DE102005005727A1 - Fuel gas composition and properties determining method involves determining non-infrared-active nitrogen proportion of gases as difference of measured overall pressure of gas mixture and sum of determined partial pressure of gas component - Google Patents

Fuel gas composition and properties determining method involves determining non-infrared-active nitrogen proportion of gases as difference of measured overall pressure of gas mixture and sum of determined partial pressure of gas component Download PDF

Info

Publication number
DE102005005727A1
DE102005005727A1 DE200510005727 DE102005005727A DE102005005727A1 DE 102005005727 A1 DE102005005727 A1 DE 102005005727A1 DE 200510005727 DE200510005727 DE 200510005727 DE 102005005727 A DE102005005727 A DE 102005005727A DE 102005005727 A1 DE102005005727 A1 DE 102005005727A1
Authority
DE
Germany
Prior art keywords
gas
measured
active
fuel gas
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE200510005727
Other languages
German (de)
Inventor
Hans Walter Dipl.-Ing. Kirchner
Wolfgang Dr.rer.nat. Kirchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE200510005727 priority Critical patent/DE102005005727A1/en
Publication of DE102005005727A1 publication Critical patent/DE102005005727A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The gas composition is determined by using an optical system having a wide-band emitting infrared emitter (1-6 mu m) and narrow-band receivers, and measuring the infrared (IR) absorption of the gaseous fuel. The wavelength and spectral ranges of the receiver are selected such that the absorption portions of the individual IR-active components of the gaseous fuel in different proportions affect the measured ranges. The non IR-active oxygen portion of the gaseous fuel is measured with a lambda-probe. The heat value of the non IR-active hydrogen proportion in the gaseous fuel is determined by the difference between the total heat value measured with a calorimeter and the computed heat value of the optically measured IR-active gaseous fuel components. The hydrogen proportion is calculated by its heat value. The non IR-active nitrogen proportion of the gaseous fuel is determined as the difference of the measured total pressure of the gas mixture and the sum of the determined partial pressure of the other gas components. An independent claim is also included for a device of determining composition and properties of fuel gas.

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Online-Ermittlung der Gaszusammensetzung und der Gaseigenschaften von Brenngasgemischen, insbesondere der Bestimmung der brennbaren und nicht brennbaren Bestandteile, des Heizwertes, der Energiedurchflussmenge, der Methanzahl und/oder der Wobbezahl.The The invention relates to an apparatus and a method for online determination the gas composition and the gas properties of fuel gas mixtures, in particular the determination of combustible and non-combustible Ingredients, calorific value, energy flow rate, methane number and / or the Wobbe number.

Zur Ermittlung von Gasbestandteile steht als bekanntes Verfahren die Messung mittels Gaschromatographen zur Verfügung. Dieses Verfahren liefert gute Ergebnisse, ist aber technisch kompliziert, verursacht hohe Investitions- und Betriebskosten und ist wegen der zeitverzögerten Auswertung für Online-Bestimmung bestenfalls eingeschränkt geeignet. Für industrielle Anwendungen, insbesondere für Regelungszwecke ist dieses Verfahren bezüglich der Ansprechzeit zu träge. Eine ständig laufende Onlinemessung der Gasbestandteile und der Gaseigenschaften ist insbesondere dann erforderlich, wenn diese Messwerte zur Regelung von kontinuierlich arbeitenden Vergaseranlagen eingesetzt werden sollen.to Determination of gas components is known as the method Measurement by gas chromatograph available. This method provides good results, but is technically complicated, causes high Investment and operating costs and is due to the time-delayed evaluation for online determination at best limited suitable. For industrial applications, especially for regulatory purposes is this Procedures regarding the response time too slow. One constantly ongoing online measurement of gas components and gas properties is especially necessary if these readings are for regulation be used by continuously operating carburetor systems should.

Weiterhin bekannt sind photometrische Verfahren zur Brennwertbestimmung mittels der Infrarotabsorption von Gasbestandteilen. Diese Messverfahren liefern online sehr genaue Messergebnisse für die im Gas enthaltenen Kohlenwasserstoffe – Methan CH4 und höhere –, Kohlenmonoxid CO, Schwefelwasserstoff SH2 sowie als nicht brennbare Bestandteile Kohlendioxid CO2 und Wasserdampf H2O. Nicht hinreichend genau gemessen werden können durch Infrarotabsorption homonukleare Moleküle, insbesondere die in den Brenngasgemischen enthaltenen Gase Stickstoff N2, der Wasserstoff H2 und der Sauerstoff O2.Also known are photometric methods for calorific value determination by means of the infrared absorption of gas components. These measuring methods provide online very accurate measurement results for the hydrocarbons contained in the gas - methane CH 4 and higher -, carbon monoxide CO, hydrogen sulfide SH 2 as well as non-flammable constituents carbon dioxide CO 2 and water vapor H 2 O. Can not be measured with sufficient accuracy by infrared absorption homonuclear Molecules, in particular the gases contained in the fuel gas mixtures nitrogen N 2 , the hydrogen H 2 and the oxygen O 2 .

Weiterhin bekannt ist ein Verfahren zur Messung von Erdgas bei denen die photometrische Messung durch die Messung weiterer Gaseigenschaften, z. B. der Wärmeleitfähigkeit, ergänzt wird und damit als homonuklearer Gasbestandteil der Stickstoffanteil N2 errechnet wird. Dieses Messverfahren ist damit jedoch auf ein bestimmtes Brenngas, das Erdgas, beschränkt, da Erdgas keine weiteren homonuklearen Bestandteile enthält (H2 und O2 sind im Erdgas nicht enthalten).Also known is a method for measuring natural gas in which the photometric measurement by the measurement of other gas properties, eg. B. the thermal conductivity, is supplemented and thus calculated as a homonuclear gas component of the nitrogen content N 2 . However, this measurement method is therefore limited to a specific fuel gas, the natural gas, since natural gas contains no other homonuclear constituents (H 2 and O 2 are not contained in natural gas).

Die Gasbestandteile und die Gaseigenschaften von allgemeinen Brenngasen, z. B. aus der Feststoffvergasung, kann mit diesen oben beschriebenen bekannten Verfahren nicht online bestimmt werden. Allgemeines Brenngas hat im Wesentlichen folgende Bestandteile (Die Angaben der Volumenprozente beziehen sich hierbei auf mit Luft vergaste Biomasse): Wasserstoff H2 (5,5...27 vol. %) Kohlenmonoxid CO (10...30 vol. %) Kohlendioxid CO2 (8...17 vol. %) Stickstoff N2 (20...61 vol. %) Kohlenwasserstoffe – Methan CH4 und höhere CnHm (0,5...5 vol. %) Wasserdampf H2O (13...17 vol %) Sauerstoff O2 (0,4...0,6 vol. %) Schwefelwasserstoff (0,1...0,2 vol. %) The gas components and the gas properties of general fuel gases, eg. B. from the solid gasification, can not be determined online with these known methods described above. General fuel gas has essentially the following components (the percentages are based on biomass gasified with air): Hydrogen H 2 (5.5 to 27 vol.%) Carbon monoxide CO (10 ... 30 vol.%) Carbon dioxide CO 2 (8 ... 17 vol.%) Nitrogen N 2 (20 ... 61 vol.%) Hydrocarbons - methane CH 4 and higher C n H m (0.5 ... 5 vol.%) Water vapor H 2 O (13 ... 17 vol%) Oxygen O 2 (0.4 ... 0.6 vol.%) hydrogen sulfide (0.1 ... 0.2 vol.%)

Aufgabe der Erfindung ist es, ein Verfahren auf Basis von marktgängigen Infrarotdetektoren und weiteren Messgeräten ein Verfahren zu entwickeln, das eine kostengünstige Onlinemessung der Gasbestandteile von Brenngasen, z. B. aus Feststoffvergasung ermöglicht. Aufgabe der Erfindung ist es weiterhin, eine einfache und praktisch einsetzbare Messanordnung zu schaffen.task The invention is a method based on commercially available infrared detectors and other measuring devices to develop a process that provides a cost-effective online measurement of the gas constituents of Fuel gases, z. B. made possible by solid gasification. Object of the invention It continues to be a simple and practical measuring arrangement to accomplish.

Bei dem erfindungsgemäßen Verfahren zur Bestimmung der Gasbestandteile und der Gaseigenschaften von Brenngas werden folgende Komponenten eingesetzt:

  • 1. Ein optisches System aus einem breitbandig emittierenden Infrarotstrahler (1 μm bis 6μm) und schmalbandigen Empfängern zur Messung der IR-Absorption der im Brenngas enthaltenen IR-aktiven Komponenten,
  • 2. ein Kalorimeter zur Heizwertbestimmung,
  • 3. eine Lambdasonde zur Bestimmung des Sauerstoffanteils,
  • 4. ein Volumenflussmessgerät beliebiger Bauart,
  • 5. eine Temperaturmessung und
  • 6. eine Druckmessung
In the method according to the invention for determining the gas components and the gas properties of fuel gas, the following components are used:
  • 1. An optical system comprising a broadband emitting infrared radiator (1 μm to 6 μm) and narrowband receivers for measuring the IR absorption of the IR-active components contained in the fuel gas,
  • 2. a calorimeter for calorific value determination,
  • 3. a lambda probe for determining the oxygen content,
  • 4. a volumetric flow meter of any design,
  • 5. a temperature measurement and
  • 6. a pressure measurement

Dabei wird das Brenngas in dem Infrarotabsorptionsmesssystem einer Infrarotstrahlung im Frequenzbereich (1μm bis 6μm) ausgesetzt und für mehrere Wellenlängen oder spektrale Bereiche der vom Brenngas absorbierte Anteil erfasst.The fuel gas in the infrared absorption measuring system is exposed to infrared radiation in the frequency range (1 .mu.m to 6 .mu.m) and for several wavelengths or spectral ranges of the fuel gas absorbed share.

Grundlage des Messverfahrens ist, dass die zu bestimmenden Gase (mit Ausnahme der homonuklearen Bestandteile Wasserstoff Sauerstoff und Stickstoff) ein Dipolmoment besitzen, d. h. sie absorbieren elektromagnetische Strahlung.basis the measuring method is that the gases to be determined (except the homonuclear constituents hydrogen oxygen and nitrogen) have a dipole moment, i. H. they absorb electromagnetic Radiation.

Die Absorption der einzelnen Gasbestandteile im nahen infraroten Spektralbereich ist spezifisch für das betreffende Gas und proportional zur Anzahl der absorbierenden Moleküle. Der nicht absorbierte (transmittierte) Anteil der Strahlung lässt sich nach dem Lambert Beerschen Gesetz bestimmen. I = I0·N·e–μd The absorption of the individual gas constituents in the near infrared spectral range is specific for the gas in question and proportional to the number of absorbing molecules. The unabsorbed (transmitted) portion of the radiation can be determined according to Lambert Beer's law. I = I 0 * N * e -μd

Mit:

I
= gemessene Intensität der Strahlung nach Absorption im Gas
I0
= Intensität der Strahlung vor Absorption im Gas
N
= Teilchenzahldichte in der Absorptionsstrecke
μ
= gasspezifischer Absorptionskoeffizient (wellenlängenabhängig)
d
= Länge der Absorptionsstrecke
With:
I
= measured intensity of the radiation after absorption in the gas
I 0
= Intensity of the radiation before absorption in the gas
N
= Particle number density in the absorption path
μ
= gas-specific absorption coefficient (wavelength-dependent)
d
= Length of the absorption path

Im Transmissionsspektrum im Wellenbereich zwischen 1 und 6μm existieren Absorptionsbanden, die jeweils von den Gasbestandteilen herrühren. Die Stärke der Absorption ist direkt proportional zum Partialdruck des betreffenden Gases. P = ~ I/I0 In the transmission spectrum in the wave range between 1 and 6 microns exist absorption bands, each resulting from the gas components. The strength of the absorption is directly proportional to the partial pressure of the gas in question. P = ~ I / I 0

Die Transmission der einzelnen IR-aktiven Bestandteile des Brenngases wird für jedes Gas einzeln in Abhängigkeit des Partialdrucks im Spektralbereich zwischen 1 und 6μm bestimmt. Aus der gemessenen Transmission wird mit Hilfe einer Eichung/Kalibrierung, der Partialdruck des betreffenden Gases bestimmt.The Transmission of the individual IR-active constituents of the fuel gas is for each gas individually depending the partial pressure in the spectral range between 1 and 6μm determined. The measured transmission is measured by means of a calibration / calibration, determines the partial pressure of the gas in question.

Die zur Bestimmung des Partialdrucks der Brenngasbestandteile verwendeten Spektralbereiche sind vorzugsweise:

  • 1. 3,2–3,45 μm zur Bestimmung von CH4
  • 2. 3,2–3,5 μm zur Bestimmung der höheren Kohlenwasserstoffe
  • 3. 4,2–4,3 μm zur CO2 -Messung
  • 4. 4,4–4,8 μm zur CO-Messung
  • 5. 2,5–2,8 μm zur Messung des Wasserdampfes
  • 6. 3,7–4,4 μm zur Messung des Schwefelwasserstoffs und
  • 7. ein Referenzkanals, in dem alle gemessenen Gase nicht oder nur schwach absorbieren,
The spectral ranges used to determine the partial pressure of the fuel gas constituents are preferably:
  • 1. 3.2-3.45 μm for the determination of CH 4
  • 2. 3.2-3.5 microns for the determination of higher hydrocarbons
  • 3. 4.2-4.3 μm for CO 2 measurement
  • 4. 4.4-4.8 μm for CO measurement
  • 5. 2.5-2.8 microns for measuring the water vapor
  • 6. 3.7-4.4 microns for the measurement of hydrogen sulfide and
  • 7. a reference channel in which all measured gases do not absorb or only weakly absorb,

Dabei verhindert die Auswertung des Referenzkanals eine mögliche Verfälschung der Transmissionsmessung, die durch diffuse Streuung der Infrarotstrahlung aufgrund der Verschmutzung an Ein- und Austrittsfenster oder durch im Brenngas enthaltene Schwebstoffe wie Russ oder Staub entsteht.there the evaluation of the reference channel prevents possible corruption the transmission measurement, the diffuse scattering of the infrared radiation due to contamination at entrance and exit windows or through suspended matter contained in the fuel gas such as soot or dust is formed.

Die Überlagerung von Absorptionsbanden verschiedener zu messender Gase, wie z. B. den überlagerten Banden der verschiedenen CnHm oder die Überlagerung des CO2 Spektrums mit dem Spektrum von H2S werden wie folgt entfaltet. Die Anzahl und die Spektralbereiche der Infrarotempfänger werden so gewählt, dass die gemessene Gesamtabsorption hauptsächlich durch die Absorption nur der zu bestimmenden Einzelstoffe hervorgerufen wird und die Anzahl der gemessenen Spektralbereiche mindestens der Anzahl der zu messenden Einzelstoffe ist. Hieraus lässt sich ein Gleichungssystem aus m-Gleichungen mit n-Unbekannten (mit m >= n) aufstellen, das mathematisch gelöst werden kann. Ergebnis der Auswertung sind die Partialdrücke der IR-aktiven Einzelstoffe.The superposition of absorption bands of different gases to be measured, such. B. the superimposed bands of the different C n H m or the superposition of the CO 2 spectrum with the spectrum of H 2 S are unfolded as follows. The number and the spectral ranges of the infrared receivers are chosen such that the measured total absorption is mainly caused by the absorption of only the individual substances to be determined and the number of spectral ranges measured is at least the number of individual substances to be measured. From this a system of equations of m equations with n unknowns (with m> = n) can be established, which can be solved mathematically. The result of the evaluation are the partial pressures of the IR-active individual substances.

Zur vollständigen Bestimmung des Gasbestandteile müssen zusätzlich die Partialdrücke bzw. Anteile der homonuklearen Moleküle im Gasgemisch (Sauerstoff O2, Wasserstoff H2 und Stickstoff N2) bestimmt werden.

  • – Hierbei wird der Partialdruck des Sauerstoffs O2 direkt mit einer Lambdasonde gemessen.
  • – Für die Bestimmung des H2-Partialdrucks wird zunächst mit Hilfe des Kalorimeters der Heizwert des Gasgemischs bestimmt. Aus dem so gemessenen Gesamtheizwert lässt sich unter Abzug des Heizwertes der photometrisch ermittelten brennbaren Gasbestandteile der Heizwert des H2-Anteils errechnen und daraus wiederum der Partialdruck des H2-Anteils bestimmen.
  • – Als letzte zu bestimmende Größe ist alsdann der Partialdruck des N2-Anteils zu bestimmen. Da außer dem N2-Anteil alle Partialdrücke der Einzelstoffe im Brenngas ermittelt sind, lässt sich der N2- Partialdruck aus der Differenz zwischen dem gemessenen Gesamtdruck und der Summe der anderen Partialdrücke ermitteln.
For complete determination of the gas constituents, the partial pressures or fractions of the homonuclear molecules in the gas mixture (oxygen O 2 , hydrogen H 2 and nitrogen N 2 ) must additionally be determined.
  • - Here, the partial pressure of the oxygen O 2 is measured directly with a lambda probe.
  • - For the determination of the H 2 partial pressure, the calorific value of the gas mixture is first determined with the help of the calorimeter. From the total calorific value measured in this way, the calorific value of the H 2 fraction can be calculated and deducted, subtracting the calorific value of the photometrically determined combustible gas constituents again determine the partial pressure of the H 2 share.
  • - As the last variable to be determined, the partial pressure of the N 2 component must then be determined. Since, apart from the N 2 content, all partial pressures of the individual substances in the fuel gas are determined, the N 2 partial pressure can be determined from the difference between the measured total pressure and the sum of the other partial pressures.

Auf Basis dieser vollständigen Analyse der Brenngasbestandteile lassen sich weitere Gaseigenschaften wie die Wobbezahl und die Methanzahl mathematisch ermitteln.On Base of this complete Analysis of the fuel gas components can be further gas properties how to mathematically determine the Wobbe number and the methane number.

Die Bestimmung der Energiedurchflussmenge erfolgt mathematisch durch Multiplikation der gemessenen Durchflussvolumens mit dem gemessenen Heizwert.The Determination of the energy flow rate is mathematically by Multiplication of the measured flow volume with the measured Calorific value.

Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im Folgenden näher beschrieben:
Das Online – Messgerät zur Bestimmung der Gasbestandteile, des Heizwertes und der Gaseigenschaften besteht aus folgenden Komponenten

  • – optisches System aus einem breitbandig emittierenden Infrarotstrahler (2μm bis 6μm) und schmalbandigen Empfängern zur Messung der IR-Absorption jeder der im Brenngas enthaltenen IR-aktiven Komponenten.
  • – Lambdasonde
  • – Volumenflussmessgerät, Die Durchflussmessung erfolgt im Ausführungsbeispiel als Messung nach DIN EN ISO 5164 mit Hilfe eines Venturirohres.
  • – Temperaturmessung
  • – Druckmessung
An embodiment of the invention is illustrated in the drawings and will be described in more detail below:
The online measuring device for determining the gas components, the calorific value and the gas properties consists of the following components
  • - Optical system of a broadband emitting infrared emitter (2μm to 6μm) and narrowband receivers for measuring the IR absorption of each of the IR-active components contained in the fuel gas.
  • - Lambda probe
  • - Volume flow meter, The flow measurement is carried out in the embodiment as a measurement according to DIN EN ISO 5164 using a Venturi tube.
  • - Temperature measurement
  • - pressure measurement

Die 1 zeigt den Aufbau der Messstrecke des Online-MessgerätesThe 1 shows the structure of the measuring section of the online measuring device

Claims (1)

Vorrichtung und Verfahren zur Online-Ermittlumg von Gaszusammensetzung und der Gaseigenschaften von Brenngas das dadurch gekennzeichnet ist, dass die Gaszusammensetzung wie folgt ermittelt wird: a) In einem optischen System, bestehend aus einem breitbandig emittierenden Infrarotstrahler (1 μm bis 6μm) und schmalbandigen Empfängern, wird die IR-Absorption des Brenngases erfasst, wobei die Wellenlangen oder spektralen Bereiche des Empfängers so ausgewählt werden, dass sich die Absorptionsanteile der einzelnen IR-aktiven Bestandteile des Brenngases in unterschiedlicher Gewichtung auf die erfassten Bereiche auswirken. b) der nicht IR-aktive O2-Anteil des Brenngases mit einer Lambdasonde gemessen wird, c) der Heizwertes des nicht-IR-aktiven H2-Anteils im Brenngas als Differenz zwischen dem mit einem Kalorimeter gemessenen Gesamtheizwert und dem berechneten Heizwert der optisch gemessenen IR-aktive Brenngasbestandteile ermittelt wird, d) der H2-Anteil aus dessen Heizwert errechnet wird und e) der nicht IR-aktive N2-Anteil des Brenngases durch Partialdruckbestimmung als Differenz des gemessenen Gesamtdrucks des Gasgemischs und der Summe der zuvor bestimmten Partialdrücke der anderen Gasbestandteile ermittelt wird.Apparatus and method for the online determination of gas composition and the gas properties of fuel gas, characterized in that the gas composition is determined as follows: a) In an optical system consisting of a broadband emitting infrared radiator (1 μm to 6 μm) and narrowband receivers, the IR absorption of the fuel gas is detected, wherein the wavelengths or spectral regions of the receiver are selected so that the absorption components of the individual IR-active constituents of the fuel gas have a different weighting on the detected areas. b) the non-IR-active O 2 content of the fuel gas is measured with a lambda probe, c) the calorific value of the non-IR-active H 2 content in the fuel gas as the difference between the total calorific value measured with a calorimeter and the calculated calorific value of the optical d) the H 2 content is calculated from its calorific value and e) the non-IR-active N 2 content of the fuel gas by partial pressure determination as the difference of the measured total pressure of the gas mixture and the sum of the previously determined partial pressures the other gas constituents.
DE200510005727 2005-02-09 2005-02-09 Fuel gas composition and properties determining method involves determining non-infrared-active nitrogen proportion of gases as difference of measured overall pressure of gas mixture and sum of determined partial pressure of gas component Ceased DE102005005727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200510005727 DE102005005727A1 (en) 2005-02-09 2005-02-09 Fuel gas composition and properties determining method involves determining non-infrared-active nitrogen proportion of gases as difference of measured overall pressure of gas mixture and sum of determined partial pressure of gas component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510005727 DE102005005727A1 (en) 2005-02-09 2005-02-09 Fuel gas composition and properties determining method involves determining non-infrared-active nitrogen proportion of gases as difference of measured overall pressure of gas mixture and sum of determined partial pressure of gas component

Publications (1)

Publication Number Publication Date
DE102005005727A1 true DE102005005727A1 (en) 2006-08-17

Family

ID=36745954

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510005727 Ceased DE102005005727A1 (en) 2005-02-09 2005-02-09 Fuel gas composition and properties determining method involves determining non-infrared-active nitrogen proportion of gases as difference of measured overall pressure of gas mixture and sum of determined partial pressure of gas component

Country Status (1)

Country Link
DE (1) DE102005005727A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140262836A1 (en) * 2011-12-22 2014-09-18 Wuhan Cubic Optoelectronics Co., Ltd. Method for measuring amounts of components and calorific value of coal gas
EP2944945A4 (en) * 2013-01-11 2016-09-14 Fuji Electric Co Ltd Laser-type gas analyzer
EP3098592A1 (en) * 2015-05-25 2016-11-30 Yokogawa Electric Corporation Multi-component gas analysis system and multi-component gas analysis method
WO2018185034A1 (en) * 2017-04-05 2018-10-11 Sagemcom Energy & Telecom Sas Fluid meter
CN113758027A (en) * 2021-09-03 2021-12-07 中国科学院电工研究所 Device and method for integrally measuring heat loss and vacuum performance of straight-through solar vacuum heat collecting tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2635769A1 (en) * 1976-03-17 1977-09-22 Thermo Electron Corp Spectrographic fuel calorific value measurement - is performed with fuel in gaseous state and detects emissions of several fuel components
DE19921167A1 (en) * 1999-02-24 2000-08-31 Ruhrgas Ag Method and arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas
DE19949439C1 (en) * 1999-10-14 2001-02-08 Flow Comp Systemtechnik Gmbh Process for determining the gas quality of sample gas e.g. fuel gas using spectroscopic process comprises determining the pressure and temperature of sample gas, forming spectral vector and multiplying spectral vector with factor vector
US20020040590A1 (en) * 2000-09-29 2002-04-11 Ruhrgas Ag Method and device for determining the gas properties of a combustible gas
DE10302487A1 (en) * 2002-01-25 2003-07-31 Alstom Switzerland Ltd Real time determination of the alkane and carbon dioxide content of fuel gas comprises using an infrared absorption measuring system having measuring channels which acquire the infrared adsorption in different wavelength regions
EP1064533B1 (en) * 1998-03-24 2004-09-01 Schlumberger Industries Device and method for directly measuring calorific energy contained in a fuel gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2635769A1 (en) * 1976-03-17 1977-09-22 Thermo Electron Corp Spectrographic fuel calorific value measurement - is performed with fuel in gaseous state and detects emissions of several fuel components
EP1064533B1 (en) * 1998-03-24 2004-09-01 Schlumberger Industries Device and method for directly measuring calorific energy contained in a fuel gas
DE19921167A1 (en) * 1999-02-24 2000-08-31 Ruhrgas Ag Method and arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas
DE19949439C1 (en) * 1999-10-14 2001-02-08 Flow Comp Systemtechnik Gmbh Process for determining the gas quality of sample gas e.g. fuel gas using spectroscopic process comprises determining the pressure and temperature of sample gas, forming spectral vector and multiplying spectral vector with factor vector
US20020040590A1 (en) * 2000-09-29 2002-04-11 Ruhrgas Ag Method and device for determining the gas properties of a combustible gas
DE10302487A1 (en) * 2002-01-25 2003-07-31 Alstom Switzerland Ltd Real time determination of the alkane and carbon dioxide content of fuel gas comprises using an infrared absorption measuring system having measuring channels which acquire the infrared adsorption in different wavelength regions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIN EN ISO 5164 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140262836A1 (en) * 2011-12-22 2014-09-18 Wuhan Cubic Optoelectronics Co., Ltd. Method for measuring amounts of components and calorific value of coal gas
EP2796856A4 (en) * 2011-12-22 2015-08-05 Wuhan Cubic Optoelectronics Co Ltd Coal gas component and calorific value measurement method
US9857323B2 (en) * 2011-12-22 2018-01-02 Wuhan Cubic Optoelectronics Co., Ltd. Method for measuring amounts of components and calorific value of coal gas
EP2944945A4 (en) * 2013-01-11 2016-09-14 Fuji Electric Co Ltd Laser-type gas analyzer
EP3098592A1 (en) * 2015-05-25 2016-11-30 Yokogawa Electric Corporation Multi-component gas analysis system and multi-component gas analysis method
WO2018185034A1 (en) * 2017-04-05 2018-10-11 Sagemcom Energy & Telecom Sas Fluid meter
FR3065071A1 (en) * 2017-04-05 2018-10-12 Sagemcom Energy & Telecom Sas FLUID COUNTER
CN113758027A (en) * 2021-09-03 2021-12-07 中国科学院电工研究所 Device and method for integrally measuring heat loss and vacuum performance of straight-through solar vacuum heat collecting tube
CN113758027B (en) * 2021-09-03 2023-06-06 中国科学院电工研究所 Straight-through solar vacuum heat collecting tube heat loss and vacuum performance integrated measuring device and measuring method

Similar Documents

Publication Publication Date Title
DE60122904T2 (en) METHOD FOR GAS EMISSION AND / OR FLOW MEASUREMENT
EP0094374B1 (en) Method for the continuous measurement of the mass of aerosol particles in gaseous samples, and device for carrying out the method
EP1193488B1 (en) Method and device for determining the gaseous quality of natural gas
DE102005005727A1 (en) Fuel gas composition and properties determining method involves determining non-infrared-active nitrogen proportion of gases as difference of measured overall pressure of gas mixture and sum of determined partial pressure of gas component
DE19900129C2 (en) Gas quality determination
EP1996920A1 (en) Apparatus for spectroscopically analysing a gas
DE102019120512B4 (en) Flame monitoring for flash point determination or fire point determination
DE60122332T2 (en) NON-DISPERSIVE INFRARED MEASUREMENT OF GASES WITH AN OPTICAL FILTER
DE19808213A1 (en) Gas chromatographic apparatus analyzing and determining physical properties, especially of natural gas
DE102016108545B4 (en) NDIR gas sensor and its calibration procedure
DE102009017932B4 (en) A method for the continuous quantitative determination of an oxidizable chemical compound in an assay medium
DE19949439C1 (en) Process for determining the gas quality of sample gas e.g. fuel gas using spectroscopic process comprises determining the pressure and temperature of sample gas, forming spectral vector and multiplying spectral vector with factor vector
WO2000050874A1 (en) Method and arrangement for measuring the calorific value and/or the wobbe index of combustible gas, especially natural gas
DE2521453C2 (en)
DE10315864B4 (en) Apparatus and method for determining the concentration of at least one gas component in a breathing gas mixture
DE19732470A1 (en) Non-dispersive infrared gas analyser
EP1847827A1 (en) Non-dispersive infrared gas analyser
AT409039B (en) METHOD FOR MEASURING OPACITY IN GASES
DE10245822B4 (en) Method and gas measuring cell for the detection of different gases
DE112020003132B4 (en) Multi-channel gas sensor
DE2803369C2 (en) Measuring device for determining the proportion of water vapor in a gas mixture by means of infrared absorption gas analysis
DE102009058394B3 (en) Method for measuring the concentration of at least one gas component in a sample gas
DE3126864C2 (en) Process for the early detection of smoldering fires in containers containing lignite dust
DE1598138B2 (en) Device for measuring the concentration of particles suspended in a flowing gas, in particular the soot content of the exhaust gases from internal combustion engines
Mukherjee et al. Investigation of physico-chemical characteristics and associated CCN activation for different combustion sources through Chamber experiment approach

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection