WO2000050874A1 - Method and arrangement for measuring the calorific value and/or the wobbe index of combustible gas, especially natural gas - Google Patents

Method and arrangement for measuring the calorific value and/or the wobbe index of combustible gas, especially natural gas Download PDF

Info

Publication number
WO2000050874A1
WO2000050874A1 PCT/EP2000/001054 EP0001054W WO0050874A1 WO 2000050874 A1 WO2000050874 A1 WO 2000050874A1 EP 0001054 W EP0001054 W EP 0001054W WO 0050874 A1 WO0050874 A1 WO 0050874A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
calorific value
arrangement
fuel gas
gas
Prior art date
Application number
PCT/EP2000/001054
Other languages
German (de)
French (fr)
Inventor
Peter Schley
Manfred Jaeschke
Manfred Hoppe
Original Assignee
Ruhrgas Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19921167A external-priority patent/DE19921167A1/en
Application filed by Ruhrgas Aktiengesellschaft filed Critical Ruhrgas Aktiengesellschaft
Priority to EP00910660A priority Critical patent/EP1181531A1/en
Publication of WO2000050874A1 publication Critical patent/WO2000050874A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas

Definitions

  • the invention relates to a method and an arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas, according to the preamble of the independent claims.
  • the calorific value of natural gas must be measured for billing purposes when it is handed over from the supplier to the customer.
  • the calorific value is determined in practice by means of gas chromatographs or calorimeters. With gas meters, especially turbine meters, the volume flow is measured and the amount of energy for billing is determined.
  • the volume flow of natural gas is usually measured using diaphragm gas meters.
  • the amount of energy is determined from the volume flow and an average calorific value to be recorded separately for the supply area.
  • a direct energy measurement in the household has so far not been technically feasible.
  • the calorific value can be the molar, the mass-related or the volume-related calorific value.
  • the Wobbe index is the quotient of the volume-related calorific value and the square root of the relative density of the gas.
  • the Wobbe index is used in industry to regulate or keep the amount of energy supplied to gas appliances. A simple combustion-free measuring method for such purposes has not been available to date.
  • the known combustion-free methods for measuring the calorific value or the Wobbe index include indirect and correlative methods.
  • the gas composition is analyzed.
  • the calorific value of the fuel gas can then be determined from the composition of the gas using the calorific values for the pure substances.
  • a method for infrared absorption is known from DE-A-19650302. It is used to determine the methane number of natural gases. If the methane number is known, the undesired knocking of piston engines powered by natural gas can be avoided by taking appropriate measures.
  • the fuel gas is exposed to infrared radiation. The proportion of infrared radiation absorbed by the gas mixture is measured by means of a radiation detector and the methane number of the fuel gas is determined from this.
  • the methane number is determined by means of an optical filter which captures a section of the absorption spectrum, in which the hydrocarbons contribute to the absorption in a weighting which is approximately proportional to the methane number of the natural gas.
  • the method can be put into practice relatively simply because, on the one hand, the components of the corresponding infrared sensors are inexpensively available on the market and, on the other hand, the infrared detectors deliver a very precise measurement signal and have good practical suitability. It was not technically possible to determine the calorific value of natural gases by means of infrared absorption using the previously known methods.
  • the various natural gases can also contain nitrogen.
  • the infrared signal is very sensitive to the hydrocarbon and carbon dioxide components, but not to the nitrogen component. This leads to unacceptable measurement inaccuracies; because the nitrogen content in natural gas is subject to large fluctuations and has a major influence on the calorific value.
  • the object of the invention is accordingly to provide a method for the combustion-free measurement of the calorific value and / or the Wobbe index of a fuel gas which, on the one hand, can be easily implemented and, on the other hand, offers sufficient accuracy, in particular for control purposes and household billing.
  • Another object of the invention is to provide a simple and practical arrangement for measuring the calorific value and / or the Wobbe index.
  • the invention is based on the knowledge that in addition to the infrared signal, a further characteristic input variable is required for the unambiguous determination of the calorific value or the Wobbe index of fuel gas, in particular natural gas.
  • a sensitivity test showed that the infrared absorption in connection with either the speed of sound or the density of the fuel gas represents a particularly favorable combination for determining the calorific value, because with nitrogen-containing fuel gases both the density and the speed of sound are sufficiently sensitive to the nitrogen content.
  • the speed of sound can be derived directly from the ultrasonic signal of an ultrasonic gas meter.
  • Ultrasonic gas meters are increasingly used for volume flow measurement both in large gas measurement and in the home.
  • the speed of sound can also be determined with a measuring device specially developed for this purpose.
  • a particular advantage of the speed of sound compared to the density as an input variable for calorific value determination is the much weaker dependence of the speed of sound on the gas temperature or gas pressure. At low gas pressures, e.g. B. less than 5 bar, a pressure measurement is not required when measuring the speed of sound.
  • the gas temperature can be specified as an average.
  • the density is used as an input variable, it is advantageous if, in step a), the temperature and / or the pressure of the fuel gas is additionally measured or specified as an average.
  • the absorption spectrum of the hydrocarbons can be recorded in a first measurement in step b) and the absorption spectrum of the carbon dioxide can be recorded in a second measurement.
  • the method according to the invention can also be used to measure the amount of energy.
  • the fuel gas is passed through a volume flow meter in step a) and the volume flow is measured.
  • the arrangement according to the invention is characterized for a very particularly advantageous solution to the problem, characterized in that a partial flow of the fuel gas is fed to a measuring system, that a measuring device for measuring the speed of sound and a sensor arrangement are integrated in the measuring arrangement, the sensor arrangement essentially consisting of one Radiation source for infrared radiation and a radiation detector assigned to the radiation source, and that the signals from the measuring device and the sensor arrangement are fed to an evaluation unit in which the calorific value and / or the Wobbe index are determined by means of a correlation.
  • the radiation detector can be designed as a multi-channel detector, to which various optical filters can be connected upstream for the selection measurement of individual components of the fuel gas.
  • Another arrangement for measuring the calorific value of fuel gas, in particular natural gas is characterized in that an ultrasonic counter which is gas line is integrated, has a signal output for the speed of sound and a sensor arrangement consisting of a radiation source for infrared radiation and a radiation detector assigned to the radiation source, the signal for the speed of sound and the signal of the sensor arrangement being fed to an evaluation unit in which the calorific value and / or the Wobbe index is determined.
  • Figure 1 is a schematic view of an arrangement for measuring the amount of energy.
  • FIG. 2 shows a schematic view of an arrangement for measuring the Wobbe index
  • FIG. 3 shows a diagram with the representation of the signals from the measurement of the calorific value of an example 3-component fuel
  • Fig. 4 is a diagram with the signals of another measurement of an example 3-component fuel.
  • the natural gas line 1 shows a natural gas line 1, in which a volume flow meter in the form of an ultrasonic gas meter is integrated.
  • the natural gas line is a gas supply line in a private household.
  • the natural gas line 1 is practically under atmospheric pressure.
  • a sensor device 3 known from DE-A-19650302 is integrated in the ultrasonic gas meter 2.
  • This essentially consists of a radiation source (not shown) and a radiation detector assigned to the radiation source.
  • the radiation detector is assigned a plurality of optical filters (not shown) for the selective measurement of individual components of the fuel gas.
  • the ultrasonic gas meter has a signal output 4 for the speed of sound, which is connected to an evaluation electronics 5.
  • the signal from the sensor arrangement 3 is also fed to the evaluation electronics 5.
  • the calorific value is determined from the two signals with the aid of a simple correlation.
  • FIG. 2 shows an arrangement of a second exemplary embodiment for measuring the Wobbe index of a fuel gas for regulating the supply of energy to an industrial burner.
  • the natural gas line 1 is a high-pressure line which is under an overpressure of approx. 50 bar.
  • a partial flow of a measuring arrangement 8 is supplied via a branch line 6 with a pressure reduction 7.
  • the measuring arrangement 8 essentially consists of a measuring device 9 for the speed of sound and a sensor arrangement 3.
  • the measuring device for the speed of sound can also be an ultrasonic gas meter.
  • the sensor arrangement 3 has already been described in connection with FIG. 1. Both signals are fed to evaluation electronics 5, in which the calorific value and the Wobbe index are determined by means of a correlation.
  • FIG. 3 and 4 graphically show how the calorific value of a 3-component mixture of two input signals, namely infrared signal IR and speed of sound w in FIG. 3 or infrared signal IR and density p in FIG. 4 can be determined and the resulting total uncertainties for the calorific value.
  • the nitrogen content (N 2 ) is plotted on the abscissa axis and the ethane content (C 2 H 2 ) on the ordinate axis.
  • the third component, not shown, is methane (CH). The methane portion corresponds to the rest of the portion of the mixture to get 100%.
  • Lines for the calorific values H s +1%, H s +2% or H s -1% and H s -2% are drawn in parallel.
  • Lines also run through the reference point, for which the input variables IR and w in FIG. 3 or IR and p in FIG. 4 assume constant values.
  • the outer, thin lines represent the uncertainty band of the input variables.
  • the resulting uncertainty for the calorific value results from the intersection of the uncertainty bands of the input variables (hatched parallelogram in FIGS. 3 and 4).
  • the uncertainty for the calorific value is about 2% in both pictures.
  • a mixture of methane, nitrogen and ethane was chosen as an example, which are the main components of natural natural gases.
  • Other components of the natural gas include. a. Carbon dioxide and hydrocarbon compounds, primarily n-alkanes.
  • the proportion of carbon dioxide in natural gas is low and is subject to only slight fluctuations, so that an average can be specified here.
  • the proportion of n-alkanes in natural gas decreases with increasing number of carbon atoms, so that they only need to be taken into account up to hexane (C 6 H 14 ) or octane (C 8 H 18 ).
  • the proportions of the n-alkanes are subject to a regular distribution and can be calculated using a suitable correlation (e.g. from the IR signal).
  • the resulting uncertainties for the calorific value shown in FIGS. 3 and 4 can also approximately be transferred to natural natural gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The invention relates to a method and an arrangement for measuring the calorific value and/or the Wobbe index of combustible gas, especially natural gas. Said method comprises the following steps: a) the sonic speed or the density of the combustible gas is measured; b) the combustible gas is exposed to infrared radiation and the proportion of the infrared radiation that is absorbed by the combustible gas is measured by means of a sensor arrangement; c) and the calorific value and/or the Wobbe index is derived from the two measuring signals. In the inventive arrangement for measuring the calorific value, a partial flow of the combustible gas is supplied to a measuring arrangement (8). A measuring device for measuring the sonic speed and a sensor arrangement (3) are incorporated in said measuring arrangement (8), said sensor arrangement consisting essentially of a source of radiation for the infrared radiation and a radiation detector which is associated with said source of radiation. The signals of the measuring device (9) and the sensor arrangement (3) are conveyed to an evaluation unit (5) in which the calorific value and/or the Wobbe index is determined by means of a correlation.

Description

Verfahren und Anordnung zur Messung des Method and arrangement for measuring the
Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von ErdgasCalorific value and / or the Wobbe index of fuel gas, in particular natural gas
Die Erfindung betrifft ein Verfahren und eine Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas nach dem Oberbegriff der unabhängigen Ansprüche.The invention relates to a method and an arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas, according to the preamble of the independent claims.
Der Brennwert von Erdgas muß zu Abrechnungszwecken bei der Übergabe vom Lieferanten auf den Kunden gemessen werden. An Übergabestationen, beispielsweise zwischen zwei Gasversorgungsunternehmen, wird der Brennwert in der Praxis mittels Gaschromatographen oder Kalorimetern ermittelt. Mit Gaszählern, insbesondere Turbinen- radzählem, wird der Volumenstrom gemessen und die Energiemenge für die Abrechnung bestimmt.The calorific value of natural gas must be measured for billing purposes when it is handed over from the supplier to the customer. At transfer stations, for example between two gas supply companies, the calorific value is determined in practice by means of gas chromatographs or calorimeters. With gas meters, especially turbine meters, the volume flow is measured and the amount of energy for billing is determined.
Für die Abrechnung des Gasverbrauches in privaten Haushalten wird der bezogene Volumenstrom des Erdgases in der Regel mittels Balgengaszählern gemessen. Die Energiemenge wird aus dem Volumenstrom und einem durchschnittlichen separat für das Versorgungsgebiet zu erfassenden Brennwert bestimmt. Eine direkte Energiemessung im Haushalt konnte bisher technisch nicht realisiert werden.For billing gas consumption in private households, the volume flow of natural gas is usually measured using diaphragm gas meters. The amount of energy is determined from the volume flow and an average calorific value to be recorded separately for the supply area. A direct energy measurement in the household has so far not been technically feasible.
Die Kenntnis der Gasbeschaffenheitsgrößen, Brennwert oder Wobbeindex wird auch für verschiedene industrielle Anwendungen benötigt, insbesondere zu Regelungszwek- ken. Der Brennwert kann der molare, der massenbezogene oder der volumenbezogene Brennwert sein. Der Wobbeindex ist der Quotient des volumenbezogenen Brennwertes und der Quadratwurzel aus der relativen Dichte des Gases. Der Wobbeindex wird in der Industrie zur Regelung bzw. Konstanthaltung der Energiemengenzufuhr zu Gasverbrauchseinrichtungen benutzt. Ein einfaches verbrennungsloses Meßverfahren für derartige Zwecke steht bisher nicht zur Verfügung.Knowledge of the gas quality parameters, calorific value or Wobbe index is also required for various industrial applications, in particular for control purposes. The calorific value can be the molar, the mass-related or the volume-related calorific value. The Wobbe index is the quotient of the volume-related calorific value and the square root of the relative density of the gas. The Wobbe index is used in industry to regulate or keep the amount of energy supplied to gas appliances. A simple combustion-free measuring method for such purposes has not been available to date.
Zu den bekannten verbrennungslosen Verfahren zur Messung des Brennwertes bzw. des Wobbeindexes gehören indirekte und korrelative Verfahren. Bei den indirekten Verfahren wird die Gaszusammensetzung analysiert. Aus der Zusammensetzung des Gases kann dann mit den Brennwerten für die reinen Stoffe der Brennwert des Brenngases bestimmt werden. Diese Verfahren (z. B. die Gaschromatographie) liefern sehr gute Ergebnisse, sind aber technisch kompliziert und liefern kein kontinuierliches Ausgangssignal, weshalb sie sich für Regelungszwecke nicht eignen.The known combustion-free methods for measuring the calorific value or the Wobbe index include indirect and correlative methods. In the indirect methods, the gas composition is analyzed. The calorific value of the fuel gas can then be determined from the composition of the gas using the calorific values for the pure substances. These methods (e.g. gas chromatography) give very good results, but are technically complicated and do not provide a continuous output signal, which is why they are not suitable for control purposes.
Bei den korrelativen Verfahren zur Messung des Brennwertes bzw. zur Energiemengenmessung werden mehrere physikalische oder chemische Größen gemessen und der Brennwert berechnet. Diese Verfahren wurden zu Abrechnungszwecken im Hochdruckbereich entwickelt. Der Meßaufwand ist relativ hoch, um die notwendige Meßgenauigkeit des Brennwertes für Abrechnungszwecke zu erreichen.In the correlative methods for measuring the calorific value or for measuring the amount of energy, several physical or chemical variables are measured and the calorific value is calculated. These procedures were developed for billing purposes in the high pressure area. The measurement effort is relatively high in order to achieve the necessary measurement accuracy of the calorific value for billing purposes.
Ein Verfahren zur Infrarotabsorption ist aus der DE-A-19650302 bekannt. Es wird benutzt, um die Methanzahl von Erdgasen zu bestimmen. Bei Kenntnis der Methanzahl kann das unerwünschte Motorklopfen von erdgasbetriebenen Kolbenmotoren durch entsprechende Maßnahmen vermieden werden. Das Brenngas wird einer Infrarotstrahlung ausgesetzt. Mittels eines Strahlungsdetektors wird der von der Gasmischung absorbierte Anteil der Infrarotstrahlung gemessen und hieraus die Methanzahl des Brenngases bestimmt.A method for infrared absorption is known from DE-A-19650302. It is used to determine the methane number of natural gases. If the methane number is known, the undesired knocking of piston engines powered by natural gas can be avoided by taking appropriate measures. The fuel gas is exposed to infrared radiation. The proportion of infrared radiation absorbed by the gas mixture is measured by means of a radiation detector and the methane number of the fuel gas is determined from this.
Die Bestimmung der Methanzahl erfolgt über einen optischen Filter, der einen Ausschnitt des Absorptionsspektrums erfaßt, indem die Kohlenwasserstoffe in einer Ge- wichtung zur Absorption beitragen, die näherungsweise proportional zur Methanzahl des Erdgases ist. Das Verfahren kann relativ einfach in die Praxis umgesetzt werden, weil zum einen die Komponenten der entsprechenden Infrarotsensoren preiswert am Markt erhältlich sind und zum anderen die Infrarotdetektoren ein sehr präzises Meßsignal liefern und eine gute Praxistauglichkeit besitzen. Eine Bestimmung des Brennwertes von Erdgasen mittels Infrarotabsorption konnte mit den bisher bekannten Verfahren technisch nicht realisiert werden. Die verschiedenen Erdgase können neben Kohlenwasserstoffen wie Methan, Ethan usw. auch Stickstoff enthalten. Das Infrarotsignal reagiert, in Abhängigkeit des gefilterten Absorptionsspektrums, sehr empfindlich auf die Anteile der Kohlenwasserstoffe und auf den Kohlendioxidanteil, nicht jedoch auf den Stickstoffanteil. Dies führt zu nicht vertretbaren Meß- ungenauigkeiten; denn der Stickstoffanteil im Erdgas unterliegt großen Schwankungen und hat einen großen Einfluß auf den Brennwert.The methane number is determined by means of an optical filter which captures a section of the absorption spectrum, in which the hydrocarbons contribute to the absorption in a weighting which is approximately proportional to the methane number of the natural gas. The method can be put into practice relatively simply because, on the one hand, the components of the corresponding infrared sensors are inexpensively available on the market and, on the other hand, the infrared detectors deliver a very precise measurement signal and have good practical suitability. It was not technically possible to determine the calorific value of natural gases by means of infrared absorption using the previously known methods. In addition to hydrocarbons such as methane, ethane, etc., the various natural gases can also contain nitrogen. Depending on the filtered absorption spectrum, the infrared signal is very sensitive to the hydrocarbon and carbon dioxide components, but not to the nitrogen component. This leads to unacceptable measurement inaccuracies; because the nitrogen content in natural gas is subject to large fluctuations and has a major influence on the calorific value.
Aufgabe der Erfindung ist es demgemäß, ein Verfahren zur verbrennungslosen Messung des Brennwertes und/oder des Wobbeindexes eines Brenngases zur Verfügung zu stellen, das zum einen einfach realisiert werden kann und zum anderen eine ausreichende Genauigkeit insbesondere für Regelungszwecke und die haushaltliche Abrechnung bietet. Aufgabe der Erfindung ist es weiterhin, eine einfache und praktisch einsetzbare Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes zu schaffen.The object of the invention is accordingly to provide a method for the combustion-free measurement of the calorific value and / or the Wobbe index of a fuel gas which, on the one hand, can be easily implemented and, on the other hand, offers sufficient accuracy, in particular for control purposes and household billing. Another object of the invention is to provide a simple and practical arrangement for measuring the calorific value and / or the Wobbe index.
Diese Aufgabe wird erfindungsgemäß durch die in Anspruch 1 aufgeführten kennzeichnenden Merkmale gelöst.This object is achieved by the characterizing features listed in claim 1.
Die Erfindung beruht auf der Erkenntnis, daß zur eindeutigen Bestimmung des Brennwertes oder des Wobbeindexes von Brenngas, insbesondere Erdgas, neben dem Infrarotsignal eine weitere charakteristische Eingangsgröße benötigt wird. Eine Empfindlichkeitsuntersuchung ergab, daß die Infrarotabsorption in Verbindung mit entweder der Schallgeschwindigkeit oder der Dichte des Brenngases eine besonders günstige Kombination zur Bestimmung des Brennwertes darstellt, weil bei stickstoffhaltigen Brenngasen sowohl die Dichte als auch die Schallgeschwindigkeit hinreichend empfindlich auf den Stickstoffanteil reagieren.The invention is based on the knowledge that in addition to the infrared signal, a further characteristic input variable is required for the unambiguous determination of the calorific value or the Wobbe index of fuel gas, in particular natural gas. A sensitivity test showed that the infrared absorption in connection with either the speed of sound or the density of the fuel gas represents a particularly favorable combination for determining the calorific value, because with nitrogen-containing fuel gases both the density and the speed of sound are sufficiently sensitive to the nitrogen content.
Obwohl die Schallgeschwindigkeit meßtechnisch besser erfaßbar ist als die Dichte, sind Betriebsmeßgeräte für die Dichte von Gasen weiter verbreitet als für die Schallgeschwindigkeit. Die Begründung hierfür ist, daß die Dichte bei der Messung des Volumenstroms benötigt wird, um diesen vom Betriebs- auf den Normzustand umzuwerten.Although the speed of sound can be measured more easily than the density, operational measuring instruments for the density of gases are more common than for the speed of sound. The reason for this is that the density is required when measuring the volume flow in order to convert it from the operating to the normal state.
Die Schallgeschwindigkeit kann aus dem Ultraschallsignal eines Ultraschallgaszählers direkt abgeleitet werden. Ultraschallgaszähler werden zunehmend für die Volumenstrommessung sowohl in der Großgasmessung als auch im Haushalt eingesetzt. Alternativ kann die Schallgeschwindigkeit auch mit einem speziell zu diesem Zweck entwickelten Meßgerät bestimmt werden.The speed of sound can be derived directly from the ultrasonic signal of an ultrasonic gas meter. Ultrasonic gas meters are increasingly used for volume flow measurement both in large gas measurement and in the home. Alternatively, the speed of sound can also be determined with a measuring device specially developed for this purpose.
Ein besonderer Vorteil der Schallgeschwindigkeit gegenüber der Dichte als Eingangsgröße für die Brennwertbestimmung ist die wesentlich schwächere Abhängigkeit der Schallgeschwindigkeit von der Gastemperatur oder vom Gasdruck. Bei niedrigen Gasdrücken, z. B. weniger als 5 bar, ist bei der Messung der Schallgeschwindigkeit eine Druckmessung nicht erforderlich. Die Gastemperatur kann als Mittelwert vorgegeben werden.A particular advantage of the speed of sound compared to the density as an input variable for calorific value determination is the much weaker dependence of the speed of sound on the gas temperature or gas pressure. At low gas pressures, e.g. B. less than 5 bar, a pressure measurement is not required when measuring the speed of sound. The gas temperature can be specified as an average.
Falls die Dichte als Eingangsgröße verwendet wird, ist es vorteilhaft, wenn im Schritt a) zusätzlich die Temperatur und/oder der Druck des Brenngases gemessen oder als Mittelwert vorgegeben wird.If the density is used as an input variable, it is advantageous if, in step a), the temperature and / or the pressure of the fuel gas is additionally measured or specified as an average.
Zur Verbesserung der Genauigkeit der Messung kann im Schritt b) in einer ersten Messung das Absorptionsspektrum der Kohlenwasserstoffe erfaßt und in einer zweiten Messung das Absorptionsspektrum des Kohlenstoffdioxids erfaßt werden.To improve the accuracy of the measurement, the absorption spectrum of the hydrocarbons can be recorded in a first measurement in step b) and the absorption spectrum of the carbon dioxide can be recorded in a second measurement.
Das erfindungsgemäße Verfahren kann auch zur Messung der Energiemenge verwendet werden. Dazu wird im Schritt a) das Brenngas durch einen Volumenstromzähler geleitet und der Volumenstrom gemessen.The method according to the invention can also be used to measure the amount of energy. For this purpose, the fuel gas is passed through a volume flow meter in step a) and the volume flow is measured.
Die Anordnung nach der Erfindung ist zur ganz besonders vorteilhaften Lösung der gestellten Aufgabe dadurch gekennzeichnet, daß einer Meßordnung ein Teilstrom des Brenngases zugeführt wird, daß in der Meßanordnung ein Meßgerät zur Messung der Schallgeschwindigkeit und eine Sensoranordnung integriert sind, wobei die Sensoranordnung im wesentlichen aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht, und daß die Signale des Meßgerätes und der Sensoranordnung einer Auswerteeinheit zugeführt werden, in der der Brennwert und/oder der Wobbeindex mittels einer Korrelation bestimmt werden.The arrangement according to the invention is characterized for a very particularly advantageous solution to the problem, characterized in that a partial flow of the fuel gas is fed to a measuring system, that a measuring device for measuring the speed of sound and a sensor arrangement are integrated in the measuring arrangement, the sensor arrangement essentially consisting of one Radiation source for infrared radiation and a radiation detector assigned to the radiation source, and that the signals from the measuring device and the sensor arrangement are fed to an evaluation unit in which the calorific value and / or the Wobbe index are determined by means of a correlation.
Der Strahlungsdetektor kann als Mehrkanaldetektor ausgebildet sein, dem verschieden optische Filter zur Selektion Messung einzelner Komponenten des Brenngases vor- schaltbar sind.The radiation detector can be designed as a multi-channel detector, to which various optical filters can be connected upstream for the selection measurement of individual components of the fuel gas.
Eine weitere Anordnung zur Messung des Brennwertes von Brenngas, insbesondere von Erdgas ist dadurch gekennzeichnet, daß ein Ultraschallzähler, der in eine Brenn- gasleitung eingebunden ist, einen Sigπalausgang für die Schallgeschwindigkeit und eine Sensoranordnung aufweist, die aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht, wobei das Signal für die Schallgeschwindigkeit und das Signal der Sensoranordnung einer Auswerteeinheit zugeführt werden, in der der Brennwert und/oder der Wobbeindex bestimmt wird.Another arrangement for measuring the calorific value of fuel gas, in particular natural gas, is characterized in that an ultrasonic counter which is gas line is integrated, has a signal output for the speed of sound and a sensor arrangement consisting of a radiation source for infrared radiation and a radiation detector assigned to the radiation source, the signal for the speed of sound and the signal of the sensor arrangement being fed to an evaluation unit in which the calorific value and / or the Wobbe index is determined.
Im folgenden wird das erfindungsgemäße Verfahren und die Anordnung zur verbrennungslosen Messung des Brennwertes anhand der Zeichnung näher erläutert.The method according to the invention and the arrangement for the combustion-free measurement of the calorific value are explained in more detail below with reference to the drawing.
In der Zeichnung zeigen:The drawing shows:
Fig. 1 eine schematische Ansicht einer Anordnung zur Messung der Energiemenge;Figure 1 is a schematic view of an arrangement for measuring the amount of energy.
Fig. 2 eine schematische Ansicht einer Anordnung zur Messung des Wobbeindexes;2 shows a schematic view of an arrangement for measuring the Wobbe index;
Fig. 3 ein Diagramm mit der Darstellung der Signale aus der Messung des Brennwertes eines beispielsweisen 3-Komponenten-Brennstoffes;3 shows a diagram with the representation of the signals from the measurement of the calorific value of an example 3-component fuel;
Fig. 4 ein Diagramm mit den Signalen einer anderen Messung eines beispielsweisen 3-Komponenten-Brennstoffes.Fig. 4 is a diagram with the signals of another measurement of an example 3-component fuel.
Fig. 1 zeigt eine Erdgasleitung 1 , in der ein Volumeπstromzähler in Form eines Ultraschallgaszählers eingebunden ist. Es handelt sich bei der Erdgasleitung um eine Gasversorgungsleitung in einem privaten Haushalt. Die Erdgasleitung 1 steht praktisch unter Atmosphärendruck.1 shows a natural gas line 1, in which a volume flow meter in the form of an ultrasonic gas meter is integrated. The natural gas line is a gas supply line in a private household. The natural gas line 1 is practically under atmospheric pressure.
Im Ultraschallgaszähler 2 ist eine aus der DE-A-19650302 bekannte Sensoreinrichtung 3 integriert. Diese besteht im wesentlichen aus einer nicht dargestellten Strahlungsquelle und einem der Strahlungsquelle zugeordneten Strahlungsdetektor. Dem Strahlungsdetektor sind mehrere nicht dargestellte optische Filter zur selektiven Messung einzelner Komponenten des Brenngases zugeordnet. Der Ultraschallgaszähler weist einen Signalausgang 4 für die Schallgeschwindigkeit auf, der mit einer Auswerteelektronik 5 verbunden ist. Das Signal der Sensoranordnung 3 wird ebenfalls der Auswerteelektronik 5 zugeführt. In der Auswertelektronik 5 wird mit Hilfe einer einfachen Korrelation der Brennwert aus den beiden Signalen bestimmt.A sensor device 3 known from DE-A-19650302 is integrated in the ultrasonic gas meter 2. This essentially consists of a radiation source (not shown) and a radiation detector assigned to the radiation source. The radiation detector is assigned a plurality of optical filters (not shown) for the selective measurement of individual components of the fuel gas. The ultrasonic gas meter has a signal output 4 for the speed of sound, which is connected to an evaluation electronics 5. The signal from the sensor arrangement 3 is also fed to the evaluation electronics 5. In the evaluation electronics 5, the calorific value is determined from the two signals with the aid of a simple correlation.
Fig. 2 zeigt eine Anordnung eines zweiten Ausführungsbeispiels zur Messung des Wobbeindexes eines Brenngases zur Regelung der Energiemengenzufuhr zu einem Industriebrenner.2 shows an arrangement of a second exemplary embodiment for measuring the Wobbe index of a fuel gas for regulating the supply of energy to an industrial burner.
Bei der Erdgasleitung 1 handelt es sich um eine Hochdruckleitung, die unter einem Überdruck von ca. 50 bar steht. Über eine Zweigleitung 6 mit einer Druckreduzierung 7 wird ein Teiistrom einer Meßanordnung 8 zugeführt.The natural gas line 1 is a high-pressure line which is under an overpressure of approx. 50 bar. A partial flow of a measuring arrangement 8 is supplied via a branch line 6 with a pressure reduction 7.
Die Meßanordnung 8 besteht im wesentlichen aus einem Meßgerät 9 für die Schallgeschwindigkeit und einer Sensoranordnung 3. Bei dem Meßgerät für die Schallgeschwindigkeit kann es sich auch um einen Ultraschallgaszähler handeln. Die Sensoranordnung 3 ist bereits im Zusammenhang mit Fig. 1 beschrieben worden. Beide Signale werden einer Auswerteelektronik 5, in der der Brennwert und der Wobbeindex mittels einer Korrelation bestimmt werden, zugeführt.The measuring arrangement 8 essentially consists of a measuring device 9 for the speed of sound and a sensor arrangement 3. The measuring device for the speed of sound can also be an ultrasonic gas meter. The sensor arrangement 3 has already been described in connection with FIG. 1. Both signals are fed to evaluation electronics 5, in which the calorific value and the Wobbe index are determined by means of a correlation.
In den Fig. 3 und 4 ist graphisch dargestellt, wie der Brennwert eines 3-Komponenten- Gemisches aus zwei Eingangssignalen, und zwar Infrarotsignal IR und Schallgeschwindigkeit w in Fig. 3 bzw. Infrarotsignal IR und Dichte p in Fig. 4 bestimmt werden kann und welche resultierenden Gesamtunsicherheiten sich für den Brennwert ergeben.3 and 4 graphically show how the calorific value of a 3-component mixture of two input signals, namely infrared signal IR and speed of sound w in FIG. 3 or infrared signal IR and density p in FIG. 4 can be determined and the resulting total uncertainties for the calorific value.
In den Fig. 3 und 4 ist auf der Abzissenachse der Stickstoffanteil (N2) und auf der Ordi- natenachse der Ethananteil (C2H2) aufgetragen. Die dritte nicht dargestellte Komponente ist Methan (CH ). Der Methan-Anteil entspricht dem Rest des Anteiles des Gemisches um zu 100 % zu gelangen.3 and 4, the nitrogen content (N 2 ) is plotted on the abscissa axis and the ethane content (C 2 H 2 ) on the ordinate axis. The third component, not shown, is methane (CH). The methane portion corresponds to the rest of the portion of the mixture to get 100%.
In den Diagrammen wurde als Bezugspunkt willkürlich die Zusammensetzung N2 = 4 mol% und C2H6 = 6 mol% gewählt. Durch diesen Bezugspunkt wird eine Linie konstanten Brennwertes eingezeichnet (Hs = const). Parallel dazu sind Linien für die Brennwerte Hs +1 %, Hs +2 % bzw. Hs -1 % und Hs -2 % eingezeichnet. Ebenfalls durch den Bezugspunkt verlaufen Linien, für die die Eingangsgrößen IR und w in Fig. 3 bzw. IR und p in Fig. 4, konstante Werte annehmen. Die äußeren, dünnen Linien, geben dabei das Unsicherheitsband der Eingangsgrößen wieder. Die resultierende Unsicherheit für den Brennwert ergibt sich aus der Schnittfläche der Unsicherheitsbänder der Eingangsgrößen (schraffiertes Parallelogramm in den Fig. 3 und 4). Die Unsicherheit für den Brennwert beträgt in beiden Bildern etwa 2 %.In the diagrams, the composition N 2 = 4 mol% and C 2 H 6 = 6 mol% was arbitrarily chosen as the reference point. A line of constant calorific value is drawn through this reference point (H s = const). Lines for the calorific values H s +1%, H s +2% or H s -1% and H s -2% are drawn in parallel. Lines also run through the reference point, for which the input variables IR and w in FIG. 3 or IR and p in FIG. 4 assume constant values. The outer, thin lines represent the uncertainty band of the input variables. The resulting uncertainty for the calorific value results from the intersection of the uncertainty bands of the input variables (hatched parallelogram in FIGS. 3 and 4). The uncertainty for the calorific value is about 2% in both pictures.
Als 3-Komponenten-Gemisch wurde beispielhaft ein Gemisch aus Methan, Stickstoff und Ethan gewählt, welche die Hauptbestandteile von natürlichen Erdgasen sind. Weitere Bestandteile des Erdgases sind u. a. Kohlendioxid sowie Kohlenwasserstoffverbindungen, vorwiegend n-Alkane.As a 3-component mixture, a mixture of methane, nitrogen and ethane was chosen as an example, which are the main components of natural natural gases. Other components of the natural gas include. a. Carbon dioxide and hydrocarbon compounds, primarily n-alkanes.
Der Kohlendioxidanteil im Erdgas ist gering und unterliegt nur geringen Schwankungen, so daß hier ein Mittelwert vorgegeben werden kann. Der Anteil der n-Alkane im Erdgas nimmt mit zunehmender Anzahl an C-Atomen ab, so daß diese nur bis zum Hexan (C6H14) oder Oktan (C8H18) berücksichtigt werden brauchen. Zudem unterliegen die Anteile der n-Alkane einer regelmäßigen Verteilung und können über eine geeignete Korrelation berechnet werden (z. B. aus dem IR-Signal). Aufgrund dieser Überlegungen lassen sich die in den Fig. 3 und 4 dargestellten resultierenden Unsicherheiten für den Brennwert näheruπgsweise auch auf natürliche Erdgase übertragen. The proportion of carbon dioxide in natural gas is low and is subject to only slight fluctuations, so that an average can be specified here. The proportion of n-alkanes in natural gas decreases with increasing number of carbon atoms, so that they only need to be taken into account up to hexane (C 6 H 14 ) or octane (C 8 H 18 ). In addition, the proportions of the n-alkanes are subject to a regular distribution and can be calculated using a suitable correlation (e.g. from the IR signal). On the basis of these considerations, the resulting uncertainties for the calorific value shown in FIGS. 3 and 4 can also approximately be transferred to natural natural gases.

Claims

1. Verfahren zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas, wobei a) die Schallgeschwindigkeit oder die Dichte des Brenngases gemessen wird, b) das Brenngas einer Infrarotstrahlung ausgesetzt und der von dem Brenngas absorbierte Anteil der Infrarotstrahlung mittels einer Sensoranordnung gemessen wird c) und daß aus den beiden Meßsignalen der Brennwert und/oder der Wobbeindex abgeleitet wird.1. A method for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas, wherein a) the speed of sound or the density of the fuel gas is measured, b) the fuel gas is exposed to infrared radiation and the portion of the infrared radiation absorbed by the fuel gas by means of a Sensor arrangement is measured c) and that the calorific value and / or the Wobbe index is derived from the two measurement signals.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß im Schritt a) zusätzlich die Temperatur und/oder der Druck des Brenngases gemessen oder als Mittelwert vorgegeben wird.2. The method according to claim 1, characterized in that in step a) additionally the temperature and / or the pressure of the fuel gas is measured or is specified as an average.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Schritt b) in einer ersten Messung ein Teil des Absorptionsspektrums der Kohlenwasserstoffe und in einer zweiten Messung ein Teil des Absorptionsspektrums des Kohlenstoffdioxids erfaßt werden.3. The method according to claim 1 or 2, characterized in that in step b) in a first measurement, part of the absorption spectrum of the hydrocarbons and in a second measurement, part of the absorption spectrum of the carbon dioxide are detected.
4. Verfahren zur Messung der Energiemenge von Brenngas, insbesondere von Erdgas nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im Schritt a) das Brenngas durch einen Volumenstromzähler geleitet und der Volumenstrom gemessen wird.4. A method for measuring the amount of energy of fuel gas, in particular natural gas according to one of claims 1 to 3, characterized in that in step a) the fuel gas is passed through a volume flow meter and the volume flow is measured.
5. Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas, dadurch gekennzeichnet, daß einer Meßanordnung (3) ein Teilstrom des Brenngases zugeführt wird, daß in der Meßanordnung (8) ein Meßgerät (9) zur Messung der Schallgeschwindigkeit und eine Sensoranordnung (3) integriert sind, wobei die Sensoranordnung im wesentlichen aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht und daß die Signale des Meßgerätes (9) und der Sensoranordnung (3) einer Auswerteeinheit (5) zugeführt werden, in der der Brennwert und/oder der Wobbeindex mittels einer Korrelation bestimmt wird. 5. Arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas, characterized in that a partial flow of the fuel gas is fed to a measuring arrangement (3) that in the measuring arrangement (8) a measuring device (9) for measuring the Speed of sound and a sensor arrangement (3) are integrated, the sensor arrangement essentially consisting of a radiation source for infrared radiation and a radiation detector assigned to the radiation source, and the signals of the measuring device (9) and the sensor arrangement (3) being fed to an evaluation unit (5), in which the calorific value and / or the Wobbe index is determined by means of a correlation.
6. Anordnung nach Anspruch 5, dadurch gekennzeichnet, daß der Strahlungsdetektor als Mehrkanaldetektor ausgebildet ist, dem verschiedene optische Filter zur selektiven Messung einzelner Komponenten des Brenngases vorschaltbar sind.6. Arrangement according to claim 5, characterized in that the radiation detector is designed as a multi-channel detector, the various optical filters for selective measurement of individual components of the fuel gas can be connected upstream.
7. Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas dadurch gekennzeichnet, daß ein Ultraschallzähler (2), der in eine Brenngasleitung (1) eingebunden ist, einen Signalausgang (4) für die Schallgeschwindigkeit und eine Sensoranordnung (3) aufweist, die aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht, wobei das Signal für die Schallgeschwindigkeit und das Signal der Sensoranordnung (3) einer Auswerteeinheit (5) zugeführt werden, in der der Brennwert bestimmt wird. 7. Arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas, characterized in that an ultrasonic counter (2), which is integrated in a fuel gas line (1), a signal output (4) for the speed of sound and a sensor arrangement ( 3), which consists of a radiation source for infrared radiation and a radiation detector assigned to the radiation source, the signal for the speed of sound and the signal of the sensor arrangement (3) being fed to an evaluation unit (5) in which the calorific value is determined.
PCT/EP2000/001054 1999-02-24 2000-02-10 Method and arrangement for measuring the calorific value and/or the wobbe index of combustible gas, especially natural gas WO2000050874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00910660A EP1181531A1 (en) 1999-02-24 2000-02-10 Method and arrangement for measuring the calorific value and/or the wobbe index of combustible gas, especially natural gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19908046 1999-02-24
DE19908046.1 1999-02-24
DE19921167A DE19921167A1 (en) 1999-02-24 1999-05-07 Method and arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas
DE19921167.1 1999-05-07

Publications (1)

Publication Number Publication Date
WO2000050874A1 true WO2000050874A1 (en) 2000-08-31

Family

ID=26052038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/001054 WO2000050874A1 (en) 1999-02-24 2000-02-10 Method and arrangement for measuring the calorific value and/or the wobbe index of combustible gas, especially natural gas

Country Status (2)

Country Link
EP (1) EP1181531A1 (en)
WO (1) WO2000050874A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012435A1 (en) 2001-07-30 2003-02-13 Dalkia France Method for determining at least one energetic property of a gas fuel mixture by measuring physical properties of the gas mixture
EP1734347A2 (en) * 2005-06-15 2006-12-20 Polymeters Response International Limited Apparatus for metering consumption and carbon dioxide content of natural gas
RU2482393C2 (en) * 2007-05-23 2013-05-20 Нуово Пиньоне С.п.А. Method and device to control combustion in gas turbine
WO2016195580A1 (en) * 2015-06-05 2016-12-08 Scania Cv Ab A method and a system for determining a composition of a gas mix in a vehicle
CN114113213A (en) * 2020-08-28 2022-03-01 西门子股份公司 Measuring device for determining the gross or net heating value of a hydrocarbon-containing fuel gas

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015130216A1 (en) 2014-02-28 2015-09-03 Scania Cv Ab System and method for purification of an exhaust stream by use of two reduction catalysts
EP3341596B1 (en) 2015-08-27 2021-07-28 Scania CV AB Method and exhaust treatment system for treatment of an exhaust gas stream
SE539134C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Exhaust gas treatment system and method for treating an exhaust gas stream
SE539131C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Process and exhaust treatment system for treating an exhaust stream
SE539129C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Process and system for processing a single stream combustion exhaust stream
SE539130C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Process and exhaust treatment system for treating an exhaust stream
SE539133C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Exhaust gas treatment system and method for treating an exhaust gas stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246773A (en) * 1978-03-31 1981-01-27 Osaka Gas Company Ltd. Combustion property of gas measuring apparatus
US4384792A (en) * 1979-07-17 1983-05-24 Ruhrgas Aktiengesellschaft Process and apparatus for the combustionless measurement and/or control of the amount of heat fed to gas consumption devices
DE4336174A1 (en) * 1993-10-22 1995-04-27 Ruhrgas Ag Method for the combustionless measurement and/or control of the quantity of heat supplied to gas consumption devices
DE19650302A1 (en) * 1996-12-04 1998-06-10 Ruhrgas Ag Method and device for determining the gas quality of a gas mixture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707659A1 (en) * 1997-02-26 1998-08-27 Betr Forsch Inst Angew Forsch Acoustic measuring method for mean gas density
FR2764380B1 (en) * 1997-06-06 1999-08-27 Gaz De France METHOD AND DEVICE FOR DETERMINING IN REAL TIME THE CALORIFIC POWER OF A NATURAL GAS OPTICALLY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246773A (en) * 1978-03-31 1981-01-27 Osaka Gas Company Ltd. Combustion property of gas measuring apparatus
US4384792A (en) * 1979-07-17 1983-05-24 Ruhrgas Aktiengesellschaft Process and apparatus for the combustionless measurement and/or control of the amount of heat fed to gas consumption devices
DE4336174A1 (en) * 1993-10-22 1995-04-27 Ruhrgas Ag Method for the combustionless measurement and/or control of the quantity of heat supplied to gas consumption devices
DE19650302A1 (en) * 1996-12-04 1998-06-10 Ruhrgas Ag Method and device for determining the gas quality of a gas mixture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1181531A1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012435A1 (en) 2001-07-30 2003-02-13 Dalkia France Method for determining at least one energetic property of a gas fuel mixture by measuring physical properties of the gas mixture
EP1734347A2 (en) * 2005-06-15 2006-12-20 Polymeters Response International Limited Apparatus for metering consumption and carbon dioxide content of natural gas
EP1734347A3 (en) * 2005-06-15 2008-06-04 Polymeters Response International Limited Apparatus for metering consumption and carbon dioxide content of natural gas
RU2482393C2 (en) * 2007-05-23 2013-05-20 Нуово Пиньоне С.п.А. Method and device to control combustion in gas turbine
WO2016195580A1 (en) * 2015-06-05 2016-12-08 Scania Cv Ab A method and a system for determining a composition of a gas mix in a vehicle
CN114113213A (en) * 2020-08-28 2022-03-01 西门子股份公司 Measuring device for determining the gross or net heating value of a hydrocarbon-containing fuel gas

Also Published As

Publication number Publication date
EP1181531A1 (en) 2002-02-27

Similar Documents

Publication Publication Date Title
EP1193488B1 (en) Method and device for determining the gaseous quality of natural gas
EP0343143B1 (en) Process and apparatus for measuring the lambda and/or the air/fuel ratio
AT397435B (en) METHOD AND DEVICE FOR THE AUTOMATIC SETTING OF THE OPERATING PARAMETERS OF AN INTERNAL COMBUSTION ENGINE SUPPLIED WITH AN ALCOHOL / GASOLINE MIXTURE
DE3932838C2 (en) Non-dispersive infrared gas analyzer
DE2811287C3 (en) Infrared gas analyzer
WO2000050874A1 (en) Method and arrangement for measuring the calorific value and/or the wobbe index of combustible gas, especially natural gas
DE10302487A1 (en) Real time determination of the alkane and carbon dioxide content of fuel gas comprises using an infrared absorption measuring system having measuring channels which acquire the infrared adsorption in different wavelength regions
DE3115295A1 (en) INSTALLATION FOR THE COUPLED MEASUREMENT OF THE ENERGY CONTENT AND THE FLOW RATE OF A GAS MIXTURE IN PISTINES
DE2928739B1 (en) Method and device for the combustion-free measurement and / or regulation of the supply of heat to gas consumption devices
DE68909260T2 (en) Device for measuring the heat capacity of a fuel flow.
EP3362790A1 (en) Method for determining properties of a hydrocarbon-containing gas mixture and device for the same
DE19921167A1 (en) Method and arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas
EP1141677B1 (en) Method of determining the gas quality
EP3535581A1 (en) Method for determining properties of a hydrocarbon-containing gas mixture and device for the same
DE3240559C2 (en) Process for the continuous measurement of the mass of aerosol particles in gaseous samples and device for carrying out the process
DE1945236A1 (en) Method and device for analyzing gases
DE19949439C1 (en) Process for determining the gas quality of sample gas e.g. fuel gas using spectroscopic process comprises determining the pressure and temperature of sample gas, forming spectral vector and multiplying spectral vector with factor vector
WO2018177651A1 (en) Method for determining the methane index of a hydrocarbon-containing combustion gas mixture
DE19808213A1 (en) Gas chromatographic apparatus analyzing and determining physical properties, especially of natural gas
DE4121928A1 (en) METHOD AND ARRANGEMENT FOR INDIRECT MASS FLOW DETERMINATION
DE2931647B1 (en) Device for determining the influencing of gaseous components of a gas stream by dilution and / or diffusion
DE69935818T2 (en) Exhaust Gas Analyzer and Modal Mass Analysis Method by Gas Trace Method Using This Analyzer
DE19841877A1 (en) Method and device for determining the soot loading of a combustion chamber
DE1648613A1 (en) Method and device for determining the combustion quality of a fuel
DE10121641A1 (en) Method and device for determining the gas quality of a natural gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000910660

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000910660

Country of ref document: EP