektronikgehäuse 200 untergebrachte nichtdargestellten Steuer-Elektronik des oben genannten Coriolis-Massedurchflußmessers eingespeiste, elektrische Erregerenergie Eexc, z.B. mit einem geregelten Strom und/oder einer geregelten Spannung, in eine auf das Meßrohr 10, z.B. pulsförmig oder harmonisch, einwirkende und dieses in der vorbeschriebenen Weise auslenkende Erregerkraft Fexc umzuwandeln. Für das Einstellen der Erregerenergie Eexc geeignete Steuer- Steuer-Elektroniken z.B. in der US-A 47 77 833, der US-A 48 01 897, der 48 79 911 oder der US-A 50 09 109 gezeigt. Die Erregerkraft Fexc kann, wie bei derartigen Meßwandlern üblich, bidirektional oder unidirektional ausgebildet sein und in der dem Fachmann bekannten Weise z.B. mittels einer Strom- und/oder Spannungs-Regelschaltung, hinsichtlich ihrer Amplitude und, z.B. mittels einer Phasen-Regelschleife, hinsichtlich ihrer Frequenz eingestellt werden. Als Erregeranordnung 40 kann z.B. eine einfache Tauchspulenanordnung mit einer am Gegenschwinger 20 befestigten zylindrischen Erregerspule, die im Betrieb von einem entsprechenden Erregerstrom durchflossen ist, und einem in die Erregerspule zumindest teilweise eintauchenden dauermagnetischen Anker dienen, der von außen, insb. mittig, am Meßrohr 10 fixiert ist. Ferner kann als Erregeranordnung 40 z.B. auch ein Elektromagnet dienen. Zum Detektieren von Schwingungen des Meßrohrs 10 umfaßt der Meßwandler außerdem eine Sensoranordnung 50. Als Sensoranordnung 50 kann praktisch jede der für derartige Meßwandler üblichen Sensoranordnungen verwendet werden, die Bewegungen des Meßrohrs 10, insb. einlaßseitig und auslaßseitig, erfaßt und in entsprechende Sensorsignale umwandelt. So kann die Sensoranordnung 50 z.B. in der dem Fachmann bekannten Weise, mittels eines einlaßßseitig am Meßrohr 10 angeordneten ersten Sensors und mittels eines auslaßseitigen am Meßrohr 10 angeordneten zweiten Sensors gebildet sein. Als Sensoren können z.B. die Schwingungen relativ messende, elektrodynamische Geschwindigkeitssensoren oder aber auch elektrodynamische Wegsensoren oder Beschleunigungssensoren verwendet werden. Alternativ oder in Ergänzung zu den elektrodynamischen Sensoranordnungen können ferner auch mittels resistiver oder piezoelektrischer Dehnungsmeßstreifen messende oder opto-elektronische Sensoranordnungen zum Detektieren der Schwingungen des Meßrohrs 10 verwendet werden. Falls erforderlich, können ferner in der dem Fachmann bekannten Weise noch weitere für die Messung und/oder den Betrieb des Meßwandlers benötigte Sensoren, wie z.B. am Gegenschwinger 20 und/oder am Wandlergehäuse 100 angeordnete zusätzliche Schwingungssensoren, vgl. hierzu auch die US-A 57 36 653, oder z.B. auch am Meßrohr 10, am Gegenschwinger 20 und/oder am Wandlergehäuse 100 angeordente Temperatursensoren vorgesehen sein, vgl. hierzu auch die US-A 47 68 384 oder die WO-A 00/102816.
  • Für den betriebsmäßig vorgesehenen Fall, daß das Medium in der Rohrleitung strömt und somit der Massedurchfluß m von Null verschieden ist, werden mittels des in oben beschriebener Weise vibrierenden Meßrohrs 10 im hindurchströmenden Medium auch Corioliskräfte induziert. Diese wiederum wirken auf das Meßrohr 10 zurück und bewirken so eine zusätzliche, sensorisch erfaßbare Verformung desselben im wesentlichen gemäß einer natürlichen zweiten Eigenschwingungsform. Eine momentane Ausprägung dieses sogenannten, dem angeregten Nutzmode gleichfrequent überlagerten Coriolismodes ist dabei, insb. hinsichtlich ihrer Amplituden, auch vom momentanen Massedurchfluß m abhängig. Als zweite Eigenschwingungsform kann, wie bei deratigen Meßwandlern mit gekrümmtem Meßrohr üblich, z.B. die Eigenschwingungsform des anti-symmetrischen Twistmodes, also jene, bei der das Meßrohr 10, wie bereits erwähnt, auch Drehschwingungen um eine senkrecht zur Längsachse L ausgerichteten, gedachten Hochachse H ausführt, die in einer einzigen Symmetrieebene des gezeigten Meßwandlers liegt.
  • Für den durchaus üblichen und insoweit zu erwartenden Fall, daß sich im Betrieb die Dichte des im Meßrohr strömenden Mediums und damit einhergehend sich auch die Massenverteilung im Innenteil erheblich ändert, ist das Kräftegleichgewicht zwischen dem vibrierenden Meßrohr 10 und dem in der oben beschriebenen Weise gleichsam vibrierenden Gegenschwinger 20 gestört. Wenn die daraus resultierend im Innenteil gleichfrequent mit den Schwingungen des Meßrohrs 10 wirkenden Querkräfte nicht kompensiert werden können, würde das an den beiden Verbindungsrohrstücken 11, 12 aufgehängte Innenteil lateral aus einer zugewiesenen statischen Einbaulage ausgelenkt. Auf diese Weise können Querkräfte via Verbindungsrohrstücke 11, 12, über die das Meßrohr 10 – wie bereits erwähnt – im Betrieb mit der Rohrleitung kommuniziert, zumindest zum Teil auch auf die angeschlossenen Rohrleitung wirken und diese wie auch das In-Line-Meßgerät als solches in unerwünschter Weise somit gleichfalls vibrieren lassen. Des weiteren können derartige Querkräfte auch dazu führen, daß das Meßrohr 10, aufgrund einer aus schwingungstechnischer Sicht ungleichmäßigen Aufhängung des Innenteils oder auch des gesamten Meßwandlers, bedingt z.B. durch praktisch unvermeidliche Fertigungstoleranzen, zusätzlich zu gleichfrequenten Störschwingungen, beispielsweise zusätzlichen Auslegerschwingungen gemäß der zweiten Eigenschwingungsform, angeregt wird, die dann, insb. aufgrund gleicher Schwingungsfrequenz, vom eigentlichen Coriolismode sensorisch praktisch nicht mehr unterscheidbar wären.
  • Neben den lateralen Störschwingungen kann das im Wandlergehäuse aufgehängte Innenteil zudem auch Pendelschwingungen um die Längsachse L ausführen, bei den die Kopplungszonen um die Längsachse verdreht und die Verbindungsrohrstücke 11, 12 verdrillt werden. In entsprechender Weise erfahren auch die beiden Kopplungszonen und somit auch beiden Koppler 31, 32 eine entsprechende torsionale Verdrehung um die Längsachse L, d.h auch sie oszillieren, und zwar zueinander im wesentlichen gleichphasig. Anders gesagt, weist das im Wandler-Gehäuse schwingfähig gehalterte Innenteil einen Pendelschwingungsmode auf, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke 11, 12, zumindest zeitweise um die gedachte Längsachse L pendelt. Dabei führen das vibrierende Meßrohr 10 und der Gegenschwinger 20 zusätzlich gemeinsame Pendelbewegungen um die Längsachse L aus, die zumindest bei ruhendem Medium zueinander und zu den Auslegerschwingungen des Gegenschwingers 20 im wesentlichen gleichphasig sind, falls eine Masse, m20, des Gegenschwingers 20 kleiner als eine momentane Gesamtmasse des Medium führenden Meßrohrs 10 ist. Für den umgekehrten Fall, daß die Gesamtmasse des Medium führenden Meßrohrs 10 kleiner als die Masse des Gegenschwingers 20 ist, können diese Pendelbewegungen des Innenteils gleichphasig zu den Auslegerschwingungen des Meßrohrs 10 ausgebildet sein.
  • Umgekehrt weist aber das im Wandlergehäuse 100 schwingfähig aufgehängte Innenteil selbst wenigstens einen überwiegend von der Biege-Federsteifigkeit der Verbindungsrohrstücke 11, 12 sowie seiner momentanen Gesamtmasse bestimmten natürlichen Lateralschwingungsmode auf. In diesem Lateralschwingungsmode würde das Innenteil im Betrieb, einhergehend mit entsprechenden, als Verbiegungen ausgebildete Verformungen der beiden Verbindungsrohrstücke 11, 12, relativ zum Wandler-Gehäuse 100 und lateral um die Längsachse L in Resonanz schwingen, sofern es entsprechend angestoßen wird. Gleichermaßen weist das Innenteil auch wenigstens einen überwiegend von der Torsions-Federsteifigkeit der Verbindungsrohrstücke 11, 12 sowie einem momentanen Gesamtträgheitsmoment um die Längsachse L bestimmten natürlichen Pendelschwingungsmode auf, in dem es im Betrieb, einhergehend mit entsprechenden, als Verdrillungen ausgebildete Verformungen der beiden Verbindungsrohrstücke, um die gedachte Längsachse L in Resonanz pendeln wird, sofern es entsprechend angestoßen würde.
  • Erfreulicherweise können, wie bereits in der US-B 66 66 098 diskutiert, die potentiell auch den Lateralschwingungsmode des Innenteils anstoßenden residualen Querkräfte durch geeignete Abstimmung der Verbindungsrohrstücke 11, 12 und des Innenteils weitestgehend in viel weniger kritische Pendelschwingungen des gesamten Innenteils um die Längsachse L transformiert werden und insoweit die eher schädlichen Lateralschwingungen des Innenteils weitgehend vermieden werden.
  • Dafür sind lediglich eine natürlich Eigenfrequenz, f1, des einlaßseitig mittels des Verbindungsrohrstücks 11 und des praktisch die einlaßseitige Kopplungszone 11# definierenden Kopplers 31 gebildeten ersten Torsionsschwingers und eine natürlich Eigenfrequenz, f2, des auslaßseitig mittels des Verbindungsrohrstücks 12 und des praktisch die auslaßseitige Kopplungszone 11# definierenden Kopplers 32 gleichermaßen gebildeten zweiten Torsionsschwingers so durch entsprechende Dimensionierung der beiden Verbindungsrohrstücke 11, 12 sowie der beiden Koppler 31, 32 einzustellen, daß die beiden Eigenfrequenzen, f1, f2, in etwa gleich der Erregerfrequenz, fexc, sind, auf der das Meßrohr 10 zumindest überwiegend schwingt, vgl. hierzu auch die US-B 66 66 098. Infolge von allfällige Pendelschwingungen des Innenteils auf der Nutzfrequenz, fexc, werden die beiden vorgenannten Torsionsschwinger dann gleichermaßen um die Längsachse L torsions-schwingen gelassen. Zum Einstellen der Eigenfrequenzen, f1, f2, sind ein – hier im wesentlichen mittels des einlaßseitigen Kopplers 31 bereitgestelltes – einlaßseitiges Massenträgheitsmoment um die Längsachse L und eine Torsionssteifigkeit des zugehörigen Verbindunsgrohrstücks 11 sowie ein – hier im wesentlichen mittels des Kopplers 32 bereitgestelltes – auslaßseitiges Massenträgheitsmoment um die Längsachse L, und eine Torsionssteifigkeit des auslaßseitigen Verbindungsrohrstücks 12 entsprechend aufeinander abzustimmen. Bei dem hier gezeigten Meßwandler sind neben den Knottenplatten und den endseitig jeweils überstehenden Plattenenden außerdem auch jene zwischen den beiden jeweiligen Knotenplatten der Koppler 31, 32 verlaufenden, Rohrsegmente bei der Dimensionierung des Massenträgheitsmoments für die Abstimmung des einlaßseitigen Torsionseigenmodes entsprechend zu berücksichtigen.
  • Aufgrund einer Abstimmung von Nutzmode und Torsionseigenmode in der beschriebenen Weise wird erreicht, daß das Innenteil, das im Betrieb gleichfrequent mit dem bei der Erregerfrequenz fexc schwingenden Meßrohr 10 pendelt, praktisch genau den einlaßseitigen und den auslaßseitigen Torsionsschwinger in einem intrinsischen Eigenmode anstößt. Für diesen Fall, setzen die beiden, auf ihrer jeweiligen Eigenfrequenz f1 bzw. f2 und zwangsläufig auch gleichphasig mit dem Innenteil schwingenden Torsionsschwinger dessen Torsionsschwingungen praktische keine oder nur noch sehr geringe Gegenmomente entgegen. Somit ist das Innenteil im Betrieb so drehweich gelagert, daß es praktisch als von den beiden Verbindungsrohrstücken 11, 12 schwingungstechnisch völlig entkoppelt angesehen werden kann. Aufgrund der Tatsache, daß das Innenteil trotz einer praktisch vollständigen Entkopplung im Betrieb um die Längsachse L pendelt und nicht rotiert, kann folglich auch kein Gesamtdrehimpuls des Innenteils existieren. Dadurch aber sind auch ein vom Gesamtdrehimpuls, insb. bei ähnlichen Massenverteilungen im Meßrohr 10 und im Gegenschwinger 20, nahezu direkt abhängiger lateraler Gesamtimpuls und somit auch von diesem abgeleitete, laterale Querkräfte, die vom Innenteil nach außen übertragen werden können, ebenfalls praktisch gleich null. Für den angestrebten Fall also, daß das Pendeln des Innenteils im Bereich der jeweiligen momentanen Eigenfrequenz der beiden Torsionsschwinger erfolgt, pendeln das Meßrohr 10 zusammen mit dem Gegenschwinger praktisch frei von Querkräften und Torsionsmomenten um die Längsachse L. Insoweit führen bei diesem Balance- oder auch Entkopplungsmechanismus dichteabhängige Unbalancen überwiegend zu Änderungen von Schwingungsamplituden lediglich der Pendelschwingungen des Innenteils, jedoch allenfalls zu vernachlässigbar geringen lateralen Verschiebungen desselben aus der ihm zugewiesenen statischen Einbaulage. Infolgedessen können der Meßwandler innerhalb eines vergleichsweise weiten Arbeitsbereichs weitgehend unabhängig von der Dichte ρ des Fluids dynamisch ausbalanciert werden und so dessen Empfindlichkeit auf intern erzeugte Querkräfte erheblich verringert werden.
  • Es hat sich nunmehr gezeigt, daß bei Meßwandlern der beschriebenen Art, insb. auch bei der Realisierung des vorbeschriebenen Entkopplungsmechanismus, nicht nur die drehweiche mechanische Ankopplung des Innenteils an das Wandlergehäuse und die angeschlossene Rohrleitung von Bedeutung ist. Überraschender Weise kommt es im besonderen auch darauf an, daß im Betrieb jene Momente, die aus der Bewegung des vibrierenden Meßrohrs resultieren, möglichst unter einem gleichen Wirkwinkel in die endseitigen Kopplungszonen jeweils eingeleitet werden, wie jene Momente, die durch den gleichfalls vibrierenden Gegenschwinger erzeugt werden. Allerdings hat sich ferner gezeigt, daß infolge schwankender Mediumsdichte zwischen den Wirkwinkeln durchaus ein erheblicher Winkelversatz auftreten kann.
  • Um diesen praktisch unvermeidlich schwankenden Winkelversatz möglichst in für den angestrebten Arbeitsbereich vertretbaren Grenzen zu halten sind beim erfindungsgemäßen Meßwandler ferner Meßrohr 10 und Gegenschwinger 20 so ausgebildet und zueinander ausgerichtet, daß sowohl ein von der gedachten Längsachse L beabstandeter Massenschwerpunkt, M10, des Meßrohrs 10 als auch ein von der gedachten Längsachse L beabstandeter Massenschwerpunkt, M20, des Gegenschwingers 20, wie in 3 schematisch dargestellt, in einem gemeinsamen von der gedachten Längsachse L und dem Meßrohr 10 aufgespannten Bereich des Meßwandlers liegen. Darüber hinaus sind Meßrohr 10 und Gegenschwinger 20 des weiteren so ausgebildet und zueinander ausgerichtet, daß zumindest im Ruhezustand der Massenschwerpunkt, M10, des Meßrohrs 10 weiter von der Längsachse L entfernt ist, als der Massenschwerpunkt, M20, des Gegenschwingers 20. Gemäß einer weiteren Ausgestaltung der Erfindung ist ferner vorgesehen, daß jeder der beiden vorgenannten Massenschwerpunkte, M10, M20, einen Abstand zur gedachten Längsachse L aufweist, der größer als 10% eines zwischen Meßrohr 10 und gedachter Längsachse L meßbaren größten Abstandes ist. Für eine Realisierung des Meßwandlers mit gängigen Einbaumaßen würde dies praktisch bedeuten, daß jeder der Massenschwerpunkte, M10, M20, einen Abstand zur gedachten Längsachse L aufweist, der größer als 30 mm ist. Ferner hat es sich gezeigt, daß ein Verhältnis des Abstands eines jeden der Massenschwerpunkte, M10, M20, zum Durchmesser des Meßrohrs 10 jeweils größer als eins, insb. mindestens zwei, sein sollte. Ferner konnte herausgefunden werden, daß es von Vorteil sein kann, wenn jeder der Massenschwerpunkte, M10, M20, einen Abstand zur gedachten Längsachse L aufweist, der kleiner als 90% des größten Abstandes zwischen Meßrohr 10 und gedachter Längsachse L aufweist. Gemäß einer weiteren Ausgestaltung der Erfindung ist daher ferner vorgesehen, daß das Verhältnis des Abstands eines jeden der Massenschwerpunkte, M10, M20, zum Durchmesser des Meßrohrs 10 jeweils größer als 2 ist und kleiner als 10 gehalten ist.
  • Durch die Verlegung der Massenschwerpunkte in der genannten Weise kann der Arbeitsbereich des Meßwandlers, insb. auch im Vergleich zu dem des in der US-B 66 66 098 gezeigten, insoweit deutlich erhöht werden, daß ein zwischen den beiden vorgenannten Wirkwinkeln infolge schwankender Mediumsdichte zwangsläufig eintretender Winkelversatz sowohl negativ als auch positiv ausfallen kann und somit nur etwa halb so große und insoweit vergleichsweise geringe Absolutbeträge annimmt. Somit kann auch die dichteabhängige Nullpunktbeeinflußbarkeit des Meßwandlers erheblich verringert werden.
  • Um darüber hinaus eine möglichst robuste Entkopplung des Innenteils des Meßwandlers auch von Störeinkopplungen seitens des Meßrohrs 10 zu realisieren, insb. auch um sicherzustellen, daß das Innenteil selbst möglichst ausschließlich infolge des wirkenden Entkopplungsmechanismus und möglichst nicht infolge von der Anregungen anderen Eigenresonanzen zu pendeln beginnt, ist gemäß einer weiteren Ausgestaltung der Erfindung vorgesehen, daß zumindest eine natürliche Eigenfrequenz von dessen Pendelschwingungsmode kleiner ist als eine niedrigste Schwingungsfrequenz ist, mit der das Meßrohr 10 momentan vibrieren gelassen ist, beispielsweise also der Nutzfrequenz, fexc. Dafür ist das Innenteil ferner so ausgebildet, daß zumindest eine niedrigste momentane natürliche Eigenfrequenz des Pendelschwingungsmods des Innenteils stets kleiner ist als die momentan niedrigste natürliche Eigenfrequenz des Meßrohrs 10 ist.
  • Infolgedessen, daß der in der vorgeschlagenen Weise implementierten Entkopplungsmechanismus im wesentlichen auf einer eher konstruktiven, im Betrieb von extern praktisch nicht zu ändernden Abstimmung der vorgenannten Torsionsschwinger und des Innenteils beruht, ist naturgemäß durchaus eine, wenn auch im Vergleich zu herkömmlichen Meßwandlern ohne den vorbeschriebenen Entkopplungsmechanismus sehr geringe Verstimmung aufgrund sich ändernder Mediumseigenschaften, zu erwarten. Diese für die Abstimmung relevanten Parameter können neben der Dichte beispielsweise die Viskosität des Mediums und/oder dessen Temperatur und damit einhergehend die des Innenteils selbst sein. Um auch für solche Fälle einen möglichst gut ausbalancierten Meßwandler bereitstellen zu können, ist nach einer weiteren Ausgestaltung der Erfindung vorgesehen, das Innenteil so zu dimensionieren, daß eine natürliche Eigenfrequenz von dessen Pendelschwingungsmode kleiner ist als eine niedrigste Schwingungsfrequenz ist, mit der das Meßrohr 10 momentan vibriert, oder daß zumindest eine momentane natürliche Eigenfrequenz des Pendelschwingungsmodes des Innenteils stets kleiner ist als eine momentan niedrigste natürliche Eigenfrequenz des Meßrohrs 10. Es hat sich hierbei gezeigt, daß ein Verhältnis der niedrigsten Eigenfrequenz des Meßrohrs 10 zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils größer als 3 sein sollte, umgekehrt nicht größer zu sein braucht als 20. Es hat sich hierbei ferner gezeigt, daß es für die meisten Anwendungsfälle ausreichend sein kann, dieses Verhältnis der niedrigsten Eigenfrequenz des Meßrohrs 10 zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils in einem vergleichsweise schmalen Arbeitsbereich etwa zwischen 5 und 10 zu halten.
  • Gemäß einer weiteren Ausgestaltung der Erfindung sind das Innenteil und die beiden Verbindungsrohrstücke 11, 12 so aufeinander abgestimmt, daß der Lateralschwingungsmode des Innenteils eine niedrigste Eigenfrequenz aufweist, die größer ist als eine niedrigste Eigenfrequenz des Pendelschwingungsmode des Innenteils. Im besonderen ist vorgesehen, dabei das Innenteil und die beiden Verbindungsrohrstücke 11, 12 so aufeinander abzustimmen, daß ein Verhältnis der niedrigsten Eigenfrequenz des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils größer als 1,2. Ferner ist vorgesehen, dieses Verhältnis der niedrigsten Eigenfrequenz des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils so zu trimmen, daß es kleiner als 10 ist. Es hat sich hierbei ferner gezeigt, daß es für die meisten Anwendungsfälle ausreichend sein kann, dieses Verhältnis der niedrigsten Eigenfrequenz, fL, des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz, fP, des Pendelschwingungsmodes des Innenteils in einem vergleichsweise schmalen Arbeitsbereich etwa zwischen 1,5 und 5 zu halten.
  • Gemäß einer weiteren Ausgestaltung der Erfindung ist ferner vorgesehen, daß die beiden Verbindungsrohrstücke 11, 12, so zueinander sowie zu einer die beiden Kopplungszonen 11#, 12# imaginär verbindenden gedachten Längsachse L des Meßwandlers ausgerichtet sind, daß das Innenteil, einhergehend mit Verdrillungen der beiden Verbindungsrohrstücke 11, 12, um die Längsachse L pendeln kann. Dafür sind die beiden Verbindungsrohrstücke 11, 12 so zueinander auszurichten, daß die im wesentlichen geraden Rohrsegmente im wesentlichen parallel zur gedachten Längsachse L verlaufen sowie zu dieser und zueinander im wesentlichen fluchten. Da die beiden Verbindungsrohrstücke 11, 12 im hier gezeigten Ausführungsbeispiel praktisch über ihre gesamte Länge hinweg im wesentlichen gerade ausgeführt sind, sind sie dementsprechend insgesamt zueinander sowie zur imaginären Längsachse L im wesentlichen fluchtend ausgerichtet. Gemäß einer Ausgestaltung der Erfindung ist des weiteren vorgesehen, daß als ein Kompromiß zwischen optimaler Federwirkung einerseits und akzeptablen Einbaumaßen des Meßwandlers anderseits eine Länge jedes der Verbindungsrohrstücke 11, 12 jeweils höchstens einem 0,5-fachen eines kürzesten Abstandes zwischen den beiden Kopplungszonen 11#, 12# entspricht. Um einen möglichst kompakten Meßwandler bereitstellen zu können weist jedes der beiden Verbindungsrohrstück 11, 12 im besonderen eine Länge auf, die jeweils kleiner als ein 0,4-faches des kürzesten Abstandes zwischen den beiden Kopplungszonen ist.
  • Zur Verbesserung des vorbeschriebenen Entkopplungsmechanismus ist der Gegenschwinger 20 gemäß einer weitern Ausgestaltung der Erfindung wesentlich schwerer ausgelegt als das Meßrohr 10. Gemäß einer Weiterbildung dieser Ausgestaltung der Erfindung ist dabei ein Verhältnis der Masse, m20, des Gegenschwingers 20 zu einer Masse, m10, des Meßrohrs 10 größer als 2 eingestellt. Im besonderen sind Meßrohr 10 und Gegenschwinger 20 ferner so ausgebildet, daß letzterer eine Masse, m20, aufweist, die auch größer ist, als eine Masse des mit zu messenden Medium gefüllten Meßrohrs 10 ist. Damit der Gegenschwinger 20 trotz seiner vergleichsweise hohen Masse, m20, eine Eigenfrequenz aufweist, die in etwa der im Nutzmode angeregte Eigenfrequenz des Meßrohrs oder zumindest in deren Bereich angesiedelt ist, ist der Gegenschwinger 20 zumindest bei dieser Ausgestaltung der Erfindung ferner so ausgebildet, daß er in entsprechender Weise gleichermaßen biegesteifer ist als das Meßrohr 10.
  • Zur Realisierung des, insb. auch eher schwer, gleichsam aber auch eher biegesteif ausgebildeten, Gegenschwingers 20 und zur vereinfachten Abstimmung desselben auf Meßrohr 10 und/oder die endseitigen Torsionsschwinger in der vorbeschriebenen Weise ist gemäß einer weiteren Ausgestaltung der Erfindung ferner vorgesehen, daß dieser zumindest anteilig mittels seitlich des Meßrohrs 10 angeordneter Platten 21, 22 gebildet ist. Bei dem hier gezeigten Ausführungsbeispiel ist der Gegenschwinger 20 mittels wenigstens zweier gekrümmter Gegenschwinger-Platten 21, 22 gebildet, von denen eine erste Gegenschwinger-Platte 21 linksseitig des Meßrohrs 10 und eine zweite Gegenschwinger-Platte 22 rechtsseitig des Meßrohrs 10 angeordnet sind. Jede der wenigstens zwei – hier im wesentlichen bogen- oder bügelartig ausgebildeten – Gegenschwinger-Platten 21, 22 weist eine äußere Seitenfläche auf, von der ein erster Rand durch eine bezüglich der Längsachse distale Kontur gebende Kante sowie ein zweiter Rand von einer bezüglich der Längsachse proximale Kontur gebende Kante gebildet ist. Im hier gezeigten Ausführungsbeispiel ist zudem jede der wenigstens zwei den Gegenschwinger 20 bildenden Gegenschwinger-Platten 21, 22 im wesentlichen parallel zum Meßrohr 10 angeordnet. Gemäß einer weiteren Ausgestaltung der Erfindung ist jede der wenigstens zwei Gegenschwinger-Platten 21, 22 desweiteren so ausgebildet und so im Meßwandler relativ zum Meßrohr 10 plaziert, daß sowohl die distale als auch die proximale Kontur gebende Kante eines jeden der wenigstens zwei Gegenschwinger-Platten 21, 22 zumindest im Bereich eines Mittelabschnitts des Gegenschwingers 20 einen von Null verschiedenen Abstand zur Längsachse L aufweisen.
  • Wie auch in 2 und 3 dargestellt, ist ferner jede der wenigstens zwei Gegenschwinger-Platten 21, 22 so ausgebildet, daß zumindest im Bereich eines Mittelabschnitts des Gegenschwingers 20 eine örtliche Platten-Höhe jeweils kleiner ist als jeweils im Bereich der beiden Kopplungszonen. Die örtliche Platten-Höhe entspricht dabei jeweils einem kleinsten Abstand, der an einem ausgewählten Ort der entsprechenden Gegenschwinger- Platten daselbst zwischen der distalen und der proximalen Kontur gebende Kante einer jeden der wenigstens zwei Gegenschwinger-Platten 21, 22 gemessen ist. Gemäß einer Weiterbildung der Erfindung weist jede der wenigstens zwei Gegenschwinger-Platten 21, 22 zudem im Bereich des Mittelabschnitts des Gegenschwingers 20 eine kleinste Platten-Höhe auf. Ferner ist vorgesehen, daß die Platten-Höhe einer jeden der wenigstens zwei Gegenschwinger-Platten 21, 22 jeweils ausgehend von einer Kopplungszone zum Mittelabschnitt des Gegenschwingers 20 hin, insb. monoton oder kontinuierlich, abnimmt.
  • Gemäß einer weiteren Ausgestaltung der Erfindung, weist jede der wenigstens zwei den Gegenschwinger 20 bildenden Platten 21, 22 eine im wesentlichen bügelförmige Kontur oder Silhouette auf. In entsprechender Weise ist eine zwischen einer bezüglich der Längsachse L distalen Konturlinie sowie einer bezüglich der Längsachse proximalen Konturlinie imaginär verlaufende Schwerelinie einer jeden der wenigstens zwei Gegenschwinger-Platten 21, 22 gleichermaßen gekrümmte ausgebildet. Aufgrund der Bügelform des Gegenschwingers 20 weist die Schwerelinie einer jeden der wenigstens zwei Gegenschwinger-Platten 21, 22 zumindest im Bereich eines Mittelabschnitts bezüglich der Längsachse einen konkaven Verlauf und zumindest im Bereich der Kopplungszonen bezüglich der Längsachse jeweils einen konvexen Verlauf auf.
  • Meßrohr 10 und Gegenschwinger 20 sind, wie bereits erwähnt, in ggf. so auszuführen, daß sie bei einer möglichst ähnlichen äußeren Raumform auch gleiche oder zumindest einander ähnliche Massenverteilungen aufweisen. Gemäß einer weiteren Ausgestaltung der Erfindung ist daher vorgesehen, daß die den Gegenschwinger 20 bildenden Gegenschwinger-Platten 21, 22 und insoweit auch der Gegenschwinger 20 selbst im wesentlichen eine mit dem gekrümmten Meßrohr vergleichbare oder zumindest ähnliche Bogenform aufweisen. Gleichermaßen ist auch die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten 21, 22 zumindest im Bereich eines Mittelabschnitts des Gegenschwingers 20 im wesentlichen gleichermaßen bogenförmig ausgebildet, wie die des Meßrohrs 10. Dementsprechend zeigen die den Gegenschwinger 20 bildenden Gegenschwinger-Platten 21, 22 und somit sowohl der Gegenschwinger 20 als auch das gesamte Innenteil im hier gezeigten Ausführungsbeispiel eine im wesentlichen U-förmig oder V-förmig gekrümmte Silhouettte. Gleichermaßen ist im Ausführungsbeispiel auch die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten 21, 22 zumindest im Bereich eines zwischen den beiden Kopplungszonen gelegenen Mittelabschnitts des Gegenschwingers 20 im wesentlichen U- oder V-förmig ausgebildet. Gemäß einer weiteren Ausgestaltung sind die Gegenschwinger-Platten 21, 22 ferner so geformt und bezüglich des Meßrohrs 10 angeordnet, daß die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten 21, 22 im wesentlichen parallel zur Schwerelinie des Meßrohrs 10 ist, die imaginär innerhalb von dessen Lumen verläuft.
  • Durch eine Kombination von bügelförmiger Kontur des Gegenschwingers 20 einerseits und der sich zur Mitte hin verjüngenden Plattenhöhe anderseits können der Gegenschwinger 20 und insoweit auch das Innenteil sehr einfach sowohl hinsichtlich der Massenverteilungen, insb. der relativen Lage der Massenschwerpunkte M10, M20, als auch davon weitgehend unabhängig hinsichtlich der oben genannten Eigenfrequenzen, f20, fL, fP eingestellt werden. Darüber hinaus kann so auch der mittels der endseitigen Torsionsschwinger realisierte Entkopplungsmechanismus von den vorgenannten Kriterien weitgehend unabhängig abgestimmt werden, da einerseits zwar die überstehenden Enden der Gegenschwinger-Platten zusammen mit den verwendeten Knotenplatten den überwiegenden Beitrag zum erforderlichen Massenträgheitsmoment leisten und anderseits aber deren Höhe jeweils in weiten Grenzen passend gewählt werden kann, ohne die vorgenannten anderen Schwingungseigenschaften des Gegenschwingers 20 wesentlich zu beeinflußen.
  • Um ein möglichst einfach handhabbares Anpassen des Gegenschwingers 20 auf eine am tatsächlichen Meßrohr 10 wirksame Masse und/oder Massenverteilung zu ermöglichen, können dem Gegenschwinger 20 ferner als diskrete Zusatzmassen dienende Massenausgleichskörper 21, insb. lösbar, aufgesetzt sein. Alternativ oder in Ergänzung kann eine entsprechende Massenverteilung über dem Gegenschwinger 20 z.B. auch durch Ausformen von Längs- oder Ringnuten realisiert werden. Eine für die jeweilige Anwendung schlußendlich geeignete Masse und/oder Masseverteilung des Gegenschwingers 20 bzw. des Innenteils können vorab z.B. mittels Finite-Elemente-Berechnungen und/oder mittels entsprechender Kalibriermessungen ohne weiteres ermittelt werden. Die am konkreten Meßwandler zum optimalen Abstimmen der einlaßseitigen und des auslaßseitigen Wirkwinkel dann einzustellenden Parameter, also entsprechende Massen, Massenverteilungen und/oder Massenträgheitsmomente von Meßrohr 10 und Gegenschwinger 20 und daraus abgeleitete geometrische Abmessungen derselben, können z.B. in der dem Fachmann an und für sich bekannten Weise mittels Finiter-Elemente- oder anderer computergestützten Simulationsberechnungen in Verbindung mit entsprechenden Kalibriermessungen ermittelt werden.
  • Der erfindungsgemäße Meßwandler ist aufgrund seiner guten dynamischen Ausbalancierung besonders für eine Verwendung in einem Coriolis-Massedurchflußmesser, einem Coriolis-Massedurchfluß-/Dichtemesser oder in einem Coriolis-Massedurchfluß-/Dichte-/Viskositätsmesser geeignet, der für Medien mit im Betrieb erheblich schwankender Dichte vorgesehen ist.

Claims (48)

  1. Meßwandler vom Vibrationstyp für ein in einer Rohrleitung strömendes Medium, welcher Meßwandler umfaßt: – ein Wandler-Gehäuse sowie – ein im Wandler-Gehäuse angeordnetes Innenteil, das zumindest – ein gekrümmtes, im Betrieb zumindest zeitweise vibrierendes Meßrohr (10) zum Führen des Mediums, sowie – einen unter Bildung einer ersten Kopplungszone (11#) einlaßseitig am Meßrohr (10) und unter Bildung einer zweiten Kopplungszone (12#) auslaßseitig am Meßrohr (10) fixierten Gegenschwinger (20) aufweist, – wobei das Innenteil zumindest mittels zweier Verbindungsrohrstücke (11, 12) im Wandler-Gehäuse schwingfähig gehaltert ist, – über die das Meßrohr (10) im Betrieb mit der Rohrleitung kommuniziert, und – die zueinander sowie zu einer gedachten Längsachse (L) des Meßwandlers so ausgerichtet sind, daß das Innenteil im Betrieb um die Längsachse (L) pendeln kann, und – wobei Meßrohr (10) und Gegenschwinger (20) so ausgebildet und zueinander ausgerichtet sind, – daß sowohl ein von der gedachten Längsachse (L) beabstandeter Massenschwerpunkt, M10, des Meßrohrs (10) als auch ein von der gedachten Längsachse (L) beabstandeter Massenschwerpunkt, M20, des Gegenschwingers (20) in einem gemeinsamen von der gedachten Längsachse (L) und dem Meßrohr (10) aufgespannten Bereich des Meßwandlers liegen, und – daß der Massenschwerpunkt, M10, des Meßrohrs (10) weiter von der Längsachse (L) entfernt ist, als der Massenschwerpunkt, M20, des Gegenschwingers (20).
  2. Meßwandler nach dem vorherigen Anspruch, wobei jeder der Massenschwerpunkte, M10, M20, einen Abstand zur gedachten Längsachse (L) aufweisen, der größer als 10% eines größten Abstandes zwischen Meßrohr (10) und gedachter Längsachse (L) ist.
  3. Meßwandler nach einem der vorherigen Ansprüche, wobei jeder der Massenschwerpunkte, M10, M20, einen Abstand zur gedachten Längsachse (L) aufweist, der kleiner als 90% eines größten Abstandes zwischen Meßrohr (10) und gedachter Längsachse (L) ist.
  4. Meßwandler nach einem der vorherigen Ansprüche, wobei jeder der Massenschwerpunkte, M10, M20, einen Abstand zur gedachten Längsachse (L) aufweist, der größer als 30 mm ist.
  5. Meßwandler nach einem der vorherigen Ansprüche, wobei ein Verhältnis des Abstands eines jeden der Massenschwerpunkte, M10, M20, zu einem Durchmesser des Meßrohrs (10) jeweils größer als 1 ist.
  6. Meßwandler nach dem vorherigen Anspruch, wobei das Verhältnis des Abstands eines jeden der Massenschwerpunkte, M10, M20, zu einem Durchmesser des Meßrohrs (10) jeweils größer als 2 ist und kleiner als 10.
  7. Meßwandler nach einem der vorherigen Ansprüche, wobei ein Durchmesser des Meßrohrs (10) größer als 1 mm und kleiner als 100 mm ist.
  8. Meßwandler nach einem der vorherigen Ansprüche, wobei die Längsachse (L) des Meßwandlers die beiden Kopplungszonen (11#, 12#) miteinander imaginär verbindet.
  9. Meßwandler nach einem der vorherigen Ansprüche, wobei der Gegenschwinger (20) eine Masse, m20, aufweist, die größer ist als eine Masse, m10, des Meßrohrs (10).
  10. Meßwandler nach dem vorherigen Anspruch, wobei ein Verhältnis der Masse, m20, des Gegenschwingers (20) zur Masse, m10, des Meßrohrs (10) größer als 2 ist.
  11. Meßwandler nach einem der vorherigen Ansprüche, wobei das Meßrohr (10) im wesentlichen U-förmig oder V-förmig ausgebildet ist.
  12. Meßwandler nach einem der vorherigen Ansprüche, wobei der Gegenschwinger (20) mittels seitlich des Meßrohrs (10) angeordneter Gegenschwinger-Platten (21, 22) gebildet ist.
  13. Meßwandler nach dem vorherigen Anspruch, wobei der Gegenschwinger (20) mittels wenigstens zweier Gegenschwinger-Platten (21, 22) gebildet ist, von denen eine erste Gegenschwinger-Platte (21) linksseitig des Meßrohrs (10) und eine zweite Gegenschwinger-Platte (22) rechtsseitig des Meßrohrs (10) angeordnet sind.
  14. Meßwandler nach dem vorherigen Anspruch, wobei jede der wenigstens zwei Gegenschwinger-Platten (21, 22) eine zwischen einer bezüglich der Längsachse distalen Konturlinie sowie einer bezüglich der Längsachse proximalen Konturlinie imaginär verlaufende, gekrümmte Schwerelinie aufweist.
  15. Meßwandler nach dem vorherigen Anspruch, wobei die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten (21, 22) zumindest im Bereich eines Mittelabschnitts bezüglich der Längsachse einen konkaven Verlauf aufweist.
  16. Meßwandler nach dem vorherigen Anspruch, wobei die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten (21, 22) zumindest im Bereich der Kopplungszonen bezüglich der Längsachse jeweils einen konvexen Verlauf aufweist.
  17. Meßwandler nach Anspruch 15 oder 16, wobei die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten (21, 22) zumindest im Bereich eines Mittelabschnitts des Gegenschwingers (20) im wesentlichen U- oder V-förmig ausgebildet ist.
  18. Meßwandler nach einem der Ansprüche 13 bis 16, wobei die Schwerelinie eines jeden der wenigstens zwei Gegenschwinger-Platten (21, 22) im wesentlichen parallel zu einer Schwerelinie des Meßrohrs (10) ist, die imaginär innerhalb von dessen Lumen verläuft.
  19. Meßwandler nach einem der Ansprüche 14 bis 17, wobei jede der wenigstens zwei Gegenschwinger-Platten (21, 22) eine äußere Seitenfläche aufweist, von der ein erster Rand durch eine bezüglich der Längsachse distale Kontur gebende Kante sowie ein zweiter Rand von einer bezüglich der Längsachse proximale Kontur gebende Kante gebildet ist.
  20. Meßwandler nach dem vorherigen Anspruch, wobei jede der wenigstens zwei Gegenschwinger-Platten (21, 22) so ausgebildet und im Meßwandler plaziert ist, daß sowohl die distale als auch die proximale Kontur gebende Kante eines jeden der wenigstens zwei Gegenschwinger-Platten (21, 22) zumindest im Bereich eines Mittelabschnitts des Gegenschwingers (20) einen von Null verschiedenen Abstand zur Längsachse (L) aufweisen.
  21. Meßwandler nach dem vorherigen Anspruch, wobei jede der wenigstens zwei Gegenschwinger-Platten (21, 22) so ausgebildet ist, daß zumindest im Bereich eines Mittelabschnitts des Gegenschwingers (20) eine örtliche Platten-Höhe jeweils kleiner ist als jeweils im Bereich der beiden Kopplungszonen, wobei die örtliche Platten-Höhe daselbst jeweils einem kleinsten Abstand zwischen der distalen und der proximalen Kontur gebende Kante eines jeden der wenigstens zwei Gegenschwinger-Platten (21, 22) entspricht.
  22. Meßwandler nach dem vorherigen Anspruch, wobei jede der wenigstens zwei Gegenschwinger-Platten (21, 22) so ausgebildet ist, daß sie im Bereich des Mittelabschnitts des Gegenschwingers (20) eine kleinste Platten-Höhe aufweist.
  23. Meßwandler nach dem vorherigen Anspruch, wobei jede der wenigstens zwei Gegenschwinger-Platten (21, 22) so ausgebildet ist, daß die Platten-Höhe eines jeden der wenigstens zwei Gegenschwinger-Platten (21, 22) jeweils ausgehend von einer Kopplungszone zum Mittelabschnitt des Gegenschwingers (20) hin, insb. monoton oder kontinuierlich, abnimmt.
  24. Meßwandler nach einem der Ansprüche 12 bis 23, wobei jede der wenigstens zwei Gegenschwinger-Platten (21, 22) eine bogen- oder bügelförmige Kontur aufweist.
  25. Meßwandler nach einem der Ansprüche 13 bis 16, wobei jede der wenigstens zwei den Gegenschwinger (20) bildenden Platten (21, 22) im wesentlichen parallel zum Meßrohr (10) angeordnet ist.
  26. Meßwandler nach einem der vorherigen Ansprüche, wobei Meßrohr (10) und Gegenschwinger (20) einlaßseitig mittels wenigstens eines ersten Kopplers (31) und auslaßseitig mittels wenigstens eines zweiten Kopplers (32) miteinander mechanisch verbunden sind.
  27. Meßwandler nach einem der vorherigen Ansprüche, wobei die Verbindungsrohrstücke (11, 12) im wesentlichen gerade Rohrsegmente aufweisen.
  28. Meßwandler nach dem vorherigen Anspruch, wobei die Verbindungsrohrstücke (11, 12) so zueinander ausgerichtet sind, daß die Rohrsegmente im wesentlichen parallel zur gedachten Längsachse (L) verlaufen.
  29. Meßwandler nach dem vorherigen Anspruch, wobei die Verbindungsrohrstücke (11, 12) so zueinander ausgerichtet sind, daß die im wesentlichen geraden Rohrsegmente zueinander im wesentlichen fluchten.
  30. Meßwandler nach dem vorhergen Anspruch, wobei die Verbindungsrohrstücke (11, 12) so zueinander ausgerichtet sind, daß die im wesentlichen geraden Rohrsegmente mit der gedachten Längsachse (L) im wesentlichen fluchten.
  31. Meßwandler nach einem der vorherigen Ansprüche, wobei das Meßrohr (10) im Betrieb zumindest zeitweise Biegeschwingungen relativ zu Gegenschwinger (20) und Längsachse (L) ausführt.
  32. Meßwandler nach einem der vorherigen Ansprüche, wobei Meßrohr (10) und Gegenschwinger (20) im Betrieb zumindest zeitweise und zumindest anteilig gleichfrequente Biegeschwingungen um die Längsachse (L) ausführen.
  33. Meßwandler nach dem vorherigen Anspruch, wobei Meßrohr (10) und Gegenschwinger (20) im Betrieb zumindest zeitweise Biegeschwingungen um die Längsachse (L) ausführen, die zumindest anteilig zueinander außerphasig, insb. im wesentlichen gegenphasig, sind.
  34. Meßwandler nach einem der vorherigen Ansprüche, wobei das im Wandler-Gehäuse schwingfähig gehalterte Innenteil einen natürlichen Lateralschwingungsmode aufweist, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke (11, 12), zumindest zeitweise relativ zum Wandler-Gehäuse und lateral um die Längsachse (L) schwingt.
  35. Meßwandler nach einem der vorherigen Ansprüche, wobei das im Wandler-Gehäuse schwingfähig gehalterte Innenteil einen Pendelschwingungsmode aufweist, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke (11, 12), zumindest zeitweise um die gedachte Längsachse (L) pendelt.
  36. Meßwandler nach Anspruch 35, wobei zumindest eine natürliche Eigenfrequenz des Pendelschwingungsmodes kleiner ist als eine niedrigste Schwingungsfrequenz ist, mit der das Meßrohr (10) momentan vibriert.
  37. Meßwandler nach Anspruch 35 oder 36, wobei zumindest eine momentane natürliche Eigenfrequenz des Pendelschwingungsmodes stets kleiner ist als eine momentan niedrigste natürliche Eigenfrequenz des Meßrohrs (10).
  38. Meßwandler nach Anspruch 34, wobei das im Wandler-Gehäuse schwingfähig gehalterte Innenteil einen Pendelschwingungsmode aufweist, in dem es im Betrieb, einhergehend mit Verformungen der beiden Verbindungsrohrstücke (11, 12), zumindest zeitweise um die gedachte Längsachse (L) pendelt, und wobei der Lateralschwingungsmode des Innenteils eine niedrigste Eigenfrequenz aufweist, die größer ist als eine niedrigste Eigenfrequenz des Pendelschwingungsmode des Innenteils.
  39. Meßwandler nach Anspruch 38, wobei ein Verhältnis der niedrigsten Eigenfrequenz des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils größer als 1,2 ist.
  40. Meßwandler nach Anspruch 38 oder 39, wobei ein Verhältnis der niedrigsten Eigenfrequenz des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils kleiner als 10 ist.
  41. Meßwandler nach einem der Ansprüche 38 bis 40, wobei ein Verhältnis der niedrigsten Eigenfrequenz des Lateralschwingungsmodes des Innenteils zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils größer als 1,5 und kleiner als 5 ist.
  42. Meßwandler nach einem der Ansprüche 38 bis 41, wobei zumindest eine natürliche Eigenfrequenz des Pendelschwingungsmodes des Innenteils kleiner ist als eine niedrigste Schwingungsfrequenz ist, mit der das Meßrohr (10) momentan vibriert, und/oder wobei zumindest eine momentane natürliche Eigenfrequenz des Pendelschwingungsmodes des Innenteils stets kleiner ist als eine momentan niedrigste natürliche Eigenfrequenz des Meßrohrs (10).
  43. Meßwandler nach Anspruch 42, wobei ein Verhältnis der niedrigsten Eigenfrequenz des Meßrohrs (10) zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils größer als 3 ist.
  44. Meßwandler nach Anspruch 42 oder 43, wobei ein Verhältnis der niedrigsten Eigenfrequenz des Meßrohrs (10) zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils kleiner als 20 ist.
  45. Meßwandler nach einem der Ansprüche 42 bis 44, wobei ein Verhältnis der niedrigsten Eigenfrequenz des Meßrohrs (10) zur niedrigsten Eigenfrequenz des Pendelschwingungsmodes des Innenteils größer als 5 und kleiner als 10 ist.
  46. Meßwandler nach einem der vorherigen Ansprüche, weiters umfassend eine Erregeranordnung (40) zum Vibrierenlassen von Meßrohr (10) und Gegenschwinger (20).
  47. Meßwandler nach einem der vorherigen Ansprüche, weiters umfassend eine Sensoranordnung (50) zum Erfassen von Schwingungen zumindest des Meßrohrs (10).
  48. Verwendung eines Meßwandlers gemäß einem der vorherigen Ansprüche in einem dem Messen eines in einer Rohrleitung strömenden Mediums dienenden, insb. als Coriolis-Massedurchflußmeßgerät, Dichtemeßgerät und/oder Viskositätsmeßgerät ausgebildeten, In-Line-Meßgerät.
DE200510062004 2005-12-22 2005-12-22 Meßwandler vom Vibrationstyp Withdrawn DE102005062004A1 (de)

Priority Applications (17)

Application Number Priority Date Filing Date Title
DE200510062004 DE102005062004A1 (de) 2005-12-22 2005-12-22 Meßwandler vom Vibrationstyp
EP06830199.3A EP1963794B1 (de) 2005-12-22 2006-11-29 Messwandler vom vibrationstyp
PCT/EP2006/069077 WO2007074015A1 (de) 2005-12-22 2006-11-29 MEßWANDLER VOM VIBRATIONSTYP
CN2006800488625A CN101346612B (zh) 2005-12-22 2006-11-29 振动型测量变换器
DK06830199.3T DK1963794T3 (en) 2005-12-22 2006-11-29 VIBRATION TYPE TRANSDUCER
CN2006800487336A CN101346611B (zh) 2005-12-22 2006-11-29 振动型测量变换器
RU2008130101/28A RU2405128C2 (ru) 2005-12-22 2006-11-29 Измерительный преобразователь вибрационного типа и применение измерительного преобразователя во встроенном приборе
JP2008546342A JP5096366B2 (ja) 2005-12-22 2006-11-29 振動型測定変換器
DK06819845.6T DK1963793T3 (en) 2005-12-22 2006-11-29 Vibration type transducer
JP2008546341A JP5096365B2 (ja) 2005-12-22 2006-11-29 振動型測定変換器
EP06819845.6A EP1963793B1 (de) 2005-12-22 2006-11-29 MEßWANDLER VOM VIBRATIONSTYP
RU2008130103/28A RU2406072C2 (ru) 2005-12-22 2006-11-29 Измерительный преобразователь вибрационного типа и применение его во встроенном измерительном приборе
CA2633527A CA2633527C (en) 2005-12-22 2006-11-29 Measuring transducer of vibration-type
PCT/EP2006/069076 WO2007074014A1 (de) 2005-12-22 2006-11-29 MEßWANDLER VOM VIBRATIONSTYP
CA2633518A CA2633518C (en) 2005-12-22 2006-11-29 Measuring transducer of vibration-type
US11/635,502 US7325462B2 (en) 2005-12-22 2006-12-08 Measuring transducer of vibration-type
US11/636,555 US7360451B2 (en) 2005-12-22 2006-12-11 Measuring transducer of vibration-type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510062004 DE102005062004A1 (de) 2005-12-22 2005-12-22 Meßwandler vom Vibrationstyp

Publications (1)

Publication Number Publication Date
DE102005062004A1 true DE102005062004A1 (de) 2007-06-28

Family

ID=38108829

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510062004 Withdrawn DE102005062004A1 (de) 2005-12-22 2005-12-22 Meßwandler vom Vibrationstyp

Country Status (2)

Country Link
CN (1) CN101346611B (de)
DE (1) DE102005062004A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015203183A1 (de) * 2015-02-23 2016-08-25 Siemens Aktiengesellschaft Coriolis-Massendurchflussmessgerät

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2406591A1 (de) * 2009-03-11 2012-01-18 Endress+Hauser Flowtec AG Messaufnehmer vom vibrationstyp sowie in-line-messgerät mit einem solchen messaufnehmer
DE102009028007A1 (de) * 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßumwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
DE102009028006A1 (de) * 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
EP2516971B1 (de) * 2009-12-21 2020-03-04 Endress+Hauser Flowtec AG Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
CA2895947C (en) * 2013-01-10 2017-09-12 Micro Motion, Inc. Method and apparatus for a vibratory meter
CN110554211B (zh) * 2019-08-06 2022-07-26 清华-伯克利深圳学院筹备办公室 一种基于光微流微腔的流速计及测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19604529C2 (de) * 1996-02-08 2000-09-07 Danfoss As Durchflußmesser
EP1260798A1 (de) * 2001-05-23 2002-11-27 Endress + Hauser Flowtec AG Messwandler vom Vibrationstyp
EP1279935A2 (de) * 2001-07-23 2003-01-29 FMC Technologies, Inc. Verfahren zur Entkopplung externer Schwingungsmoden in einem Coriolismassendurchflussmesser
EP1431719A1 (de) * 2002-12-20 2004-06-23 ABB Research Ltd. Coriolis Massendurchfluss/Dichteaufnehmer mit einem einzigen geraden Messrohr
DE60012161T2 (de) * 1999-03-19 2005-08-25 Mirco Motion Inc., Boulder Coriolisdurchflussmesser mit reduzierten abmessungen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905488A3 (de) * 1997-09-30 1999-04-21 Yokogawa Electric Corporation Coriolismassendurchflussmesser
US6666098B2 (en) * 2001-05-23 2003-12-23 Endress + Hauser Flowtec Ag Vibratory transducer
DE10351311B3 (de) * 2003-10-31 2005-06-30 Abb Patent Gmbh Coriolis-Massendurchflussmessgerät

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19604529C2 (de) * 1996-02-08 2000-09-07 Danfoss As Durchflußmesser
DE60012161T2 (de) * 1999-03-19 2005-08-25 Mirco Motion Inc., Boulder Coriolisdurchflussmesser mit reduzierten abmessungen
EP1260798A1 (de) * 2001-05-23 2002-11-27 Endress + Hauser Flowtec AG Messwandler vom Vibrationstyp
EP1279935A2 (de) * 2001-07-23 2003-01-29 FMC Technologies, Inc. Verfahren zur Entkopplung externer Schwingungsmoden in einem Coriolismassendurchflussmesser
EP1431719A1 (de) * 2002-12-20 2004-06-23 ABB Research Ltd. Coriolis Massendurchfluss/Dichteaufnehmer mit einem einzigen geraden Messrohr

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015203183A1 (de) * 2015-02-23 2016-08-25 Siemens Aktiengesellschaft Coriolis-Massendurchflussmessgerät

Also Published As

Publication number Publication date
CN101346611A (zh) 2009-01-14
CN101346611B (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
EP1389300B1 (de) Messwandler vom vibrationstyp
EP1759178B1 (de) Messwandler vom vibrationstyp
EP1381830B1 (de) Messwandler vom vibrationstyp
EP1931949B1 (de) Verfahren zum messen eines in einer rohrleitung strömenden mediums sowie messsystem dafür
EP1502085B1 (de) Messwandler vom vibrationstyp
EP2406592B1 (de) Messsystem mit einem messwandler vom vibrationstyp
EP1963793B1 (de) MEßWANDLER VOM VIBRATIONSTYP
DE102009028006A1 (de) Meßwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
DE102005062004A1 (de) Meßwandler vom Vibrationstyp
DE102005062007A1 (de) Meßwandler vom Vibrationstyp
WO2011009684A1 (de) Messwandler vom vibrationstyp sowie messgerät mit einem solchen messwandler
DE102006062600A1 (de) Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts
DE102010001973A1 (de) Messwandler vom Vibrationstyp mit zwei Gegenschwingerarmen
EP1825230B1 (de) Messaufnehmer vom vibrationstyp
DE10358663A1 (de) Coriolis-Massedurchfluß-Meßgerät
DE10235322A1 (de) Meßwandler vom Vibrationstyp
EP1949048B1 (de) Messwandler vom vibrationstyp
WO2009053344A1 (de) Messwandler vom vibrationstyp

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee