DE10146393A1 - Non-magnetic sintered body based on SiC and its use - Google Patents

Non-magnetic sintered body based on SiC and its use

Info

Publication number
DE10146393A1
DE10146393A1 DE10146393A DE10146393A DE10146393A1 DE 10146393 A1 DE10146393 A1 DE 10146393A1 DE 10146393 A DE10146393 A DE 10146393A DE 10146393 A DE10146393 A DE 10146393A DE 10146393 A1 DE10146393 A1 DE 10146393A1
Authority
DE
Germany
Prior art keywords
sic
sintering
sintered body
carbon
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10146393A
Other languages
German (de)
Inventor
Helmut Koelker
Lorenz Sigl
Georg Victor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Priority to DE10146393A priority Critical patent/DE10146393A1/en
Priority to PCT/EP2002/010521 priority patent/WO2003025908A2/en
Publication of DE10146393A1 publication Critical patent/DE10146393A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • C04B35/5755Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Keramischer Sinterkörper auf Basis von SiC mit einer Dichte > 95%, der für magnetisch relevante Anwendungen wie beispielsweise Festplattenspeichersubstrat oder Schreib-Lese-Köpfe besonders geeignet ist, dadurch gekennzeichnet, daß er eine Sättigungsmagnetisierung von Ms < 1,2 memu/cm·3· besitzt und nach einem der folgenden Verfahren hergestellt wurde: DOLLAR A a) druckloses Feststoffsintern mit Sinterhilfsmitteln auf Basis von Al/C, Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff mit oder ohne eine Nachbehandlung durch Heißisostatisches Pressen DOLLAR A b) druckbehaftetes Feststoffsintern mit Sinterhilsmitteln auf Basis Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff DOLLAR A c) Flüssigphasensintern mit Sinterhilfsmitteln auf der Basis von Seltenen Erden (insbesondere Y¶2¶O¶3¶) plus Al¶2¶O¶3¶ und/oder AlN.Ceramic sintered body based on SiC with a density> 95%, which is particularly suitable for magnetically relevant applications such as hard disk storage substrates or read / write heads, characterized in that it has a saturation magnetization of Ms <1.2 memu / cm · 3 · and was produced by one of the following processes: DOLLAR A a) pressureless solid sintering with sintering aids based on Al / C, boron / carbon or aluminum / boron / carbon with or without post-treatment by hot isostatic pressing DOLLAR A b) pressurized solid sintering with sintering aids based on boron / carbon or aluminum / boron / carbon DOLLAR A c) Liquid phase sintering with sintering aids based on rare earths (especially Y¶2¶O¶3¶) plus Al¶2¶O¶3¶ and / or AlN.

Description

Die Erfindung betrifft einen unmagnetischen Sinterkörper auf Basis von Siliciumcarbid, seine Herstellung und seine Verwendung in magnetisch relevanten Anwendungen, z. B. als Substrat oder als Schreib-Lese-Kopf in magnetischen Festplattenspeichern. The invention relates to a non-magnetic sintered body Base of silicon carbide, its manufacture and its Use in magnetically relevant applications, e.g. B. as Substrate or as a read / write head in magnetic Hard disk storage.

Laut einschlägigen Lehrbüchern und Tabellenwerken wie z. B. Gmelin, Handbuch der Chemie, besitzt SiC keinen Ferromagnetismus sondern nur Diamagnetismus, oder ggf. je nach Dotierung, Paramagnetismus. Wie aus folgender Aufstellung ersichtlich, ist auch in der Patentliteratur z. B. über Festplattensubstrate aus SiC der Ferromagnetismus in SiC Sinterkörpern bisher nicht beschrieben bzw. völlig ignoriert, obwohl in dieser Anwendung der Magnetismus des Substrats besonders stört. According to relevant textbooks and tables such. B. Gmelin, Handbook of Chemistry, does not have SiC Ferromagnetism but only diamagnetism, or possibly depending on Doping, paramagnetism. As from the following list can be seen, is also in the patent literature such. B. about Hard disk substrates made of SiC the ferromagnetism in SiC Sintered bodies have not yet been described or completely ignored, although in this application the magnetism of the substrate particularly annoying.

US 4,598,017/T. Bayer et al. (IBM) offenbart zwei reaktionsgebundene SiC-Keramikscheiben, die mit Silicium infiltriert sind. Diese werden mit einem Polymerkern zu einem Speicherplattensubstrat verbunden. Über den Ferromagnetismus im SiC ist nichts ausgesagt. US 4,598,017 / T. Bayer et al. (IBM) discloses two reaction-bonded SiC ceramic disks with silicon are infiltrated. These become one with a polymer core Disk substrate connected. About ferromagnetism in SiC says nothing.

Das Patent US 4,738,885/T. Matsumoto (Kyocera), beschreibt ein Nachhipen von drucklos gesinterter Al2O3-Keramik, um die Porosität für eine Anwendung als Festspeicherplatte zu reduzieren. In der Beschreibung ist SiC als ein weiterer Kandidat für solch eine Anwendung erwähnt. Die magnetischen Eigenschaften dieses SiC werden nicht diskutiert. The patent US 4,738,885 / T. Matsumoto (Kyocera) describes a replenishment of pressure-free sintered Al 2 O 3 ceramic in order to reduce the porosity for use as a hard disk. SiC is mentioned in the description as another candidate for such an application. The magnetic properties of this SiC are not discussed.

Das Patent US 5,480,695/M. Tenhover et al. beschreibt die Herstellung von Substraten aus feststoffgesintertem SiC nach Vorschriften aus US 4,312,954, die mit amorphem SiC zur Erzeugung einer porenfreien Oberfläche besputtert werden. Weder diese Patentschrift noch US 4,312,954 erwähnen den Ferromagnetismus der SiC-Keramik. The patent US 5,480,695 / M. Tenhover et al. describes the Manufacture of substrates from solid-sintered SiC after Regulations from US 4,312,954, which with amorphous SiC for Sputtered to produce a non-porous surface. Neither this patent also mention US 4,312,954 Ferromagnetism of SiC ceramics.

Das Patent US 5,358,685/A. Ezis (Cercom), beansprucht eine besonders verunreinigte heißgepresste SiC-Qualität in der Anwendung als z. B. Festspeichersubstrat. Der Eisengehalt liegt bei 0,01-2%. Über den Magnetismus ist nichts gesagt. The patent US 5,358,685 / A. Ezis (Cercom) claims one particularly contaminated hot pressed SiC quality in the Application as z. B. ROM substrate. The iron content is at 0.01-2%. Nothing is said about magnetism.

J 61 013434/T. Matsumoto (Kyocera) beschreibt keramische Festspeicherplattensubstrate, die mit dünnen Schichten aus SiC und Si3N4 beschichtet sind, um porenfreie Oberflächen zu erhalten. Als keramisches Substrat wird u. a. Siliciumcarbid genannt, daß nach typischen Rezepten des Feststoffsinterns hergestellt wurde. Über die magnetischen Eigenschaften dieser Keramik ist nichts gesagt. J 61 013434 / T. Matsumoto (Kyocera) describes ceramic hard disk substrates that are coated with thin layers of SiC and Si 3 N 4 in order to obtain pore-free surfaces. As a ceramic substrate, silicon carbide is mentioned, among others, that was produced according to typical recipes for solid sintering. Nothing is said about the magnetic properties of this ceramic.

J 60 229224 T. Wada et al. (Sumitomo) beschreibt ein Festspeicherplattensubstrat aus SiC-Keramik, das mit dünnen Sputterschichten aus Al2O3, SiO2, oder Si3N4 beschichtet ist, um porenfreie Oberflächen zu erhalten. Zur Herstellung der Keramik wird angegeben, daß die üblichen und bekannten Verfahren benutzt werden können, u. a. Heißpressen, Heißisotatpressen, SiSiC usw. Über den Magnetismus des SiC gibt es keine Aussage in dieser Schrift. J 60 229224 T. Wada et al. (Sumitomo) describes a hard disk substrate made of SiC ceramic, which is coated with thin sputter layers made of Al 2 O 3 , SiO 2 , or Si 3 N 4 , in order to obtain pore-free surfaces. For the production of the ceramic it is stated that the usual and known methods can be used, including hot pressing, hot isotate pressing, SiSiC etc. There is no statement in this document about the magnetism of SiC.

J 63 070919 K. Kawakami et al (Hitachi) beschreibt ein Festspeicherplattensubstrat aus Keramik, beschichtet- mit einer dünnen Glasschicht, um porenfreie Oberflächen zu erhalten. Als Keramik wird vorgeschlagen ZrO2, AlN, Y2O3, und SiC mit mindestens 5% Al2O3-Zusatz. Über die magnetischen Eigenschaften des SiC wird nichts ausgesagt. J 63 070919 K. Kawakami et al (Hitachi) describes a hard disk substrate made of ceramic, coated with a thin glass layer in order to obtain non-porous surfaces. ZrO 2 , AlN, Y 2 O 3 , and SiC with at least 5% Al 2 O 3 addition are proposed as ceramics. Nothing is said about the magnetic properties of SiC.

US 5,487,931 Annacone et al. offenbart ein Festspeicherplattensubstrat aus SiC, das mit einer dünnen Schicht aus Silicium oder TiC, B, TiN, TiCN beschichtet ist, um porenfreie und glatte Oberflächen zu erhalten. Für die Herstellung des SiC wird eine breite Palette von Methoden vorgeschlagen, u. a. das (Drucklos)Sintern und Heißisostatpressen. Über die magnetischen Eigenschaften der SiC-Keramik ist nichts ausgesagt. U.S. 5,487,931 Annacone et al. reveals one Hard disk substrate made of SiC with a thin Layer of silicon or TiC, B, TiN, TiCN is coated to to obtain pore-free and smooth surfaces. For the Manufacturing the SiC uses a wide range of methods suggested u. a. the (depressurized) sintering and Hot isostatic pressing. About the magnetic properties of the SiC ceramics say nothing.

Wie ersichtlich spart die Patentliteratur den Aspekt, daß im SiC-Substrat Ferromagnetismus auftreten kann, vollkommen aus und spiegelt damit die in Lehrbüchern und Handbüchern (z. B. Gmelin) vertretene Meinung wieder, daß SiC allenfalls diamagnetisch ist. As can be seen, the patent literature saves the aspect that in SiC substrate ferromagnetism can occur completely and thus mirrors those in textbooks and manuals (e.g. Gmelin) again held that SiC at best is diamagnetic.

Arbeiten beim Anmelder zeigen jedoch eindeutig, daß in einer üblichen SiC-Keramik Ferromagnetismus auftritt, der bei den genannten Anwendungen zu Problemen führt und der von Spurenverunreinigungen im SiC abhängt. Fig. 1 gibt den vom Anmelder gemessenen Zusammenhang zwischen dem Gehalt an Eisen, Cobalt und Nickel im SiC und der Magnetisierung für verschiedene käufliche SiC-Typen wieder. Das Bild zeigt verschiedene kommerziell erhältliche SiC-Keramiken und gibt einen Überblick über die magnetischen Eigenschaften von bekannter SiC-Keramik. Die verwendeten Verfahren und Pulvermischungen zur Herstellung der untersuchten Sinterkörper entsprechen dem üblichen Stand der Technik zum Feststoffsintern, Flüssigphasensintern und Reaktionssintern von SiC-Keramik. Diese Messungen zeigen eindeutig, daß in SiC- Keramik Ferromagnetismus auftritt, der einem Grundanteil von Diamagnetismus überlagert ist. Damit werden magnetisch relevante Anwendungen ganz allgemein beeinträchtigt, und zwar überall dort, wo das Eigenfeld des SiC funktionelle Magnetgrößen stört, z. B. bei Substraten oder Schreib-Lese- Köpfen in Festspeicherplatten. Die Beeinträchtigung ist jedoch nicht auf diese beiden Beispiele beschränkt sondern tritt überall dort auf, wo empfindliche Magnetgrößen durch das Eigenfeld des SiC gestört werden. However, work by the applicant clearly shows that ferromagnetism occurs in a conventional SiC ceramic, which leads to problems in the applications mentioned and depends on trace contaminants in the SiC. Fig. 1 shows the total by the applicant relationship between the content of iron, cobalt and nickel in SiC and the magnetization for various commercial SiC types again. The picture shows various commercially available SiC ceramics and gives an overview of the magnetic properties of known SiC ceramics. The methods and powder mixtures used to produce the sintered bodies examined correspond to the customary prior art for solid sintering, liquid phase sintering and reaction sintering of SiC ceramics. These measurements clearly show that ferromagnetism occurs in SiC ceramic, which is superimposed on a basic portion of diamagnetism. This affects magnetically relevant applications in general, wherever the natural field of the SiC interferes with functional magnet sizes, e.g. B. with substrates or read / write heads in hard disks. However, the impairment is not limited to these two examples, but occurs wherever sensitive magnet sizes are disturbed by the SiC's own field.

Am Beispiel von Substraten für die Hard Disk Anwendung sei eine solche Beeinträchtigung im Detail diskutiert:
Wie in "Magnetic Disk Drive Technology" (ed. Kanu G. Ashar, IEEE Press, New York 1997) (S. 190) dargestellt wird, besteht aus technologischen Gründen der Bedarf, die heute verwendeten Substratmaterialien Aluminium und Glas durch härtere und steifere Materialien zu ersetzen, um höhere Drehzahlen, dünnere Scheiben, größere Stoßfestigkeit, bessere Polituren für geringere Flughöhe, höhere Sputtertemperaturen usw. zu ermöglichen. Zusammengefaßt dienen solche Verbesserungen dem technologischen Trend nach höherer Informationsdichte und kürzerer Zugriffszeit. Unter den Vorschlägen für "alternative" Substrate nimmt Siliciumcarbid eine Spitzenstellung ein.
Such an impairment is discussed in detail using the example of substrates for hard disk use:
As shown in "Magnetic Disk Drive Technology" (ed. Kanu G. Ashar, IEEE Press, New York 1997) (p. 190), there is a need for technological reasons, the substrate materials used today aluminum and glass by harder and stiffer materials to replace to allow higher speeds, thinner discs, greater shock resistance, better polishes for lower flying height, higher sputtering temperatures, etc. In summary, such improvements serve the technological trend for higher information density and shorter access times. Silicon carbide is at the top of the list of "alternative" substrates.

Weiterhin wird im o. g. Buch die Prozesstechnologie erläutert, mit der man den Informationsträger, nämlich eine dünne Schicht (ca. 30 nm) aus magnetischen Cobaltlegierungen, auf dem Substrat aufbringt. Die für die Anwendung als Speicherplatte wichtigen magnetischen Kenngrößen wie Sättigungsmagnetisierung, Remanenz und Koerzitivkraft dieser Schicht werden anschließend mit einem "Vibrating Sample Magnetometer" oder SQUID-Magnetometer gemessen. Dabei wird ein etwa 1 cm2 großes Stück aus dem beschichteten Substrat herausgeschnitten und dessen Magnetisierungskurve in dem Magnetometer aufgenommen. Im Detail wird die Probe dabei einem statischen Magnetfeld "H" ausgesetzt, das von 0 bis etwa 10 000 Oersted variiert wird. Mit steigendem Feld "H" steigt nun die Magnetisierung "M" der Cobaltschicht entsprechend ihrer Suszeptibilität χ an. Beim Vibrationsmagnetometer wird die Magnetisierung über ein Spannungssignal gemessen, das durch Vibration der Probe in einer Meßspule erzeugt wird. Das Signal ist proportional zum magnetischen Moment der Probe, also zum Produkt aus Magnetisierung M (eine reine Materialkenngröße) und dem Volumen der Probe. Wegen der außerordentlich geringen Schichtdicke (ca. 30 nm) ist das Volumen sehr gering und dementsprechend auch das Spannungssignal, so daß hier extreme Anforderungen an die Meßgenauigkeit gestellt werden. Auch beim SQUID-Magnetometer ist das gemessene Signal proportional zum magnetischen Moment der Probe. The above-mentioned book also explains the process technology with which the information carrier, namely a thin layer (approx. 30 nm) made of magnetic cobalt alloys, is applied to the substrate. The magnetic parameters important for use as a storage disk, such as saturation magnetization, remanence and coercive force of this layer, are then measured using a "Vibrating Sample Magnetometer" or SQUID magnetometer. An approximately 1 cm 2 piece is cut out of the coated substrate and its magnetization curve is recorded in the magnetometer. In detail, the sample is exposed to a static magnetic field "H", which is varied from 0 to about 10,000 Oersted. With increasing field "H" the magnetization "M" of the cobalt layer increases according to its susceptibility χ. With the vibration magnetometer, the magnetization is measured via a voltage signal, which is generated by vibration of the sample in a measuring coil. The signal is proportional to the magnetic moment of the sample, i.e. to the product of magnetization M (a pure material parameter) and the volume of the sample. Because of the extremely small layer thickness (approx. 30 nm), the volume is very small and accordingly the voltage signal, so that extreme demands are placed on the measurement accuracy. With the SQUID magnetometer too, the measured signal is proportional to the magnetic moment of the sample.

Da die Fläche der gemessenen Proben mit 1 cm2 üblicherweise konstant gehalten wird, hat es sich eingebürgert, als Maß für das magnetische Moment nur das Produkt aus Magnetisierung und Schichtdicke "t" anzusetzen. Das o. g. Buch (S. 173) gibt für den Fall der Remanenzmagnetisierung "Mr" einen typischen Wert von Mr = 537 emu/cm3 an, so daß mit t = 30 nm ein Remanenz-Dicke- Produkt von Mr.t = 1,61 memu/cm2 (memu = milli electromagnetic units of magnetization) erhalten wird. Since the area of the measured samples is usually kept constant at 1 cm 2 , it has become common practice to use only the product of magnetization and layer thickness "t" as a measure of the magnetic moment. The above-mentioned book (p. 173) gives a typical value of Mr = 537 emu / cm 3 in the case of remanent magnetization "Mr", so that a remanent thickness product of Mr.t = 1 with t = 30 nm, 61 memu / cm 2 (memu = milli electromagnetic units of magnetization) is obtained.

In einem anderen Bereich der Speicherplatte, nämlich beim Lesen der gespeicherten Information, ist dieses Produkt Mr.t ebenfalls von Bedeutung, da das Spannungssignal beim Lesen proportional zu diesem Produkt ist. In another area of the disk, namely when reading of the information stored, this product is Mr.t also important because the voltage signal when reading is proportional to this product.

Bei Arbeiten des Anmelders zur Beschichtung von keramischen SiC-Substraten mit Cobaltlegierungen zeigte sich nun, daß SiC- Substrate selber eine geringe Magnetisierung besitzen, die zwar mit Werten um Mr = 5 memu/cm3 für z. B. handelsübliches SiC um ca. 5 Zehnerpotenzen niedriger liegt als die der Cobaltschicht, die aber im Produkt mit der sehr viel größeren Scheibendicke von 0,08 cm ein vergleichbares Mr.t-Produkt ergibt:
Cobaltschicht: Mr.t = 1,61 memu/cm2
SiC-Subsstrat: Mr.t = 0,4 memu/cm2
During the applicant's work on coating ceramic SiC substrates with cobalt alloys, it has now been found that SiC substrates themselves have a low magnetization, although with values around Mr = 5 memu / cm 3 for z. B. Commercially available SiC is about 5 orders of magnitude lower than that of the cobalt layer, but this results in a comparable Mr.t product in the product with the much larger slice thickness of 0.08 cm:
Cobalt layer: Mr.t = 1.61 memu / cm 2
SiC substrate: Mr.t = 0.4 memu / cm 2

Damit ist die Messung der Magnetisierungskurve der Cobaltschicht durch das Substrat stark verfälscht und das Ergebnis läßt keine Aussage über die Qualität der Co-Schicht zu. This is the measurement of the magnetization curve Cobalt layer falsified by the substrate and that The result leaves no statement about the quality of the Co layer to.

Auch beim Lesen der Speicherplatte können Probleme auftreten, insbesondere wenn die Magnetisierung des SiC-Substrats örtlich schwankt. Auch bei Verwendung eines SiC-Sinterkörpers als Substratmaterial für Schreib-Lese-Köpfe kommt es zu einer Beeinträchtigung der Qualität des gelesenen und geschriebenen Signals durch das Eigenfeld des Kopfsubstrats. Problems can also occur when reading the storage disk, especially if the magnetization of the SiC substrate is local fluctuates. Even when using a SiC sintered body as There is a substrate material for read / write heads Impairment of the quality of the read and written Signal through the self-field of the head substrate.

In US 5,770,324 werden Dummy Wafer für die Halbleiterprozesstechnik beschrieben, die durch Heißpressen hergestellt und speziell für einen sehr niedrigen Eisengehalt ausgelegt wurden, um die Spezifikationen der Halbleiterindustrie zu erfüllen. Der Eisengehalt des reinsten dort eingesetzten SiC-Sinterpulvers betrug 10 ppm, Ni- und Co-Gehalt sind für das Pulver nicht angegeben. Da die gemessenen Fe-Verunreinigungen in den heißgepressten Dummy Wafern deutlich unter diesen 10 ppm lagen (z. B. 1,5 ppm), muß man folgern, daß der Prozess des Heißpressens eine zusätzliche Reinigungswirkung hat. Die magnetischen Eigenschaften dieser Wafer sind nicht bekannt. Eine Verwendung solcher Materialien für magnetisch relevante Anwendungen, also z. B. als Festplattenspeicher ist nicht erwähnt. In US 5,770,324 dummy wafers for the Semiconductor process technology described, which are manufactured by hot pressing and specially designed for a very low iron content, to meet the specifications of the semiconductor industry. The Iron content of the purest SiC sinter powder used there was 10 ppm, Ni and Co content are not for the powder specified. Since the measured Fe impurities in the hot-pressed dummy wafers were well below these 10 ppm (e.g. 1.5 ppm), one has to conclude that the process of Hot pressing has an additional cleaning effect. The magnetic properties of these wafers are not known. Use of such materials for magnetically relevant Applications, e.g. B. as hard disk space is not mentioned.

Aufgabe der Erfindung ist es, einen keramischen Sinterkörper auf Basis von SiC zur Verfügung zu stellen, der für magnetisch relevante Anwendungen wie beispielsweise Festplattenspeichersubstrat oder Schreib-Lese-Köpfe besonders geeignet ist. The object of the invention is a ceramic sintered body based on SiC, which is available for magnetic relevant applications such as Hard disk storage substrate or read / write heads especially suitable is.

Die Aufgabe wird gelöst durch einen Sinterkörper auf Basis von SiC mit einer Dichte > 95% und einer Sättigungsmagnetisierung Ms < 1,2 memu/cm3, bevorzugt < 0,6 memu/cm3 der nach einem der folgenden Verfahren hergestellt wurde:

  • a) druckloses Feststoffsintern mit Sinterhilfsmitteln auf Basis von Al/C, Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff mit oder ohne eine Nachbehandlung durch Heißisostatisches Pressen
  • b) druckbehaftetes Feststoffsintern mit Sinterhilfsmitteln auf Basis Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff
  • c) Flüssigphasensintern mit Sinterhilfsmitteln auf der Basis von Seltenen Erden (insbesondere Y2O3) plus Al2O3 und/oder AlN.
The object is achieved by a sintered body based on SiC with a density> 95% and a saturation magnetization Ms <1.2 memu / cm 3 , preferably <0.6 memu / cm 3, which was produced by one of the following processes:
  • a) pressureless solid sintering with sintering aids based on Al / C, boron / carbon or aluminum / boron / carbon with or without an aftertreatment by hot isostatic pressing
  • b) pressurized solid sintering with sintering aids based on boron / carbon or aluminum / boron / carbon
  • c) Liquid phase sintering with sintering aids based on rare earths (in particular Y 2 O 3 ) plus Al 2 O 3 and / or AlN.

Eine Verwendung eines SiC Sinterkörpers als Speicherplattensubstrat ist nur sinnvoll, wenn der Ferromagnetismus im SiC unter einen Wert abgesenkt wird, der als Sättigungs-Dicke-Produkt weniger als etwa 5% des analogen Produktes für die Cobaltschicht beträgt. Nur dann ist eine magnetische Charakterisierung der Cobaltschichten ohne Verfälschung möglich und nur dann sind Störungen und Verfälschungen des in der Festplatte gelesenen Signals ausreichend gering. Das bedeutet für die Sättigungsmagnetisierung Ms des Substrats ein Wert unter 1,2 memu/cm3. Zur Lösung der Aufgabe reicht es nicht, nur die erwähnte Remanenz-Magnetisierung "Mr" zu betrachten, weil sie von zu vielen unbekannten Faktoren abhängt und damit nicht richtig greifbar ist. Wesentlich besser geeignet, ist die Sättigungsmagnetisierung "Ms", weil sie eine Stoffkonstante ist und weil sie als Obergrenze für den Magnetismus des Substrats die Remanenz mit einschließt. Aus dem bereits zitierten Lehrbuch "Magnetic Disk Drive Technology" kann man entnehmen, daß für übliche Cobaltschichten die sogenannte Squareness Mr/Ms = 0,8 ist. Damit ergibt sich aus Mr.t = 1,61 memu/cm2 der obigen typischen Cobaltschicht der Wert Ms.t = 2 memu/cm2. Um diesen Wert richtig zu messen, darf die Störung durch das Substrat höchstens 5% davon betragen, also Ms.t (Substrat) < 0,1 memu/cm2. Bei einer Substratdicke von 0,08 cm folgt daraus eine maximal erlaubte Sättigungsmagnetisierung für das Substrat von Ms = 1,2 memu/cm3. The use of an SiC sintered body as a storage plate substrate is only useful if the ferromagnetism in the SiC is reduced below a value which, as a saturation thickness product, is less than about 5% of the analog product for the cobalt layer. Only then is it possible to characterize the cobalt layers magnetically without falsification, and only then will the interference and falsification of the signal read in the hard disk be sufficiently low. For the saturation magnetization Ms of the substrate, this means a value below 1.2 memu / cm 3 . To solve the problem, it is not enough to consider only the remanent magnetization "Mr" mentioned, because it depends on too many unknown factors and is therefore not really tangible. The "Ms" saturation magnetization is much more suitable because it is a material constant and because it includes the remanence as an upper limit for the magnetism of the substrate. From the already cited textbook "Magnetic Disk Drive Technology" it can be seen that the so-called squareness Mr / Ms = 0.8 for conventional cobalt layers. Thus Mr.t = 1.61 memu / cm 2 of the above typical cobalt layer gives the value Ms.t = 2 memu / cm 2 . In order to measure this value correctly, the interference from the substrate must not exceed 5%, i.e. Ms.t (substrate) <0.1 memu / cm 2 . With a substrate thickness of 0.08 cm, this results in a maximum permissible saturation magnetization for the substrate of Ms = 1.2 memu / cm 3 .

Vorzugsweise hat der erfindungsgemäße Sinterkörper einen Gehalt an Fe < 10 ppm, an Ni < 3 ppm, an Co < 1 ppm, besonders bevorzugt Fe < 5, Ni + Co < 2 ppm. The sintered body according to the invention preferably has a content an Fe <10 ppm, an Ni <3 ppm, an Co <1 ppm, particularly preferred Fe <5, Ni + Co <2 ppm.

Für den Fachmann ist es überraschend, daß Eisen- und Nickelverunreinigungen im gesinterten SiC in ferromagnetisch relevanter Art vorliegen. Zwar sind ferromagnetische Verbindungen zwischen Eisen und Silicium bzw. Nickel und Silicium bekannt, aber nach Hansen (Constitution of Binary Alloys, McGraw-Hill 1956) müssen diese Verbindungen metallreich sein (z. B. Fe2Si). In welcher Form nun bei gesintertem SiC solche Verbindungen vorliegen, ist unbekannt, da die entsprechenden Phasendiagramme über den gesamten Bereich der thermischen Behandlung beim Sintern nicht bekannt sind. Darüberhinaus wird Silicium als Bestandteil des SiC den Spurenverunreinigungen Eisen und Nickel im extremen Überschuss angeboten, so daß man bei einer Reaktion zwischen Fe und Si (bzw. Ni und Si) eher eine siliciumreiche und damit nicht ferromagnetische Verbindung erwarten würde. It is surprising to the person skilled in the art that iron and nickel impurities are present in the sintered SiC in a ferromagnetically relevant manner. Ferromagnetic connections between iron and silicon or nickel and silicon are known, but according to Hansen (Constitution of Binary Alloys, McGraw-Hill 1956) these connections must be rich in metals (e.g. Fe 2 Si). The form in which such compounds are present in sintered SiC is unknown, since the corresponding phase diagrams are not known over the entire range of thermal treatment during sintering. In addition, silicon is offered as a component of the SiC to the trace impurities iron and nickel in extreme excess, so that a reaction between Fe and Si (or Ni and Si) would rather be expected to be a silicon-rich and therefore non-ferromagnetic compound.

Im erfindungsgemäßen SiC-Sinterkörper können Eisen, Nickel und Cobalt in Form unmagnetischer Verbindungen abgebunden vorliegen, bevorzugt in Form von unmagnetischen Siliciden. In the SiC sintered body according to the invention, iron, nickel and Cobalt bound in the form of non-magnetic compounds are present, preferably in the form of non-magnetic silicides.

Überraschend hat sich somit gezeigt, daß der Ferromagnetismus in gesintertem SiC vom Eisen-, Nickel- und Cobaltgehalt abhängt und durch Reduzierung dieser Verunreinigungen erniedrigt bzw. eliminiert werden kann. Dies gilt für eine breite Palette von Herstellmethoden für dichtgesintertes SiC. Surprisingly, it has been shown that ferromagnetism in sintered SiC depends on the iron, nickel and cobalt content and reduced by reducing these impurities or can be eliminated. This applies to a wide range of Manufacturing methods for densely sintered SiC.

Um erfindungsgemäße Sinterkörper, die als Substrate für Festspeicherplatten dienen, herzustellen, ist es bevorzugt, den Gehalt an Eisen im SiC-Pulver unter 10 ppm, den Gehalt an Nickel unter 3 ppm und den Gehalt an Cobalt unter 1 ppm zu erniedrigen. Bevorzugt sollte der Gehalt an Fe < 5 ppm, und der Gehalt an Ni + Co < 2 ppm sein. Die erforderlichen Reinheitsbedingungen sind auch dann erfüllt, wenn gilt, daß im Sinterkörper die Summe des Gehalts an Fe, Ni und Co < 13 ppm, bevorzugt < 7 ppm ist. To sintered bodies according to the invention, which are used as substrates for Hard disks are used to manufacture, it is preferred the content of iron in the SiC powder below 10 ppm, the content of Nickel below 3 ppm and the cobalt content below 1 ppm humiliate. The Fe content should preferably be <5 ppm, and Ni + Co content can be <2 ppm. The necessary Purity conditions are also met if it applies that in Sintered body the sum of the content of Fe, Ni and Co <13 ppm, is preferably <7 ppm.

Die Sinterhilfsmitttel Al/C, B/C, Al/B/C und Y2O3 + (Al2O3 und/oder AlN) werden in den jeweils üblichen Mengen eingesetzt. The sintering aids Al / C, B / C, Al / B / C and Y 2 O 3 + (Al 2 O 3 and / or AlN) are used in the usual amounts.

Die erfindungsgemäßen SiC-Sinterkörpern lassen sich in folgende Gruppen einteilten:

  • a) drucklos gesinterte SiC-Sinterkörper mit den Sinterhilfsmitteln
    B/C oder
    Al/B/C oder
    Al/C
  • b) druckbehaftet gesinterte SiC-Sinterkörper mit den SinterhilfsmittelnQ
    B/C oder
    Al/B/C
  • c) flüssigphasengesinterte SiC-Sinterkörper mit den Sinterhilfsmitteln
    AlN/Y2O3 oder
    AlN/YAG
    (YAG = Yttrium Aluminium Granat)
The SiC sintered bodies according to the invention can be divided into the following groups:
  • a) SiC sintered bodies sintered without pressure with the sintering aids
    B / C or
    Al / B / C or
    Al / C
  • b) pressurized sintered SiC sintered bodies with the sintering aids Q
    B / C or
    Al / B / C
  • c) liquid-phase sintered SiC sintered bodies with the sintering aids
    AlN / Y 2 O 3 or
    AlN / YAG
    (YAG = yttrium aluminum garnet)

In Tabelle 1 ist beispielhaft eine typische, in keiner Weise erschöpfende, Auswahl typischer Sinteradditive und Sinterbedingungen für die obigen Sinterkörper angegeben. Sie spiegeln den Stand der Technik wieder, wobei es unzählige Variationen gibt. Es sind nur diejenigen Sinteradditive aufgeführt, die sich heute technisch durchgesetzt haben. Daneben gibt es jedoch noch andere, mit denen man ebenso unmagnetisches SiC herstellen kann. Erfindungswesentlich ist nicht das Sinterhilfsmittel, sondern die Reinheit des SiC- Ausgangspulvers von Eisen, Kobalt und Nickel. Table 1 is an example of a typical, in no way exhaustive, selection of typical sintering additives and Sintering conditions specified for the above sintered bodies. she reflect the state of the art, there being countless Variations there. There are only those sintering additives listed, which have technically prevailed today. In addition, there are others with whom you can also can produce non-magnetic SiC. Is essential to the invention not the sintering aid, but the purity of the SiC Starting powder of iron, cobalt and nickel.

Bei den Sinteradditiven handelt es sich um Einwaagen. Dabei hängt der C-Gehalt vom Sauerstoffgehalt des SiC-Pulvers ab. Er sollte vorzugsweise leicht überstöchiometrisch sein, um den Sauerstoff abzureagieren gemäß:

SiO2 + 3C = SiC + 2CO.

The sintering additives are weights. The C content depends on the oxygen content of the SiC powder. It should preferably be slightly overstoichiometric in order to react the oxygen according to:

SiO 2 + 3C = SiC + 2CO.

Übliche O-Mengen im SiC sind 0,5-1,5 Gew.-%, so daß vorzugsweise eine etwa ähnliche C-Menge (also 0,5-1,5 Gew.-%) zugesetzt wird. Die Mengen werden vorzugsweise so gewählt, daß zwischen 0,3 und 0,8 Gew.-% freier Kohlenstoff im feststoffgesinterten Sinterkörper zurückbleiben. Beim Flüssigphasensintern ist Kohlenstoff nicht sinternotwendig. Dort wird deshalb nicht gewollt Kohlenstoff zugesetzt sondern es resultiert nur ein kleiner Kohlenstoffgehalt aus der Zugabe organischer Binder. Usual amounts of O in the SiC are 0.5-1.5% by weight, so that preferably an approximately similar amount of C (i.e. 0.5-1.5% by weight) is added. The amounts are preferably chosen so that between 0.3 and 0.8 wt .-% free carbon in solid-sintered sintered body remain. At the Carbon sintering is not necessary for liquid phase sintering. Carbon is therefore not intentionally added there, but instead only a small carbon content results from the addition organic binder.

Die Summe aus den Sinteradditiven und dem Sauerstoffgehalt des SiC-Pulvers sowie der SiC-Einwaage beträgt 100%. Tabelle 1 typische Sinterhilfsmitteleinwaagen in % und grobe Sinterbedingungen

The sum of the sintering additives and the oxygen content of the SiC powder and the SiC weight is 100%. Table 1 typical sintering aid weights in% and rough sintering conditions

Vorzugsweise unter Verwendung der genannten Ausgangspulver läßt sich ein erfindungsgemäßer SiC-Sinterkörper mittels der bereits genannten bekannten Methoden herstellen:
Druckloses Feststoffsintern mit Sinterhilfsmitteln auf Basis von Al/C, Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff mit oder ohne eine Nachbehandlung durch Heissisostatisches Pressen; Druckbehaftetes Feststoffsintern mit Sinterhilfsmitteln auf Basis Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff; Flüssigphasensintern mit Sinterhilfsmitteln auf der Basis von Seltenen Erden (insbesondere Y2O3) plus Al2O3 und/oder AlN.
An SiC sintered body according to the invention can preferably be produced using the starting powders mentioned using the known methods already mentioned:
Pressureless solid sintering with sintering aids based on Al / C, boron / carbon or aluminum / boron / carbon with or without aftertreatment by hot isostatic pressing; Pressurized solid sintering with sintering aids based on boron / carbon or aluminum / boron / carbon; Liquid phase sintering with sintering aids based on rare earths (in particular Y 2 O 3 ) plus Al 2 O 3 and / or AlN.

Ggf. können die Sinterkörper noch durch Druckbeaufschlagung nachverdichtet werden. Possibly. the sintered body can still be pressurized be densified.

Bei SiSiC wird ein poröser Formkörper aus SiC (Porosität ca 20%) mit flüssigem Silicium, also bei Temperaturen über 1400°C, infiltriert. Alles oberflächlich anhaftende Eisen, Nickel, Cobalt sollte dort mit dem Siliciumüberschuß zu siliciumreichen, also unmagnetischen Siliciden (z. B. FeSi2), reagieren. Der Befund in Bild 1 bestätigt diese Annahme, denn SiSiC erweist sich dort trotz einer sehr hohen Fe + Ni + Co- Dotierung von 287 ppm als fast unmagnetisch. Damit benötigt man bei SiSiC nur eine vergleichsweise geringe Reinigung des Ausgangsmaterials, um diesen Sinterkörper vollständig unmagnetisch zu erhalten. At SiSiC, a porous molded body made of SiC (porosity approx. 20%) is infiltrated with liquid silicon, i.e. at temperatures above 1400 ° C. All superficially adhering iron, nickel and cobalt should react with the excess silicon to form silicon-rich, i.e. non-magnetic silicides (e.g. FeSi 2 ). The finding in Figure 1 confirms this assumption, because SiSiC proves to be almost non-magnetic despite a very high Fe + Ni + Co doping of 287 ppm. This means that SiSiC requires only a comparatively minor cleaning of the starting material in order to keep this sintered body completely non-magnetic.

Die erfindungsgemäßen SiC-Sinterkörper eignen sich insbesondere als Substrat für Festplattenspeicher oder als Substrat für Schreib-Lese-Köpfe. The SiC sintered bodies according to the invention are particularly suitable as a substrate for hard disk storage or as a substrate for Read-write heads.

Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung. The following examples serve to further explain the Invention.

BeispieleExamples

Es wird ein Basisprozess beschrieben, der für alle Beispiele gültig ist und in dem entsprechend Tabelle 1 die jeweiligen Sinteradditive eingesetzt werden. Der jeweilige Sinterprozess kann ebenfalls aus Tabelle 1 entnommen werden. A basic process is described for all examples is valid and in which according to Table 1 the respective Sintering additives are used. The respective sintering process can also be found in Table 1.

Basisprozessbasic process

  • a) Alpha-SiC Sinterpulver mit einer spezifischen Oberfläche von 12 m2/gr und einer mittleren Teilchengröße von 0,7 µm wird in einem Dissolverrührer mit einem organischen Binder (z. B. PVA) sowie mit wasserlöslichen Kohlenstoff-spendern wie Zucker oder Stärke und weiterhin mit einem Presshilfsmittel (Fettsäurederivat) und mit den entsprechenden Sinteradditiven gemäß Tabelle 1 intensiv nass vermischt. Die Sinteradditive haben dabei folgende Kornfeinheit:
    AlN D50 = 1,5 µm
    YAG D50 = 1,5 µm
    Y2O3 D50 = 1,5 µm
    Bor < 1 µm (amorph)
    a) Alpha-SiC sinter powder with a specific surface of 12 m 2 / gr and an average particle size of 0.7 µm is in a dissolver with an organic binder (e.g. PVA) and with water-soluble carbon donors such as sugar or starch and further mixed intensively wet with a pressing aid (fatty acid derivative) and with the corresponding sintering additives according to Table 1. The sintering additives have the following grain size:
    AlN D50 = 1.5 µm
    YAG D50 = 1.5 µm
    Y 2 O 3 D50 = 1.5 µm
    Boron <1 µm (amorphous)

Für erfindungsgemäße Beispiele (sie sind in Tab. 2 und Fig. 1 nicht wiedergegeben, liegen aber alle unter 1,2 memu/cm3), wird das SiC-Ausgangspulver speziell von Eisen, Kobalt und Nickel gereinigt, so daß gilt: Fe < 10 ppm, Ni < 3 ppm, Co < 1 ppm. Dazu wird das SiC-Ausgangspulver längere Zeit (2 Tage) in Salzsäure bei pH 0-1 gekocht und anschließend in einer Vielzahl von Zyklen (10-15) bis zum isoelektrischen Punkt ausgewaschen. For examples according to the invention (they are not shown in Tab. 2 and Fig. 1, but are all below 1.2 memu / cm 3 ), the SiC starting powder is specially cleaned of iron, cobalt and nickel, so that: Fe < 10 ppm, Ni <3 ppm, Co <1 ppm. For this purpose, the SiC starting powder is boiled for a long time (2 days) in hydrochloric acid at pH 0-1 and then washed out in a number of cycles (10-15) to the isoelectric point.

Die Vergleichsbeispiele sind die in Tab. 2 und Fig. 1 wiedergegebenen Ekasic® D, Ekasic® T und Ekasic® BM Sinterkörper (käuflich erhältlich bei Wacker Chemie GmbH, München) sowie die namentlich in Fig. 1 nicht benannten aber in Tab. 2 aufgezählten Sinterkörper BM-A2, BM-P2, BM-C2, BM-Q, Vers-B22, BM-O2 (alle EKasic® BM). Sie haben einen Restmagnetismus > 1,2 memu/cm3. Das Ausgangsmaterial wurde weniger intensiv und weniger arbeitsaufwendig gereinigt. Insbesondere wurde die Salzsäure nicht erhitzt und es wurde mit weniger Säureüberschuß gefahren. Dadurch reduzierte sich die Zahl der anschließenden Aufwaschungen auf einige wenige. The comparative examples are the Ekasic® D, Ekasic® T and Ekasic® BM sintered bodies shown in Tab. 2 and Fig. 1 (commercially available from Wacker Chemie GmbH, Munich) and the ones not specifically named in Fig. 1 but listed in Tab. 2 Sintered body BM-A2, BM-P2, BM-C2, BM-Q, Vers-B22, BM-O2 (all EKasic® BM). They have a residual magnetism> 1.2 memu / cm 3 . The starting material was cleaned less intensively and less labor-intensive. In particular, the hydrochloric acid was not heated and less acid excess was used. This reduced the number of subsequent washes to a few.

Die Vergleichsbeispiele Hexoloy SA und SiC/C&C in Fig. 1 sind weitere Bestätigungen für den Zusammenhang zwischen Reinheit und magnetischen Eigenschaften. The comparative examples Hexoloy SA and SiC / C & C in Fig. 1 are further confirmations for the relationship between purity and magnetic properties.

Die Probe SiSiC in Fig. 1 ist ein Beleg dafür, daß es mit einem Si-Überschuß im Sinterkörper gelingt, die Eisen-, Kobalt- oder Nickelverunreinigung in eine siliciumreiche und damit unmagnetische Verbindung zu bringen.

  • a) Die homogenisierte Mischung wird dann in einem Sprühtrockner getrocknet, wobei ein rieselfähiges Pulver anfällt.
The SiSiC sample in FIG. 1 is proof that an excess of Si in the sintered body succeeds in bringing the iron, cobalt or nickel contamination into a silicon-rich and therefore non-magnetic compound.
  • a) The homogenized mixture is then dried in a spray dryer, a free-flowing powder being obtained.

Typische Zusatzmengen: Sinteradditive: siehe Tabelle 1 Kohlenstoff: entsprechend Tabelle 1, jedoch abhängig vom Sauerstoffgehalt des SiC-Sinterpulvers. Binder/Presshilfsmittel: jeweils 1-4%

  • a) Das Pulver wird entweder in einer Gummihülle bei ca. 1200 Bar kaltisostatisch verpresst oder in einer Trockenpresse verdichtet. Nach diesen Prozessen liegt eine Dichte von ca. 60% vor.
  • b) Dann wird der verdichtete Pulverpressling grünbearbeitet und anschließend bei höherer Temperatur (z. B. 700°C) entbindert.
  • c) Der nächste Schritt ist das Sintern über einen Zeitraum von 0,5 bis zu einigen Stunden bei den in Tabelle 1 angegebenen Temperaturen und Drucken.
  • d) Zum Schluß wird eine kleine Probe von z. B. 1 × 1 × 0,1 cm aus dem Sinterkörper herausgeschnitten und in einem "Vibrating Sample Magnetometer" auf seine magnetischen Eigenschaften hin untersucht.
Typical additional quantities: sinter additives: see table 1 carbon: according to table 1, but depending on the oxygen content of the SiC sinter powder. Binder / pressing aids: 1-4% each
  • a) The powder is either cold isostatically pressed in a rubber sleeve at approx. 1200 bar or compacted in a dry press. After these processes there is a density of approx. 60%.
  • b) Then the compacted powder compact is processed green and then debindered at a higher temperature (e.g. 700 ° C).
  • c) The next step is sintering over a period of 0.5 to a few hours at the temperatures and pressures given in Table 1.
  • d) Finally, a small sample of e.g. B. 1 × 1 × 0.1 cm cut out of the sintered body and examined in a "Vibrating Sample Magnetometer" for its magnetic properties.

Die Meßergebnisse sind in Tab. 2 und Fig. 1 wiedergegeben. Dabei sind EKasic® BM, Ekasic® D, Ekasic® T und SiC/C&C nach dem beschriebenen Basisprozess behandelt worden. Hexoloy SA ist von der Firma Carborundum bezogen, Der Verunreinigungsgehalt (Fe + Ni + Co) wurde analytisch ermittelt. Die Einwaage von 0,7% Bor wurde der Homepage von Carborundum entnommen. Tabelle 2

BM-A2, BM-P2, BM-C2, BM-Q, Vers-B22, BM-O2: verschiedene EKasic® BM-Proben
SiC/CC: SiC-Sinterkörper käuflich erhältlich beim französischen Werk der Wacker Ceramics in Bazet.
Ekasic® D: SiC-Sinterkörper käuflich erhältlich bei Wacker Chemie GmbH (München),
Ekasic® T: SiC-Sinterkörper käuflich erhältlich bei Wacker Chemie GmbH (München),
Ekasic® BM: SiC-Sinterkörper käuflich erhältlich bei Wacker Chemie GmbH (München),
Hexoloy SA: SiC Sinterkörper käuflich erhältlich bei der amerikanischen Firma Carborundum
SiSiC: flüssigphasengesintertes SiC,
The measurement results are shown in Tab. 2 and Fig. 1. EKasic® BM, Ekasic® D, Ekasic® T and SiC / C & C were treated according to the basic process described. Hexoloy SA is obtained from Carborundum. The impurity content (Fe + Ni + Co) was determined analytically. The weight of 0.7% boron was taken from the Carborundum homepage. Table 2

BM-A2, BM-P2, BM-C2, BM-Q, Vers-B22, BM-O2: various EKasic® BM samples
SiC / CC: SiC sintered body commercially available from Wacker Ceramics' French plant in Bazet.
Ekasic® D: SiC sintered body commercially available from Wacker Chemie GmbH (Munich),
Ekasic® T: SiC sintered body commercially available from Wacker Chemie GmbH (Munich),
Ekasic® BM: SiC sintered body commercially available from Wacker Chemie GmbH (Munich),
Hexoloy SA: SiC sintered body commercially available from the American company Carborundum
SiSiC: liquid phase sintered SiC,

Claims (6)

1. Keramischer Sinterkörper auf Basis von SiC mit einer Dichte > 95%, der für magnetisch relevante Anwendungen wie beispielsweise Festplattenspeichersubstrat oder Schreib-Lese- Köpfe besonders geeignet ist, dadurch gekennzeichnet, daß er eine Sättigungsmagnetisierung von Ms < 1,2 memu/cm3 besitzt und nach einem der folgenden Verfahren hergestellt wurde: a) druckloses Feststoffsintern mit Sinterhilfsmitteln auf Basis von Al/C, Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff mit oder ohne eine Nachbehandlung durch Heissisostatisches Pressen b) druckbehaftetes Feststoffsintern mit Sinterhilfsmitteln auf Basis Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff c) Flüssigphasensintern mit Sinterhilfsmitteln auf der Basis von Seltenen Erden (insbesondere Y2O3) plus Al2O3 und/oder AlN. 1. Ceramic sintered body based on SiC with a density> 95%, which is particularly suitable for magnetically relevant applications such as hard disk memory substrate or read / write heads, characterized in that it has a saturation magnetization of Ms <1.2 memu / cm 3 and was manufactured using one of the following processes: a) pressureless solid sintering with sintering aids based on Al / C, boron / carbon or aluminum / boron / carbon with or without aftertreatment by hot isostatic pressing b) pressurized solid sintering with sintering aids based on boron / carbon or aluminum / boron / carbon c) Liquid phase sintering with sintering aids based on rare earths (in particular Y 2 O 3 ) plus Al 2 O 3 and / or AlN. 2. Keramischer Sinterkörper gemäß Anspruch 1, dadurch gekennzeichnet, daß er eine Sättigungsmagnetisierung von < 0,6 memu/cm3 besitzt. 2. Ceramic sintered body according to claim 1, characterized in that it has a saturation magnetization of <0.6 memu / cm 3 . 3. Keramischer Sinterkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Gehalt an Fe < 10 ppm, an Ni < 3 ppm, an Co < 1 ppm ist. 3. Ceramic sintered body according to claim 1 or 2, characterized characterized in that the content of Fe <10 ppm, of Ni <3 ppm Co is <1 ppm. 4. Verfahren zur Herstellung eines Sinterkörpers gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein SiC- Sinterpulver mit einem Gehalt an Fe < 10 ppm, an Ni < 3 ppm und an Co < 1 ppm eingesetzt wird. 4. A method for producing a sintered body according to one of the Claims 1 to 3, characterized in that an SiC Sinter powder with a content of Fe <10 ppm, of Ni <3 ppm and Co <1 ppm is used. 5. Verwendung eines Sinterkörpers nach einem der Ansprüche 1 bis 5 als Substrat für einen Festplattenspeicher. 5. Use of a sintered body according to one of claims 1 to 5 as a substrate for a hard disk storage. 6. Verwendung eines Sinterkörpers nach einem der Anspruch 1 bis 5 als Substrat für einen Schreib-Lese-Kopf. 6. Use of a sintered body according to one of claims 1 to 5 as a substrate for a read / write head.
DE10146393A 2001-09-20 2001-09-20 Non-magnetic sintered body based on SiC and its use Ceased DE10146393A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10146393A DE10146393A1 (en) 2001-09-20 2001-09-20 Non-magnetic sintered body based on SiC and its use
PCT/EP2002/010521 WO2003025908A2 (en) 2001-09-20 2002-09-19 Non-magnetic sintered body based on sic and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10146393A DE10146393A1 (en) 2001-09-20 2001-09-20 Non-magnetic sintered body based on SiC and its use

Publications (1)

Publication Number Publication Date
DE10146393A1 true DE10146393A1 (en) 2003-04-17

Family

ID=7699688

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10146393A Ceased DE10146393A1 (en) 2001-09-20 2001-09-20 Non-magnetic sintered body based on SiC and its use

Country Status (2)

Country Link
DE (1) DE10146393A1 (en)
WO (1) WO2003025908A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061778A1 (en) * 2016-09-27 2018-04-05 北陸成型工業株式会社 Silicon carbide member for plasma treatment apparatus, and method of manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312954A (en) * 1975-06-05 1982-01-26 Kennecott Corporation Sintered silicon carbide ceramic body
US4598017A (en) * 1983-05-27 1986-07-01 International Business Machines Corporation Composite magnetic disk with Si and SiC substrate
US4738885A (en) * 1986-02-24 1988-04-19 Kyocera Corporation Magnetic disk, substrate therefor and process for preparation thereof
US5358685A (en) * 1993-03-11 1994-10-25 Cercom Inc. Monolithic, fully dense silicon carbide mirror and method of manufacturing
US5480695A (en) * 1994-08-10 1996-01-02 Tenhover; Michael A. Ceramic substrates and magnetic data storage components prepared therefrom
US5487931A (en) * 1993-12-02 1996-01-30 Annacone; William R. Rigid disc substrate comprising a central hard core substrate with a hard, thermally and mechanically matched overlying smoothing layer and method for making the same
US5770324A (en) * 1997-03-03 1998-06-23 Saint-Gobain Industrial Ceramics, Inc. Method of using a hot pressed silicon carbide dummy wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419271A3 (en) * 1989-09-22 1992-01-29 The Carborundum Company Silicon carbide bodies having high toughness and fracture resistance and method of making same
JP4012287B2 (en) * 1997-08-27 2007-11-21 株式会社ブリヂストン Sputtering target panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312954A (en) * 1975-06-05 1982-01-26 Kennecott Corporation Sintered silicon carbide ceramic body
US4598017A (en) * 1983-05-27 1986-07-01 International Business Machines Corporation Composite magnetic disk with Si and SiC substrate
US4738885A (en) * 1986-02-24 1988-04-19 Kyocera Corporation Magnetic disk, substrate therefor and process for preparation thereof
US5358685A (en) * 1993-03-11 1994-10-25 Cercom Inc. Monolithic, fully dense silicon carbide mirror and method of manufacturing
US5487931A (en) * 1993-12-02 1996-01-30 Annacone; William R. Rigid disc substrate comprising a central hard core substrate with a hard, thermally and mechanically matched overlying smoothing layer and method for making the same
US5480695A (en) * 1994-08-10 1996-01-02 Tenhover; Michael A. Ceramic substrates and magnetic data storage components prepared therefrom
US5770324A (en) * 1997-03-03 1998-06-23 Saint-Gobain Industrial Ceramics, Inc. Method of using a hot pressed silicon carbide dummy wafer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Derwent Abstr. zu JP 60-229224 A *
Derwent Abstr. zu JP 61-13434 A *
Derwent Abstr. zu JP 63-70919 A *

Also Published As

Publication number Publication date
WO2003025908A2 (en) 2003-03-27
WO2003025908A3 (en) 2003-09-12

Similar Documents

Publication Publication Date Title
DE68925205T2 (en) Method for setting the magnetic domain structure of a magnetoresistive sensor
DE112016003688T5 (en) Rare earth permanent magnet and method of making the same
DE69219936T2 (en) Magnetic resistance effect element
DE69934868T2 (en) MAGNETIC MULTILAYER SENSOR
DE102016005190A1 (en) Magnetic tunnel resistance device (TMR) with magnesium oxide tunnel junction and free layer with insertion layer
DE68919461T2 (en) Method of manufacturing a shielded magnetoresistive sensor.
DE112009000280T5 (en) Polycrystalline MgO sintered body, process for its preparation and MgO sputtering target
DE60314790T2 (en) Sintered cordierite ceramic and method of making the same
DE69206034T2 (en) Corrosion protection of FeMn using ion implantation.
EP3504169A1 (en) Ceramic material, component, and method for producing the component
DE69211438T2 (en) Magnetoresistant effect element
DE2445988C3 (en) Semiconductor magnetic head
DE10022372A1 (en) Co-Fe-Ni magnetic film with high magnetic saturation flux density, the thin film composite magnetic head using the film and the magnetic memory device using the head
DE60037557T2 (en) Magnetic ferrite material and manufacturing method therefor
DE69402644T2 (en) Magnetoresistive material
DE1125091B (en) Process for the production of thin ferrimagnetic layers with uniaxial anisotropy and largely rectangular hysteresis loop and their use as magnetic switching and storage elements
DE68915569T2 (en) Non-magnetic substrate of a magnetic head, magnetic head, and substrate manufacturing method.
DE10146393A1 (en) Non-magnetic sintered body based on SiC and its use
DE3841748C2 (en)
DE2148554A1 (en) Process for the production of a polycrystalline ferrite body
DE102011008704A1 (en) Thin-film magnetic sensor and method for its production
DE102014105778A1 (en) R-T-B BASED PERMANENT MAGNET
DE2747703B2 (en) Ferromagnetic film material and process for its manufacture
DE112022000092T5 (en) MAGNETO-OPTIC MATERIAL AND METHOD OF MANUFACTURE THEREOF
DE4120244C2 (en) Sliding material for a magnetic head

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection