DE10150738C1 - Process for producing a glass tube with a radiation-absorbing, aging-resistant coating and its use - Google Patents

Process for producing a glass tube with a radiation-absorbing, aging-resistant coating and its use

Info

Publication number
DE10150738C1
DE10150738C1 DE10150738A DE10150738A DE10150738C1 DE 10150738 C1 DE10150738 C1 DE 10150738C1 DE 10150738 A DE10150738 A DE 10150738A DE 10150738 A DE10150738 A DE 10150738A DE 10150738 C1 DE10150738 C1 DE 10150738C1
Authority
DE
Germany
Prior art keywords
layer
ncm
aging
radiation
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10150738A
Other languages
German (de)
Inventor
Paul Richard Bahr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glaswerke AG filed Critical Schott Glaswerke AG
Priority to DE10150738A priority Critical patent/DE10150738C1/en
Priority to AU2002347043A priority patent/AU2002347043A1/en
Priority to PCT/EP2002/011041 priority patent/WO2003033426A1/en
Application granted granted Critical
Publication of DE10150738C1 publication Critical patent/DE10150738C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/005Coating the outside
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3615Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Glasrohres mit strahlungsabsorbierender alterungsbeständiger Beschichtung, die eine erste IR-reflektierende Schicht auf dem Glas, eine zweite Schicht, die Aluminium und Aluminiumnitrid, eine dritte Schicht, die Aluminium und Aluminiumoxid enthält, wobei beim Auftragen der dritten Schicht O¶2¶ mit einem Volumenstrom von mit 40 Ncm·3·/min bis 60 Ncm·3·/min eingeleitet wird und eine vierte Schicht, die Aluminiumoxid enthält, umfasst.The present invention relates to a method for producing a glass tube with a radiation-absorbing, aging-resistant coating, which has a first IR-reflecting layer on the glass, a second layer which contains aluminum and aluminum nitride, a third layer which contains aluminum and aluminum oxide, the third being applied Layer O¶2¶ with a volume flow of 40 Ncm · 3 · / min to 60 Ncm · 3 · / min is introduced and comprises a fourth layer containing aluminum oxide.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Glasrohres mit strahlungsabsorbierender alterungsbeständiger Schicht sowie dessen Verwendung.The present invention relates to a method for producing a glass tube with radiation-absorbing aging-resistant layer and its use.

Aus "Neue Vakuumröhren für Sonnenkollektoren" von Martin Brunotte, Nor­ bert Dischinger, Gottfried Haas in Erneuerbare Energie, Neuentwicklungen, 1999, Heft 3" ist der Aufbau eines Absorberrohres für Vakuumröhren bekannt. Auf das Glas wird zunächst eine IR-reflektierende Schicht aus metallischem Aluminium gesput­ tert. Als nächste Schicht wird eine Aluminiumnitrid-Schicht mit Aluminium- Einlagerungen gesputtert, dann wird eine Aluminiumoxid-Schicht mit Alumini­ um-Einlagerungen gesputtert und schließlich wird eine Aluminiumoxid Deck­ schicht gesputtert. Die herkömmlich hergestellten Absorberrohren zeigen deutliche Farbveränderungen als Folge der schnellen Alterung. Die Alterung hat die Herabsetzung der Leistungsfähigkeit des Kollektors zur Folge.From "New vacuum tubes for solar collectors" by Martin Brunotte, Nor bert Dischinger, Gottfried Haas in Renewable Energy, New Developments, 1999, Issue 3 "is the Structure of an absorber tube for vacuum tubes known. On the glass first sputtered an IR reflecting layer made of metallic aluminum tert. The next layer is an aluminum nitride layer with aluminum Sputtered deposits, then an alumina layer with alumini sputtered around deposits and finally an alumina deck layer sputtered. The conventionally manufactured absorber tubes show significant color changes as a result of rapid aging. The aging causes the performance of the collector to decrease.

Aufgabe der vorliegenden Erfindung liegt darin beschichtete Rohre und ein Verfahren zu deren Herstellung bereitzustellen, wobei beschichtete Rohre er­ halten werden, die keine relevante Farbveränderungen und daher Alterung zeigen.The object of the present invention is coated tubes and a To provide processes for their preparation, wherein he coated tubes will keep that have no relevant color changes and therefore aging demonstrate.

Die Aufgabe der Erfindung wird durch ein Verfahren zur Herstellung eines Glasrohres mit strahlungsabsorbie­ render alterungsbeständiger Schicht gelöst, wobei
The object of the invention is achieved by a method for producing a glass tube with a radiation-absorbing, aging-resistant layer, wherein

  • a) eine erste IR-reflektierende Schicht auf dem Glas aufgebracht wird,a) a first IR-reflecting layer is applied to the glass,
  • b) eine zweite Schicht, die Aluminium und Aluminiumnitrid enthält, aufgebracht wird,b) a second layer containing aluminum and aluminum nitride is applied,
  • c) eine dritte Schicht, die Aluminium und Aluminiumoxid enthält, aufgebracht wird, wobei beim Auftragen der dritten Schicht O2 mit einem Volumenstrom von mit 40 Ncm3/min bis 60 Ncm3/min eingeleitet wird, und c) a third layer, which contains aluminum and aluminum oxide, is applied, O 3 being introduced at a volume flow of from 40 Ncm 3 / min to 60 Ncm 3 / min when the third layer is applied, and
  • d) eine vierte Schicht, die Aluminiumoxid enthält, aufgebracht wird.d) a fourth layer containing aluminum oxide is applied.

Bei dem erfindungsgemäßen Glasrohr wurde eine Beschichtung erhalten, die keine relevanten Farbveränderungen zeigt. Die ausbleibende Farbverände­ rung deutet auf äußerst geringe Alterung hin. Das wird erfindungsgemäß durch Einleiten eines Volumenstroms von 40 Ncm3/min bis 60 Ncm3 O2 beim Auftragen der dritten Schicht erreicht (Ncm3 = cm3 in Normzustand).In the glass tube according to the invention, a coating was obtained which showed no relevant color changes. The lack of color change indicates extremely low aging. This is achieved according to the invention by introducing a volume flow of 40 Ncm 3 / min to 60 Ncm 3 O 2 when applying the third layer (Ncm 3 = cm 3 in the normal state).

Nach einer bevorzugten Ausgestaltung der Erfindung wird beim Auftragen der dritten Schicht O2 mit einem Volumenstrom von mit 45 Ncm3/min bis 60 Ncm3/min eingeleitet. Mit diesem Volumenstrom werden sehr gute Ergeb­ nisse erzielt.According to a preferred embodiment of the invention, when the third layer is applied, O 2 is introduced at a volume flow of 45 Ncm 3 / min to 60 Ncm 3 / min. Very good results are achieved with this volume flow.

Nach einer bevorzugten Ausgestaltung der Erfindung wird beim Auftragen der dritten Schicht O2 mit einem Volumenstrom von mit 50 Ncm3/min bis 60 Ncm3/min eingeleitet. Mit diesem Volumenstrom werden sehr gute Ergeb­ nisse erzielt.According to a preferred embodiment of the invention, when the third layer is applied, O 2 is introduced at a volume flow of from 50 Ncm 3 / min to 60 Ncm 3 / min. Very good results are achieved with this volume flow.

Nach einer bevorzugten Ausgestaltung der Erfindung wird die vierte Schicht mit einer Schichtdicke von 80 nm bis 120 nm aufgebracht. According to a preferred embodiment of the invention the fourth shift with applied a layer thickness of 80 nm to 120 nm.  

Erfindungsgemäß ist die Verwendung des Glasrohres mit strahlungsabsor­ bierender alterungsbeständiger Beschichtung zur Herstellung von Vakkum- Röhrenkollektoren vorgesehen. Die äußerst geringe Alterung ergibt eine er­ höhte Leistungsfähigkeit für ein Absorberrohr in einem Kollektorrohr.According to the invention, the use of the glass tube with radiation absorber aging-resistant coating for the production of vacuum Tube collectors provided. The extremely low aging results in a he High performance for an absorber tube in a collector tube.

Die Erfindung wird anhand einer Zeichnung und Beispielen näher erläutert.The invention is explained in more detail with reference to a drawing and examples.

Zeichnungdrawing

Die Zeichnung enthält Fig. 1 und Fig. 2.The drawing comprises Figs. 1 and FIG. 2.

Fig. 1 zeigt das gemessene Verhalten von Reflexion (%) über die Wellen­ länge (nm) eines erfindungsgemäßen Schichtaufbaus vor und nach der be­ schleunigten Alterung. Die Kurve (a) steht für den Schichtaufbau vor und Kur­ ve (b) nach der Alterung. Ein Vergleich der Kurven (a) und (b) zeigt eine leichte Zunahme der Reflexion (%) im Bereich von 600 nm bis 800 nm. Das bedeutet eine sehr geringe unbedeutende Alterung des Schichtaufbaues. Fig. 1 shows the measured behavior of reflection (%) over the wavelength (nm) of a layer structure according to the invention before and after accelerated aging be. Curve (a) stands for the layer structure before and curve ve (b) after aging. A comparison of the curves (a) and (b) shows a slight increase in the reflection (%) in the range from 600 nm to 800 nm. This means a very slight insignificant aging of the layer structure.

Fig. 2 Fig. 2

Fig. 2 zeigt das gemessene Verhalten von Reflexion (%) über die Wellen­ länge (nm) eines Schichtaufbaus gemäß Vergleichsbeispiel vor und nach der beschleunigten Alterung. Die Kurve (c) steht für den Schichtaufbau vor und Kurve (d) nach der Alterung. Ein Vergleich der Kurven (c) und (d) zeigt eine starke Zunahme der Reflexion (%) im Bereich von 600 nm bis 800 nm. Das bedeutet eine sehr starke Farbveränderung, was eine schnelle Alterung des Schichtaufbaues bedeutet. Fig. 2 shows the measured behavior of reflection (%) over the wavelength (nm) of a layer structure according to the comparative example before and after the accelerated aging. Curve (c) represents the layer structure before and curve (d) after aging. A comparison of the curves (c) and (d) shows a strong increase in the reflection (%) in the range from 600 nm to 800 nm. This means a very strong color change, which means a rapid aging of the layer structure.

Beispielexample

Glasrohre (Fiolax®, 1 m lang, 16 mm Durchmesser) wurden in einen Drehkorb eines Sputters mit Aluminium als Target gegeben. Der Drehkorb wurde in eine Vakuumkammer eingesetzt. Die Vakuumkammer wurde auf einen Druck von 5-5 mbar bis 10-5 mbar evakuiert. Danach wurde Argon in die Vakuumkammer eingelassen, bis sich ein Druck von 2.10-3 bis 10.10*-3 bar einstellte. Der Drehkorb wurde in Rotationsbewegung versetzt. Die Glasrohre drehten sich um ihre eigene Rotationsachse. Nach 3 Minuten und vollständiger Bedeckung der Glasrohre mit einer Aluminiumschichtdicke von 100 nm, wurde die Span­ nung unterbrochen und 5 Sekunden N2 mit einem Volumenstrom von 35 Ncm3/min eingeleitet. Dabei wurde ein Gesamtdruck von 5.10-3 mbar bis 10.10-3 mbar eingestellt. Danach wurde die Kathode unter Spannung gesetzt. Nach 2 Minuten wurde die Spannung und N2-Zugabe unterbrochen. Danach wurde 5 Sekunden O2 mit einem Volumenstrom von 50 Ncm3/min eingeleitet. Dann wurde Kathode unter Spannung gesetzt. Danach wurde ein Gesamt­ druck von 5.10-3 mbar bis 10.10-3 mbar eingestellt. Nach 1,5 Minuten wurde die Spannung unterbrochen. Dann wurde O2 mit einem Volumenstrom von 75 Ncm3/min bis 210 Ncm3/min eingeleitet. Dabei wurde ein Gesamtdruck von 5.10-3 mbar eingestellt. Nach 5 Sekunden wurden die Kathoden unter Span­ nung gesetzt und 2,5 Minuten mit Al2O3 beschichtet.Glass tubes (Fiolax®, 1 m long, 16 mm diameter) were placed in a rotating basket of a sputter with aluminum as the target. The rotating basket was placed in a vacuum chamber. The vacuum chamber was evacuated to a pressure of 5 -5 mbar to 10 -5 mbar. Then argon was let into the vacuum chamber until a pressure of 2.10 -3 to 10.10 * -3 bar was reached. The rotating basket was rotated. The glass tubes rotated on their own axis of rotation. After 3 minutes and complete covering of the glass tubes with an aluminum layer thickness of 100 nm, the voltage was interrupted and N 2 was introduced for 5 seconds with a volume flow of 35 Ncm 3 / min. A total pressure of 5.10 -3 mbar to 10.10 -3 mbar was set. The cathode was then energized. After 2 minutes, the voltage and N 2 addition were interrupted. Then O 2 was introduced for 5 seconds with a volume flow of 50 Ncm 3 / min. Then the cathode was energized. A total pressure of 5.10 -3 mbar to 10.10 -3 mbar was then set. After 1.5 minutes the tension was interrupted. Then O 2 was introduced with a volume flow of 75 Ncm 3 / min to 210 Ncm 3 / min. A total pressure of 5.10 -3 mbar was set. After 5 seconds, the cathodes were energized and coated with Al 2 O 3 for 2.5 minutes.

Es wurde ein beschichtetes Glasrohr auf dem optischen Spektrometer auf seine Reflektionsverteilung vermessen (Kurve (a)). Dann wurde das Absorber­ rohr einer beschleunigten Alterung unterzogen. Die Beschleunigung wurde er­ reicht, indem sich das Absorberrohr im Kollektor befand und dabei auf 240°C 100 h beheizt wurde. Danach wurde erneut die Reflektionsverteilung gemes­ sen (Kurve (b)). Es wurden keine relevante Farbveränderungen beobachtet.A coated glass tube was placed on the optical spectrometer measure its reflection distribution (curve (a)). Then the absorber accelerated aging. He was accelerating is sufficient if the absorber tube was in the collector and at 240 ° C  Was heated for 100 hours. Then the reflection distribution was measured again sen (curve (b)). No relevant color changes were observed.

VergleichsbeispielComparative example

Das Vergleichsbeispiel wurde wie das Beispiel durchgeführt, jedoch mit dem Unterschied, dass 5 Sekunden O2 mit einem Volumenstrom von 70 Ncm3/min zur Herstellung der dritten Schicht eingeleitet wurde. Die gemessene Reflekti­ onsverteilung nach der beschleunigten Alterung ergab eine deutliche Farb­ veränderung. Die Farbveränderung ist eine Folge der Alterung (Kurve (d)). Die Alterung hat die Herabsetzung der Leistungsfähigkeit des Kollektors zur Folge.The comparative example was carried out as the example, with the difference that O 2 was introduced for 5 seconds at a volume flow of 70 Ncm 3 / min to produce the third layer. The measured reflection distribution after accelerated aging showed a clear color change. The color change is a result of aging (curve (d)). Aging reduces the performance of the collector.

Claims (5)

1. Verfahren zur Herstellung eines Glasrohres mit strahlungsabsorbierender alterungsbeständiger Beschichtung, wobei
  • a) eine erste IR-reflektierende Schicht auf dem Glas aufgebracht wird,
  • b) eine zweite Schicht, die Aluminium und Aluminiumnitrid enthält, aufgebracht wird,
  • c) eine dritte Schicht, die Aluminium und Aluminiumoxid enthält, aufgebracht wird, wobei beim Auftragen der dritten Schicht O2 mit einem Volumenstrom von mit 40 Ncm3/min bis 60 Ncm3/min eingeleitet wird, und
  • d) eine vierte Schicht, die Aluminiumoxid enthält, aufgebracht wird.
1. A method for producing a glass tube with a radiation-absorbing, aging-resistant coating, wherein
  • a) a first IR-reflecting layer is applied to the glass,
  • b) a second layer containing aluminum and aluminum nitride is applied,
  • c) a third layer, which contains aluminum and aluminum oxide, is applied, O 3 being introduced at a volume flow of from 40 Ncm 3 / min to 60 Ncm 3 / min when the third layer is applied, and
  • d) a fourth layer containing aluminum oxide is applied.
2. Verfahren nach Anspruch 1, wobei beim Auftragen der dritten Schicht O2 mit einem Volumen­ strom von mit 45 Ncm3/min bis 60 Ncm3/min eingeleitet wird.2. The method according to claim 1, wherein when the third layer O 2 is introduced with a volume flow of 45 Ncm 3 / min to 60 Ncm 3 / min. 3. Verfahren nach Anspruch 1 oder 2, wobei beim Auftragen der dritten Schicht O2 mit einem Vo­ lumenstrom von mit 50 Ncm3/min bis 60 Ncm3/min eingeleitet wird.3. The method according to claim 1 or 2, wherein when applying the third layer O 2 with a volume flow of 50 Ncm 3 / min to 60 Ncm 3 / min is initiated. 4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, wobei die vierte Schicht mit einer Schichtdicke von 80 nm bis 120 nm aufgebracht wird.4. Procedure according to at least one of claims 1 to 3, wherein the fourth layer with a Layer thickness of 80 nm to 120 nm is applied. 5. Verwendung eines nach Anspruch 1 hergestellten Glasrohres mit strahlungsab­ sorbierender alterungsbeständiger Beschichtung zur Herstellung von Vakuum- Röhrenkollektoren.5. Use of a glass tube produced according to claim 1 with radiation sorbing, age-resistant coating for the production of vacuum Tube collectors.
DE10150738A 2001-10-13 2001-10-13 Process for producing a glass tube with a radiation-absorbing, aging-resistant coating and its use Expired - Fee Related DE10150738C1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10150738A DE10150738C1 (en) 2001-10-13 2001-10-13 Process for producing a glass tube with a radiation-absorbing, aging-resistant coating and its use
AU2002347043A AU2002347043A1 (en) 2001-10-13 2002-10-02 Glass tube with radiation-absorbing anti-aging coating
PCT/EP2002/011041 WO2003033426A1 (en) 2001-10-13 2002-10-02 Glass tube with radiation-absorbing anti-aging coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10150738A DE10150738C1 (en) 2001-10-13 2001-10-13 Process for producing a glass tube with a radiation-absorbing, aging-resistant coating and its use

Publications (1)

Publication Number Publication Date
DE10150738C1 true DE10150738C1 (en) 2003-05-22

Family

ID=7702506

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10150738A Expired - Fee Related DE10150738C1 (en) 2001-10-13 2001-10-13 Process for producing a glass tube with a radiation-absorbing, aging-resistant coating and its use

Country Status (3)

Country Link
AU (1) AU2002347043A1 (en)
DE (1) DE10150738C1 (en)
WO (1) WO2003033426A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056536B3 (en) * 2006-11-27 2008-02-28 Schott Ag Radiation-selective absorber coating, particularly for absorber pipe of parabolic gutter-collector, has layer which reflects in infrared range, where reflecting layer is arranged on two barrier layers
EP2093520A2 (en) 2008-02-20 2009-08-26 Schott AG Radiation-selective absorber coating, absorber tube and method for its manufacture
US8555871B2 (en) 2009-10-15 2013-10-15 Schott Solar Ag Radiation-selective absorber coating and absorber tube with said radiation-selective absorber coating
US10774426B2 (en) 2009-05-20 2020-09-15 Schott Solar Ag Radiation-selective absorber coating and absorber tube with radiation-selective absorber coating

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013170052A1 (en) 2012-05-09 2013-11-14 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
EP2674513B1 (en) 2009-05-13 2018-11-14 SiO2 Medical Products, Inc. Vessel coating and inspection
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
CN103930595A (en) 2011-11-11 2014-07-16 Sio2医药产品公司 Passivation, ph protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
WO2014071061A1 (en) 2012-11-01 2014-05-08 Sio2 Medical Products, Inc. Coating inspection method
EP2920567B1 (en) 2012-11-16 2020-08-19 SiO2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
WO2014085346A1 (en) 2012-11-30 2014-06-05 Sio2 Medical Products, Inc. Hollow body with inside coating
FR3001043B1 (en) * 2013-01-11 2016-05-06 Commissariat Energie Atomique METHOD FOR MONITORING THE DEGRADATION OF A MIRROR
WO2014134577A1 (en) 2013-03-01 2014-09-04 Sio2 Medical Products, Inc. Plasma or cvd pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
WO2014164928A1 (en) 2013-03-11 2014-10-09 Sio2 Medical Products, Inc. Coated packaging
WO2014144926A1 (en) 2013-03-15 2014-09-18 Sio2 Medical Products, Inc. Coating method
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
CA3204930A1 (en) 2015-08-18 2017-02-23 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AT-Z: Erneuerbare Energie, 1999, H. 3, S. 29-31, Hrsg.: Arbeitsgemeinschaft Erneuerbare Energie- Dachverband *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056536B3 (en) * 2006-11-27 2008-02-28 Schott Ag Radiation-selective absorber coating, particularly for absorber pipe of parabolic gutter-collector, has layer which reflects in infrared range, where reflecting layer is arranged on two barrier layers
DE102006056536B9 (en) * 2006-11-27 2008-06-05 Schott Ag Radiation-selective absorber coating, absorber tube and method for its production
US7909029B2 (en) 2006-11-27 2011-03-22 Schott Ag Radiation selective absorber coating for an absorber pipe, absorber pipe with said coating, and method of making same
EP2093520A2 (en) 2008-02-20 2009-08-26 Schott AG Radiation-selective absorber coating, absorber tube and method for its manufacture
DE102008010199A1 (en) 2008-02-20 2009-08-27 Schott Ag Radiation-selective absorber coating, absorber tube and method for its production
US8318329B2 (en) 2008-02-20 2012-11-27 Schott Ag Radiation-selective absorber coating, absorber tube and process for production thereof
US10774426B2 (en) 2009-05-20 2020-09-15 Schott Solar Ag Radiation-selective absorber coating and absorber tube with radiation-selective absorber coating
US8555871B2 (en) 2009-10-15 2013-10-15 Schott Solar Ag Radiation-selective absorber coating and absorber tube with said radiation-selective absorber coating

Also Published As

Publication number Publication date
AU2002347043A1 (en) 2003-04-28
WO2003033426A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
DE10150738C1 (en) Process for producing a glass tube with a radiation-absorbing, aging-resistant coating and its use
EP0120408B2 (en) Process for coating a transparent substrate
EP1180262B1 (en) Method for producing a hybrid disk, and hybrid disk
EP0564709B1 (en) Coated transparent substrate, use thereof, method and apparatus of manufacturing such coatings, and hafnium-oxynitride HfOxNy with 1.5 x/y 3 and 2.6 n 2.8
DE19948839A1 (en) Conductive transparent layers and processes for their manufacture
DE10140514A1 (en) Sputtering target based on titanium dioxide
DE3909654C2 (en) Anti-reflection film for plastic optical parts
DE3503851A1 (en) Highly transparent heat-insulation coating which appears neutral when looked through and when viewed from the outside
EP0722912B1 (en) Glass screens for cathode ray tubes with controllable transmission characteristics, and method for producing them
EP1371745A1 (en) Method and multichamber apparatus to coat a glass substrate with a multilayer SnO/ZnO/Ag/CrNOx
DE3906374A1 (en) Process for the production of panes having high transmission behaviour in the visible spectral region and high reflection behaviour for heat radiation
DE19548430C1 (en) Forming heat-reflective layer system, esp. on glass
EP1123906B1 (en) Method for the production of heat reflecting coating stack for transparent substrates and thus produced coating stack
EP1424315A1 (en) Solar control glass
DE10201492B4 (en) Optical layer system
DE102013112990B4 (en) Solar control layer system with intensive color impression, process for its production and glass unit
DE10046810C2 (en) Making heat-reflecting layered coating on glass employs deposition controlled such that functional and blocking layers are merged to form gradient layers
EP2300631B1 (en) Method for producing a transparent and conductive metal oxide layer by highly ionized pulsed magnetron sputtering
DE69817711T2 (en) Method of manufacturing a cathode ray tube
DE19541014A1 (en) Coating used on glass panes to protect e.g. paintings
EP1754690B1 (en) Glazing unit and method for its production
DE102011012044B4 (en) Method for producing a reflective layer system
EP0136450A1 (en) Process for producing a mirror layer, especially for search light reflectors
DE2925380A1 (en) HEAT-REFLECTING TIO FIEF 2 -COATED DISC AND METHOD FOR THEIR PRODUCTION
EP1204149B1 (en) Method of multilayer deposition and its use

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
8304 Grant after examination procedure
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: SCHOTT AG, 55122 MAINZ, DE

8339 Ceased/non-payment of the annual fee