DE10163646A1 - A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings - Google Patents

A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings

Info

Publication number
DE10163646A1
DE10163646A1 DE10163646A DE10163646A DE10163646A1 DE 10163646 A1 DE10163646 A1 DE 10163646A1 DE 10163646 A DE10163646 A DE 10163646A DE 10163646 A DE10163646 A DE 10163646A DE 10163646 A1 DE10163646 A1 DE 10163646A1
Authority
DE
Germany
Prior art keywords
composite material
modified composite
material according
component
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10163646A
Other languages
German (de)
Inventor
Juergen Hebenstreit
Thomas Hoyer
Ingolf Voigt
Baerbel Voigtsberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Hermsdorfer Institut fuer Technische Keramik eV HITK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hermsdorfer Institut fuer Technische Keramik eV HITK filed Critical Hermsdorfer Institut fuer Technische Keramik eV HITK
Priority to DE10163646A priority Critical patent/DE10163646A1/en
Publication of DE10163646A1 publication Critical patent/DE10163646A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • B05D5/086Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers having an anchoring layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/754Self-cleaning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A surface modified hard and wear resistant compound inorganic material combining dirt and water deflecting properties and containing three components, i.e. a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material which fills the pores of the porous ceramic material is new. A surface modified compound material giving water repellant and dirt repellant action, an antiadhesive effect, good wear resistance, substrate corrosion protection, and having electrical insulation properties, at least three components, i.e. a substrate in metal, plastics, or ceramics, which covers part or the whole of the surface, a ceramic, metal, or cermet of porous structure as the second component, obtained by plasma spraying, thermal spraying, sintering of powder layers of these materials (e.g. with binders), deposition from the gas phase, (CVD,PVD) or fro the liquid phase (sol-gel-technique) electrodeposition, and possibly other processes. The third component is an organic/inorganic nano composite material which fills the pores of the second material and can also cover the surface. Independent claims are included for: (1) a process for production of surface modification involving production of the first component by thermal or plasma spraying; and (2) a nano composite layer cured by irradiation with microwaves.

Description

An die Eigenschaften von Werkstoffoberflächen werden oft eine Vielzahl von Anforderungen gestellt. Für viele Anwendungen sind ein Antihafteffekt und/oder schmutz- und wasserabweisende Eigenschaften erforderlich, gepaart mit hoher Abrieb- und Verschleißbeständigkeit. Häufig handelt es sich um bewegliche Teile (Walzen, Rollen, Lager, Fadenführer etc.), bei denen Schmutzfilme zur negativen Beeinflussung der Lauf- und Führungseigenschaften führen. In anderen Fällen geht es direkt um die Antihaftwirkung der Oberfläche gegenüber einem Produkt oder Hilfsstoff. Weitere Anforderungen sind z. B. elektrische Isolations- und Korrosionsschutzwirkung. A variety of properties are often attached to the properties of material Requirements. For many applications there is a non-stick effect and / or dirt and water repellent properties required, paired with high Abrasion and wear resistance. Often they are moving parts (Rollers, rollers, bearings, thread guides, etc.), where dirt films become negative Influencing the running and leadership properties. In other cases it directly about the non-stick effect of the surface against a product or Excipient. Other requirements are e.g. B. electrical insulation and Corrosion protection.

Bereits in einem DuPont-Patent von 1967 [1] wird beschrieben, wie man durch definierte Strukturierung hydrophober Oberflächen die wasserabstoßende Wirkung erhöhen kann. A DuPont patent from 1967 [1] already describes how to do this defined structuring of hydrophobic surfaces the water-repellent effect can increase.

In den letzten Jahren ist es Prof. Barthlott gelungen, den Mechanismus der schmutzabweisenden Eigenschaften bestimmter Pflanzenblätter aufzuklären [2]. Diese als Lotus-Effekt bekannt gewordene Selbstreinigungs-Fähigkeit beruht auf strukturierten hydrophoben Blattoberflächen. Solche Oberflächen sind extrem wasserabweisend. D. h. der Wasserrandwinkel ist größer als 110° und der Tropfen hat nahezu Kugelgestalt. Das Wasser rollt so auf einer geneigten Oberfläche ab (perlt ab). Dabei wird Schmutz vom Wasser aufgenommen und mit abtransportiert. Auf Grund der großen ökologischen und wirtschaftlichen Bedeutung gewinnt der Lotus-Effekt wachsendes Interesse. Für die technische Realisierung zeichnen sich zwei Hauptrichtungen ab:

  • 1. Mit Hilfe der Mikrostrukturtechnik werden strukturierte Oberflächen erzeugt, die entweder auf hydrophobe Materialien übertragen oder mit einer hydrophoben Beschichtung versehen werden.
  • 2. Mit Sol-Gel-Technik erzeugt man rauhe Schichten, die bereits hydrophobe Oberflächen aufweisen oder nachträglich hydrophobiert werden.
In recent years, Prof. Barthlott has succeeded in elucidating the mechanism of the dirt-repellent properties of certain plant leaves [2]. This self-cleaning ability, known as the lotus effect, is based on structured, hydrophobic leaf surfaces. Such surfaces are extremely water-repellent. I.e. the water edge angle is greater than 110 ° and the drop is almost spherical. The water rolls off on an inclined surface (rolls off). Dirt is absorbed by the water and transported away. Due to the great ecological and economic importance, the lotus effect is gaining increasing interest. There are two main directions for the technical implementation:
  • 1. With the help of microstructure technology, structured surfaces are generated, which are either transferred to hydrophobic materials or provided with a hydrophobic coating.
  • 2. With the sol-gel technique, rough layers are created that already have hydrophobic surfaces or are subsequently hydrophobized.

Bekannte Materialien mit Antihaft- bzw. schmutz- und wasserabweisenden Oberflächen sind Silicone und fluorierte polymere Kohlenwasserstoffverbindungen. Nachteilig sind deren geringe Abrieb- und Verschleißbeständigkeit. Known materials with non-stick or dirt and water repellent Surfaces are silicones and fluorinated polymeric hydrocarbon compounds. Their low abrasion and wear resistance are disadvantageous.

Mit der Entwicklung von Nanokompositmaterialien, die Strukturelemente dieser Verbindungen enthalten, gelang es, die mechanische Beständigkeit zu erhöhen. With the development of nanocomposite materials, the structural elements of this Containing compounds, it was possible to increase the mechanical resistance.

Die Central-Glass-Patente [4, 5, 6] beschreiben die Herstellung hydrophober rauher Oberflächen durch Mehrfachbeschichtung von Glas mit unterschiedlichen Sol-Gel- Materialien. Die rauhe Unterschicht besteht z. B. aus SiO2-TiO2 oder SiO2-Al2O3. Die hydrophobe Wirkung wird mit einer Deckschicht erreicht, die ein Fluoralkylsilan enthält. The Central Glass patents [4, 5, 6] describe the production of rough, hydrophobic surfaces by multiple coating of glass with different sol-gel materials. The rough underlayer consists e.g. B. from SiO 2 -TiO 2 or SiO 2 -Al 2 O 3 . The hydrophobic effect is achieved with a top layer that contains a fluoroalkylsilane.

Für viele Anwendungen ist die Härte und Verschleißfestigkeit derartiger Sol-Gel- oder Polymermaterialien bei weitem nicht ausreichend. For many applications, the hardness and wear resistance of such sol-gel or polymer materials far from sufficient.

Harte und verschleißfeste Materialien findet man vor allem bei anorganischen Stoffen, wie z. B. Oxiden und Metallen. Deren Oberflächen zeigen jedoch keine dauerhaften Antihaft- und schmutz-/wasserabweisenden Oberflächen. Eine wichtige Methode, um derartige Materialien abzuscheiden ist das atmosphärische Plasmaspritzen (APS). APS wird seit Jahrzehnten erfolgreich zur Verbesserung von Produktoberflächen angewendet, z. B. zur Erhöhung der Verschleißfestigkeit, der elektrischen Isolierung, der Wärmeisolierung oder zur Erzielung von Antihaft- oder Notlaufeigenschaften. Dabei können sowohl Keramiken, Metalle als auch Cermets (Keramik-Metall-Verbunde) eingesetzt werden. Die APS-Beschichtung führt in der Regel zu dicken Schichten (Schichtdicke > 40 µm) mit einer Restporosität von 5-10%, die durch eine nachträgliche Versiegelung mit Epoxidharz geschlossen wird. Hard and wear-resistant materials are found primarily in inorganic materials Fabrics such as B. oxides and metals. However, their surfaces do not show any durable non-stick and dirt / water repellent surfaces. An important The method of depositing such materials is atmospheric Plasma spraying (APS). APS has been successfully improving for decades Product surfaces applied, e.g. B. to increase wear resistance, the electrical insulation, thermal insulation or to achieve non-stick or Emergency running properties. Both ceramics, metals and cermets can be used (Ceramic-metal composites) can be used. The APS coating leads in the Normally too thick layers (layer thickness> 40 µm) with a residual porosity of 5-10%, which is closed by a subsequent sealing with epoxy resin.

Mit der vorliegenden Erfindung gelingt es, die Härte und Verschleißbeständigkeit anorganischer Materialien mit Antihaft- und schmutz-/wasserabweisenden Eigenschaften zu kombinieren. The present invention succeeds in hardness and wear resistance inorganic materials with non-stick and dirt / water repellent To combine properties.

Dazu wird auf einem Substratmaterial mit im wesentlichen geschlossener Oberfläche ein Material mit hoher mechanischer Beständigkeit (z. B. Metall, Keramik, Cermet) in rauher und poröser Form aufgebracht. Das kann beispielsweise mit thermischen Spritzverfahren erfolgen. Die Poren werden mit einem Nanokompositmaterial ausgefüllt, das auch die Oberfläche der porösen Schicht bedecken kann, wobei die Rauhigkeit nur wenig verringert wird. Man wählt ein Nanokomposit mit Antihaft- bzw. schmutz-/wasserabweisenden Oberflächeneigenschaften und einer gegenüber Siliconen und PTFE erhöhten mechanischen Stabilität. This is done on a substrate material with an essentially closed surface a material with high mechanical resistance (e.g. metal, ceramic, cermet) in applied in a rough and porous form. This can be done, for example, with thermal Spraying process take place. The pores are made with a nanocomposite material filled that can also cover the surface of the porous layer, the Roughness is reduced only a little. You choose a nanocomposite with non-stick or dirt / water repellent surface properties and one opposite Silicones and PTFE increased mechanical stability.

Die Füllung der Poren bringt eine gegenüber den einzelnen Materialien erhöhte Abrieb- und Verschleißbeständigkeit. Die niedrige Oberflächenenergie des Nanokompositmaterials führt zu schmutz-/wasserabweisenden Oberflächeneigenschaften. The filling of the pores brings an increased compared to the individual materials Abrasion and wear resistance. The low surface energy of the Nanocomposite material leads to dirt / water repellent Surface properties.

Durch die Füllung der Poren erzielt man weiterhin einen guten Korrosionsschutz, da aggressive Medien nicht mehr durch die Poren zum Substratmaterial dringen können. By filling the pores, good corrosion protection is still achieved because aggressive media no longer penetrate through the pores to the substrate material can.

Durch die Wahl geeigneter Materialien lassen sich elektrisch isolierende Schichten aufbauen. By choosing suitable materials, electrically insulating layers can be created build up.

Zur Füllung von Poren in anorganischen Materialien werden in der Literatur unterschiedliche Stoffe beschrieben. The literature describes the filling of pores in inorganic materials different substances described.

Eine Versiegelung mit Polymeren (z. B. Metcoseal der Fa. Sulzer Metco) oder anorganischen Materialien (Sol-Gel [a-f, z], keramischen Schlickern, Gips, Zement) führt oft zu Eigenschaftsverbesserungen. So werden die Gaspermeabilität erniedrigt, Elastizität, Mikrohärte und Verschleißbeständigkeit erhöht sowie Korrosions- und Hochtemperaturbeständigkeit verbessert. Sealing with polymers (e.g. Metcoseal from Sulzer Metco) or inorganic materials (sol-gel [a-f, z], ceramic slips, plaster, cement) often leads to property improvements. So the gas permeability is lowered, Elasticity, microhardness and wear resistance increased as well as corrosion and High temperature resistance improved.

Schmutz- und wasserabweisende Wirkungen werden erzielt, wenn man Silicone oder fluorierte Polymere zur Versiegelung verwendet [m, n, o]. Das sind jedoch besonders weiche und mechanisch wenig stabile Stoffe. Dirt and water repellent effects are achieved when using silicone or fluorinated polymers used for sealing [m, n, o]. However, these are special soft and mechanically unstable fabrics.

Mit all diesen Porenfüllstoffen konnten Materialien mit sowohl deutlich erhöhter Verschleißbeständigkeit als auch schmutz- und wasserabweisenden Eigenschaften nicht realisiert werden. Das gelingt erst durch die Füllung der Poren mit Nanokompositmaterialien.

[1] US Patent 3,354,022, du Pont de Nemours, 1967
Dettre, Jackson, Johnson
Water-repellant surface
[2] Internat. Patent WO 96/04123, 1995
Barthlott
Self-cleaning surfaces of objects and process for producing same
[4] Europapatent 0 658 525, Central Glass, 1995
Takahashi, Hamaguchi, Otani, Nishida, Nakamura, Sugawara, Kondo, Akamatsu, Kai
Multilayered water-repellent film and method of forming same on glass substrate.
[5] US Patent 5,413,865, Central Glass, 1995
Nakamura, Yamazaki, Takahashi, Arai, Hamaguchi
Water-repellent metal oxide film and method of forming same on glass substrate
[6] Europapatent 0 748 775, Central Glass, 1996
Akamatsu, Nishida
Water-repellent glass plate having minutely roughed metal oxide base film
[a] Erickson, L. C.; Hawthorne, H. M.; Troczynski, T.; Hogmark, S.; Olsson, M.
Wear and micromechanical properties of microstructurally improved ceramic plasma sprayed coatings
Adv. Ceram. Struct. Tribol. Appl., Proc. Int. Symp. (1995), 557-67.
[b] John, G.; Troczynski, T.
Surface modification of thermal sprayed coatings
Therm. Spray: Pract. Solutions Eng. Probl., Proc. Natl. Therm. Spray Conf, 9th (1996), 483-488. Editor(s): Berndt, Chris C. Publisher: ASM International, Materials Park, Ohio.
[c] Moriya, K.; Zhao, Wenxhen; Ohmori, A.
Improvement of plasma sprayed ceramic coatings treated by sol-gel process
Therm. Spraying: Curr. Status Future Trends, Proc. Int. Therm. Spraying Conf., 14th (1995), Volume 2, 1017-1021. Editor(s): Ohmori, Akira.
Publisher: High Temperature Society of Japan, Osaka, Japan.
[d] JP 08134694 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho, Japan Wada, Kenji; Tsutsumi, Masayuki; Shimakage, Kazunobu; Hirai, Shinji Alkali-superresistant aluminium oxide composite films and their manufacture
[e] US 5925228 Sandia Corporation, USA
Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.
Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material
[f] Moriya, K., Tomino, H., Kandaka, Y., Hara, T.; Ohrmori, A.
Sealing of plasma sprayed ceramic coatings by sol-gel process.
1994, Thermal Spray Ind. Applications,
Proc. of 7th Nat. Thermal Spray Conf., Boston, USA, Jun 20-24, 1994, pp. 549-553
[g] Troczynski, T., Yang, Q., John, G.
Post-deposition treatment of zirconia thermal barrier coatings using sol-gel alumina.
Journal of Thermal Spray Technology, Vol. 8, No. 2 (1999) 229-234
[z] Zemanova, M.; Chovancova, M.; Fellner, P.; Prekopp, K.
Corrosion resistance and quality of sealed porous alumina coatings Chem. Pap. (1998), 52(3), 152-155
[n] Okreglicki, Marek; Sartowski, Marek
Modification of plasma sprayed coatings by fillers and sealers Powloki Ochr. (1984), 12(6), 19-23
[m] ES 8605591 MIX INDUSTRIAL SA
Prodn. of non-stick low-friction surface - by plasma coating and sealing with fluoro-polymer.
[o] JP 63043227 Matsushita Electric Industrial Co., Ltd., Japan
Fluorinated resin-coated articles
With all of these pore fillers, materials with both significantly increased wear resistance and dirt and water repellent properties could not be realized. This can only be achieved by filling the pores with nanocomposite materials.

[1] US Patent 3,354,022, du Pont de Nemours, 1967
Dettre, Jackson, Johnson
Water-repellant surface
[2] boarding school Patent WO 96/04123, 1995
Barthlott
Self-cleaning surfaces of objects and process for producing same
[4] European patent 0 658 525, Central Glass, 1995
Takahashi, Hamaguchi, Otani, Nishida, Nakamura, Sugawara, Kondo, Akamatsu, Kai
Multilayered water-repellent film and method of forming same on glass substrate.
[5] US Patent 5,413,865, Central Glass, 1995
Nakamura, Yamazaki, Takahashi, Arai, Hamaguchi
Water-repellent metal oxide film and method of forming same on glass substrate
[6] European patent 0 748 775, Central Glass, 1996
Akamatsu, Nishida
Water-repellent glass plate having minutely roughed metal oxide base film
[a] Erickson, LC; Hawthorne, HM; Troczynski, T .; Hogmark, S .; Olsson, M.
Wear and micromechanical properties of microstructurally improved ceramic plasma sprayed coatings
Adv. Ceram. Struct. Tribol. Appl., Proc. Int. Symp. (1995), 557-67.
[b] John, G .; Troczynski, T.
Surface modification of thermal sprayed coatings
Therm. Spray: Pract. Solutions Eng. Probl., Proc. Natl. Therm. Spray Conf, 9 th (1996), 483-488. Editor (s): Berndt, Chris C. Publisher: ASM International, Materials Park, Ohio.
[c] Moriya, K .; Zhao, Wenxhen; Ohmori, A.
Improvement of plasma sprayed ceramic coatings treated by sol-gel process
Therm. Spraying: curr. Status Future Trends, Proc. Int. Therm. Spraying Conf., 14 th (1995), Volume 2, 1017-1021. Editor (s): Ohmori, Akira.
Publisher: High Temperature Society of Japan, Osaka, Japan.
[d] JP 08134694 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho, Japan Wada, Kenji; Tsutsumi, Masayuki; Shimakage, Kazunobu; Hirai, Shinji Alkali-superresistant aluminum oxide composite films and their manufacture
[e] US 5925228 Sandia Corporation, USA
Panitz, Janda K .; Reed, Scott T .; Ashley, Carol S .; Neiser, Richard A .; Moffatt, William C.
Electrophoretically active sol-gel processes to backfill, seal, and / or densify porous, flawed, and / or cracked coatings on electrically conductive material
[f] Moriya, K., Tomino, H., Kandaka, Y., Hara, T .; Ohrmori, A.
Sealing of plasma sprayed ceramic coatings by sol-gel process.
1994, Thermal Spray Ind. Applications,
Proc. of 7 th Nat. Thermal Spray Conf., Boston, USA, Jun 20-24, 1994, pp. 549-553
[g] Troczynski, T., Yang, Q., John, G.
Post-deposition treatment of zirconia thermal barrier coatings using sol-gel alumina.
Journal of Thermal Spray Technology, Vol. 8, No. 2 (1999) 229-234
[z] Zemanova, M .; Chovancova, M .; Fellner, P .; Prekopp, K.
Corrosion resistance and quality of sealed porous alumina coatings Chem. Pap. (1998), 52 (3), 152-155
[n] Okreglicki, Marek; Sartowski, Marek
Modification of plasma sprayed coatings by fillers and sealers Powloki Ochr. (1984), 12 (6), 19-23
[m] ES 8605591 MIX INDUSTRIAL SA
Prodn. of non-stick low-friction surface - by plasma coating and sealing with fluoro-polymer.
[o] JP 63043227 Matsushita Electric Industrial Co., Ltd., Japan
Fluorinated resin-coated articles

PlasmagelPlasmagel Ausführungsbeispiele - poröse MaterialienExemplary embodiments - porous materials APS-Aluminiumoxid-SchichtAPS-alumina layer

Aluminiumoxidpulver (Amperit 740.1 von Fa. H. C. Starck) wird bei ca. 3 bar Förderdruck mit etwa 18 Umdrehungen pro Minute (Pulverfördergerät Twin 10c von Fa. Sulzer Metco) in den Plasmabrenner gefördert. Das Stickstoffplasma brennt mit einem Plasmastrom von 450 A bei einer Plasmaspannung von 75 V. Das Plasma wird im Abstand von etwa 115 mm über die zu beschichtende Oberfläche geführt. Es bildet sich eine poröse Aluminiumoxidschicht. Aluminum oxide powder (Amperit 740.1 from H.C. Starck) is at about 3 bar Conveying pressure at around 18 revolutions per minute (Twin 10c powder conveyor from Sulzer Metco) in the plasma torch. The nitrogen plasma burns with it a plasma current of 450 A at a plasma voltage of 75 V. The plasma is carried out at a distance of about 115 mm over the surface to be coated. It a porous aluminum oxide layer forms.

APS-Chromoxid-SchichtAPS-chromium oxide layer

Chromoxidpulver (Amperit 704.1 von Fa. H. C. Starck) wird bei ca. 3 bar Förderdruck mit etwa 18 Umdrehungen pro Minute (Pulverfördergerät Twin 10c von Fa. Sulzer Metco) in den Plasmabrenner gefördert. Das Stickstoffplasma brennt mit einem Plasmastrom von 450 A bei einer Plasmaspannung von 75 V. Das Plasma wird im Abstand von etwa 115 mm über die zu beschichtende Oberfläche geführt. Es bildet sich eine poröse Chromoxidschicht. Chromium oxide powder (Amperit 704.1 from H.C. Starck) is at about 3 bar delivery pressure with about 18 revolutions per minute (powder feeder Twin 10c from Sulzer Metco) promoted in the plasma torch. The nitrogen plasma burns with you Plasma current of 450 A with a plasma voltage of 75 V. The plasma is in the Distance of about 115 mm over the surface to be coated. It forms a porous chrome oxide layer.

SiO2-Sol-Gel-SchichtSiO 2 sol gel layer

20 ml Methyltriethoxysilan, 6 ml Tetraethoxysilan und 3 ml Propanol werden unter Rühren gemischt. Getrennt davon werden 3 ml Propanol, 6 ml Wasser und 0,02 ml konz. Salzsäure gemischt. Die letzte Mischung tropft man langsam zu der Silanlösung. Nach 20 min ist das Sol auf Raumtemperatur abgekühlt und wird durch ein 0,2 µm Spritzenfilter filtriert. 20 ml of methyltriethoxysilane, 6 ml of tetraethoxysilane and 3 ml of propanol are added Stir mixed. 3 ml of propanol, 6 ml of water and 0.02 ml are separated conc. Mixed hydrochloric acid. The last mixture is slowly added to the Silane solution. After 20 min the sol has cooled to room temperature and is a 0.2 µm syringe filter is filtered.

Beschichtet wird mit einer Tauchbeschichtungsapparatur mit Ziehgeschwindigkeiten von 1 bis 10 mm/s. Danach folgt Trocknung/Härtung nach folgendem Temperaturprogramm:

15 min bei 60°C,
weiter bis 400°C mit 1 K/min,
weiter bis 500°C mit 0,3 K/min.
Coating is carried out with a dip coating apparatus with drawing speeds of 1 to 10 mm / s. This is followed by drying / curing according to the following temperature program:

15 min at 60 ° C,
further up to 400 ° C with 1 K / min,
continue up to 500 ° C with 0.3 K / min.

Man erhält eine mikroporöse Schicht mit einer Dicke von 1 bis 3 µm. A microporous layer with a thickness of 1 to 3 μm is obtained.

TiO2-Sol-Gel-SchichtTiO 2 sol gel layer

3,55 g Titanisopropylat werden in 6,88 g iso-Propanol gelöst. Diese Lösung tropft man unter Rühren in eine Mischung aus 0,172 ml 65%iger Salpetersäure und 45,04 g Wasser. Nach 1 Woche rühren kann mit dem entstandenen Sol beschichtet werden, z. B. mit einer Tauchbeschichtungsapparatur mit Ziehgeschwindigkeiten von 1 bis 10 mm/s. Das Einbrennen erfolgt 1 h bei 500°C. 3.55 g of titanium isopropylate are dissolved in 6.88 g of isopropanol. This solution is dripping with stirring in a mixture of 0.172 ml of 65% nitric acid and 45.04 g Water. After stirring for 1 week the resulting sol can be coated be, e.g. B. with a dip coating apparatus with drawing speeds of 1 to 10 mm / s. Burn-in takes place at 500 ° C for 1 h.

ZrO2-Sol-Gel-SchichtZrO 2 sol gel layer

53 g Zirkon-n-butylat (80% in n-Butanol) tropft man unter Rühren in eine Mischung aus 10,1 g 65%ige Salpetersäure und 100 g Wasser. Nach 1 Woche rühren kann mit dem entstandenen Sol (wässrige Phase) beschichtet werden, z. B. mit einer Tauchbeschichtungsapparatur mit Ziehgeschwindigkeiten von 1 bis 10 mm/s. 53 g of zirconium n-butoxide (80% in n-butanol) are added dropwise to a mixture with stirring from 10.1 g of 65% nitric acid and 100 g of water. Can stir with after 1 week the resulting sol (aqueous phase) are coated, e.g. B. with a Dip coating apparatus with drawing speeds of 1 to 10 mm / s.

Das Einbrennen erfolgt 1 h bei 500°C. Burn-in takes place at 500 ° C for 1 h.

Al2O3-Sol-Gel-SchichtAl 2 O 3 sol gel layer

20 g Aluminium-sec-butylat werden in 3,75 g 2-Butanol gelöst. Diese Lösung tropft man unter Rühren zu einer Mischung aus 5,4 ml 1M HNO3 und 133,5 g Wasser. Es wird Flüssigkeit abdestilliert, bis die Siedetemperatur 98°C beträgt. Anschließend kocht man das Sol 15 h am Rückfluss und filtriert gegebenenfalls durch einen groben Filter (z. B. 40 µm Porengrösse). Danach kann mit dem entstandenen Sol beschichtet werden, z. B. mit einer Tauchbeschichtungsapparatur mit Ziehgeschwindigkeiten von 1 bis 10 mm/s. Das Einbrennen erfolgt 1 h bei 500°C. 20 g of aluminum sec-butoxide are dissolved in 3.75 g of 2-butanol. This solution is added dropwise with stirring to a mixture of 5.4 ml of 1M HNO 3 and 133.5 g of water. Liquid is distilled off until the boiling temperature is 98.degree. The sol is then boiled under reflux for 15 h and, if necessary, filtered through a coarse filter (eg 40 μm pore size). Then can be coated with the resulting sol, z. B. with a dip coating apparatus with drawing speeds of 1 to 10 mm / s. Burn-in takes place at 500 ° C for 1 h.

Elektrolytisch abgeschiedene poröse ChromschichtElectrolytically deposited porous chrome layer

Der Elektrolyt besteht aus einer schwefelsäurefreien wässrigen Lösung von 250 bis 400 g/l Chromsäure und 1 bis 5 g/l Essigsäure. Bei 8-12 V wird die Schicht mit Stromdichten von 80 bis 100 A/dm2 abgeschieden. Das Bad muss gekühlt werden, so dass die Temperatur zwischen 10 und 20°C gehalten wird. Man verwendet Bleianoden mit 5 bis 10% Antimon. The electrolyte consists of a sulfuric acid-free aqueous solution of 250 to 400 g / l chromic acid and 1 to 5 g / l acetic acid. At 8-12 V, the layer is deposited with current densities of 80 to 100 A / dm 2 . The bath must be cooled so that the temperature is kept between 10 and 20 ° C. Lead anodes with 5 to 10% antimony are used.

Elektrolytisch abgeschiedene poröse NickelschichtElectrolytically deposited porous nickel layer

Der Elektrolyt besteht aus: 1 l Wasser, 50 g Nickelammonsulfat, 10 g Ammoniumthiosulfat, 6 g Zinksulfat. Man verwendet Kohleanoden im Abstand von etwa 15 cm zur zu beschichtenden Oberfläche und scheidet bei 1,5 V mit Stromdichten von 0,3 A/dm2 ab. The electrolyte consists of: 1 l water, 50 g nickel ammonium sulfate, 10 g ammonium thiosulfate, 6 g zinc sulfate. Carbon anodes are used at a distance of about 15 cm from the surface to be coated and are deposited at 1.5 V with current densities of 0.3 A / dm 2 .

Pyrolyseschichten (Silicoater)Pyrolysis layers (silicoater)

In die Kartusche eines handelsüblichen Butangasbrenners werden unter Kühlung mit flüssigem Stickstoff etwa 0,1 bis 5%, vorzugsweise 1% Tetramethoxysilan eingefüllt. Anschließend wird die Kartusche in den Brenner eingebaut. Nachdem alle Teile Raumtemperatur angenommen haben, kann der Brenner in Betrieb genommen werden. Die zu beschichtende Oberfläche wird mehrfach mäanderförmig mit dem blauen Teil der Brennerflamme überstrichen. Es bildet sich eine dünne, poröse, transparente Schicht. In the cartridge of a commercially available butane gas burner with cooling liquid nitrogen filled about 0.1 to 5%, preferably 1% tetramethoxysilane. The cartridge is then installed in the burner. After all the parts Have reached room temperature, the burner can be started become. The surface to be coated becomes several meanders with the painted over the blue part of the burner flame. It forms a thin, porous, transparent layer.

TiO2-SiebdruckschichtTiO 2 screen printing layer

In 296 g Triethanolamin und 3,4 g Acetylaceton werden 164 g Titandioxid P 25 (Degussa) und 157 g Hombitan LW-S (Sachtleben) mittels Dissolverscheibe und Dreiwalzwerk dispergiert. Die erhaltene Paste wird im Siebdruckverfahren als dünne Schicht auf Oberflächen gedruckt. Bei 450°C bildet sich eine poröse Titandioxidschicht (ca. 1 h). 164 g of titanium dioxide P 25 are dissolved in 296 g of triethanolamine and 3.4 g of acetylacetone (Degussa) and 157 g Hombitan LW-S (Sachtleben) using a dissolver disc and Three-roll mill dispersed. The paste obtained is screen-printed as thin Layer printed on surfaces. At 450 ° C a porous forms Titanium dioxide layer (approx. 1 h).

PlasmagelPlasmagel Ausführungsbeispiele - NanokompositmaterialienExemplary embodiments - nanocomposite materials

Nanokomposite bestehen aus einer organischen (z. B. Epoxide) oder anorganisch- organischen Polymermatrix (z. B. Siloxane) mit eingelagerten anorganischen Partikeln (bzw. Oxide von Silicium, Titan, Zirkon, Aluminium). Dabei haben die Partikel Durchmesser von 1 nm bis 1000 nm.

  • 1. 475 g 3-Glycidoxypropyltrimethoxysilan werden bei Raumtemperatur langsam unter Rühren mit 25 g 0,1 M Salzsäure versetzt. Darin löst man nach 1 h 185 g Bisphenol A und rührt noch 1 h. Dann werden 20 g Aerosil 300 (Degussa) in der Mischung dispergiert. Mit Alkoholen (z. B. Butanol) verdünnt man anschließend auf einen Feststoffgehalt von ca. 20%. Etwa 1 h vor dem Beschichtungsvorgang gibt man 15 g Methylimidazol zu der Lösung. Nach dem Auftrag erfolgt die Härtung bei 150 bis 200°C etwa 2 bis 5 min.
  • 2. Nanokompositlack inoCOAT HC oder inoCOAT XT der inocermic GmbH, Hermsdorf
    Nach dem Auftrag und dem Abdunsten des Lösungsmittels erfolgt die Härtung bei 250°C innerhalb von 2 min.
  • 3. 250 g Propyltriethoxysilan, 250 g Methyltriethoxysilan und 150 g Dynasil 40 (Degussa) werden in 500 g Ethanol gelöst. Man gibt langsam unter ständigem Rühren 350 g 0,1 M Salzsäure zu der Mischung und rührt 2 Stunden. Anschließend werden 200 g IPA-ST (kolloidale Siliciumdioxiddispersion von Nissan Chemicals) zugegeben. Nach dem Auftrag und dem Abdunsten des Lösungsmittels erfolgt die Härtung bei 250°C über 15 min.
  • 4. 89 g Vinyltriethoxysilan und 111 g Mercaptopropyltrimethoxysilan werden in einer Mischung aus 500 g Butylacetat und 250 g Ethanol gelöst und langsam unter Rühren mit 70 g 0,1M Salzsäure versetzt. Nach 2 h Rühren werden in dieser Mischung 10 g Fällungskieselsäure FK 300 DS (Degussa) dispergiert. Es ist darauf zu achten, dass die Temperatur nicht über 30°C ansteigt. Kurz vor der Verarbeitung löst man 2 g Fotoinitiator (z. B. Irgacure 184 von Ciba) in der Mischung. Nach dem Auftrag und dem Abdunsten des Lösungsmittels erfolgt die Härtung mit UV-Licht, z. B. mit Hilfe einer Quecksilbermitteldrucklampe, 1200 W innerhalb von 15 s.
  • 5. XXX In allen angegebenen Formulierungen lässt sich die schmutz- und wasserabweisende Wirkung erzielen bzw. erhöhen, wenn man vor dem Auftragen fluormodifizierte Verbindungen wie z. B. Fluoralkylalkoxysilane (vorzugsweise (3,3,3- Trifluorpropyl)trimethoxysilan, (Tridecafluor-1,1,2,2-tetrahydrooctyl)triethoxysilan, (Heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilan) oder Fluoralkylchlorsilane (z. B. (3,3,3-Trifluorpropyl)trichlorsilan, (Tridecafluor-1,1,2,2-tetrahydrooctyl)trichlorsilan, (Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorsilan) zusetzt. Üblicherweise werden verwendet 0,05 bis 5%, vorzugsweise 0,5 bis 1%.
Nanocomposites consist of an organic (e.g. epoxy) or inorganic-organic polymer matrix (e.g. siloxane) with embedded inorganic particles (or oxides of silicon, titanium, zirconium, aluminum). The particles have diameters from 1 nm to 1000 nm.
  • 1. 475 g of 3-glycidoxypropyltrimethoxysilane are slowly added at room temperature with stirring with 25 g of 0.1 M hydrochloric acid. After 1 h, 185 g of bisphenol A are dissolved in the mixture and stirring is continued for 1 h. Then 20 g of Aerosil 300 (Degussa) are dispersed in the mixture. Then diluted with alcohols (e.g. butanol) to a solids content of approx. 20%. About 1 h before the coating process, 15 g of methylimidazole are added to the solution. After application, curing takes place at 150 to 200 ° C for about 2 to 5 minutes.
  • 2. Nanocomposite varnish inoCOAT HC or inoCOAT XT from inocermic GmbH, Hermsdorf
    After application and evaporation of the solvent, curing takes place within 2 minutes at 250 ° C.
  • 3. 250 g of propyltriethoxysilane, 250 g of methyltriethoxysilane and 150 g of Dynasil 40 (Degussa) are dissolved in 500 g of ethanol. 350 g of 0.1 M hydrochloric acid are slowly added to the mixture with constant stirring and the mixture is stirred for 2 hours. 200 g of IPA-ST (colloidal silicon dioxide dispersion from Nissan Chemicals) are then added. After application and evaporation of the solvent, curing takes place at 250 ° C for 15 minutes.
  • 4. 89 g of vinyltriethoxysilane and 111 g of mercaptopropyltrimethoxysilane are dissolved in a mixture of 500 g of butyl acetate and 250 g of ethanol, and 70 g of 0.1M hydrochloric acid are slowly added while stirring. After stirring for 2 hours, 10 g of precipitated silica FK 300 DS (Degussa) are dispersed in this mixture. Care must be taken that the temperature does not rise above 30 ° C. Shortly before processing, 2 g of photoinitiator (e.g. Irgacure 184 from Ciba) are dissolved in the mixture. After application and evaporation of the solvent, curing is carried out with UV light, e.g. B. using a medium pressure mercury lamp, 1200 W within 15 s.
  • 5. XXX In all of the stated formulations, the dirt and water repellent effect can be achieved or increased if fluorine-modified compounds such as e.g. B. fluoroalkylalkoxysilanes (preferably (3,3,3-trifluoropropyl) trimethoxysilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane) or fluoroalkylchlorosilanes (z B. (3,3,3-Trifluoropropyl) trichlorosilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trichlorosilane). 0.05 to 5%, preferably 0.5 to 1%, is usually used.

Claims (15)

1. Oberflächenmodifizierter Werkstoffverbund mit den Eigenschaften
wasserabweisend,
schmutzabweisend,
Antihafteffekt,
Verschleissbeständig,
Korrosionsschutz für das Substratmaterial
elektrisch isolierend,
dadurch gekennzeichnet, dass er sich aus mindestens 3 stofflichen Bestandteilen zusammensetzt.
Der erste Bestandteil - das Substrat - ist ein Metall, ein Kunststoff (auch GFK, CFK) oder eine Keramik. Ein Teil der Oberfläche oder die gesamte Oberfläche wird durch die Bestandteile 2 und 3 bedeckt.
? nähere Beschreibung: dichtporös, Gestalt???
Der zweite Bestandteil ist eine Keramik, ein Metall oder ein Cermet mit poröser Struktur, hergestellt
durch Plasmaspritzen/thermisches Spritzen . . .
durch Sintern von Schichten aus Pulvern dieser Materialien (evtl. mit Bindern),
durch Abscheidung aus der Gasphase (CVD, PVD),
durch Abscheidung aus flüssiger Phase (Sol-Gel-Technik)
durch Abscheidung mittels elektrischem Strom (Galvanik).
?andere Verfahren?
Der dritte Bestandteil ist ein anorganisch-organisches Nanokompositmaterial, das die Poren des zweiten Materials ausfüllt und darüber hinaus auch dessen Oberfläche bedecken kann.
1. Surface-modified composite material with the properties
water repellent,
stain-resistant,
Non-stick effect,
wear resistant,
Corrosion protection for the substrate material
electrically insulating,
characterized in that it is composed of at least 3 material components.
The first component - the substrate - is a metal, a plastic (also GRP, CFRP) or a ceramic. Part of the surface or the entire surface is covered by components 2 and 3.
? detailed description: dense porous, shape ???
The second component is a ceramic, a metal or a cermet with a porous structure
by plasma spraying / thermal spraying. , ,
by sintering layers of powders of these materials (possibly with binders),
by deposition from the gas phase (CVD, PVD),
by deposition from the liquid phase (sol-gel technique)
by deposition using electrical current (electroplating).
? other procedures?
The third component is an inorganic-organic nanocomposite material that fills the pores of the second material and can also cover its surface.
2. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 1, dadurch gekennzeichnet, dass die Oberfläche rauh ist. Die Rauhigkeit weist dabei einen Mittenrauhwert Ra im Bereich von 0,05 µm bis 100 µm, vorzugsweise 1 µm bis 50 µm, eine gemittelte Rauhtiefe Rz im Bereich von 0,25 µm bis 500 µm, vorzugsweise 5 µm bis 250 µm und einen mittleren Rillenabstand RSm von 0,5 µm bis 1000 µm, vorzugsweise 10 µm bis 500 µm aufweist. 2. Surface-modified composite material according to claim 1, characterized in that the surface is rough. The roughness has a mean roughness value R a in the range from 0.05 μm to 100 μm, preferably 1 μm to 50 μm, an average roughness depth R z in the range from 0.25 μm to 500 μm, preferably 5 μm to 250 μm and one has an average groove spacing RS m of 0.5 μm to 1000 μm, preferably 10 μm to 500 μm. 3. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Porosität des zweiten Bestandteils zwischen 2 und 35% liegt und der Porendurchmesser 10 nm bis 10 µm beträgt. 3. Surface-modified composite material according to claim 1 and 2, characterized characterized in that the porosity of the second component is between 2 and 35% and the pore diameter is 10 nm to 10 µm. 4. Verfahren zur Herstellung des oberflächenmodifizierten Werkstoffverbundes nach Anspruch 1 und 2, dadurch gekennzeichnet, dass zur Herstellung des ersten Bestandteiles thermische oder Plasmaspritzverfahren eingesetzt werden. 4. Process for producing the surface-modified composite material according to claim 1 and 2, characterized in that for the production of first component used thermal or plasma spraying become. 5. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 1-3, dadurch gekennzeichnet, dass der zweite Bestandteil (Nanokompositmaterial) durch Auftragung einer flüssigen Vorstufe und anschließende Trocknung und Aushärtung gebildet wird. 5. Surface-modified composite material according to claims 1-3, characterized characterized in that the second component (nanocomposite material) Application of a liquid precursor and subsequent drying and Curing is formed. 6. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 4, dadurch gekennzeichnet, dass die Auftragung der flüssigen Vorstufe durch Spritzen, Sprühen oder Vernebeln erfolgt. 6. Surface-modified composite material according to claim 4, characterized characterized that the application of the liquid precursor by spraying, Spraying or atomizing takes place. 7. Oberflächenmodifzierter Werkstoffverbund nach Anspruch 4, dadurch gekennzeichnet, dass die Auftragung der flüssigen Vorstufe durch Pinsel- bzw. Bürstenauftrag, Verreiben, Walzen oder Rakeln erfolgt. 7. Surface-modified composite material according to claim 4, characterized characterized that the application of the liquid precursor by brush or brushing, rubbing, rolling or doctoring. 8. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 4, dadurch gekennzeichnet, dass die Auftragung der flüssigen Vorstufe durch Tauchen, Fluten oder Lackvorhanggießen erfolgt. 8. Surface-modified composite material according to claim 4, characterized characterized that the application of the liquid precursor by dipping, Flooding or lacquer curtain pouring takes place. 9. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 4-7, dadurch gekennzeichnet, dass die Aushärtung thermisch bei Temperaturen > 60° erfolgt. 9. Surface-modified composite material according to claims 4-7, characterized characterized that the curing thermally at temperatures> 60 ° he follows. 10. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 4-7, dadurch gekennzeichnet, dass die Aushärtung durch kurzzeitige Bestrahlung mit Licht, vorzugsweise UV-Licht erfolgt. 10. Surface-modified composite material according to claims 4-7, characterized characterized in that the curing by brief exposure to light, preferably UV light. 11. Nanokompositschicht nach Anspruch 5-8, dadurch gekennzeichnet, dass die Aushärtung mit Unterstützung von Mikrowellenstrahlung erfolgt. 11. Nanocomposite layer according to claim 5-8, characterized in that the Curing takes place with the support of microwave radiation. 12. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 1-10, dadurch gekennzeichnet, dass die Einstellung der Rauhigkeit durch die Prozessparameter des thermischen oder Plasmaspritzprozesses erfolgt und durch die Beschichtung mit dem Nanokomposit nur wenig verändert wird. 12. Surface-modified composite material according to claims 1-10, characterized characterized that the adjustment of the roughness by the Process parameters of the thermal or plasma spraying process are carried out and little is changed by coating with the nanocomposite. 13. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 1-10, dadurch gekennzeichnet, dass die Einstellung der Rauhigkeit durch Einbettung von Mikropartikeln erfolgt, die der flüssigen Vorstufe des Nanokomposits zugesetzt werden. 13. Surface-modified composite material according to claims 1-10, characterized characterized that the adjustment of the roughness by embedding Microparticles are added to the liquid precursor of the nanocomposite become. 14. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 1-10, dadurch gekennzeichnet, dass die Einstellung der Mikrorauhigkeit durch eine Kombination von entsprechenden Parametern des Spritzprozesses und Einbettung von Mikropartikeln in die flüssige Vorstufe des Nanokomposits erfolgt. 14. Surface-modified composite material according to claims 1-10, characterized characterized that the adjustment of the micro roughness by a Combination of corresponding parameters of the spraying process and Embedding microparticles in the liquid precursor of the nanocomposite he follows. 15. Oberflächenmodifizierter Werkstoffverbund nach Anspruch 1-3, dadurch gekennzeichnet, dass der zweite Bestandteil (Nanokompositmaterial) fluorkohlenwasserstoffmodifizierte Verbindungen enthält, um die Oberflächenenergie zu minimieren. 15. Surface-modified composite material according to claims 1-3, characterized characterized in that the second component (nanocomposite material) contains fluorocarbon modified compounds to the Minimize surface energy.
DE10163646A 2001-12-21 2001-12-21 A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings Withdrawn DE10163646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10163646A DE10163646A1 (en) 2001-12-21 2001-12-21 A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10163646A DE10163646A1 (en) 2001-12-21 2001-12-21 A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings

Publications (1)

Publication Number Publication Date
DE10163646A1 true DE10163646A1 (en) 2003-07-03

Family

ID=7710644

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10163646A Withdrawn DE10163646A1 (en) 2001-12-21 2001-12-21 A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings

Country Status (1)

Country Link
DE (1) DE10163646A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074420A1 (en) * 2002-03-06 2003-09-12 Roche Diagnostics Gmbh Modified oxidic nano-particle with hydrophobic inclusions, method for the production and use of said particle
DE102004033476A1 (en) * 2004-07-10 2006-02-23 Nanogate Coating Systems Gmbh Metallic valve
DE102005006670A1 (en) * 2005-02-15 2006-08-17 Ks Kolbenschmidt Gmbh Anti-adhesive coating of components to prevent carbon deposits
EP1808511A1 (en) * 2006-01-16 2007-07-18 Siemens Aktiengesellschaft Method of coating a compressor
FR2904206A1 (en) * 2006-07-31 2008-02-01 Seb Sa Culinary article e.g. cooking pots, pans and woks with improved hydrophobic properties, particularly an improved detergent resistance when used in dish-washer, comprises a support, a sol-gel coating layer and a silicone based coating layer
EP1914277A1 (en) * 2006-10-18 2008-04-23 Nanocyl S.A. Anti-adhesive and anti-static composition
WO2008046165A2 (en) * 2006-10-18 2008-04-24 Nanocyl S.A. Anti-adhesive and antistatic composition
DE102007050897A1 (en) * 2007-10-24 2009-04-30 Continental Automotive Gmbh Valve for controlling the exhaust gas return flow
EP1903124A3 (en) * 2006-09-22 2009-07-22 Innovent e.V. Technologieentwicklung Method for manufacturing an inorganic-inorganic or inorganic-organic gradient composite coating
DE202012103420U1 (en) 2012-09-07 2012-10-09 Balluff Gmbh Coated sensor or RFID housing
DE202012103418U1 (en) 2012-09-07 2012-10-09 Balluff Gmbh Coated sensor or RFID housing
DE202012103416U1 (en) 2012-09-07 2012-10-09 Balluff Gmbh Coated sensor or RFID housing
DE202012103419U1 (en) 2012-09-07 2012-10-09 Balluff Gmbh Coated sensor or RFID housing
DE102012109808A1 (en) * 2012-10-15 2014-06-12 Schott Ag Preparing composite material used in e.g. door of oven, comprises applying of sol gel layer prepared by mixing pigment particle and oxide particle on glass or glass ceramic substrate, and applying polymer layer on sol gel layer
DE102013104646A1 (en) 2013-05-06 2014-11-06 Saeed Isfahani Ceramic coating of plastic
US9215993B2 (en) 2001-08-29 2015-12-22 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US9901296B2 (en) 2000-03-04 2018-02-27 Roche Diabetes Care, Inc. Blood lancet with hygienic tip protection
US10308548B2 (en) 2012-04-20 2019-06-04 Schott Ag Glass or glass ceramic substrate provided with a decorative coating and method for producing same
CN116871139A (en) * 2023-07-10 2023-10-13 中铁二局集团有限公司 Shield cutter head combined structure for resisting mud cake, preparation method and application

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901296B2 (en) 2000-03-04 2018-02-27 Roche Diabetes Care, Inc. Blood lancet with hygienic tip protection
US9215993B2 (en) 2001-08-29 2015-12-22 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
WO2003074420A1 (en) * 2002-03-06 2003-09-12 Roche Diagnostics Gmbh Modified oxidic nano-particle with hydrophobic inclusions, method for the production and use of said particle
DE102004033476A1 (en) * 2004-07-10 2006-02-23 Nanogate Coating Systems Gmbh Metallic valve
DE102005006670A1 (en) * 2005-02-15 2006-08-17 Ks Kolbenschmidt Gmbh Anti-adhesive coating of components to prevent carbon deposits
EP1808511A1 (en) * 2006-01-16 2007-07-18 Siemens Aktiengesellschaft Method of coating a compressor
WO2007082794A1 (en) * 2006-01-16 2007-07-26 Siemens Aktiengesellschaft Method for surface coating a compressor component
US8071219B2 (en) 2006-07-31 2011-12-06 Seb S.A. Culinary item presenting improved hydrophobic properties and method of manufacturing such an item
EP1894502A1 (en) * 2006-07-31 2008-03-05 Seb Sa Culinary item with improved hydrophobic properties and method of producing such an item
FR2904206A1 (en) * 2006-07-31 2008-02-01 Seb Sa Culinary article e.g. cooking pots, pans and woks with improved hydrophobic properties, particularly an improved detergent resistance when used in dish-washer, comprises a support, a sol-gel coating layer and a silicone based coating layer
EP1903124A3 (en) * 2006-09-22 2009-07-22 Innovent e.V. Technologieentwicklung Method for manufacturing an inorganic-inorganic or inorganic-organic gradient composite coating
WO2008046165A3 (en) * 2006-10-18 2008-06-19 Nanocyl Sa Anti-adhesive and antistatic composition
EP1914277A1 (en) * 2006-10-18 2008-04-23 Nanocyl S.A. Anti-adhesive and anti-static composition
WO2008046165A2 (en) * 2006-10-18 2008-04-24 Nanocyl S.A. Anti-adhesive and antistatic composition
DE102007050897A1 (en) * 2007-10-24 2009-04-30 Continental Automotive Gmbh Valve for controlling the exhaust gas return flow
US11713277B2 (en) 2012-04-20 2023-08-01 Schott Ag Glass or glass ceramic substrate provided with a decorative coating and method for producing same
US10590036B2 (en) 2012-04-20 2020-03-17 Schott Ag Composite material with decorative coating and method for producing same
US10308548B2 (en) 2012-04-20 2019-06-04 Schott Ag Glass or glass ceramic substrate provided with a decorative coating and method for producing same
DE202012103419U1 (en) 2012-09-07 2012-10-09 Balluff Gmbh Coated sensor or RFID housing
DE202012103416U1 (en) 2012-09-07 2012-10-09 Balluff Gmbh Coated sensor or RFID housing
DE202012103418U1 (en) 2012-09-07 2012-10-09 Balluff Gmbh Coated sensor or RFID housing
DE202012103420U1 (en) 2012-09-07 2012-10-09 Balluff Gmbh Coated sensor or RFID housing
DE102012109808A1 (en) * 2012-10-15 2014-06-12 Schott Ag Preparing composite material used in e.g. door of oven, comprises applying of sol gel layer prepared by mixing pigment particle and oxide particle on glass or glass ceramic substrate, and applying polymer layer on sol gel layer
DE102013104646A1 (en) 2013-05-06 2014-11-06 Saeed Isfahani Ceramic coating of plastic
DE202013012522U1 (en) 2013-05-06 2017-03-21 Saeed Isfahani Ceramic coating of plastic
CN116871139A (en) * 2023-07-10 2023-10-13 中铁二局集团有限公司 Shield cutter head combined structure for resisting mud cake, preparation method and application

Similar Documents

Publication Publication Date Title
DE10163646A1 (en) A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings
EP1383940B1 (en) Functional ceramic layers based on a support layer produced with crystalline nanoparticles
Koumoto et al. Micropatterning of titanium dioxide on self-assembled monolayers using a liquid-phase deposition process
DE69531552T2 (en) PROTECTION COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
Jia et al. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali
WO2001074739A1 (en) Glass ceramic and metal substrates with a self-cleaning surface, method for the production and use thereof
KR101025003B1 (en) Functional inorganic thick film and thick film manufacturing method using functional surface treatment of inorganic nano-particle sol
US10064283B2 (en) Embedded thin films
Masuda et al. Liquid-phase patterning and microstructure of anatase TiO2 films on SnO2: F substrates using superhydrophilic surface
EP3674438A1 (en) Preparation method for high insulation nano-protective coating having modulation structure
CN107849723B (en) Culinary article comprising a rare earth oxide layer
KR20020063554A (en) Process for making chemically bonded sol-gel ceramics
Chou et al. Adhesion of sol-gel-derived organic-inorganic hybrid coatings on polyester
DE112015001719T5 (en) Hydrophobic article
Sepulveda et al. Superhydrophobic–oleophobic visible–transparent antireflective nanostructured anodic HfO2 multifunctional coatings for potential solar panel applications
JP6011774B2 (en) Coating composition and method for producing alumina thin film
DE19904133A1 (en) Surface modified insulator and method for modifying the surface of an insulator
Li et al. Robust super‐hydrophobic ceramic coating on alumina with water and dirt repelling properties
Oh et al. Organic/inorganic hybrid cerium oxide-based superhydrophobic surface with enhanced weather resistance and self-recovery
Basiron et al. Improved Adhesion of Nonfluorinated ZnO Nanotriangle Superhydrophobic Layer on Glass Surface by Spray‐Coating Method
WO2011020851A1 (en) Coatings filled with particles, production method and uses thereof
Seuss et al. Electrophoretic deposition of PEEK-TiO2 composite coatings on stainless steel
Wang et al. Fast fabrication of superhydrophobic surfaces on Ti–6Al–4V substrates by deposition of lead
Vanithakumari et al. Polyvinylidene Difluoride-SiO2-Silane Based Superhydrophobic Coatings on Carbon Steel with Enhanced Corrosion Resistance and Self-Cleaning Property
Sarkar et al. One-step deposition process to obtain nanostructured superhydrophobic thin films by galvanic exchange reactions

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE

R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C09D0007060000

Ipc: C09D0007470000

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee