DE10131738A1 - Compost effluent gas condition regulation comprises controlled displacement of microbial methane by fresh air - Google Patents

Compost effluent gas condition regulation comprises controlled displacement of microbial methane by fresh air

Info

Publication number
DE10131738A1
DE10131738A1 DE10131738A DE10131738A DE10131738A1 DE 10131738 A1 DE10131738 A1 DE 10131738A1 DE 10131738 A DE10131738 A DE 10131738A DE 10131738 A DE10131738 A DE 10131738A DE 10131738 A1 DE10131738 A1 DE 10131738A1
Authority
DE
Germany
Prior art keywords
exhaust air
methane
gas
waste treatment
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10131738A
Other languages
German (de)
Inventor
Joachim Clemens
Carsten Cuhls
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IGFW INGENIEURGESELLSCHAFT FUE
Original Assignee
IGFW INGENIEURGESELLSCHAFT FUE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IGFW INGENIEURGESELLSCHAFT FUE filed Critical IGFW INGENIEURGESELLSCHAFT FUE
Priority to DE10131738A priority Critical patent/DE10131738A1/en
Publication of DE10131738A1 publication Critical patent/DE10131738A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/10Addition or removal of substances other than water or air to or from the material during the treatment
    • C05F17/15Addition or removal of substances other than water or air to or from the material during the treatment the material being gas
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/70Controlling the treatment in response to process parameters
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • C05F17/964Constructional parts, e.g. floors, covers or doors
    • C05F17/971Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material
    • C05F17/979Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material the other material being gaseous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A closed- circuit organic waste disposal process generates a combustible gas by-product by controlled alternating use of anaerobic and aerobic zones. The zones are created in the waste substrate by controlled gas venting, combined with a continual regulated discharge of effluent combustible gas to a waste gas treatment assembly. The air circulating within the treatment plant is enriched with methane formed by microbial action, creating the conditions for combustion without the introduction of additional fuel. Following methane enrichment, the mixture of air and methane is continually replaced by oxygen and surrendered to a gas holder. Fresh air is continually admitted to the composting reactor chamber at a controlled rate, displacing microbial methane. Methane formation is further regulated by moisture control. The effluent gas methane content is monitored by sensors and the value measure is used as the prime regulating parameter.

Description

Beschreibungdescription

Abfälle - z. B. Bioabfälle und Restmülle - werden z. T. durch eine mikrobielle Rotte behandelt. Diese kann aerob und anaerob ablaufen. Einer anaeroben Behandlung ist i. d. R. eine aerobe Rotte nachgeschaltet. Wesentliches Kennzeichen bisheriger Systeme ist, dass die aerobe und anaerobe Rotte räumlich voneinander getrennt waren. Die anaerobe Rotte (bzw. Vergärung) findet in einem luftdichten Behälter statt, wobei das entstehende Biogas meist zur Energiegewinnung verwendet wird. Bei der Vergärung wird eine maximale Gasausbeute angestrebt, um einen weitestgehenden Kohlenstoffabbau zu erreichen. Deshalb wird i. d. R. das Ausgangsmaterial abgesiebt und nur die gut vergärbare kleine Fraktion (z. B. < 8 mm) zur Vergärung verwendet. Dieses Material wird stark mit Wasser versetzt, so dass sich ein pumpfähiges Material ergibt. Nach der Vergärung wird das schlammartige Material aus der anaeroben Behandlung zu dem Ort der aeroben Behandlung transportiert, wo es mit der vorher abgesiebten Grobfraktion wieder vermischt wird. Die aerobe Rotte findet in offenen oder geschlossenen Systemen statt, wobei dem Material Sauerstoff in Form von mechanischer Durchmischung oder aber Belüftung zugeführt wird. Die Belüftung des Abfalls wird z. T. mithilfe von Sauerstoffsensoren gesteuert. Waste - e.g. B. organic waste and residual waste - z. T. treated by a microbial rotting. This can take place aerobically and anaerobically. Anaerobic treatment is usually d. Usually an aerobic Rotte downstream. An essential characteristic of previous systems is that the aerobic and anaerobic compost were spatially separated. Anaerobic rotting (or fermentation) takes place in an airtight container, the resulting biogas usually being used Energy generation is used. During fermentation there is a maximum gas yield strived to achieve the greatest possible carbon degradation. Therefore i. d. R. that Starting material sieved and only the easily fermentable small fraction (e.g. <8 mm) for Fermentation used. This material is heavily mixed with water, so that a pumpable material results. After fermentation, the sludge-like material is removed from the anaerobic treatment is transported to the location of the aerobic treatment where it is associated with the previously screened coarse fraction is mixed again. The aerobic rot takes place in open or closed systems instead, where the material is oxygen in the form of mechanical Mixing or ventilation is supplied. The ventilation of the waste is e.g. T. controlled with the help of oxygen sensors.

Ein Grossteil der Anlagen wird auch ahne anaerobe Behandlung betrieben. Hier findet nur eine aerobe Behandlung statt. Ziel der Behandlung ist ein stabiles Material, d. h. es unterliegt nur sehr eingeschränkt weiterer mikrobieller Aktivität. Most of the plants are also operated without anaerobic treatment. Find here only an aerobic treatment instead. The aim of the treatment is a stable material, i.e. H. it is subject to only very limited further microbial activity.

In der Mechanisch Biologischen Abfallbehandlung (MBA) entsteht bei der aeroben Rotte eine Abluft, die mit flüchtigen organischen Kohlenstoffen (VOC) angereichert ist und die behandelt werden muss. Dies geschieht z. B. durch thermische Anlagen, die unter Zudosierung von Brenngas die anfallende Abluft verbrennen. Diese Zudosierung von Brenngas ist ein wesentlicher Kostenfaktor in der Abluftbehandlung. In mechanical biological waste treatment (MBA), aerobic rotting is one Exhaust air enriched with volatile organic carbon (VOC) and the needs to be treated. This happens e.g. B. by thermal systems with metering of combustion gas burn the resulting exhaust air. This metering of fuel gas is a essential cost factor in exhaust air treatment.

Bisher werden in der Rotte von MBA-Material möglichst geringe VOC- und Methangehalte in der Abluft angestrebt. Dies geht einher mit einer möglichst hohen Belüftung des Materials, um im Rottematerial aerobe Verhältnisse herzustellen. Geringe Methangehalte in der Abluft führen aber zu einer notwendigen Zudosierung von Brenngas. So far, the lowest possible levels of VOC and methane have been found in MBA material aspired in the exhaust air. This goes hand in hand with the highest possible ventilation of the material, to create aerobic conditions in the rotting material. Low methane levels in the exhaust air but lead to a necessary addition of fuel gas.

Im Folgenden werden zwei Ausführungsbeispiele des Verfahrens beschrieben, das durch gezielte Rottesteuerung den Methangehalt in der Abluft soweit erhöht, so dass eine autarke thermische Abluftbehandlung möglich ist:
Das Verfahren beruht nach einem ersten Ausführungsbeispiel darauf, dass alternierend in dem Abfall, der sich in geschlossenen Systemen befindet, anaerobe und aerobe Verhältnisse induziert werden - und zwar an einem Ort. Dies wird mittels einer Kreislaufführung der Abluft sowie einer zusätzlichen Befeuchtung von einem Teil des Abfalls bewerkstelligt. Zu einem Zeitpunkt t1 wird die Belüftung des Abfalls mit der Abluft durchgeführt. Dadurch verringert sich rasch aufgrund der mikrobiellen Aktivität der Sauerstoffgehalt in der Abluft, und vorhandener Kohlenstoff im Abfall wird zu Methan reduziert. Ist ein gewisser Methangehalt in der Abluft erreicht (t2), wird diese direkt einer thermischen Anlage zugeführt oder aber in einem Gasdom zwischengespeichert. Der Methangehalt in der Abluft wird durch Methansensoren ermittelt, die auch die Abluftsteuerung übernehmen. D. h. die Abluftsteuerung wird nicht mit Sauerstoffsensoren sondern mit Brenngassensoren geregelt, insbesondere mit Methansensoren.
Two exemplary embodiments of the method are described below, which increase the methane content in the exhaust air to such an extent that autonomous thermal exhaust air treatment is possible by means of targeted redness control:
According to a first exemplary embodiment, the method is based on the fact that anaerobic and aerobic conditions are alternately induced in the waste, which is located in closed systems - at one location. This is done by circulating the exhaust air and by additional humidification of part of the waste. At a time t1, the waste is ventilated with the exhaust air. As a result of the microbial activity, the oxygen content in the exhaust air is quickly reduced and the carbon present in the waste is reduced to methane. If a certain methane content in the exhaust air is reached (t2), it is fed directly to a thermal system or temporarily stored in a gas dome. The methane content in the exhaust air is determined by methane sensors, which also take over the exhaust air control. I.e. the exhaust air control is not controlled with oxygen sensors but with fuel gas sensors, in particular with methane sensors.

Wenn die Abluft in den Gasdom oder direkt zur thermischen Verbrennung abströmt, wird durch die nachströmende luft nun der Abfall erneut belüftet. Es stellen sich wieder aerobe Verhältnisse in dem Abfall ein und vorhandener Kohlenstoff wird oxidativ abgebaut. Erneut wird die Abluft im Kreislauf geführt (t3), bis sich soviel Methan in der Abluft befindet, dass diese abgeleitet wird (t4) etc. When the exhaust air flows into the gas dome or directly for thermal combustion the waste is now ventilated again by the inflowing air. It turns aerobic again Ratios in the waste and existing carbon is oxidatively degraded. Again the exhaust air is circulated (t3) until there is so much methane in the exhaust air that this is derived (t4) etc.

Der Gasdom zur Zwischenspeicherung dient dazu, dass während der Kreislaufführung kontinuierlich brennbare Abluft der thermischen Abluftbehandlungsanlage zugeführt werden kann. Somit verringert sich die Grösse der thermischen Anlage im Vergleich zu bisherigen Abluftbehandlungsanlagen, die Brenngas der Abluft zudosieren müssen. The gas dome for temporary storage is used during the circulation continuously combustible exhaust air is fed to the thermal exhaust air treatment system can. This reduces the size of the thermal system compared to previous ones Exhaust air treatment systems that have to add fuel gas to the exhaust air.

Eine Kreislaufführung ist bisher ebenfalls bekannt, jedoch geschieht dies ausschliesslich zur Reduktion der Abluftmengen und ist deshalb nicht mit dem o. g. vergleichbar, da hier gezielt hohe Methangehalte von > 1,2 g Methan-Kohlenstoff je m3 erreicht werden sollen, worauf die Regeltechnik ausgelegt ist. Ein Methangehalt von 3% sollte nicht überschritten werden, um keine explosiven Abluftgemische zu erhalten. Circulation is also known so far, but this is done exclusively to reduce the amount of exhaust air and is therefore not comparable with the above, since high methane contents of> 1.2 g methane-carbon per m 3 are to be achieved here, for which the control technology is designed , A methane content of 3% should not be exceeded in order to avoid explosive exhaust air mixtures.

Eine weitere Möglichkeit höhere Methangehalte in der Abluft zu erzeugen, ist nach einem zweiten Ausführungsbeispiel eine gedrosselte kontinuierliche Belüftung des Materials. Eine Kreislaufführung der Abluft sowie deren Zwischenspeicherung sind dann nicht mehr notwendig. Hierbei bestimmen Brenngassensoren den Methangehalt der Abluft und regeln so die Zudosierung voll Frischluft. Analog zur obigen Beschreibung ist auch hier das Ziel, eine autarke Verbrennung der Abluft zu ermöglichen. Another way to generate higher methane levels in the exhaust air is after one second embodiment, a throttled continuous ventilation of the material. A Circulation of the exhaust air and its intermediate storage are then no longer necessary. Fuel gas sensors determine the methane content of the exhaust air and regulate it in this way the addition of fresh air. Analogous to the description above, the goal here is one to enable self-sufficient combustion of the exhaust air.

Zusammenfassend seien die Vorteile erwähnt: Es wird eine kleinere thermische Abluftbehandlung benötigt, da der zu behandelnde Abluftvolumenstrom geringer ist. Darüber hinaus ist keine zusätzliche Zudosierung von Brenngas notwendig. Somit reduzieren sich die Kosten der thermischen Abluftbehandlung erheblich. In summary, the advantages are mentioned: It becomes a smaller thermal Exhaust air treatment is required because the exhaust air volume flow to be treated is lower. About that in addition, no additional metering of fuel gas is necessary. Thus, the Thermal exhaust air treatment costs significantly.

Claims (2)

1. Verfahren zur Herstellung eines brennbaren Gases in der Abfallbehandlung in geschlossenen Systemen durch gezielte abwechselnde Einstellung von anaeroben und aeroben Zonen in dem Substrat durch die Abluftführung sowie die kontinuierliche Beschickung einer Abluftbehandlungsanlage mit dem anfallenden brennbaren Gas, dadurch gekennzeichnet, dass 1. 1.1 durch Kreislaufführung der Abluft in der Abfallbehandlungsanlage, diese mit mikrobiell gebildetem Methan angereichert wird, so dass die Abluft autark verbrennbar ist, 2. 1.2. Abluftführung nach Anspruch 1, dadurch gekennzeichnet, dass nach der Anreicherungsphase der Abluft mit Methan diese Abluft in einen gasdichten Zwischenspeicher abgeführt und in der Abfallbehandlungsanlage durch sauerstoffhaltigere Luft ersetzt wird, 3. 1.3. Abluftführung nach Anspruch 1, dadurch gekennzeichnet, dass die Abluftbehandlungsanlage kontinuierlich mit der in dem Gasdom zwischengespeicherten Abluft beschickt wird, 4. 1.4. durch gedrosselte Zudosierung von Frischluft die Abluft in der Abfallbehandlungsanlage mit mikrobiell gebildetem Methan angereichert wird, so dass die Abluft autark verbrennbar ist, 5. 1.5. die Methanbildung durch zusätzliche Befeuchtung des Materials in der Abfallbehandlungsanlage beeinflusst wird, 6. 1.6. dass der Methangehalt in der Abluft der Abfallbehandlungsanlage ständig durch Methansensoren kontrolliert wird, 7. 1.7. dass der Methangehalt die entscheidende Regelgröße der Abluftführung darstellt. 1. A method for producing a combustible gas in waste treatment in closed systems by targeted alternating setting of anaerobic and aerobic zones in the substrate by the exhaust air duct and the continuous loading of an exhaust air treatment system with the combustible gas, characterized in that 1. 1.1 by circulating the exhaust air in the waste treatment plant, which is enriched with microbially formed methane, so that the exhaust air can be burned independently, 2. 1.2. Exhaust air duct according to claim 1, characterized in that after the enrichment phase of the exhaust air with methane, this exhaust air is discharged into a gas-tight intermediate store and is replaced in the waste treatment plant by air which contains more oxygen, 3. 1.3. Exhaust air duct according to claim 1, characterized in that the exhaust air treatment system is continuously fed with the exhaust air temporarily stored in the gas dome, 4. 1.4. throttled metering of fresh air enriches the exhaust air in the waste treatment plant with microbial methane, so that the exhaust air can be burned independently, 5. 1.5. the methane formation is influenced by additional humidification of the material in the waste treatment plant, 6. 1.6. that the methane content in the waste air from the waste treatment plant is constantly checked by methane sensors, 7. 1.7. that the methane content is the decisive control variable for the exhaust air duct. 2. Verfahren zur Herstellung eines brennbaren Gases in der Abfallbehandlung in geschlossenen Systemen, dadurch gekennzeichnet, dass ein erhöhter Methangehalt in der Abluft erzielt wird, indem ein zugeführter Frischluftstrom über den Methangehalt im Abluftstrom geregelt wird. 2. Process for producing a combustible gas in the Waste treatment in closed systems, characterized in that a increased methane content in the exhaust air is achieved by a fresh air flow supplied via the methane content in the Exhaust air flow is regulated.
DE10131738A 2001-07-03 2001-07-03 Compost effluent gas condition regulation comprises controlled displacement of microbial methane by fresh air Withdrawn DE10131738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10131738A DE10131738A1 (en) 2001-07-03 2001-07-03 Compost effluent gas condition regulation comprises controlled displacement of microbial methane by fresh air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10131738A DE10131738A1 (en) 2001-07-03 2001-07-03 Compost effluent gas condition regulation comprises controlled displacement of microbial methane by fresh air

Publications (1)

Publication Number Publication Date
DE10131738A1 true DE10131738A1 (en) 2003-02-06

Family

ID=7690142

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10131738A Withdrawn DE10131738A1 (en) 2001-07-03 2001-07-03 Compost effluent gas condition regulation comprises controlled displacement of microbial methane by fresh air

Country Status (1)

Country Link
DE (1) DE10131738A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3438057A1 (en) * 1984-10-17 1986-04-17 Johannes Dipl.-Ing. 6200 Wiesbaden Linneborn Process for the treatment of biomasses
DE3615971A1 (en) * 1986-05-13 1987-11-19 Schulze Oswald Kg Process and plant for the treatment of sludge
DE3813844C1 (en) * 1988-04-23 1989-10-05 Leonhard Dipl.-Ing. Fuchs
DE3818398A1 (en) * 1988-05-31 1989-12-14 Xenex Ges Zur Biotechnischen S Process and plant for the recultivation treatment of xenobiotically contaminated soil by means of microorganisms
DE4122723A1 (en) * 1991-07-06 1992-02-27 Suesse Harald Thermostable biological waste water treatment device for tanneries - for aerobic and aerobic treatment in sealed rotating containers for recovering evolved gases and removing solid waste organic impurities
DE4124880A1 (en) * 1991-07-26 1993-01-28 Herhof Umwelttechnik Gmbh Fermentative hydrolysis of organic waste by microorganisms - in aerobic first stage followed by anaerobic stage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3438057A1 (en) * 1984-10-17 1986-04-17 Johannes Dipl.-Ing. 6200 Wiesbaden Linneborn Process for the treatment of biomasses
DE3615971A1 (en) * 1986-05-13 1987-11-19 Schulze Oswald Kg Process and plant for the treatment of sludge
DE3813844C1 (en) * 1988-04-23 1989-10-05 Leonhard Dipl.-Ing. Fuchs
DE3818398A1 (en) * 1988-05-31 1989-12-14 Xenex Ges Zur Biotechnischen S Process and plant for the recultivation treatment of xenobiotically contaminated soil by means of microorganisms
DE4122723A1 (en) * 1991-07-06 1992-02-27 Suesse Harald Thermostable biological waste water treatment device for tanneries - for aerobic and aerobic treatment in sealed rotating containers for recovering evolved gases and removing solid waste organic impurities
DE4124880A1 (en) * 1991-07-26 1993-01-28 Herhof Umwelttechnik Gmbh Fermentative hydrolysis of organic waste by microorganisms - in aerobic first stage followed by anaerobic stage

Similar Documents

Publication Publication Date Title
DE4021867C2 (en) Process for composting waste
DE69608279T2 (en) METHOD FOR TREATING WASTE SLUDGE
CN106242650A (en) A kind of rubbish from cooking high-efficiency aerobic composting process
EP0555287B1 (en) Process and device for biotechnologically processing mixtures of residual substances
EP0647604B1 (en) Organic matter composting process
EP0606119B1 (en) Process for composting waste
DE2844498A1 (en) METHOD FOR DEGRADING SLUDGE
DE2805054C3 (en) Process for breaking down sludge
JP3417314B2 (en) Organic waste treatment method
AT401051B (en) METHOD FOR GENERATING EARTH
DE10131738A1 (en) Compost effluent gas condition regulation comprises controlled displacement of microbial methane by fresh air
DE3438057A1 (en) Process for the treatment of biomasses
AT392957B (en) METHOD FOR THE TREATMENT AND DISPOSAL OF AMOUNTS OF SOLIDS AND LIQUIDS
Das et al. Composting by-products from a bleached kraft pulping process: Effect of type and amount of nitrogen amendments
DE19547320A1 (en) Production of sterile, ammonia-free liquid manure by composting organic waste
DE102010001859A1 (en) Exhaust air purification system useful for eliminating formaldehyde from a corresponding contaminated exhaust gas stream of a biogas combustion device
AT157686B (en) Process for splitting solid or semi-solid organic matter through fermentation.
EP1676819B1 (en) An environmentally compatible process for the treatment of organic sludge and a waste water treatment plant
DE19641291C1 (en) Process for the bio-thermal treatment of waste
EP1468977B1 (en) Process for aerating compost
Mankhair et al. Organic waste composting by utilizing additives and techniques: a review
Lekasi et al. A scientific perspective on composting
DD297051A5 (en) METHOD AND ARRANGEMENT FOR THE CARBON DIOXIDE SUPPLY OF GEWAECHSHAEUSERN BY MEANS OF NATURAL GAS
Ham et al. Relations between drying efficiency and parameters in bio-drying process for MSW treatment: A review
DD217786B1 (en) PROCESS FOR OBTAINING BIOGAS FROM GUELLE

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal