DE102005052170A1 - Drehschwingungsdämpfer - Google Patents

Drehschwingungsdämpfer Download PDF

Info

Publication number
DE102005052170A1
DE102005052170A1 DE102005052170A DE102005052170A DE102005052170A1 DE 102005052170 A1 DE102005052170 A1 DE 102005052170A1 DE 102005052170 A DE102005052170 A DE 102005052170A DE 102005052170 A DE102005052170 A DE 102005052170A DE 102005052170 A1 DE102005052170 A1 DE 102005052170A1
Authority
DE
Germany
Prior art keywords
torsional vibration
shoe
coil spring
sliding shoe
vibration dampers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005052170A
Other languages
English (en)
Inventor
Bin Zhou
Johann Jäckel
Ad Dr. Kooy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
LuK Lamellen und Kupplungsbau Beteiligungs KG
LuK Lamellen und Kupplungsbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LuK Lamellen und Kupplungsbau Beteiligungs KG, LuK Lamellen und Kupplungsbau GmbH filed Critical LuK Lamellen und Kupplungsbau Beteiligungs KG
Priority to DE102005052170A priority Critical patent/DE102005052170A1/de
Publication of DE102005052170A1 publication Critical patent/DE102005052170A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • F16F15/1343Wound springs characterised by the spring mounting
    • F16F15/13453Additional guiding means for springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Drehschwingungsdämpfer mit wenigstens zwei um eine Drehachse verdrehbaren Teilen, die relativ zueinander entgegen der Wirkung wenigstens einer Schraubenfeder drehbeweglich sind, wobei die Schraubenfeder in einer bogenförmig verlaufenden Aufnahme geführt ist, die von Bereichen wenigstens eines der beiden Teile gebildet ist, weiterhin die Aufnahme durch wenigstens einen Wandungsbereich begrenzt ist, der zumindest radial äußere Bereiche der Schraubenfeder axial übergreift und sich zumindest über die Länge der Schraubenfeder in Umfangsrichtung des Drehschwingungsdämpfers erstreckt, wobei die Schraubenfeder radial nach außen hin über wenigstens einen Gleitschuh abstützbar ist.

Description

  • Die Erfindung betrifft Drehschwingungsdämpfer, insbesondere für Kraftfahrzeuge, die wenigstens zwei um eine Drehachse verdrehbare Teile besitzen, welche relativ zueinander entgegen der Wirkung wenigstens einer Schraubenfeder drehbeweglich sind, wobei die Schraubenfeder in einer bogenförmig verlaufenden Aufnahme bzw. Kammer geführt ist, die von Bereichen wenigstens eines der beiden Teile gebildet ist, wobei diese Aufnahme bzw. Kammer durch wenigstens einen Wandungsbereich begrenzt wird, welcher zumindest radial äußere Bereiche der Schraubenfeder axial übergreift und sich zumindest über die Länge der Schraubenfeder in Umfangsrichtung des Drehschwingungsdämpfers erstreckt. Die Schraubenfeder ist dabei wenigstens radial nach außen hin über zumindest einen Gleitschuh abstützbar, welcher entlang des Wandungsbereiches bewegbar ist, wobei wenigstens eine Windung der Schraubenfeder vom Gleitschuh zumindest radial abgestützt wird.
  • Derartige Drehschwingungsdämpfer in Form von so genannten Zweimassenschwungrädern sind beispielsweise durch die DE 102 09 838 A1 , die DE 43 41 373 A1 und die EP 0994272 A2 vorgeschlagen worden.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, Drehschwingungsdämpfer der vorerwähnten Art bezüglich deren Dämpfungseigenschaften zu optimieren, insbesondere soll durch die erfindungsgemäßen Ausgestaltungsmerkmale gewährleistet werden, dass wenigstens bei geringeren Drehzahlen, zum Beispiel unterhalb von 2000 U/min, der Gleit- bzw. Verschiebewiderstand zwischen einem Gleitschuh und der diesen radial abstützenden Fläche einer Wandung gegenüber den bekannten Ausführungsformen verringert werden kann.
  • Gemäß der Erfindung wird dies bei einem Drehschwingungsdämpfer der eingangs beschriebenen Art dadurch erzielt, dass die an dem Wandungsbereich anliegende Abstützfläche des Gleitschuhes in Abhängigkeit der auf die Schraubenfeder einwirkenden Fliehkraft veränderbar ist. Durch die erfindungsgemäße Maßnahme wird gewährleistet, dass bei geringeren Drehzahlen die in Eingriff stehenden Abstützflächen bzw. Gleitflächen verhältnismäßig klein sind, so dass insbesondere bei Verwendung von Schmiermittel der Scher- bzw. Haftwiderstand zwischen einem Gleitschuh und der mit diesem zusammen wirkenden Abstütz- bzw. Gleitfläche verringert werden kann. Durch die Verringerung der in Eingriff stehenden Flächen wird auch eine Erhöhung der spezifischen Flächenpressung erzielt, die ebenfalls dazu beiträgt, den Verschiebewiderstand zwischen dem Gleitschuh und der diesen abstützenden Fläche zu reduzieren. Durch die Vergrößerung der zusammen wirkenden Abstütz- bzw. Gleitflächen wird andererseits bei höheren Drehzahlen gewährleistet, dass die Flächenpressung auf einem akzeptablen Maß verbleibt.
  • Durch entsprechende konstruktive Ausgestaltung eines Gleitschuhes kann erzielt werden, dass die Veränderung der Abstützfläche des Gleitschuhes mit zunehmender Drehzahl zumindest stufenweise oder aber auch stufenlos bzw. kontinuierlich erfolgt.
  • Eine stufenweise Veränderung der Gleitschuhabstützfläche kann beispielsweise dadurch erzielt werden, dass der Gleitschuh mehrteilig aufgebaut ist, wobei zwischen wenigstens zwei Teilen zumindest ein Federelement vorhanden ist, entgegen dessen Wirkung eine Relativbewegung dieser Teile – zumindest unter Fliehkrafteinwirkung – ermöglicht ist. Die gegenüber dem eigentlichen Gleitschuh bewegbaren Teile bilden dabei Gleitflächenbereiche. In vorteilhafter Weise können Bereiche der Abstützfläche des Gleitschuhes Ausnehmungen aufweisen, in denen Abstützelemente aufgenommen sind, welche Gleitflächenbereiche bilden und vorzugsweise entgegen der Wirkung eines Federelementes in die Ausnehmungen drängbar sind. Durch das Eintauchen derartiger Abstützelemente in den eigentlichen Gleitschuh wird gewährleistet, dass oberhalb einer bestimmten Drehzahl die vom Gleitschuh radial fest getragenen Gleitflächenanteile zum Einsatz kommen. Im nicht beanspruchten Zustand ragen die Abstützelemente gegenüber der eigentlichen Abstützfläche des Gleitschuhes radial hervor. In vorteilhafter Weise können derartige Abstützelemente am Gleitschuh verliergesichert sein, zum Beispiel mittels eines Formschlusses. Ein derartiger Formschluss kann in vorteilhafter Weise als Schnappverbindung ausgebildet sein, wodurch auch die Montage des Gesamtgleitschuhes erleichtert wird.
  • In vorteilhafter Weise können die die Abstützfläche eines Gleitschuhes bildenden Bereiche derart ausgestaltet sein, dass sie bei Nichtbeanspruchung des Gleitschuhes einen vom Krümmungsverlauf des den Gleitschuh radial abstützenden Wandungsbereiches abweichenden Krümmungsverlauf besitzen. Unter Fliehkrafteinwirkung werden dann diese Bereiche bzw. die Abstützfläche federnd verformt, so dass eine Anpassung an den Krümmungsverlauf des Wandungsbereiches stattfindet. Die Abstützfläche des Gleitschuhes bzw. die diese Abstützfläche bildenden Bereiche können dabei einen größeren Krümmungsradius als der Wandbereich aufweisen. Es wird also der Gleitschuh durch die auf die entsprechende Feder einwirkende Fliehkraft derart verformt, dass sich der Krümmungsradius der Abstützfläche des Gleitschuhes an den Krümmungsradius des Wandungsbereiches bzw. die durch diesen Wandungsbereich gebildete Gleitfläche zumindest annähert.
  • In vorteilhafter Weise können die von einem Gleitschuh getragenen Abstützelemente aus einem Werkstoff bestehen, der einen geringeren Reibungskoeffizienten aufweist als der den Grundkörper des Gleitschuhes bildenden Werkstoff. Durch eine derartige Ausgestaltung kann auch gewährleistet werden, dass bei höheren Drehzahlen bereits aufgrund des zur Wirkung kommenden, höheren Reibungskoeffizienten eine größere Reibungsdämpfung erzeugt wird. Die im Grundkörper eines Gleitschuhes aufgenommenen Abstützelemente können in vorteilhafter Weise einen Selbstschmiereffekt aufweisen. So können beispielsweise derartige Abstützelemente PTFE oder Blei oder Kupfer oder Kohlestoff oder eine Mischung aus diesen Werkstoffen beinhalten. Entsprechende Werkstoffe sind beispielsweise aus der Gleitlagertechnologie bekannt.
  • In vorteilhafter Weise kann der Gleitschuh derart ausgebildet sein, dass er einen Bereich aufweist, der wenigstens einen radial äußeren Abschnitt einer Schraubenfederwindung zumindest teilweise umgreift. Durch eine derartige Ausgestaltung kann gewährleistet werden, dass der Gleitschuh – zumindest in Längsrichtung der Schraubenfeder – gegenüber der umgriffenen Federwindung festgelegt ist. In vorteilhafter Weise kann der Gleitschuh weiterhin derart ausgestaltet werden, dass beim Aufsetzen auf die entsprechende Schraubenfederwindung eine Verbindung entsteht, die auch eine Halterung des Gleitschuhes gegenüber der Schraubenfeder in eine Richtung senkrecht zur Längsachse der Schraubenfeder bewirkt.
  • Gemäß einer Weiterbildung der Erfindung kann im Grundkörper eines Gleitschuhes ein Federelement, das beispielsweise plattenförmig ausgebildet sein kann, eingebettet werden, welches den Krümmungsradius der Abstützfläche des nicht fliehkraftmäßig beanspruchten Gleitschuhes bestimmt.
  • Die Abstützfläche eines Gleitschuhes kann auch durch eine auf den Grundkörper des Schuhes aufgebrachte Beschichtung mit kleinem Reibungskoeffizienten gebildet sein.
  • Weitere Vorteile, konstruktive Merkmale und funktionelle Eigenschaften von gemäß der Erfindung ausgebildeten Drehschwingungsdämpfern ergeben sich aus der nachfolgenden Beschreibung, in der, unter Bezugnahme auf Zeichnungen, verschiedene Ausführungsbeispiele beschrieben sind.
  • Es zeigen:
  • 1 einen Schnitt durch eine Dämpfungseinrichtung, bei der die erfindungsgemäßen Lösungen eingesetzt werden können,
  • 2 die Anordnung einer Schraubenfeder, die bei einer Dämpfungseinrichtung gemäß 1 Verwendung finden kann,
  • 3 die in 2 dargestellte Anordnung einer Schraubenfeder im komprimierten Zustand,
  • 4 bis 6 eine Ausgestaltungsmöglichkeit eines Gleitschuhes, der in Verbindung mit einer Anordnung gemäß den 1 bis 3 Verwendung finden kann,
  • 7 bis 9 eine weitere Ausgestaltungsmöglichkeit eines Gleitschuhes für eine Schraubenfeder und
  • 10 und 11 eine zusätzliche Ausführungsform eines Gleitschuhes.
  • Der in 1 im Schnitt dargestellte Drehschwingungsdämpfer bildet ein geteiltes Schwungrad 1, das eine an einer nicht gezeigten Abtriebswelle einer Brennkraftmaschine befestigbare erste oder Primärschwungmasse 2 sowie eine zweite oder Sekundärschwungmasse 3 aufweist. Auf der zweiten Schwungmasse 3 ist eine Reibungskupplung unter Zwischenlegung einer Kupplungsscheibe befestigbar, über die eine ebenfalls nicht dargestellte Eingangswelle eines Getriebes zu- und abkuppelbar ist. Die Schwungmassen 2 und 3 sind über eine Lage rung 4 zueinander verdrehbar gelagert, die bei dem dargestellten Ausführungsbeispiel radial außerhalb von Bohrungen 5 zur Durchführung von Befestigungsschrauben für die Montage der ersten Schwungmasse 2 an der Abtriebswelle einer Brennkraftmaschine angeordnet ist. Zwischen den beiden Schwungmassen 2 und 3 ist eine Dämpfungseinrichtung 6 wirksam, die Energiespeicher 7 umfasst, von denen zumindest einer durch Schraubendruckfedern 8, 9 gebildet ist. Die Schraubendruckfeder 9 ist zumindest teilweise in dem durch die Windungen der Feder 8 gebildeten Raum aufgenommen oder mit anderen Worten die beiden Schraubenfedern 8 und 9 sind über ihre Längserstreckung betrachtet ineinander geschachtelt. Zweckmäßig kann es sein, wenn die Feder 9 – in Umfangsrichtung des Drehschwingungsdämpfers betrachtet – gegenüber der äußeren Feder 8 kürzer ist, zum Beispiel in der Größenordnung von 15 bis 60 Winkelgrad, vorzugsweise im Bereich von 30 bis 50 Winkelgrad. Die Differenzlänge beziehungsweise der Differenzwinkel kann jedoch auch größer oder kleiner sein.
  • Die beiden Schwungmassen 2 und 3 besitzen Beaufschlagungsbereiche 14, 15 beziehungsweise 16 für die Energiespeicher 7. Bei dem dargestellten Ausführungsbeispiel sind die Beaufschlagungsbereiche 14, 15 durch in die die erste Schwungmasse 2 bildenden Blechteile 17, 18 eingebrachte Anprägungen gebildet. Die axial zwischen den Beaufschlagungsbereichen 14, 15 vorgesehenen Beaufschlagungsbereiche 16 sind durch zumindest ein mit der Sekundärschwungmasse 3, beispielsweise über Niete 19, verbundenes flanschartiges Beaufschlagungsbauteil 20 gebildet. Dieses Bauteil 20 dient als Drehmomentübertragungselement zwischen den Energiespeichern 7 und der Schwungmasse 3. Die Beaufschlagungsbereiche 16 sind durch am Außenumfang des flanschartigen Beaufschlagungsmittels 20 vorgesehene radiale Arme beziehungsweise Ausleger 16 gebildet. Das durch Kaltumformung von Blechmaterial hergestellte Bauteil 17 dient zur Befestigung der ersten Schwungmasse 2 beziehungsweise des gesamten geteilten Schwungrades 1 an der Abtriebswelle einer Brennkraftmaschine. Radial außen ist das Bauteil 17 mit dem ebenfalls aus Blech hergestellten Bauteil 18 verbunden. Die beiden Bauteile 17 und 18 bilden einen ringförmigen Raum 21, der hier einen torusartigen Bereich 22 bildet. Der ringförmige Raum 21 beziehungsweise der torusartige Bereich 22 kann zumindest teilweise mit einem viskosen Medium, wie beispielsweise Fett, gefüllt sein. In Umfangsrichtung betrachtet zwischen den Anformungen beziehungsweise den Beaufschlagungsbereichen 14, 15 bilden die Bauteile 17, 18 Ausbuchtungen 23, 24, die den torusartigen Bereich 22 begrenzen und Aufnahmen für die Energiespeicher 7 bilden. Zumindest bei rotierender Einrichtung 1 stützen sich zumindest die Windungen der Federn 8 an den den torusartigen Bereich 22 radial außen begrenzenden Bereichen des Bauteiles 17 und/oder 18 ab. Bei dem in 1 dargestellten Ausführungsbeispiel ist ein durch wenigstens eine gehärtete Blechzwischenlage beziehungsweise Blecheinlage gebildeter Verschleißschutz 25 vorgesehen, an dem sich zumindest die Federn 8 radial abstützen. Der Verschleißschutz 25 erstreckt sich in Umfangsrichtung in vorteilhafter Weise zumindest über die gesamte Länge beziehungsweise Winkelerstreckung der entspannten Energiespeicher 7. Infolge der fliehkraftmäßigen Abstützung der Windungen zumindest der Federn 8 wird zwischen diesen Windungen und den mit diesen in Reibeingriff stehenden Bauteilen eine drehzahlabhängige Reibungsdämpfung bei einer Längenänderung beziehungsweise Kompression der Energiespeicher 7 beziehungsweise der Schraubenfedern 8 erzeugt.
  • Radial innen trägt das sich radial erstreckende Bauteil 17 ein Zwischenteil beziehungsweise eine Nabe 26, das beziehungsweise die den inneren Lagerring des Kugellagers 4 aufnimmt beziehungsweise trägt. Der äußere Lagerring des Kugellagers 4 trägt die Schwungmasse 3.
  • Aufgrund der vorerwähnten, zwischen den einzelnen Windungen der länglich ausgebildeten Feder 8 und dem Verschleißschutz 25 auftretenden Reibung wird insbesondere bei hohen Motordrehzahlen nur eine geringe beziehungsweise ungenügende Entspannung des Energiespeichers 7 beziehungsweise der Schraubendruckfedern 8 und/oder 9 auftreten, wodurch die Dämpfungseigenschaften des Drehschwingungsdämpfers vermindert werden. Insbesondere beim Auftreten von Lastwechseln (Zug/Schub) beim Betrieb eines Kraftfahrzeuges können dadurch störende Geräusche entstehen, und zwar weil der Energiespeicher 7 dann als verhältnismäßig harter Anschlag wirkt, weil die Federwindungen des Energiespeichers 7 in einem zumindest teilweise verspannten Zustand infolge der vorerwähnten Reibung verharren und somit eine hohe Federsteifigkeit erzeugen.
  • Um dies zu vermeiden, beziehungsweise zumindest eine wesentlich größere Entspannung des Energiespeichers beziehungsweise zumindest der Schraubenfeder 8 auch bei höheren Motordrehzahlen zu gewährleisten, kommen, wie unter anderem aus 2 ersichtlich, Gleitschuhe 30 zum Einsatz, die jeweils auf einem radial äußere Abschnitt 31 einer Windung 32 der Schraubendruckfeder 8 aufgesteckt sind. Die Gleitschuhe 30 werden durch die bei Rotation des Drehschwingungsdämpfers 1 auf die Schraubenfeder 8 (und gegebenenfalls 9, gemäß 1) einwirkende Fliehkraft radial nach außen beansprucht und stützen sich an der die Schraubenfeder 8 zumindest radial außen umgebenden Wandung 33 ab. Bei dem in 2 dargestellten Ausführungsbeispiel stützen sich die Gleitschuhe 30 unmittelbar an der Wan dung 33 ab. In vorteilhafter Weise kann jedoch zwischen der Wandung 33 und den Gleitschuhen 30 eine Zwischenschicht beziehungsweise Zwischenlage vorgesehen sein, die vorzugsweise eine hohe Verschleißfestigkeit aufweist und/oder gute Gleiteigenschaften besitzt, um den Verdrehwiderstand zwischen den Gleitschuhen 30 und der diese abstützenden Fläche weiter zu minimieren. Um diesen Verdrehwiderstand zu verringern, kann, wie in Zusammenhang mit 1 beschrieben, eine Schmierung vorgesehen werden. Weiterhin kann es besonders vorteilhaft sein, wenn zur Verbesserung des Aufbaues eines Schmierfilmes zumindest eine der in Reibkontakt befindlichen Flächen zumindest eine feine Oberflächenstrukturierung aufweist, die auch das Verbleiben von Schmiermittel, wie insbesondere Fett, zwischen den Reibschuhen 30 und der diese abstützenden Fläche 34 begünstigt. Letzteres kann beispielsweise durch Vorsehen einer gewissen Unebenheit beziehungsweise Rauhigkeit an zumindest einer der miteinander zusammenwirkenden Gleit- beziehungsweise Abstützflächen erzielt werden. In vorteilhafter Weise kann auch wenigstens eine der miteinander zusammenwirkenden Gleit- beziehungsweise Abstützflächen eine Beschichtung aufweisen, wie dies beispielsweise bei Gleitlagern der Fall ist. Derartige Gleitflächen können beispielsweise PTFE, Graphit oder Kupfer beinhalten.
  • In vorteilhafter Weise können die Gleitschuhe 30 aus Kunststoff bestehen, wodurch sie in einfacher Weise herstellbar sind, nämlich durch Spritzen.
  • Obwohl, wie vorerwähnt, durch den Einsatz von Gleitschuhen die Isolationseigenschaften bezüglich Torsionsschwingungen von Drehschwingungsdämpfern wesentlich verbessert werden konnte, sind zumindest bei einigen Anwendungsfällen im unteren Drehzahlbereich der Kraftfahrzeugantriebsmotoren noch Isolationsprobleme vorhanden, welche unter anderem auf die mit den bisherigen Reibschuhen noch auftretenden, zu hohen Reibmomente in Bezug auf die beim Komprimieren der Federn entstehende Rückstellkraft der Feder zurückzuführen sind. Durch Verwendung des erfindungsgemäßen Prinzips, das im Folgenden in Zusammenhang mit unterschiedlichen Ausführungsformen von Gleitschuhen näher erläutert wird, kann die vorerwähnte Reibung zwischen Gleitschuh und Abstützfläche reduziert werden.
  • Die Erfindung beruht darauf, dass die zwischen einem Gleitschuh 30 und der Abstützfläche 34 effektiv wirksame Abstütz- bzw. Kontaktfläche drehzahlabhängig verändert wird, wobei diese Veränderung vorzugsweise in Abhängigkeit der durch den zugeordneten Energiespeicher 7, wie insbesondere Schraubendruckfeder 8 und/oder 9 erzeugten Fliehkräfte, erfolgt. Die Ver änderung der effektiv wirksamen Abstützfläche soll dabei vorzugsweise derart stattfinden, dass bei geringeren Drehzahlen des Drehschwingungsdämpfers eine verhältnismäßig kleine Kontakt- bzw. Abstützfläche zwischen einem Gleitschuh 30 und der diesen abstützenden Fläche 34 vorhanden ist, welche mit Zunahme der Motordrehzahl größer wird. Diese Vergrößerung kann dabei stufenweise oder aber stufenlos erfolgen.
  • Die erfindungsgemäße Reduzierung des Reibeingriffes zwischen einem Gleitschuh 30 und der diesen radial abstützenden Fläche 34 beruht darauf, dass infolge der bei geringeren Drehzahlen vorhandenen, verhältnismäßig kleinen Kontaktfläche zwischen Reibschuh 30 und Fläche 34 eine erhöhte Flächenpressung erzielt werden kann, die eine Reduzierung der wirksamen Reibung zwischen einem Gleitschuh 30 und der Fläche 34 bewirkt.
  • In den 4 bis 6 ist eine Ausführungsform eines Gleitschuhes 130 dargestellt, der radial nach innen vorstehende Bereiche 135, 136 besitzt, die hier durch nasen- bzw. hakenförmige Bereiche gebildet sind. Diese Bereiche 135, 136 umgreifen den radial äußeren Abschnitt 131 einer Schraubenfederwindung 132. Der dadurch gebildete Formschluss gewährleistet zumindest eine Positionierung bzw. Festlegung des Gleitschuhes 130 sowohl in Längsrichtung als auch in radialer Richtung der Feder 108. Bezüglich der möglichen Ausgestaltung eines derartigen Formschlusses wird auf die DE 102 09 838 A1 verwiesen.
  • Wie aus 4 ersichtlich ist, besitzt die in Umfangsrichtung betrachtete Abstützfläche 137 des Gleitschuhes 130 einen größeren Krümmungsradius als die Fläche 134, entlang derer der Gleitschuh 130 verlagerbar ist. Die Biegesteifigkeit des Gleitschuhes 130 ist dabei derart bemessen, dass, wie aus 4 ersichtlich, bei geringeren Drehzahlen des Drehschwingungsdämpfers die wirksame Kontaktfläche 138 zwischen dem Gleitschuh 130 und der Fläche 134 verhältnismäßig gering ist in Bezug auf die mögliche Gesamtabstützfläche 137 des Gleitschuhes 130. Bei dem dargestellten Ausführungsbeispiel stützt sich der Gleitschuh 130 bei geringeren Drehzahlen des Drehschwingungsdämpfers lediglich über seine, in Umfangsrichtung betrachtete, Endbereiche 138 an der Fläche 134 ab. Aus 4 ist ersichtlich, dass zwischen den Endbereichen 838 die Abstützfläche 137 gegenüber der Fläche 134 beabstandet ist.
  • Wie insbesondere in Zusammenhang mit 6 erkennbar ist, besitzt bei dem dargestellten Ausführungsbeispiel der Gleitschuh 130 keine durchgehend flächige Abstützfläche 137. Es ist erkennbar, dass durch Einbringung von Vertiefungen, die hier durch Nuten 139 gebildet sind, die Gesamtabstützfläche 137 in einzelne Teilflächen, zu denen auch die Kontaktbereiche 138 gehören, unterteilt ist. Die Einbringung von Vertiefungen 139 im Bereich der Gesamtabstützfläche 137 hat bei Verwendung von Schmiermittel den Vorteil, dass in diesen Vertiefungen Schmiermittel vorhanden ist, wodurch der Aufbau eines Schmierfilmes beim Entlanggleiten eines Schuhes 130 an der Fläche 134 positiv beeinflusst wird.
  • In 5 ist der Verformungszustand bzw. Verspannungszustand des Gleitschuhes 130 dargestellt bei höheren Rotationsdrehzahlen. Es ist ersichtlich, dass aufgrund der durch die Feder 132 infolge von Fliehkrafteinwirkung auf den Gleitschuh 130 übertragene Radialkraft F dieser Gleitschuh 130 derart verbogen ist, dass die gesamte Abstützfläche 137 an der Gleitfläche 134 anliegt. Durch die Vergrößerung der wirksamen Abstützfläche 137 wird gewährleistet, dass die Flächenpressung auf ein akzeptables Maß begrenzt werden kann, wodurch auch der an den in Kontakt stehenden Reibflächen bzw. Abstützflächen auftretende Verschleiß reduziert werden kann. Bei dem dargestellten Ausführungsbeispiel gemäß den 4 bis 6 wird die zur Realisierung des erfindungsgemäßen Prinzips erforderliche elastische Verformbarkeit bzw. federnde Steifigkeit der hierfür notwendigen Funktionsbereiche eines Gleitschuhes 130 dadurch gewährleistet, dass in den aus einem Kunststoff bestehenden Gleitschuh 130 ein Federelement 140 eingespritzt bzw. eingebettet wird. In 4a ist ein solches plättchenförmig ausgebildetes Federelement 140 dargestellt. Das hier im Wesentlichen rechteckförmig ausgebildete Federelement 140 hat Ausnehmungen 141 zur besseren Verankerung innerhalb des einen Gleitschuh 130 bildenden Kunststoffes.
  • Bei dem dargestellten Ausführungsbeispiel sind die Vertiefungen 139 in Querrichtung des Gleitschuhes 130 eingebracht. Derartige Vertiefungen könnten jedoch auch in Längsrichtung, also in Umfangsrichtung des Dämpfers betrachtet, in einen Gleitschuh 130 eingebracht werden. Auch schräg verlaufende Anordnungen von nutenförmigen Vertiefungen 139 sind möglich.
  • Bei der Ausführungsform gemäß den 7 bis 9 ist der Gleitschuh 230 in ähnlicher Weise wie dies in Zusammenhang mit den 4 bis 6 beschrieben wurde, auf den radial äußeren Bereichen 231 der Windung einer Feder 232 aufgenommen. Der Gleitschuh 230 besitzt Vertiefungen 239, in denen Gleit- bzw. Abstützelemente 242 aufgenommen sind. Die Abstützelemente 242 sind in den nutenartigen Vertiefungen 239 entgegen der Wirkung zumindest eines Energiespeichers 243 radial verlagerbar. Die Energiespeicher 243 können beispielsweise durch eine Wellfeder gebildet sein. Die radiale Verlagerbarkeit der Abstützelemente 242 innerhalb der nutenförmigen Aufnahmen 239 gewährleistet, dass diese in den Gleitschuh 230 entgegen der Wirkung des wenigstens einen Energiespeichers 243 eintauchen können. Die Federeigenschaften des wenigstens einen Energiespeichers 243 sind derart bemessen bzw. ausgelegt, dass, wie aus 7 ersichtlich, bei geringeren Drehzahlen des Drehschwingungsdämpfers die Abstützelemente 242 gegenüber dem diese tragenden Gleitschuh 230 radial hervorstehen. Dadurch wird in ähnlicher Weise, wie dies bei 4 der Fall ist, gewährleistet, dass bei geringeren Drehzahlen eine verhältnismäßig kleine, wirksame Abstützfläche des Gleitschuhes 230 an der Gleitfläche 234 anliegt. Die wirksame Abstützfläche ist dabei gebildet durch die Kontaktflächen 238 der Abstützelemente 242. Wie aus 7 ersichtlich ist, besitzt der Grundkörper des Gleitschuhes 230 eine Gleit- bzw. Abstützfläche 244, die einen Krümmungsradius besitzt, der zumindest annähernd dem Krümmungsradius der Fläche 234 entspricht, an der sich der Gleitschuh 230 zumindest unter Fliehkrafteinwirkung abstützt.
  • In Zusammenhang mit 8 ist erkennbar, dass bei höheren Drehzahlen infolge der durch die Feder 232 auf den Gleitschuh 230 ausgeübten radialen Fliehkraft F die Abstützelemente 242 entgegen der Wirkung der Federelemente 243 in dem Grundkörper des Gleitschuhes 230 eingetaucht sind, wodurch die Abstütz- bzw. Gleitfläche 244 des Grundkörpers des Gleitschuhes 230 an der Fläche 234 zur Anlage kommt. Dies gewährleistet, dass bei höheren Drehzahlen wiederum eine vergrößerte, wirksame Abstützfläche zwischen dem Gleitschuh 230 und der Fläche 234 vorhanden ist, so dass die vorhandene, spezifische Flächenpressung auf ein akzeptables Maß reduziert werden kann.
  • In vorteilhafter Weise sind die Abstützelemente 242 und die diese aufnehmenden Vertiefungen bzw. Nuten 239 derart ausgebildet, dass die Abstützelemente 242 am entsprechenden Gleitschuh 230 verliersicher gehaltert sind. Hierfür können diese Bauteile entsprechend ausgebildete Bereiche besitzen, die eine Verriegelung zum Beispiel mittels einer Schnappverbindung gewährleisten.
  • Der in den 10 und 11 dargestellte Gleitschuh 330 unterscheidet sich gegenüber dem Gleitschuh 230 gemäß den 7 bis 9 im Wesentlichen dadurch, dass ein plättchenförmiges Abstützelement 342 Verwendung findet, anstelle von zumindest zwei stäbchenförmigen Abstützelementen 242. Das Abstützelement 342 ist wiederum in einer Vertiefung bzw. Ausnehmung 339 radial verlagerbar aufgenommen. Bei dem dargestellten Ausführungsbeispiel ist der das plättchenförmige Abstützelement 342 gegenüber dem Grundkörper des Gleitschuhes 330 federnd abstützende Energiespeicher durch eine Tellerfeder 343 gebildet.
  • Um eine bessere elastische Verformung bzw. Verschwenkung der die Gesamtgleitfläche 137 eines Gleitschuhes 130 bildenden Bereiche zu gewährleisten, kann es zweckmäßig sein, wenn zumindest im Bereich der seitlichen Flügel 144, welche die entsprechende Schraubenfederumgreifen, zumindest eine Durchgangsöffnung vorhanden ist. Diese Durchgangsöffnung, die eine schlitzförmige oder eine schlüssellochförmige oder eine andere Form aufweisen kann, soll eine Elastizität zumindest zwischen den Flügeln 144 und den die Gesamtgleitfläche 137 bildenden Bereichen eines Gleitschuhes 130 gewährleisten. In 6 ist strichliert und mit dem Bezugszeichen 145 gekennzeichnet eine solche Ausnehmung kenntlich gemacht. Zweckmäßig kann es auch zusätzlich oder alternativ sein, wenn die die Gesamtgleitfläche 137 bildenden Abschnitte eines Gleitschuhes 130 wenigstens in zwei relativ zueinander verschwenkbare Teilbereiche unterteilt sind.
  • Die Ausführungsbeispiele sind nicht als Einschränkung der Erfindung zu verstehen. Vielmehr sind im Rahmen der vorliegenden Offenbarung zahlreiche Abänderungen und Modifikationen möglich, insbesondere solche, die durch Kombination oder Abwandlung von einzelnen in Verbindung mit den in der allgemeinen Beschreibung und der Figurenbeschreibung sowie den Ansprüchen beschriebenen und in den Zeichnungen enthaltenen Merkmalen bzw. Elementen oder Verfahrensschritten gebildet werden können.
  • 1
    geteiltes Schwungrad
    2
    Primärschwungmasse
    3
    Schwungmasse
    4
    Lagerung
    5
    Bohrungen
    6
    Dämpfungseinrichtung
    7
    Energiespeicher
    8
    Schraubendruckfedern
    9
    Schraubendruckfedern
    14
    Beaufschlagungsbereiche
    15
    Beaufschlagungsbereich
    16
    Beaufschlagungsbereiche
    17
    Blechteile
    18
    Blechteile
    19
    Niete
    20
    Beaufschlagungsmittel
    21
    ringförmiger Raum
    22
    torusartiger Bereich
    23
    Ausbuchtungen
    24
    Ausbuchtungen
    25
    Verschleißschutz
    26
    Nabe
    30
    Gleitschuhe
    31
    Abschnitt
    32
    Windung
    33
    Wandung
    34
    radial abstützende Fläche
    108
    Feder
    130
    Gleitschuh
    131
    radial äußerer Abschnitt
    132
    Schraubenfederwindung
    135
    Bereiche
    136
    Bereiche
    137
    Abstützfläche
    138
    Endbereiche
    139
    Vertiefungen/Nuten
    140
    Federelement
    141
    Ausnehmungen
    144
    seitliche Flügel
    145
    Ausnehmung (strichliert)
    230
    Gleitschuh
    231
    radial äußere Bereiche
    232
    Feder
    239
    Vertiefungen
    242
    Abstützelemente
    243
    Energiespeicher
    244
    Abstütz- bzw. Gleitfläche
    330
    Gleitschuh
    342
    Abstützelement
    343
    Tellerfeder

Claims (17)

  1. Drehschwingungsdämpfer mit wenigstens zwei um eine Drehachse verdrehbaren Teilen, die relativ zueinander entgegen der Wirkung wenigstens einer Schraubenfeder drehbeweglich sind, wobei die Schraubenfeder in einer bogenförmig verlaufenden Aufnahme geführt ist, die von Bereichen wenigstens eines der beiden Teile gebildet ist, weiterhin die Aufnahme durch wenigstens einen Wandungsbereich begrenzt ist, der zumindest radial äußere Bereiche der Schraubenfeder axial übergreift und sich zumindest über die Länge der Schraubenfeder in Umfangsrichtung des Drehschwingungsdämpfers erstreckt, wobei die Schraubenfeder radial nach außen hin über wenigstens einen Gleitschuh abstützbar ist, der zumindest entlang des Wandungsbereiches bewegbar ist, wobei wenigstens eine Windung der Schraubenfeder vom Gleitschuh zumindest radial abgestützt ist, dadurch gekennzeichnet, dass die an dem Wandungsbereich anliegende Abstützfläche des Gleitschuhes in Abhängigkeit der auf die Schraubenfeder einwirkenden Fliehkraft veränderbar ist.
  2. Drehschwingungsdämpfer nach Anspruch 1, dadurch gekennzeichnet, dass die Abstützfläche des Gleitschuhes mit zunehmender Drehzahl zumindest stufenweise größer wird.
  3. Drehschwingungsdämpfer nach Anspruch 1, dadurch gekennzeichnet, dass die Abstützfläche des Gleitschuhes mit zunehmender Drehzahl stufenlos größer wird.
  4. Drehschwingungsdämpfer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Gleitschuh mehrteilig ausgeführt ist und zwischen wenigstens zwei Teilen zumindest ein Federelement vorhanden ist, entgegen dessen Wirkung eine Relativbewegung dieser Teile zumindest unter Fliehkrafteinwirkung ermöglicht ist.
  5. Drehschwingungsdämpfer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Bereich der Abstützfläche des Gleitschuhes Ausnehmungen vorhanden sind, in denen Abstützelemente aufgenommen sind.
  6. Drehschwingungsdämpfer nach Anspruch 5, dadurch gekennzeichnet, dass die Abstützelemente entgegen der Wirkung eines Federelementes in die Ausnehmungen drängbar sind.
  7. Drehschwingungsdämpfer nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zumindest im nicht beanspruchten Zustand die Abstützelemente gegenüber der Abstützfläche des Gleitschuhes – in Bezug auf die Drehachse des Drehschwingungsdämpfers betrachtet – radial hervorstehen.
  8. Drehschwingungsdämpfer nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Abstützelemente am Gleitschuh verliergesichert sind.
  9. Drehschwingungsdämpfer nach Anspruch 8, dadurch gekennzeichnet, dass die Verliersicherung durch einen Formschluss, wie zum Beispiel einen Schnappverschluss, gebildet ist.
  10. Drehschwingungsdämpfer nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die die Abstützfläche bildenden Bereiche des Gleitschuhes zumindest bei nicht fliehkraftmäßig beanspruchtem Gleitschuh einen vom Krümmungsverlauf des Wandungsbereiches abweichenden Krümmungsverlauf besitzen.
  11. Drehschwingungsdämpfer nach Anspruch 10, dadurch gekennzeichnet, dass die Abstützfläche des Gleitschuhes einen größeren Krümmungsradius als der Wandungsbereich aufweist.
  12. Drehschwingungsdämpfer nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die auf die Feder einwirkende Fliehkraft den Gleitschuh derart verformt, dass sich dessen Krümmungsradius an den Krümmungsradius des Wandungsbereiches zumindest annähert.
  13. Drehschwingungsdämpfer nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, dass die Abstützelemente aus einem Werkstoff bestehen, der einen geringeren Reibungskoeffizienten aufweist als der den Grundkörper des Gleitschuhes bildende Werkstoff.
  14. Drehschwingungsdämpfer nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, dass die im Grundkörper des Gleitschuhes aufgenommenen Abstützelemente einen Selbstschmierungseffekt aufweisen.
  15. Drehschwingungsdämpfer nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Gleitschuh zumindest einen Bereich besitzt, der wenigstens einen radial äußeren Abschnitt einer Schraubenfederwindung zumindest teilweise umgreift, wodurch der Gleitschuh in Längsrichtung der Schraubenfeder gegenüber Letzterer festgelegt ist.
  16. Drehschwingungsdämpfer nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass zwischen dem Gleitschuh und der Schraubenfederwindung eine Verbindung vorhanden ist, die eine Halterung des Gleitschuhes gegenüber der Schraubenfeder in eine Richtung senkrecht zur Längsachse der Schraubenfeder bewirkt.
  17. Drehschwingungsdämpfer nach Anspruch 1 bis 16, dadurch gekennzeichnet, dass im Grundkörper des Gleitschuhes ein plattenförmiges Federelement eingebettet ist, welches den Krümmungsradius der Abstützfläche des nicht fliehkraftmäßig beanspruchten Gleitschuhes bestimmt.
DE102005052170A 2004-11-30 2005-11-02 Drehschwingungsdämpfer Withdrawn DE102005052170A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102005052170A DE102005052170A1 (de) 2004-11-30 2005-11-02 Drehschwingungsdämpfer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004057949 2004-11-30
DE102004057949.0 2004-11-30
DE102005052170A DE102005052170A1 (de) 2004-11-30 2005-11-02 Drehschwingungsdämpfer

Publications (1)

Publication Number Publication Date
DE102005052170A1 true DE102005052170A1 (de) 2006-06-01

Family

ID=36371539

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005052170A Withdrawn DE102005052170A1 (de) 2004-11-30 2005-11-02 Drehschwingungsdämpfer

Country Status (1)

Country Link
DE (1) DE102005052170A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934657A1 (fr) * 2008-07-31 2010-02-05 Valeo Embrayages Dispositif d'amortisseur a moyens elastiques, notamment pour double volant amortisseur de vehicule automobile.
DE102011075114A1 (de) * 2011-05-03 2012-11-08 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934657A1 (fr) * 2008-07-31 2010-02-05 Valeo Embrayages Dispositif d'amortisseur a moyens elastiques, notamment pour double volant amortisseur de vehicule automobile.
DE102011075114A1 (de) * 2011-05-03 2012-11-08 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
US9133904B2 (en) 2011-05-03 2015-09-15 Zf Friedrichshafen Ag Torsional vibration damper

Similar Documents

Publication Publication Date Title
EP1662173B1 (de) Drehschwingungsdämpfer
DE10209838B4 (de) Drehschwingungsdämpfer
DE102004006879B4 (de) Drehschwingungsdämpfer
DE10224874B4 (de) Drehmomentübertragungseinrichtung
DE19909044B4 (de) Drehschwingungsdämpfer
DE3800566C2 (de) Schwungrad
DE4225304B4 (de) Scheibenförmiges Bauteil
AT502511B1 (de) Drehschwingungsdämpfer sowie schraubendruckfeder für einen drehschwingungsdämpfer
DE10209409A1 (de) Drehschwingungsdämpfer
DE102009042812A1 (de) Torsionsdämpfungseinrichtung
DE10241879A1 (de) Drehschwingungsdämpfer
DE102010054254A1 (de) Fliehkraftpendeleinrichtung
EP1621796B2 (de) Torsionsschwingungsdämpfer
DE19840664A1 (de) Kolbenmotor mit Drehschwingungstilger sowie Drehschwingungstilger für einen Kolbenmotor
DE69019747T2 (de) Schwungrad für einen Verbrennungsmotor.
DE4433467C2 (de) Torsionsschwingungsdämpfer
EP1805432B1 (de) Zweimassenschwungrad
DE102012205797A1 (de) Drehschwingungsdämpfungsanordnung
WO2008098536A2 (de) Fliehkraftpendeleinrichtung
DE19733334A1 (de) Torsionsschwingungsdämpfer
EP1806519B1 (de) Drehschwingungsdämpfer
EP1710465A1 (de) Drehschwingungsdämpfer
EP2017496B1 (de) Torsionsschwingungsdämpferanordnung
DE102010053542A1 (de) Drehschwingungsdämpfer
DE102007003047A1 (de) Zweimassenschwungrad

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 H, DE

R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120822

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120822

R012 Request for examination validly filed

Effective date: 20120910

R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140217

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140217

R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20150213

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee