DE10011547C2 - Thermally stable layer system for reflection of radiation in the extreme ultraviolet spectral range (EUV) - Google Patents

Thermally stable layer system for reflection of radiation in the extreme ultraviolet spectral range (EUV)

Info

Publication number
DE10011547C2
DE10011547C2 DE2000111547 DE10011547A DE10011547C2 DE 10011547 C2 DE10011547 C2 DE 10011547C2 DE 2000111547 DE2000111547 DE 2000111547 DE 10011547 A DE10011547 A DE 10011547A DE 10011547 C2 DE10011547 C2 DE 10011547C2
Authority
DE
Germany
Prior art keywords
layer system
layer
reflection
euv
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
DE2000111547
Other languages
German (de)
Other versions
DE10011547T1 (en
DE10011547A1 (en
Inventor
Sergey Yulin
Torsten Feigl
Norbert Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE20023408U priority Critical patent/DE20023408U1/en
Priority to DE2000111547 priority patent/DE10011547C2/en
Publication of DE10011547A1 publication Critical patent/DE10011547A1/en
Application granted granted Critical
Publication of DE10011547C2 publication Critical patent/DE10011547C2/en
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

Die Erfindung betrifft ein Schichtsystem nach dem Oberbe­ griff des Anspruchs 1.The invention relates to a layer system according to the Oberbe handle of claim 1.

Optische Bauelemente für die Reflexion von Strahlung im extrem ultravioletten Spektralbereich (EUV: 10 nm . . . 100 nm) können durch Dünnschichtsysteme reali­ siert werden, die im allgemeinen aus etwa 40-60 auf einem Substrat übereinanderliegenden Dünnschichtpaa­ ren bestehen. Eine geringere Anzahl von Paaren führt zu einem niedrigeren Reflexionswert, während eine hö­ here Anzahl aufgrund der Absorption der Strahlung keine weitere Steigerung des Reflexionswertes ergibt. Ein beispielhafter Wert für die Dicke eines Schicht­ paares liegt bei 6,8 nm. Optical components for the reflection of radiation in the extremely ultraviolet spectral range (EUV: 10 nm , , , 100 nm) can be achieved with thin film systems be generally based on around 40-60 a superimposed thin-film pair ren exist. A smaller number of pairs leads to a lower reflection value, while a higher Here number due to the absorption of the radiation no further increase in the reflection value results. An exemplary value for the thickness of a layer Paares is 6.8 nm.  

Die Schichtsysteme werden hauptsächlich durch PVD- Verfahren hergestellt, wobei sowohl Sputter-, Elek­ tronenstrahl-Verdampfungs- als auch Laser-Ablations- Verfahren eingesetzt werden können. CVD-Verfahren wurden ebenfalls erfolgreich zur Herstellung derarti­ ger Schichtsysteme angewendet.The layer systems are mainly made of PVD Process produced, both sputtering, elec electron beam evaporation as well as laser ablation Procedures can be used. CVD have also been successfully used to produce such ger layer systems applied.

Ein Dünnschichtpaar besteht im allgemeinen aus zwei Materialien mit unterschiedlichen optischen Konstan­ ten, wobei das eine Material eine möglichst geringe Absorption ("Spacer"), das andere Material dagegen eine große Absorption ("Absorber") aufweisen sollten. Die Auswahl der Dünnschichtmaterialien ist vor allem von der Arbeitswellenlänge des zu realisierenden op­ tischen Bauelementes abhängig (E. Spiller: Low-loss reflection coatings using absorbing materials, Appl. Phys. Lett., 20, S. 365-367, 1972). So sind auf Sili­ zium basierende Dünnschichtsysteme für einen Wellen­ längenbereich jenseits der Si-L-Absorptionskante von 12,4 nm bis ca. 35 nm anwendbar. Für diesen Wellen­ längenbereich hat sich weiterhin seit über 10 Jahren Molybdän als "Absorber" etabliert, so daß weltweit derzeit fast ausschließlich Mo/Si-Schichtsysteme in diesem Spektralbereich zur Anwendung gelangen (Spil­ ler, SoftX-Ray Optics, SPIE Optical Engenieering Press, Bellingham, 1994).A thin film pair generally consists of two Materials with different optical constants ten, the one material being as low as possible Absorption ("Spacer"), the other material against it should have a large absorption ("absorber"). The choice of thin film materials is above all on the working wavelength of the op table component dependent (E. Spiller: Low-loss reflection coatings using absorbing materials, Appl. Phys. Lett., 20, pp. 365-367, 1972). So are on sili Zium based thin film systems for one wave length range beyond the Si-L absorption edge of 12.4 nm to approx. 35 nm applicable. For these waves length range has continued for over 10 years Molybdenum established as an "absorber", so that worldwide currently almost exclusively Mo / Si layer systems in this spectral range are used (Spil ler, SoftX-Ray Optics, SPIE Optical Engenieering Press, Bellingham, 1994).

Eine wichtige Charakteristik von im allgemeinen als Spiegel verwendeten Schichtsystemen für den EUV- Spektralbereich ist die maximale Reflexion. Der welt­ weit höchst gemessene Reflexionswert liegt derzeit bei RMo/Si = 68,7% bei 13,4 nm (C. Montcalm, J. A. Folta, S. P. Vernon: Pathways to high reflectance Mo/Si multilayer coatings for extreme-untraviolet li­ thography, 4. International Conference on The Physics of X-Ray Multilayer Structures, 1.-5. März 1998, Breckenridge, Colorado, USA).An important characteristic of layer systems generally used as mirrors for the EUV spectral range is the maximum reflection. The world's highest measured reflection value is currently R Mo / Si = 68.7% at 13.4 nm (C. Montcalm, JA Folta, SP Vernon: Pathways to high reflectance Mo / Si multilayer coatings for extreme-untraviolet li thography, 4th International Conference on The Physics of X-Ray Multilayer Structures, March 1-5, 1998, Breckenridge, Colorado, USA).

Dies entspricht etwa 90% der theoretisch erreichba­ ren Reflexion Rtheor, die in Abhängigkeit von dem zu­ grundeliegenden Modell 76,7% bei 13,4 nm beträgt.This corresponds to approximately 90% of the theoretically achievable reflection R theor , which is 76.7% at 13.4 nm, depending on the model to be used.

Für viele Anwendungen von EUV-Spielgeln ist neben der Reflexion auch eine möglichst hohe Stabilität der Schichtsysteme gegenüber thermischer Belastung erfor­ derlich. Da Mo/Si-Schichtsysteme oberhalb einer Tem­ peratur von ca. 300°C aufgrund von Interdiffusions- und Kristallisationseffekten an den Molybdän-Sili­ zium-Schichtgrenzflächen degradiert werden, wie es bspw. in der US 5 319 695 beschrieben wird, sind Sy­ steme dieser Materialpaarung nur bis zu einer maxima­ len Arbeitstemperatur von 300°C einsetzbar. Bei hohen Photonenenergien oder durch äußere thermische Bela­ stung werden die Schichtsysteme in der Praxis jedoch sehr oft höheren Temperaturen ausgesetzt. Besonders gilt dies beispielsweise für Kollektorspiegel in un­ mittelbarer Nähe der EUV-Strahlungsquelle. Es wurden bisher zwei Wege verfolgt, Mo/Si-Schichtsysteme auch bei Temperaturen oberhalb 300°C anzuwenden, nämlich:
For many applications of EUV game gel, in addition to reflection, the highest possible stability of the layer systems against thermal stress is required. Since Mo / Si layer systems are degraded above a temperature of approx. 300 ° C. due to interdiffusion and crystallization effects at the molybdenum-silicon layer interfaces, as described, for example, in US Pat. No. 5,319,695, systems are these Material pairing can only be used up to a maximum working temperature of 300 ° C. At high photon energies or due to external thermal stress, however, the layer systems are very often exposed to higher temperatures in practice. This applies in particular to collector mirrors in the immediate vicinity of the EUV radiation source, for example. So far, two ways have been followed to use Mo / Si layer systems even at temperatures above 300 ° C, namely:

  • 1. intensive Substratkühlung und1. intensive substrate cooling and
  • 2. Nutzung von ultradünnen Kohlenstoff-Barriere­ schichten zwischen Molybdän und Silizium zur Vermeidung von Interdiffusions- und Kristalli­ sationseffekten an der Molybdän-Silizium-Grenz­ fläche (H. Takenaka, T. Kawumara: Thermal sta­ bility of Soft X-Ray Mirrors, J. of Electr. Spectr. and Relat. Phen., 80, S. 381-384, 1996)2. Use of ultra-thin carbon barrier layers between molybdenum and silicon Avoidance of interdiffusion and crystalli effects on the molybdenum-silicon boundary area (H. Takenaka, T. Kawumara: Thermal sta bility of Soft X-Ray Mirrors, J. of Electr. Spectr. and Relat. Phen., 80, pp. 381-384, 1996)

Während eine Substratkühlung einen erhöhten apparati­ ven Gesamtaufwand erfordert, weisen Mo/Si-Schichtsysteme mit ultradünnen Kohlenstoff-Barriereschichten eine um ca. 5% verringerte theoretisch erreichbare maximale Reflexion im Vergleich zu reinen Mo/Si- Schichtsystemen auf.During a substrate cooling an increased apparatus ven total effort required, have Mo / Si layer systems  with ultra-thin carbon barrier layers a theoretically achievable reduction of about 5% maximum reflection compared to pure Mo / Si Layer systems.

Es ist daher die Aufgabe der vorliegenden Erfindung, ein thermisch stabiles Schichtssystem zur Reflexion von Strahlung im extremen ultravioletten Spektralbe­ reich anzugeben, bei dem der Reflexionswert möglichst hoch ist.It is therefore the object of the present invention a thermally stable layer system for reflection of radiation in the extreme ultraviolet spectrum rich to state where the reflection value is as high as possible.

Diese Aufgabe wird erfindungsgemäß gelöst durch das im kennzeichnenden Teil des Anspruchs 1 angegebene Merkmal. Vorteilhafte Weiterbildungen des erfindungs­ gemäßen Schichtsystems ergeben sich aus den Unteran­ sprüchen.This object is achieved by the specified in the characterizing part of claim 1 Characteristic. Advantageous further developments of the invention according layer system result from the Unteran claims.

Dadurch, daß die Barriereschicht aus Molybdäncarbid (Mo2C) besteht, wird ein Schichtsystem erhalten, des­ sen Degradation infolge thermischer Belastung erst bei einer Temperatur oberhalb 500°C beginnt, wobei die durch die Mo2C-Barriereschicht bedingte Herabset­ zung des theoretisch erreichbaren Reflexionswertes bei einer Dicke der Barriereschicht von 0,6 nm nur etwa 1% beträgt.The fact that the barrier layer consists of molybdenum carbide (Mo 2 C), a layer system is obtained, the sen degradation due to thermal stress only begins at a temperature above 500 ° C, the reduction due to the Mo 2 C barrier layer of the theoretically achievable Reflection value with a thickness of the barrier layer of 0.6 nm is only about 1%.

Zur Herstellung von Mo/Mo2C/Si/Mo2C-Schicht-Systemen werden vorteilhaft PVD-Verfahren angewendet, wobei jeweils zwischen Mobybdän und Silizium eine etwa 0,6 nm dicke Mo2C-Barriereschicht abgeschieden wird. Die Gesamtdicke einer Molybdän- und einer Siliziumschicht beträgt vorzugsweise etwa 6,8 nm. Jedoch sind die Dicke der Einzelschichten sowie das Design des herzu­ stellenden Mo/Mo2C/Si/Mo2C-Schichtsystems abhängig von den Anforderungen, die die jeweils bestimmungsge­ mäße Anwendung an das Schichtsystem stellt. Die Tech­ nologie zur Herstellung der Mo/Mo2C/Si/Mo2C-Schicht­ systeme wird vom Beschichtungsprozeß bestimmt.For the production of Mo / Mo 2 C / Si / Mo 2 C layer systems, PVD methods are advantageously used, with an approximately 0.6 nm thick Mo 2 C barrier layer being deposited between mobybdenum and silicon. The total thickness of a molybdenum and a silicon layer is preferably about 6.8 nm. However, the thickness of the individual layers and the design of the Mo / Mo 2 C / Si / Mo 2 C layer system to be produced are dependent on the requirements which determine the respective appropriate application to the layer system. The technology for the production of the Mo / Mo 2 C / Si / Mo 2 C layer systems is determined by the coating process.

Zur Beurteilung der thermischen Stabilität eines Mo/­ Mo2C/Si/Mo2C-Schichtsystems wurden mehrere Mo/Mo2C/Si/Mo2C-Spiegel für eine Arbeitswellenlänge von 13,3 nm realisiert. Die Herstellung dieser Spie­ gel erfolgte mit der DC-Magnetron-Sputter-Techno­ logie. Der Beschichtungsprozeß war durch folgende Pa­ rameter charakterisiert:
To assess the thermal stability of a Mo / Mo 2 C / Si / Mo 2 C layer system, several Mo / Mo 2 C / Si / Mo 2 C mirrors were implemented for a working wavelength of 13.3 nm. These mirrors were manufactured using DC magnetron sputtering technology. The coating process was characterized by the following parameters:

  • - Anzahl der Mo/Mo2C/Si/Mo2C-Schichten: 50- Number of Mo / Mo 2 C / Si / Mo 2 C layers: 50
  • - Substrat: Si-(111)-Wafer- Substrate: Si ( 111 ) wafer
  • - Arbeitsgas: Argon- Working gas: argon
  • - Arbeitsdruck: 0,266 Pa- Working pressure: 0.266 Pa
  • - Sputterleistung Molybdän: 150 W- Molybdenum sputtering power: 150 W.
  • - Sputterleistung Silizium: 200 W- Sputtering power silicon: 200 W.
  • - Sputterleistung Molybdäncarbid: 200 W- Molybdenum carbide sputtering power: 200 W.
  • - Sputterrate Molybdän: 0,55 nm/s- Molybdenum sputtering rate: 0.55 nm / s
  • - Sputterrate Silizium: 0,50 nm/s- Sputter rate silicon: 0.50 nm / s
  • - Sputterrate Molybdäncarbid: 0,6 nm/s- Molybdenum carbide sputtering rate: 0.6 nm / s
  • - Substratvorspannung: 100 V- substrate bias: 100 V

Die bei diesem Schichtsystem maximal gemessene Refle­ xion betrug R = 59,9%. Die so hergestellten Mo/Mo2C/Si/Mo2C-Spiegel wurden nach dem Beschich­ tungsprozeß unter Vakuumbedingungen schrittweise bis zu einer Temperatur von 700°C erhitzt. In Auswertung dieser Versuche ergab sich eine thermische Stabilität des Mo/Mo2C/Si/Mo2C-Schichtsystems bis zu einer Tem­ peratur von 500°C.The maximum measured reflection in this layer system was R = 59.9%. The Mo / Mo 2 C / Si / Mo 2 C mirrors thus produced were gradually heated to a temperature of 700 ° C. after the coating process under vacuum conditions. The evaluation of these experiments showed a thermal stability of the Mo / Mo 2 C / Si / Mo 2 C layer system up to a temperature of 500 ° C.

Claims (5)

1. Thermisch stabiles Schichtsystem zur Reflexion von Strahlung im extremen ultravioletten Spek­ tralbereich (EUV), bestehend aus einer Vielzahl von auf einem Substrat übereinanderliegenden Dünnschichtpaaren jeweils aus einer Molybdän- und einer Siliziumschicht, wobei zwischen je­ weils zwei benachbarten unterschiedlichen Mate­ rialschichten eine Barriereschicht angeordnet ist, dadurch gekennzeichnet, daß die Barriereschicht aus Molybdäncarbid (Mo2C) besteht.1.Thermally stable layer system for reflecting radiation in the extreme ultraviolet spectral range (EUV), consisting of a plurality of pairs of thin layers lying on top of one another on a substrate, each consisting of a molybdenum and a silicon layer, with a barrier layer being arranged between two adjacent different material layers , characterized in that the barrier layer consists of molybdenum carbide (Mo 2 C). 2. Schichtsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Anzahl der Dünnschichtpaare im Be­ reich 40-60 liegt.2. Layer system according to claim 1, characterized in that the number of thin-film pairs in the loading range is 40-60 . 3. Schichtsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Molybdän- und die Siliziumschichten der Dünnschichtpaare jeweils eine Gesamtdicke von etwa 6,8 nm aufweisen.3. Layer system according to claim 1 or 2, characterized, that the molybdenum and silicon layers of the Thin-film pairs each have a total thickness of approximately 6.8 nm exhibit. 4. Schichtsystem nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß die Barriereschicht eine Dicke von etwa 0,6 nm aufweist. 4. Layer system according to one of claims 1-3, characterized, that the barrier layer has a thickness of about 0.6 nm having.   5. Schichtsystem nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die Schichten durch PVD-Verfahren aufge­ bracht sind.5. Layer system according to one of claims 1-4, characterized, that the layers are applied by PVD processes are brought.
DE2000111547 2000-02-28 2000-02-28 Thermally stable layer system for reflection of radiation in the extreme ultraviolet spectral range (EUV) Withdrawn - After Issue DE10011547C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE20023408U DE20023408U1 (en) 2000-02-28 2000-02-28 Thermally stable layer system used for reflecting extreme UV rays consists of layer pairs made up of a barrier layer of molybdenum carbide between molybdenum layer and a silicon layer
DE2000111547 DE10011547C2 (en) 2000-02-28 2000-02-28 Thermally stable layer system for reflection of radiation in the extreme ultraviolet spectral range (EUV)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000111547 DE10011547C2 (en) 2000-02-28 2000-02-28 Thermally stable layer system for reflection of radiation in the extreme ultraviolet spectral range (EUV)

Publications (2)

Publication Number Publication Date
DE10011547A1 DE10011547A1 (en) 2001-09-06
DE10011547C2 true DE10011547C2 (en) 2003-06-12

Family

ID=7634130

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000111547 Withdrawn - After Issue DE10011547C2 (en) 2000-02-28 2000-02-28 Thermally stable layer system for reflection of radiation in the extreme ultraviolet spectral range (EUV)

Country Status (1)

Country Link
DE (1) DE10011547C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008002403A1 (en) 2008-06-12 2009-12-17 Carl Zeiss Smt Ag Method for producing a multilayer coating, optical element and optical arrangement
US7920323B2 (en) 2004-12-23 2011-04-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Thermally stable multilayer mirror for the EUV spectral region
DE102013207751A1 (en) 2013-04-29 2014-10-30 Carl Zeiss Smt Gmbh Optical element with a multilayer coating and optical arrangement with it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006006283B4 (en) 2006-02-10 2015-05-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermally stable multilayer mirror for the EUV spectral range

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319695A (en) * 1992-04-21 1994-06-07 Japan Aviation Electronics Industry Limited Multilayer film reflector for soft X-rays
US5433988A (en) * 1986-10-01 1995-07-18 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
US6011646A (en) * 1998-02-20 2000-01-04 The Regents Of The Unviersity Of California Method to adjust multilayer film stress induced deformation of optics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433988A (en) * 1986-10-01 1995-07-18 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
US5319695A (en) * 1992-04-21 1994-06-07 Japan Aviation Electronics Industry Limited Multilayer film reflector for soft X-rays
US6011646A (en) * 1998-02-20 2000-01-04 The Regents Of The Unviersity Of California Method to adjust multilayer film stress induced deformation of optics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920323B2 (en) 2004-12-23 2011-04-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Thermally stable multilayer mirror for the EUV spectral region
DE102008002403A1 (en) 2008-06-12 2009-12-17 Carl Zeiss Smt Ag Method for producing a multilayer coating, optical element and optical arrangement
DE102013207751A1 (en) 2013-04-29 2014-10-30 Carl Zeiss Smt Gmbh Optical element with a multilayer coating and optical arrangement with it

Also Published As

Publication number Publication date
DE10011547A1 (en) 2001-09-06

Similar Documents

Publication Publication Date Title
EP1828818B1 (en) Thermally stable multilayer mirror for the euv spectral region
DE2144242C2 (en) Optical filter
DE4112114C1 (en)
DE4443908C2 (en) Process for the production of crystallographically oriented thin layers of silicon carbide by laser deposition of carbon on silicon
DE69907506T2 (en) THIN FILM OF HAFNIUM OXIDE AND METHOD OF APPLYING
EP2304479A1 (en) Reflective optical element and method for the production thereof
DE102006006283B4 (en) Thermally stable multilayer mirror for the EUV spectral range
DE10309084A1 (en) Reflective optical element and EUV lithography device
DE102019219177A1 (en) Optical element with a protective coating, process for its production and optical arrangement
DE10011547C2 (en) Thermally stable layer system for reflection of radiation in the extreme ultraviolet spectral range (EUV)
DE10127086A1 (en) Reflector for electromagnetic waves in wavelength range below 200 mm
DE10011548C2 (en) Process for producing a thermally stable layer system for reflecting radiation in the extreme ultraviolet spectral range (EUV)
DE102013005845B3 (en) Wedge-shaped multilayer laue lens for e.g. nano-focus at synchrotron radiation source, has layers altered along radiography direction on basis of X-ray radiation that impinges up to changed surface from emerged X-ray radiation
DE102008002403A1 (en) Method for producing a multilayer coating, optical element and optical arrangement
DE20023408U1 (en) Thermally stable layer system used for reflecting extreme UV rays consists of layer pairs made up of a barrier layer of molybdenum carbide between molybdenum layer and a silicon layer
DE102013207751A1 (en) Optical element with a multilayer coating and optical arrangement with it
DE102015203604B4 (en) Layer structure for multi-layer Laue lenses or circular multi-layer zone plates
DE102016215489A1 (en) Reflective optical element
DE102018221189A1 (en) Process for forming nanostructures on a surface and optical element
WO2004097467A1 (en) Reflective optical element, optical system and euv lithography device
DE102004002764A1 (en) Method for fabricating multi-layers e.g. for EUV-lithography, involves tempering of multi-layers after mounting uppermost layer
DE10360540B4 (en) Reflective layer sequence with barrier layers and their use
DE2652436A1 (en) PHOTOELECTRIC FACILITY
DE1622498C (en) Filter assembly with a pass band from ultraviolet to about infrared
DE102011109941A1 (en) Mirror, useful for X-rays, comprises sheet-like substrate having surface, multilayer stack applied on surface of substrate, and first and second layers that are alternately arranged one above other and made of different materials

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8304 Grant after examination procedure
8363 Opposition against the patent
8330 Complete disclaimer