DE10057116A1 - Production of hydrogen from biological waste, sewage sludge or other carbonaceous material - Google Patents
Production of hydrogen from biological waste, sewage sludge or other carbonaceous materialInfo
- Publication number
- DE10057116A1 DE10057116A1 DE10057116A DE10057116A DE10057116A1 DE 10057116 A1 DE10057116 A1 DE 10057116A1 DE 10057116 A DE10057116 A DE 10057116A DE 10057116 A DE10057116 A DE 10057116A DE 10057116 A1 DE10057116 A1 DE 10057116A1
- Authority
- DE
- Germany
- Prior art keywords
- gas
- hydrogen
- raw material
- production
- sewage sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/52—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/54—Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
- C10J3/56—Apparatus; Plants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
- C10K1/10—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/047—Composition of the impurity the impurity being carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/048—Composition of the impurity the impurity being an organic compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1215—Heating the gasifier using synthesis gas as fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1807—Recycle loops, e.g. gas, solids, heating medium, water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1884—Heat exchange between at least two process streams with one stream being synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1892—Heat exchange between at least two process streams with one stream being water/steam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
Es ist bekannt, Wasserstoffgas für Antriebs- oder Brennstoffzellentechnik aus Elektrolyseverfahren mittels Strom herzustellen oder aus Erdgas zur Verarbeitung in Brennstoffzellen zu reformieren. Dabei ist eine hohe elektrische Arbeit für das Elektrolyseverfahren notwendig. Bei der Reformierung von Wasserstoff oder wasser stoffreichen Gasen für die Brennstoffzelle sind bisher fossile Rohstoffe in Form von Erdgas verwendet worden.It is known to make hydrogen gas for propulsion or fuel cell technology To produce electrolysis processes using electricity or natural gas for processing in Reform fuel cells. There is a lot of electrical work for that Electrolysis process necessary. When reforming hydrogen or water Gases rich in substances for the fuel cell have so far been fossil raw materials in the form of Natural gas has been used.
Der in Patentanspruch 1 und 2 angegebenen Erfindung liegt das Problem zugrunde, Wasserstoff oder wasserstoffreiche Gase für perspektivisch umweltfreundliche Energieumwandlungsverfahren (Kraftfahrzeugtechnik, Stromerzeugung) über nicht fossile, im Stoffkreislauf der Ansiedlungen oder Landschaftsflächen verfügbare bzw. zu entsorgende Kohlenstoffverbindungen (z. B. Klärschlamm) umweltfreundlich im Sinne der CO2-Neutralität zu produzieren.The invention specified in claims 1 and 2 is based on the problem of hydrogen or hydrogen-rich gases for environmentally friendly energy conversion processes (automotive technology, power generation) using non-fossil carbon compounds available or to be disposed of in the material cycle of the settlements or landscape areas (e.g. sewage sludge) in an environmentally friendly manner to produce in the sense of CO 2 neutrality.
Der zzt. problematische Entsorgungsaufwand für biologische und sonstige Abfall produkte mit ungenügender Energienutzung in Müllverbrennungsanlagen wird durch hocheffiziente Zerlegung des Einsatzmaterials in wertvolle Rohstoffe umgewandelt (z. B. Dünger, CO2, flüssiger Wasserstoff), wobei hochwertige Energieträger (Wasserstoff, Strom und Wärme) verfügbar werden.The zzt. Problematic disposal efforts for biological and other waste products with insufficient energy use in waste incineration plants are converted into valuable raw materials (e.g. fertilizer, CO 2 , liquid hydrogen) by highly efficient decomposition of the input material, whereby high-quality energy sources (hydrogen, electricity and heat) become available.
Bekannte Verfahren der energetischen und stofflichen Nutzung von z. B. Braunkohle gehen von herkömmlichen Verbrennungs- oder autothermen Vergasungsverfahren unter Luftzufuhr mit relative hoher Umweltbelastung auch der gegenwärtig modernsten Verfahren insbesondere der CO2- und NOx-Belastungen aus. Known methods of energetic and material use of e.g. B. Lignite are based on conventional combustion or autothermal gasification processes with air supply with a relatively high environmental impact, including the currently most modern processes, in particular CO 2 and NOx pollution.
Die mit der Erfindung erreichten Vorteile bestehen insbesondere in der Umwandlung der territorial anfallenden kohlenstoffhaltigen Abfälle (z. B. Klärschlamm und Altöl) in territorial notwendige Energie (z. B. umweltfreundliche Kraftstoffe für Wasserstoff automobile), wobei gleichzeitig Transportkapazität für Klärschlamm gespart wird, weil die Anlagen in unmittelbarer Nähe der Klärwerke installiert werden können. Gleich zeitig werden dabei Zwischenschritte der Verarbeitung des Klärschlamms eingespart. Gleiches gilt für Ansiedlung derartiger Werke an Mülldeponien, die aufgrund des Verbotes bzw. der limitierten Einlagerungen von Kohlenstoffverbindungen Annahme alternativen derartiger Stoffe aufgezeigt bekommen, wobei die Restbestandteile der Anlage zur Rekultivierung der verfüllten Flächenteile genutzt werden können.The advantages achieved with the invention are in particular the conversion of the territorial carbonaceous waste (e.g. sewage sludge and waste oil) in Territorially required energy (e.g. environmentally friendly fuels for hydrogen automobiles), while saving transport capacity for sewage sludge because the plants can be installed in the immediate vicinity of the sewage treatment plants. equal intermediate steps in the processing of the sewage sludge are saved. The same applies to the settlement of such works at landfills, which due to the Prohibition or acceptance of the limited storage of carbon compounds get alternatives of such substances shown, the remaining components of Plant for the recultivation of the filled areas can be used.
Die Nutzung des Verfahrens nach Anspruch 2 ermöglicht die direkte Verflüssigung des Gases in der Anlage, wobei die Bestandteile CO und CH4 die Klopfzahl der Antriebsmotoren positiv verringern hilft. Dabei wird auch der anteilige Wasserstoff bei tieferen Temperaturen mit verflüssigt.The use of the method according to claim 2 enables the direct liquefaction of the gas in the system, the constituents CO and CH 4 helping to reduce the knock number of the drive motors positively. The proportionate hydrogen is also liquefied at lower temperatures.
Ferner kann das Prozessgas nach der Gasreinigung und energetischen Anpassung für weitere technische oder thermische Prozesse z. B. ins Gasleitungsnetz eingeleitet werden.Furthermore, the process gas after gas cleaning and energetic adjustment for other technical or thermal processes e.g. B. initiated in the gas pipeline network become.
Durch Anwendung der Erfindung können die perspektivisch umweltrelevanten Kraftstoffe Wasserstoff nach Anspruch 1 auch aus fossilen Rohstoffen preisgünstig separiert werden, wobei bisherige energie- und kostenaufwendige Elektrolyseverfahren abgelöst werden. Gleichzeitig wird nach Anspruch 2 und 4 CO2 absorbiert und für industrielle Zwecke ausgelagert. Das verbleibende Gas mit den Hauptbestandteilen CO und CH4 kann entweder hocheffektiv auch mittels Gasmotoren-BHKW's in Strom umgewandelt oder in städtische Erdgasnetze nach Energiegehaltsanpassung eingespeist werden. Entscheidend sind die in Verbindung mit dem Verfahren stark reduzierten Emissionswerte. Im einfachsten Fall wird die Rohbraunkohle oder andere fossile Rohstoffe in dezentralen Kraftwerken ohne Zwischenschritt der Brikettierung vergast und energetisch als Strom-Wärme- Kraftwerk oder nur Wärmekraftwerk bei geringerer Vorbehandlung (ohne Brikettierung, Braunkohle und Staub) höherer Energieeffizienz und geringeren Umweltbelastungen genutzt.By using the invention, the prospectively environmentally relevant fuels hydrogen can also be separated inexpensively from fossil raw materials, replacing previous energy and costly electrolysis processes. At the same time, CO 2 is absorbed and outsourced for industrial purposes. The remaining gas with the main constituents CO and CH 4 can either be converted into electricity using gas engine cogeneration units or can be fed into urban natural gas networks after energy content adjustment. The decisive factor is the greatly reduced emission values in connection with the process. In the simplest case, raw lignite or other fossil raw materials in decentralized power plants are gasified without an intermediate briquetting step and used energetically as a combined heat and power plant or just a thermal power station with less pretreatment (without briquetting, lignite and dust), higher energy efficiency and lower environmental pollution.
Ein Ausführungsbeispiel ist in der Zeichnung 1 und 2 dargestellt. Es zeigt:An embodiment is shown in the drawings 1 and 2. It shows:
Fig. 1 das Flussbild des Gesamtsystems Fig. 1 shows the flow diagram of the overall system
Fig. 2 das Detailflussbild der H2-Anreicherung - Punkt (6) von Fig. 1 FIG. 2 shows the detailed flow diagram of the H2 enrichment - point ( 6 ) from FIG. 1
Klärschlamm mit einer Restfeuchte von 80% (übliche Feuchtigkeit bei Dekanter verfahren) wird mit Strangpressen verdichtet und durch eine Lochplatte gepresst. Die entstehenden feinen Teilstränge reißen nach Austritt aus der Lochplatte auf, weil geringe Luftmengen in die Strangpresse aufgenommen werden und bei Austritt aus der Lochplatte die Stränge aufreißen, wodurch eine hohe Oberfläche zur Trocknung mit der Abwärme des Luftkondensators der Kondensationsturbine entsteht. Die auf Förderbändern in der Trocknungsanlage befindlichen feinen Klärschlammstränge werden nach der Trocknung bis auf 20% Restfeuchte über Schubböden in den Reformer dem allothermen Vergasungsverfahren nach dem ThermoChem - Verfahren zugeführt. Ausschlaggebend ist, dass die Wärme zum thermochemischen Aufschluss der Biomasse indirekt und auf kleinstem Raum zugeführt wird, wie es das allotherme Verfahren von ThermoChem beschreibt. Im Reformer (2) entsteht ein mittelkalorisches Gas mit Wasserstoffanteilen über 50%, welches im Gaskühler (3) von 800°C auf 310°C abgekühlt wird. Die Abwärme wird zur Erzeugung von Hoch druckdampf genutzt. In diesem Temperaturbereich setzen sich keine Teere und Schwefelverbindungen an. Anschließend wird das Gas in der nachfolgenden Gas wäsche (4), wie im Patent "Verfahren zur Gasreinigung von Prozessgas aus Vergasungsverfahren" beschrieben, von den Bestandteilen Schwefel, lang- und kurzkettige Kohlenwasserstoffverbindungen, Reststäube, Furane (teilweise) und sonstige je nach Einsatzrohstoff anfallende Nebenprodukte des Gases abtrennt. Dabei wird das Gas von 310°C auf 40°C abgekühlt, so dass die durch das Wasch verfahren aufgenommene Feuchtigkeit wieder auskondensiert wird, indem sich auch die Abprodukte im Spülwasser einlagern. Die thermische Energie der Abkühlung des Gases von 310°C auf 40°C wird ausgekoppelt. Das gereinigte Prozessgas gelangt in den CO2-Absorber (5). In einer Kolonne wird CO2 von einem Trägermedium, welches im Kreislauf bewegt wird, aufgenommen, wobei die Restgasbestandteile H2, CO und CH4 weiter geleitet werden. Das im Trägermedium gebundene CO2 wird in einem separaten Arbeitsschritt des internen Kreislaufes vom CO2-Absorber verdampft oder auskondensiert. Das Prozessgas gelangt in den Prozessabschnitt H2-Anreicherung/-Abtrennung (6), welcher in Zeichnung 2 dargestellt ist. Dort wird das Prozessgas auf 40 bar kompensiert (9) und anschließend über Plattenwärme tauscher auf 30°C gekühlt (10). Das komprimierte Gas gelangt in einen weiteren Plattenwärmetauscher (11) und wird dort bis auf die Kondensationstemperatur der Restgasbestandteile CO und CH4 abgekühlt, so dass der verbleibende noch gasför mige Wasserstoff ausgelagert und ggf. durch separate weitere Abkühlung verflüssigt wird. Der Rest des Prozessgases (im wesentlichen CO und CH4) sammelt sich im flüssigen Aggregatzustand im nachgeschalteten Druckbehälter. Zur Erzeugung der Kühlenergie für die Kondensation dieser Gasbestanteile des nachfolgenden Gases wird das im Behälter befindliche verflüssigte Restgas wieder entspannt, wodurch mittels des Joule-Thompson-Effektes das entspannte Gas abgekühlt wird. Dieses kühlt über den Plattenwärmetauscher das von (5) kommende zuströmende Gas ab. Das Schwachgas wird für den thermischen Aufschluss im Reformer und der Rest im nachgeschalteten Kessel (7) genutzt. Im Kessel (7) wird unter Nutzung des Anteils der Hochdruckdampferzeugung aus dem Prozessgaskühlung (3) sowie der Abgase aus dem Reformierungsprozess Dampf erzeugt, welcher eine Turbine zur Stromer zeugung treibt. Der entstehende Strom wird teilweise für den Prozess genutzt und der Rest wird ins Netz eingespeist oder an Biostromanbieter verkauft. Die Abwärme nutzen wir im Prozess für das Austreiben der Restfeuchte des Klärschlamms je nach Bedarf und kann zur Beheizung der nahestehenden Kläranlage oder anderen Nutzern zur Verfügung gestellt werden.Sewage sludge with a residual moisture of 80% (usual humidity in decanters) is compressed with extrusion presses and pressed through a perforated plate. The resulting fine partial strands tear open after exiting the perforated plate, because small amounts of air are absorbed into the extrusion press and, when exiting the perforated plate, the strands tear open, resulting in a high surface area for drying with the waste heat of the air condenser of the condensation turbine. The fine sewage sludge strands on conveyor belts in the drying plant are fed to the allothermal gasification process according to the ThermoChem process after drying up to 20% residual moisture via moving floors in the reformer. The decisive factor is that the heat for the thermochemical digestion of the biomass is supplied indirectly and in the smallest space, as described by ThermoChem's allothermal process. In the reformer ( 2 ), a medium calorific gas with hydrogen contents of over 50% is generated, which is cooled in the gas cooler ( 3 ) from 800 ° C to 310 ° C. The waste heat is used to generate high pressure steam. No tars and sulfur compounds accumulate in this temperature range. Subsequently, the gas in the subsequent gas scrubbing ( 4 ), as described in the patent "Process for gas purification of process gas from gasification processes", from the components sulfur, long- and short-chain hydrocarbon compounds, residual dusts, furans (partially) and other, depending on the raw material used Separates by-products of the gas. The gas is cooled from 310 ° C to 40 ° C, so that the moisture absorbed by the washing process is condensed out again by also storing the waste products in the rinse water. The thermal energy of cooling the gas from 310 ° C to 40 ° C is extracted. The cleaned process gas enters the CO 2 absorber ( 5 ). In a column, CO 2 is taken up by a carrier medium which is circulated, the residual gas components H 2 , CO and CH 4 being passed on. The CO 2 bound in the carrier medium is evaporated or condensed by the CO 2 absorber in a separate working step of the internal circuit. The process gas enters the process section H 2 enrichment / separation ( 6 ), which is shown in drawing 2. There the process gas is compensated to 40 bar ( 9 ) and then cooled to 30 ° C using plate heat exchangers ( 10 ). The compressed gas passes into a further plate heat exchanger ( 11 ) and is cooled there to the condensation temperature of the residual gas components CO and CH 4 , so that the remaining gaseous hydrogen is removed and, if necessary, liquefied by separate further cooling. The rest of the process gas (essentially CO and CH 4 ) collects in the liquid state in the downstream pressure vessel. To generate the cooling energy for the condensation of these gas components of the subsequent gas, the liquefied residual gas in the container is expanded again, whereby the expanded gas is cooled by means of the Joule-Thompson effect. This cools the incoming gas coming from ( 5 ) via the plate heat exchanger. The lean gas is used for thermal digestion in the reformer and the rest in the downstream boiler ( 7 ). In the boiler ( 7 ) steam is generated using the share of high-pressure steam generation from the process gas cooling ( 3 ) and the exhaust gases from the reforming process, which drives a turbine to generate electricity. The electricity generated is partly used for the process and the rest is fed into the grid or sold to bio-electricity providers. We use the waste heat in the process to drive out the residual moisture of the sewage sludge as required and can be made available to heat the nearby sewage treatment plant or to other users.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10057116A DE10057116A1 (en) | 2000-11-16 | 2000-11-16 | Production of hydrogen from biological waste, sewage sludge or other carbonaceous material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10057116A DE10057116A1 (en) | 2000-11-16 | 2000-11-16 | Production of hydrogen from biological waste, sewage sludge or other carbonaceous material |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10057116A1 true DE10057116A1 (en) | 2002-06-20 |
Family
ID=7663696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10057116A Ceased DE10057116A1 (en) | 2000-11-16 | 2000-11-16 | Production of hydrogen from biological waste, sewage sludge or other carbonaceous material |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE10057116A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007113330A1 (en) * | 2006-04-05 | 2007-10-11 | Eneria | Process for producing electrical energy from biomass |
EP2333033A2 (en) | 2009-10-06 | 2011-06-15 | Politechnika Lubelska | Method for producing fuel from sewage sludge |
-
2000
- 2000-11-16 DE DE10057116A patent/DE10057116A1/en not_active Ceased
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007113330A1 (en) * | 2006-04-05 | 2007-10-11 | Eneria | Process for producing electrical energy from biomass |
FR2899596A1 (en) * | 2006-04-05 | 2007-10-12 | Enria Soc Par Actions Simplifi | PROCESS FOR PRODUCING ELECTRICAL ENERGY FROM BIOMASS |
EP2333033A2 (en) | 2009-10-06 | 2011-06-15 | Politechnika Lubelska | Method for producing fuel from sewage sludge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080103220A1 (en) | Synthetic fuel production using coal and nuclear energy | |
US20080098654A1 (en) | Synthetic fuel production methods and apparatuses | |
RU2544666C2 (en) | Regulation of synthesis-gas composition in installation of steam methane reforming | |
Ptasinski | Thermodynamic efficiency of biomass gasification and biofuels conversion | |
DE102007038760B3 (en) | Process and plant for the production of synthesis gas from biogas | |
Ptasinski et al. | Exergy analysis of methanol from the sewage sludge process | |
Saidi et al. | Hydrogen production from waste gasification followed by membrane filtration: a review | |
EP1175472B1 (en) | Method and device for producing energy or methanol | |
CN101489963B (en) | Operation of a steam methane reformer by direct feeding of steam rich producer gas from steam hydro-gasification | |
US20120270119A1 (en) | Method and device for simultaneous production of energy in the forms electricity, heat and hydrogen gas | |
CN101547880A (en) | Process for enhancing the operability of hot gas cleanup for the production of synthesis gas from steam-hydrogasification producer gas | |
Wallman et al. | Hydrogen production from wastes | |
WO2010015593A2 (en) | Method and device for producing energy, dme (dimethyl ether) and bio-silica using co<sb>2</sb>-neutral biogenic reactive and inert ingredients | |
Fan et al. | Thermodynamic performance of SNG and power coproduction from MSW with recovery of chemical unreacted gas | |
EP1699906B1 (en) | Method and installation for producing liquid energy carriers from a solid carbon carrier | |
CN115516066A (en) | Method and apparatus | |
DE102007004294A1 (en) | Process and device for the production of energy, fuels or chemical raw materials using CO2-neutral biogenic feedstocks | |
DE10057116A1 (en) | Production of hydrogen from biological waste, sewage sludge or other carbonaceous material | |
Saidi et al. | Waste management and conversion to pure hydrogen by application of membrane reactor technology | |
CN103031154A (en) | Method and device for preparing synthesis gas or hydrogen by direct connection of non-catalytic partial oxidation furnace with BGL gasifier or crushed coal pressurized slag gasifier | |
CN113272410A (en) | Method and apparatus for producing biomethane from waste | |
EP1240274A1 (en) | Method for producing renewable combustible substances and fuels | |
Alves et al. | Market Opportunities in Portugal for the Water-and-Waste Sector Using Sludge Gasification. Energies 2022, 15, 6600 | |
RU2785188C1 (en) | A method for producing synthetic hydrocarbons during the utilization of the energy of solid organic compounds | |
Kuba | Participation Matthias Binder (matthias. binder@ best-research. eu) Katharina Fürsatz (katharina. fuersatz@ best-research. eu) Jürgen Loipersböck (juergen. loipersboeck@ best-research. eu) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: BU BIOENERGIE & UMWELTTECHNIK AG, PFAEFFIKON, CH |
|
8128 | New person/name/address of the agent |
Representative=s name: ULLRICH & NAUMANN, 69115 HEIDELBERG |
|
8131 | Rejection |