DE10007729A1 - Weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung - Google Patents

Weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung

Info

Publication number
DE10007729A1
DE10007729A1 DE2000107729 DE10007729A DE10007729A1 DE 10007729 A1 DE10007729 A1 DE 10007729A1 DE 2000107729 DE2000107729 DE 2000107729 DE 10007729 A DE10007729 A DE 10007729A DE 10007729 A1 DE10007729 A1 DE 10007729A1
Authority
DE
Germany
Prior art keywords
polyester film
film according
layer
sealable
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2000107729
Other languages
English (en)
Inventor
Ursula Murschall
Guenther Crass
Ulrich Kern
Herbert Peiffer
Klaus Oberlaender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Polyester Film GmbH
Original Assignee
Mitsubishi Polyester Film GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Polyester Film GmbH filed Critical Mitsubishi Polyester Film GmbH
Priority to DE2000107729 priority Critical patent/DE10007729A1/de
Priority to PCT/EP2001/001302 priority patent/WO2001060140A2/de
Publication of DE10007729A1 publication Critical patent/DE10007729A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone

Abstract

Die Erfindung betrifft eine weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, koextrudierte, biaxial orientierte Polyesterfolie, bestehend aus mindestens einer Basisschicht B und beidseitig auf dieser Basisschicht aufgebrachten Deckschichten A und C. Die Folie enthält zusätzlich mindestens einen UV-Stabilisator als Lichtschutzmittel, ein Flammschutzmittel und ein Weißpigment. Die Erfindung beinhaltet weiterhin ein Verfahren zur Herstellung der Folie und ihre Verwendung.

Description

Die Erfindung betrifft eine weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, koextrudierte, biaxial orientierte Polyesterfolie bestehend aus mindestens einer Basisschicht B und beidseitig auf dieser Basisschicht aufgebrachten Deckschichten A und C. Die Folie enthält zusätzlich mindestens einen UV-Stabilisator als Lichtschutzmittel, ein Flammschutzmittel und ein Weißpigment. Die Erfindung beinhaltet weiterhin ein Verfahren zur Herstellung der Folie und ihre Verwendung.
Die Folien und daraus hergestellte Artikel eignen sich insbesondere für Außenanwendungen, wie z. B. für Gewächshäuser und Überdachungen. Weiterhin eignen sich die Folien sehr gut für die Abdeckung und somit zum Schutz von metallischen Oberflächen, auf die die Folien heißgesiegelt werden. Bei Außenanwendungen zeigen Folien, die keine UV absorbierende Materialien enthalten, bereits nach kurzer Zeit eine Vergilbung und eine Verschlechterung der mechanischen Eigenschaften infolge eines photooxidativen Abbaus durch das Sonnenlicht. Darüberhinaus eignen sich die Folien und daraus hergestellte Artikel insbesondere für Anwendungen, wo ein Brandschutz bzw. eine Schwerentflammbarkeit gefordert ist.
Die Folie zeichnet sich durch ihr charakteristisches weißes Erscheinungsbild aus, wodurch sie für die genannten Anwendungen besonders attraktiv wird.
Siegelfähige, biaxial orientierte Polyesterfolien sind nach dem Stand der Technik bekannt. Ebenfalls bekannt sind siegelfähige, biaxial orientierte Polyesterfolien, die mit einem oder mit mehreren UV-Absorbern ausgerüstet sind. Diese nach dem Stand der Technik bekannten Folien zeichnen sich entweder durch ein gutes Siegelverhalten, eine gute Optik oder durch ein akzeptables Verarbeitungsverhalten aus.
In der GB-A 1 465 973 wird eine koextrudierte, zweischichtige Polyesterfolie beschrieben, deren eine Schicht aus isophthalsäurehaltigen und terephthalsäurehaltigen Copolyestern und deren andere Schicht aus Polyethylenterephthalat besteht. Über das Siegelverhalten der Folie finden sich in der Schrift keine verwertbaren Angaben. Wegen fehlender Pigmentierung ist die Folie nicht prozesssicher herstellbar (Folie ist nicht wickelbar) und nur unter Einschränkung weiterverarbeitbar.
In der EP-A 0 035 835 wird eine koextrudierte siegelfähige Polyesterfolie beschrieben, der zur Verbesserung des Wickel- und des Verarbeitungsverhaltens in der Siegelschicht Partikel beigesetzt werden, deren mittlere Teilchengröße die Schichtdicke der Siegelschicht übersteigt. Durch die teilchenförmigen Zusatzstoffe werden Oberflächenvorsprünge gebildet, die das unerwünschte Blocken und Kleben an Walzen oder Führungen verhindern. Über die andere, nicht siegelfähige Schicht der Folie, werden keine näheren Angaben zur Einarbeitung von Antiblockmitteln gemacht. Es bleibt offen, ob diese Schicht Antiblockmittel enthält. Durch Wahl von Partikeln mit größerem Durchmesser als die Siegelschicht und den in den Beispielen angebenen Konzentrationen wird das Siegelverhalten der Folie verschlechtert. Angaben zum Siegeltemperaturbereich der Folie werden in der Schrift nicht gemacht. Die Siegelnahtfestigkeit wird bei 140°C gemessen und liegt in einem Bereich von 63 bis 120 N/m (0,97 N/15 mm bis 1,8 N/15 mm Folienbreite).
In der EP-A 0 432 886 wird eine koextrudierte mehrschichtige Polyesterfolie beschrieben, die eine erste Oberfläche besitzt, auf der eine siegelfähige Schicht angeordnet ist und eine zweite Oberfläche besitzt, auf der eine Acrylatschicht angeordnet ist. Die siegelfähige Deckschicht kann auch hier aus isophthalsäurehaltigen und terephthalsäurehaltigen Copolyestern bestehen. Durch die rückseitige Beschichtung erhält die Folie ein verbessertes Verarbeitungsverhalten. Angaben zum Siegelbereich der Folie werden in der Schrift nicht gemacht. Die Siegelnahtfestigkeit wird bei 140°C gemessen. Für eine 11 µm dicke Siegelschicht wird eine Siegelnahtfestigkeit von 761,5 N/m (11,4 N/15 mm) angegeben. Nachteilig an der rückseitigen Acrylatbeschichtung ist, dass diese Seite gegen die siegelfähige Deckschicht nicht mehr siegelt. Die Folie ist damit nur sehr eingeschränkt zu verwenden.
In der EP-A 0 515 096 wird eine koextrudierte, mehrschichtige siegelfähige Polyesterfolie beschrieben, die auf der siegelfähigen Schicht ein zusätzliches Additiv enthält. Das Additiv kann z. B. anorganische Partikel enthalten und wird vorzugsweise in einer wässrigen Schicht an die Folie bei deren Herstellung herangetragen. Hierdurch soll die Folie die guten Siegeleigenschaften beibehalten und gut zu verarbeiten sein. Die Rückseite enthält nur sehr wenige Partikel, die hauptsächlich über das Regranulat in diese Schicht gelangen. Angaben zum Siegeltemperaturbereich der Folie werden auch in dieser Schrift nicht gemacht. Die Siegelnahtfestigkeit wird bei 140°C gemessen und beträgt mehr als 200 N/m (3 N/15 mm). Für eine 3 µm dicke Siegelschicht wird eine Siegelnahtfestigkeit von 275 N/m (4,125 N/15 mm) angegeben.
In der WO 98/06575 wird eine koextrudierte mehrschichtige Polyesterfolie beschrieben, die eine siegelfähige Deckschicht und eine nicht siegelfähige Basisschicht enthält. Die Basisschicht kann dabei aus einer oder mehreren Schichten aufgebaut sein, wobei die innere der Schichten mit der siegelfähigen Schicht in Kontakt ist. Die andere (äußere) Schicht bildet dann die zweite nicht siegelfähige Deckschicht. Die siegelfähige Deckschicht kann auch hier aus isophthalsäurehaltigen und terephthalsäurehaltigen Copolyestern bestehen, die jedoch keine Antiblockteilchen enthalten. Die Folie enthält außerdem noch mindestens einen UV-Absorber, der der Basisschicht in einem Gewichtsverhältnis von 0,1 bis 10% zugegeben wird. Als UV Absorber werden dabei vorzugsweise Triazine, z. B. ®Tinuvin 1577 der Fa. Ciba Geigy (Basel, Schweiz) verwendet. Die Basisschicht ist mit üblichen Antiblockmitteln ausgestattet. Die Folie zeichnet sich durch eine gute Siegelfähigkeit aus, hat jedoch nicht das gewünschte Verarbeitungsverhalten und weist zudem Defizite in den optischen Eigenschaften auf. Die Folie kann zudem eine matte Oberfläche aufweisen, sie besitzt dann aber eine hohe Trübung, die unerwünscht ist.
In der DE-A 23 46 787 ist ein schwerentflammbarer Rohstoff beschrieben. Neben dem Rohstoff ist auch die Verwendung des Rohstoffs zu Folien und Fasern beansprucht. Bei der Herstellung von Folie mit diesem beanspruchten phospholanmodifizierten Rohstoff zeigten sich folgende Defizite:
  • - Der genannte Rohstoff ist hydrolyseempfindlich und muss sehr gut vorgetrocknet werden. Beim Trocknen des Rohstoffes mit Trocknern, die dem Stand der Technik entsprechen, verklebt der Rohstoff, so dass nur unter schwierigsten Bedingungen eine Folie herstellbar ist.
  • - Die unter unwirtschaftlichen Bedingungen hergestellten Folien verspröden bei Temperaturbelastungen, d. h. die mechanischen Eigenschaften gehen aufgrund der Versprödung stark zurück, so dass die Folie unbrauchbar ist. Bereits nach 48 Stunden Temperaturbelastung tritt diese Versprödung auf.
Aufgabe der vorliegenden Erfindung war es, eine weiße, siegelfähige, UV-stabilisierte, flammhemmend ausgerüstete und biaxial orientierte Polyesterfolie bereitzustellen, die die Nachteile der genannten Folien nach dem Stand der Technik nicht aufweist und sich insbesondere durch eine sehr gute Siegelfähigkeit, eine wirtschaftliche Herstellung, eine verbesserte Verarbeitbarkeit und verbesserte optische Eigenschaften auszeichnet. Vor allem sollte sie eine flammhemmende Wirkung und keine Versprödung nach Temperaturbelastung aufweisen.
Es war Aufgabe der vorliegenden Erfindung, den Siegelbereich der Folie auf niedrige Temperaturen zu erweitern, die Siegelnahtfestigkeit der Folie zu erhöhen und gleichzeitig für ein verbessertes Handling der Folie zu sorgen als es nach dem Stand der Technik bekannt ist. Außerdem muss gewährleistet sein, dass die Folie auch auf schnelllaufenden Verarbeitungsmaschinen verarbeitet werden kann. Bei der Herstellung der Folie soll immanent anfallendes Regenerat in einer Konzentration bis zu 60 Gew.-%, bezogen auf das Gesamtgewicht der Folie, der Extrusion zugeführt werden können, ohne dass dabei die physikalischen Eigenschaften der Folie nennenswert negativ beeinflusst werden.
Da die Folie insbesondere für die Außenanwendung und/oder kritische Innenanwendungen gedacht ist, sollte sie eine hohe UV-Stabilität aufweisen. Eine hohe UV-Stabilität bedeutet, dass die Folien durch Sonnenlicht oder andere UV-Strahlung nicht oder nur extrem wenig geschädigt werden. Insbesondere sollen die Folien bei mehrjähriger Außenanwendung nicht vergilben, keine Versprödung oder Rissbildung der Oberfläche zeigen und auch keine Verschlechterung der mechanischen Eigenschaften aufweisen. Hohe UV-Stabilität bedeutet demnach, dass die Folie das UV-Licht absorbiert und Licht erst im sichtbaren Bereich durchlässt.
Eine flammhemmende Wirkung bedeutet, dass die Folie in einer sogenannten Brandschutzprüfung die Bedingungen nach DIN 4102 Teil 2 und insbesondere die Bedingungen nach DIN 4102 Teil 1 erfüllt und in die Baustoffklasse B2 und insbesondere B1 der schwer entflammbaren Stoffe eingeordnet werden kann.
Desweiteren soll die Folie den UL-Test 94 "Vertical Burning Test for Flammability of Plastic Material" bestehen, so dass sie in die Klasse 94 VTM-0 eingestuft werden kann. Das bedeutet, dass die Folie 10 Sekunden nach Wegnahme des Bunsenbrenners nicht mehr brennt, nach 30 Sekunden kein Glühen beobachtet wird und auch kein Abtropfen festgestellt wird.
Zu den guten mechanischen Eigenschaften zählt unter anderem ein hoher E-Modul (EMD < 3200 N/mm2; ETD < 3500 N/mm2) sowie gute Reißfestigkeitswerte (in MD < 100 N/mm2; in TD < 130 N/mm2).
Zu der wirtschaftlichen Herstellung zählt, dass die Rohstoffe bzw. die Rohstoffkomponenten, die zur Herstellung der schwer entflammbaren Folie benötigt werden, mit handelsüblichen Industrietrocknern, wie z. B. Vakuumtrockner, Wirbelschichttrockner, Fließbettrockner, Festbetttrockner (Schachttrockner), getrocknet werden können. Wesentlich ist, dass die Rohstoffe nicht verkleben und nicht thermisch abgebaut werden.
Keine Versprödungen bei kurzer Temperaturbelastung bedeutet, dass die Folie nach 100 Stunden Tempervorgang bei 100°C in einem Umluftofen keine Versprödung und keine schlechten mechanischen. Eigenschaften aufweist.
Die Aufgabe wird erfindungsgemäß durch die Bereitstellung einer weißen, siegelfähigen, UV stabilisierten und flammhemmend ausgerüsteten, biaxial orientierten Polyesterfolie mit mindestens einer Basisschicht B, einer siegelfähigen Deckschicht A und einer weiteren Deckschicht C gelöst, wobei die siegelfähige Deckschicht A eine Siegelanspringtemperatur von ≦ 110°C, eine Siegelnahtfestigkeit von ≧ 1,3 N/15 mm aufweist. Bevorzugt weist die Deckschicht A darüber hinaus nochfolgende Eigenschaften auf: eine mittlere Rauhigkeit Ra kleiner 30 nm, einen Messwertbereich für die Gasströmung von 500-4000 s und einen Glanz von größer 120 (Messwinkel 20°).
Die nicht siegelfähige Deckschicht C weist bevorzugt einen Reibungskoeffizienten COF kleiner 0,5, eine mittlere Rauhigkeit Ra von 40-100 nm, einen Messwertbereich für die Gasströmung von kleiner 120 s, einen Glanz von kleiner 100 (Messwinkel 20°) und eine Anzahl von Erhebungen N pro mm2 Folienoberfläche auf, die mit der jeweiligen Höhe h über folgende Gleichungen korreliert sind:
AC1 - BC1 . log h/µm < NC/mm2 < AC2 - BC2 . log h/µm
0,01 µm < h < 10 µm
AC1 = 0,29; BC1 = 3,30;
AC2 = 1,84; BC2 = 2,70.
Die Polyesterfolie hat bevorzugt einen Weißgrad von größer 70 und eine planare Orientierung von kleiner 0,165, die Bewitterungsprüfung/UV-Stabilität nach ISO 4892 ist kleiner 20%, die Baustoffklassen B2 und B1 nach DIN 4101 Teil 2/Teil 1 werden erfüllt und die Folie besteht den UL-Test 94.
Licht, insbesondere der ultraviolette Anteil der Sonnenstrahlung, d. h. der Wellenlängenbereich von 280 bis 400 nm, leitet bei Thermoplasten Abbauvorgänge ein, als deren Folge sich nicht nur das visuelle Erscheinungsbild infolge von Farbänderung bzw. Vergilbung ändert, sondern auch die mechanisch-physikalischen Eigenschaften negativ beeinflußt werden.
Die Inhibierung dieser photooxidativen Abbauvorgänge ist von erheblicher technischer und wirtschaftlicher Bedeutung, da andernfalls die Anwendungsmöglichkeiten von zahlreichen Thermoplasten drastisch eingeschränkt sind.
Polyethylenterephthalate beginnen beispielsweise schon unterhalb von 360 nm UV-Licht zu absorbieren, ihre Absorption nimmt unterhalb von 320 nm beträchtlich zu und ist unterhalb von 300 nm sehr ausgeprägt. Die maximale Absorption liegt zwischen 280 und 300 nm.
In Gegenwart von Sauerstoff werden hauptsächlich Kettenspaltungen, jedoch keine Vernetzungen beobachtet. Kohlenmonoxid, Kohlendioxid und Carbonsäuren stellen die mengenmäßig überwiegenden Photooxidationsprodukte dar. Neben der direkten Photolyse der Estergruppen müssen noch Oxidationsreaktionen in Erwägung gezogen werden, die über Peroxidradikale ebenfalls die Bildung von Kohlendioxid zur Folge haben.
Die Photooxidation von Polyethylenterephthalaten kann auch über Wasserstoffabspaltung in α-Stellung der Estergruppen zu Hydroperoxiden und deren Zersetzungsprodukten sowie zu damit verbundenen Kettenspaltungen führen (H. Day, D. M. Wiles: J. Appl. Polym. Sci. 16, 1972, Seite 203).
UV-Stabilisatoren bzw. UV-Absorber als Lichtschutzmittel sind chemische Verbindungen, die in die physikalischen und chemischen Prozesse des lichtinduzierten Abbaus eingreifen können. Ruß und andere Pigmente können teilweise einen Lichtschutz bewirken. Diese Substanzen sind jedoch für transparente Folien ungeeignet, da sie zur Verfärbung oder Farbänderung führen. Für transparente, matte Folien sind nur organische und metallorganische Verbindungen geeignet, die dem zu stabilisierenden Thermoplasten keine oder nur eine extrem geringe Farbe oder Farbänderung verleihen, d. h. die in dem Thermoplasten löslich sind.
Im Sinne der vorliegenden Erfindung geeignete UV-Stabilisatoren als Lichtschutzmittel sind UV-Stabilisatoren, die mindestens 70%, vorzugsweise 80%, besonders bevorzugt 90%, des UV-Lichtes im Wellenlängenbereich von 180 nm bis 380 nm, vorzugsweise 280 bis 350 nm absorbieren. Diese sind insbesondere geeignet, wenn sie im Temperaturbereich von 260 bis 300°C thermisch stabil sind, d. h. sich nicht zersetzen und nicht zur Ausgasung führen. Geeignete UV-Stabilisatoren als Lichtschutzmittel sind beispielsweise 2-Hydroxybenzophenone, 2-Hydroxybenzotriazole, nickelorganische Verbindungen, Salicylsäureester, Zimtsäureester-Derivate, Resorcinmonobenzoate, Oxalsäureanilide, Hydroxybenzoesäureester, sterisch gehinderte Amine und Triazine, wobei die 2- Hydroxybenzotriazole und die Triazine bevorzugt sind.
In einer ganz besonders bevorzugten Ausführungsform enthält die erfindungsgemäße Folie 0,01 Gew.-% bis 5,0 Gew.-% 2-(4,6-Diphenyl-1,3,5-triazin-2-yl)-5-(hexyl)oxy-phenol der Formel
oder 0,01 Gew.-% bis 5,0 Gew.-% 2,2-Methylen-bis(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3- tetramethylbutyl)-phenol der Formel
In einer bevorzugten Ausführungsform können auch Mischungen dieser beiden UV- Stabilisatoren oder Mischungen von mindestens einem dieser beiden UV-Stabilisatoren mit anderen UV-Stabilisatoren eingesetzt werden, wobei die Gesamtkonzentration an Lichtschutzmittel vorzugsweise zwischen 0,01 Gew.-% und 5,0 Gew.-%, bezogen auf das Gewicht an kristallisierbarem Polyethylenterephthalat, liegt.
Der oder die UV-Stabilisatoren sind vorzugsweise in der/den Deckschichten enthalten. Bei Bedarf kann auch die Kernschicht mit UV-Stabilisator ausgerüstet sein.
Es war völlig überraschend, dass der Einsatz der oben genannten UV-Stabilisatoren in Folien zu dem gewünschten Ergebnis führte. Der Fachmann hätte vermutlich zunächst versucht, eine gewisse UV-Stabilität über ein Antioxidanz zu erreichen, hätte jedoch bei Bewitterung festgestellt, dass die Folie schnell gelb wird.
Vor dem Hintergrund, dass UV-Stabilisatoren das UV-Licht absorbieren und somit Schutz bieten, hätte der Fachmann wohl handelsübliche Stabilisatoren eingesetzt. Dabei hätte er festgestellt, dass
  • - der UV-Stabilisator eine mangelnde thermische Stabilität hat und sich bei Temperaturen zwischen 200°C und 240°C zersetzt und ausgast;
  • - er große Mengen (ca. 10 bis 15 Gew.-%) UV-Stabilisator einarbeiten muß, damit das UV-Licht absorbiert wird und damit die Folie nicht geschädigt wird.
Bei diesen hohen Konzentrationen hätte er festgestellt, dass die Folie schon nach der Herstellung gelb ist, bei Gelbwertunterschieden (YID) um die 25. Desweiteren hätte er festgestellt, dass die mechanischen Eigenschaften negativ beeinflußt werden. Beim Verstrecken hätte er ungewöhnliche Probleme bekommen wie
  • - Abrisse wegen mangelnder Festigkeit, d. h. E-Modul zu niedrig;
  • - Düsenablagerungen, was zu Profilschwankungen führt;
  • - Walzenablagerungen vom UV-Stabilisator, was zu Beeinträchtigungen der optischen Eigenschaften (Klebedefekte, inhomogene Oberfläche) führt;
  • - Ablagerungen in Streck-, Fixierrahmen, die auf die Folie tropfen.
Daher war es mehr als überraschend, dass bereits mit niedrigen Konzentrationen des UV- Stabilisators ein hervorragender UV-Schutz erzielt wurde. Sehr überraschend war, dass sich bei diesem hervorragenden UV-Schutz
  • - der Gelbwert der Folie im Vergleich zu einer nicht stabilisierten Folie im Rahmen der Meßgenauigkeit nicht ändert;
  • - sich keine Ausgasungen, keine Düsenablagerungen, keine Rahmenausdampfungen einstellten, wodurch die Folie eine exzellente Optik aufweist und ein ausgezeichnetes Profil und eine ausgezeichnete Planlage hat;
  • - sich die UV-stabilisierte Folie durch eine hervorragende Streckbarkeit auszeichnet, so dass sie verfahrenssicher und stabil auf high speed film lines bis zu Geschwindigkeiten von 420 m/min produktionssicher hergestellt werden kann.
Die Folie gemäß der Erfindung enthält mindestens ein Flammschutzmittel, das über die sogenannte Masterbatch-Technologie direkt bei der Folienherstellung zudosiert wird, wobei die Konzentration des Flammschutzmittels im Bereich von 0,5 bis 30,0 Gew.-%, vorzugsweise von 1,0 bis 20,0 Gew.-%, bezogen auf das Gewicht der Schicht des kristallisierbaren Thermoplasten, liegt. Bei der Herstellung des Masterbatchs wird im allgemeinen ein Verhältnis von Flammschutzmittel zu Thermoplast im Bereich von 60 zu 40 Gew.-% bis 10 zu 90 Gew.-% eingehalten.
Zu den typischen Flammschutzmitteln gehören Bromverbindungen, Chlorparaffine und andere Chlorverbindungen, Antimontrioxid, Aluminiumtrihydrate, wobei die Halogenverbindungen aufgrund der entstehenden halogenhaltigen Nebenprodukte nachteilig sind. Desweiteren ist die geringe Lichtbeständigkeit einer damit ausgerüsteten Folie neben der Entwicklung von Halogenwasserstoffen im Brandfall extrem nachteilig.
Geeignete Flammschutzmitteln, die gemäß der Erfindung eingesetzt werden, sind beispielsweise organische Phosphorverbindungen wie Carboxyphosphinsäuren, deren Anhydride und Dimethyl-methylphosphonat. Erfindungswesentlich ist, dass die organische Phosphorverbindung im Thermoplast löslich ist, da andernfalls die geforderten optischen Eigenschaften nicht erfüllt werden.
Da die Flammschutzmittel im allgemeinen eine gewisse Hydrolyseempfindlichkeit aufweisen, kann der zusätzliche Einsatz eines Hydrolysestabilisators sinnvoll sein.
Als Hydrolysestabilisator werden im allgemeinen phenolische Stabilisatoren, Alkali- /Erdalkalistearate und/oder Alkali-/Erdalkalicarbonate in Mengen von 0,01 bis 1,0 Gew.-% eingesetzt. Phenolische Stabilisatoren werden in einer Menge von 0,05 bis 0,6 Gew.-%, insbesondere 0,15 bis 0,3 Gew.-% und mit einer Molmasse von mehr als 500 g/mol bevorzugt. Pentaerythrityl-Tetrakis-3-(3,5-di-Tertiärbutyl-4-Hydroxyphenyl)-Propionat oder 1,3,5-Trimethyl-2,4,6-tris(3,5-di-Tertärbutyl-4-Hydroxybenzyl)benzol sind besonders vorteilhaft.
Erfindungsgemäß ist die Folie zumindest dreischichtig und umfaßt dann als Schichten die Basisschicht B, die siegelfähige Deckschicht A und die matte Deckschicht C.
Die Basisschicht B der Folie besteht bevorzugt zu mindestens 90 Gew.-% aus einem thermoplastischen Polyester. Dafür geeignet sind Polyester aus Ethylenglykol und Terephthalsäure (= Polyethylenterephthalat, PET), aus Ethylenglykol und Naphthalin-2,6- dicarbonsäure (= Polyethylen-2,6-naphthalat, PEN), aus 1,4-Bis-hydroximethyl-cyclohexan und Terephthalsäure (= Poly-1,4-cyclohexandimethylenterephthalat, PCDT) sowie aus Ethylenglykol, Naphthalin-2,6-dicarbonsäure und Biphenyl-4,4'-dicarbonsäure (= Polyethylen-2,6-naphthalatbibenzoat, PENBB). Besonders bevorzugt sind Polyester, die zu mindestens 90 Mol-%, bevorzugt mindestens 95 Mol-%, aus Ethylenglykol- und Terephthalsäure-Einheiten oder aus Ethylenglykol- und Naphthalin-2,6-dicarbonsäure- Einheiten bestehen. Die restlichen Monomereinheiten stammen aus anderen aliphatischen, cycloaliphatischen oder aromatischen Diolen bzw. Dicarbonsäuren, wie sie auch in der Schicht A (oder der Schicht C) vorkommen können.
Geeignete andere aliphatische Diole sind beispielsweise Diethylenglykol, Triethylenglykol, aliphatische Glykole der allgemeinen Formel HO-(CH2)n-OH, wobei n eine ganze Zahl von 3 bis 6 darstellt (insbesondere Propan-1,3-diol, Butan-1,4-diol, Pentan-1,5-diol und Hexan- 1,6-diol) oder verzweigte aliphatische Glykole mit bis zu 6 Kohlenstoff-Atomen. Von den cycloaliphatischen Diolen sind Cyclohexandiole (insbesondere Cyclohexan-1,4-diol) zu nennen. Geeignete andere aromatische Diole entsprechen beispielsweise der Formel HO- C6H4-X-C6H4-OH, wobei X für -CH2-, -C(CH3)2-, -C(CF3)2-, -O-, -S- oder -SO2- steht. Daneben sind auch Bisphenole der Formel HO-C6H4-C6H4-OH gut geeignet.
Andere aromatische Dicarbonsäuren sind bevorzugt Benzoldicarbonsäuren, Naphthalindicarbonsäuren (beispielsweise Naphthalin-1,4- oder -1,6-dicarbonsäure), Biphenyl-x,x'-dicarbonsäuren (insbesondere Biphenyl-4,4'-dicarbonsäure), Diphenylacetylen-x,x'-dicarbonsäuren (insbesondere Diphenylacetylen-4,4'-dicarbonsäure) oder Stilben-x,x'-dicarbonsäuren. Von den cycloaliphatischen Dicarbonsäuren sind Cyclohexandicarbonsäuren (insbesondere Cyclohexan-1,4-dicarbonsäure) zu nennen. Von den aliphatischen Dicarbonsäuren sind die (C3-C19)-Alkandisäuren besonders geeignet, wobei der Alkanteil geradkettig oder verzweigt sein kann.
Die Herstellung der Polyester kann z. B. nach dem Umesterungsverfahren erfolgen. Dabei geht man von Dicarbonsäureestern und Diolen aus, die mit den üblichen Umesterungskatalysatoren, wie Zink-, Calcium-, Lithium-, Magnesium- und Mangan- Salzen, umgesetzt werden. Die Zwischenprodukte werden dann in Gegenwart allgemein üblicher Polykondensationskatalysatoren, wie Antimontrioxid oder Titan-Salzen, polykondensiert. Die Herstellung kann ebenso gut nach dem Direktveresterungsverfahren in Gegenwart von Polykondensationskatalysatoren erfolgen. Dabei geht man direkt von den Dicarbonsäuren und den Diolen aus.
Die durch Koextrusion auf die Basisschicht B aufgebrachte siegelfähige Deckschicht A ist auf Basis von Polyestercopolymeren aufgebaut und besteht im wesentlichen aus Copolyestern, die überwiegend aus Isophthalsäure- und Terephthalsäure-Einheiten und aus Ethylenglykol-Einheiten zusammengesetzt sind. Die restlichen Monomereinheiten stammen aus anderen aliphatischen, cycloaliphatischen oder aromatischen Diolen bzw. Dicarbonsäuren, wie sie auch in der Basisschicht vorkommen können. Die bevorzugten Copolyester, die die gewünschten Siegeleigenschaften bereitstellen, sind solche, die aus Ethylenterephthalat- und Ethylenisophthalat-Einheiten und aus Ethylenglykol-Einheiten aufgebaut sind. Der Anteil an Ethylenterephthalat beträgt 40 bis 95 Mol-% und der entsprechende Anteil an Ethylenisophthalat 60 bis 5 Mol-%. Bevorzugt sind Copolyester, bei denen der Anteil an Ethylenterephthalat 50 bis 90 Mol-% und der entsprechende Anteil an Ethylenisophthalat 50 bis 10 Mol-% beträgt und ganz bevorzugt sind Copolyester, bei denen der Anteil an Ethylenterephthalat 60 bis 85 Mol-% und der entsprechende Anteil an Ethylenisophthalat 40 bis 15 Mol-% beträgt.
Für die andere, nicht siegelfähige Deckschicht C oder für eventuell vorhandene Zwischenschichten können prinzipiell die gleichen Polymere verwendet werden, wie zuvor für die Basisschicht B beschrieben wurde.
Die gewünschten Siegel- und die gewünschten Verarbeitungseigenschaften der erfindungsgemäßen Folie werden aus der Kombination der Eigenschaften des verwendeten Copolyesters für die siegelfähige Deckschicht und den Topographien der siegelfähigen Deckschicht A und der nicht siegelfähigen Deckschicht C erhalten.
Die Siegelanspringtemperatur von ≦ 110°C und der Siegelnahtfestigkeit von ≧ 1,3 N/15 mm wird erreicht, wenn für die siegelfähige Deckschicht A die oben näher beschriebene Copolymere verwendet werden. Die besten Siegeleigenschaften der Folie erhält man, wenn dem Copolymeren keine weiteren Additive, insbesondere keine anorganische oder organische Filler zugegeben werden. Für diesen Fall erhält man bei vorgegebenem Copolyester die niedrigste Siegelanspringtemperatur und die höchsten Siegelnahtfestigkeiten. Allerdings ist in diesem Fall das Handling der Folie schlecht, da die Oberfläche der siegelfähigen Deckschicht A stark zum Verblocken neigt. Die Folie lässt sich kaum wickeln und ist für eine Weiterverarbeitung auf schnelllaufenden Verpackungsmaschinen nicht geeignet. Zur Verbesserung des Handlings der Folie und der Verarbeitbarkeit ist es notwendig, die siegelfähige Deckschicht A zu modifizieren. Dies geschieht am besten mit Hilfe von geeigneten Antiblockmitteln einer ausgewählten Größe, die in einer bestimmten Konzentration der Siegelschicht zugegeben werden und zwar derart, dass einerseits das Verblocken minimiert und andererseits die Siegeleigenschaften nur unwesentlich verschlechtert werden. Diese gewünschte Eigenschaftskombination lässt sich erreichen, wenn die Topographie der siegelfähigen Deckschicht A bevorzugt durch den folgenden Satz von Parametern gekennzeichnet ist:
  • - Die Rauhigkeit der siegelfähigen Deckschicht, gekennzeichnet durch den Ra-Wert, sollte kleiner als 30 nm sein. Im anderen Fall werden die Siegeleigenschaften im Sinne der vorliegenden Erfindung negativ beeinflusst.
  • - Der Messwert der Gasströmung sollte im Bereich von 500-4000 s liegen. Bei Werten unterhalb von 500 s werden die Siegeleigenschaften im Sinne der vorliegenden Erfindung negativ beeinflusst und bei Werten oberhalb von 4000 s wird das Handling der Folie schlecht.
Um das Verarbeitungsverhalten der siegelfähigen Folie weiterhin zu verbessern, sollte die Topographie der nicht siegelfähigen Deckschicht C bevorzugt durch den folgenden Satz von Parametern gekennzeichnet sein:
  • - Der Reibungskoeffizient (COF) dieser Seite gegen sich selbst sollte kleiner als 0,5 sein. Andernfalls ist das Wickelverhalten und die Weiterverarbeitung der Folie unbefriedigend.
  • - Die Rauhigkeit der nicht siegelfähigen Deckschicht, gekennzeichnet durch den Ra- Wert, sollte 40 nm und 100 nm sein. Kleinere Werte als 40 nm haben negative Auswirkungen auf das Wickel- und Verarbeitungsverhalten der Folie und größere Werte als 100 nm beeinträchtigen die optischen Eigenschaften (Glanz) der Folie.
  • - Der Messwert der Gasströmung sollte im Bereich unterhalb von 120 s liegen. Bei Werten ab 120 s wird das Wickel- und das Verarbeitungsverhalten der Folie negativ beeinflusst.
  • - Die Anzahl der Erhebungen N pro mm2 Folienoberfläche ist mit der jeweiligen Höhe h über die folgende Gleichung korreliert:
    0,29-3,30 . log h/µm < log N/mm2 < 1,84-2,70 . log h/µm
    0,01 µm < h < 10 µm
    Sind die Werte für N kleiner als der linken Seite der Gleichung entspricht, so wird das Wickel- und das Verarbeitungsverhalten der Folie negativ beeinflusst, sind die Werte für N größer als es der rechten Seite der Gleichung entspricht, so werden der Glanz und die Trübung der Folie negativ beeinflusst.
Überraschenderweise haben Bewitterungsversuche nach der Testspezifikation ISO 4892 mit dem Atlas CI65 Weather Ometer gezeigt, dass es im Falle der vorgenannten dreischichtigen Folie durchaus ausreichend ist, die 0,3 µm bis 2,5 µm dicke(n) Deckschicht(en) mit UV-Stabilisatoren auszurüsten, um eine verbesserte UV-Stabilität zu erreichen.
Bewitterungstests haben ergeben, dass die erfindungsgemäß UV-stabilisierten Folien selbst bei Bewitterungstests nach hochgerechnet 5 bis 7 Jahren Außenanwendung im allgemeinen keine Vergilbung, keine Versprödung, keinen Glanzverlust der Oberfläche, keine Rissbildung an der Oberfläche und keine Verschlechterung der mechanischen Eigenschaften aufweisen.
Das Lichtschutzmittel kann bereits beim Thermoplast-Rohstoffhersteller zudosiert werden oder bei der Folienherstellung in den Extruder dosiert werden.
Besonders bevorzugt ist die Zugabe des Lichtschutzmittels über die Masterbatch- Technologie. Das Lichtschutzmittel wird in einem festen Trägermaterial voll dispergiert. Als Trägermaterialien kommt das Polyethylenterephthalat selbst oder auch andere Polymere, die mit dem Thermoplasten ausreichend verträglich sind, in Frage.
Wichtig bei der Masterbatch-Technologie ist, dass die Korngröße und das Schüttgewicht des Masterbatches ähnlich der Korngröße und dem Schüttgewicht des Thermoplasten ist, so dass eine homogene Verteilung und damit eine homogene UV-Stabilisierung erfolgen kann.
In der dreischichtigen Ausführungsform ist das Flammschutzmittel ähnlich wie der UV- Absorber vorzugsweise in der nicht siegelfähigen Deckschicht C enthalten. Jedoch kann nach Bedarf auch die Basisschicht B oder auch die siegelfähige Deckschicht A mit Flammschutzmitteln ausgerüstet sein. Die Konzentration des oder der Flammschutzmittels(n) bezieht sich dabei auf das Gewicht der Thermoplasten in der mit Flammschutzmitteln ausgerüsteten Schicht.
Ganz überraschend haben Brandschutzversuche nach DIN 4102 und dem UL-Test gezeigt, dass es im Falle einer dreischichtigen Folie durchaus ausreichend ist, die 0,3 bis 2,5 µm dick(en) Deckschicht(en) mit Flammschutzmittel auszurüsten, um eine verbesserte Flammhemmung zu erreichen. Bei Bedarf und bei hohen Brandschutzanforderungen kann auch die Kernschicht mit Flammschutzmittel ausgerüstet sein, d. h. eine sogenannte Grundausrüstung beinhalten.
Dadurch werden die mit der bekannten Koextrusionstechnologie hergestellten schwer entflammbaren, mehrschichtigen Folien im Vergleich zu den komplett in hohen Konzentrationen ausgerüsteten Monofolien wirtschaftlich interessant, da deutlich weniger Flammschutzmittel benötigt wird.
Erfindungsgemäß wird das Flammschutzmittel über die Masterbatch-Technologie zugegeben. Das Flammschutzmittel wird in einem Trägermaterial voll dispergiert. Als Trägermaterial kommen das Polyethylenterephthalat oder auch andere Polymere, die mit dem Polyethylenterephthalat verträglich sind, in Frage.
Wichtig bei der Masterbatch-Technologie ist, dass die Korngröße und das Schüttgewicht des Masterbatches ähnlich der Korngröße und dem Schüttgewicht des Thermoplasten ist, so dass eine homogene Verteilung und damit eine homogene Schwerentflammbarkeit erfolgen kann.
Erfindungswesentlich ist, dass das Masterbatch, welches das Flammschutzmittel und gegebenenfalls den Hydrolysestabilisator enthält, vorkristallisiert bzw. vorgetrocknet wird. Diese Vortrocknung beinhaltet ein gradielles Erhitzen des Masterbatches unter reduziertem Druck (20 bis 80 mbar, vorzugsweise 30 bis 60 mbar, insbesondere 40 bis 50 mbar) und unter Rühren und gegebenenfalls ein Nachtrocknen bei konstanter, erhöhter Temperatur ebenfalls unter reduziertem Druck. Das Masterbatch wird vorzugsweise bei Raumtemperatur aus einem Dosierbehälter in der gewünschten Abmischung zusammen mit den Polymeren der Basis- und/oder Deckschichten und ggf. anderen Rohstoffkomponenten chargenweise in einem Vakuumtrockner, der im Laufe der Trocken- bzw. Verweilzeit ein Temperaturspektrum von 10°C bis 160°C, vorzugsweise 20°C bis 150°C, insbesondere 30°C bis 130°C durchläuft, gefüllt. Während der ca. 6-stündigen, vorzugsweise 5-stündigen, insbesondere 4-stündigen Verweilzeit wird die Rohstoffmischung mit 10 bis 70 Upm, vorzugsweise 15 bis 65 Upm, insbesondere 20 bis 60 Upm gerührt. Das so vorkristallisierte bzw. vorgetrocknete Rohstoffgemisch wird in einem nachgeschalteten ebenfalls evakuierten Behälter bei 90 bis 180°C, vorzugsweise 100°C bis 170°C, insbesondere 110°C bis 160°C für 2 bis 8 Stunden, vorzugsweise 3 bis 7 Stunden, insbesondere 4 bis 6 Stunden nachgetrocknet.
Die Basisschicht B kann zusätzlich übliche Additive, wie beispielsweise Stabilisatoren und/oder Antiblockmittel enthalten. Die beiden anderen Schichten A und C enthalten ebenfalls zusätzlich übliche Additive, wie beispielsweise Stabilisatoren und/oder Antiblockmittel. Sie werden zweckmäßig dem Polymer bzw. der Polymermischung bereits vor dem Aufschmelzen zugesetzt. Als Stabilisatoren werden beispielsweise Phosphorverbindungen, wie Phosphorsäure oder Phosphorsäureester, eingesetzt.
Typische Antiblockmittel (in diesem Zusammenhang auch als Pigmente bezeichnet) sind anorganische und/oder organische Partikel, beispielsweise Calciumcarbonat, amorphe Kieselsäure, Talk, Magnesiumcarbonat, Bariumcarbonat, Calciumsulfat, Bariumsulfat, Lithiumphosphat, Calciumphosphat, Magnesiumphosphat, Aluminiumoxid, LiF, Calcium-, Barium-, Zink- oder Mangan-Salze der eingesetzten Dicarbonsäuren, Ruß, Titandioxid, Kaolin oder vernetzte Polystyrol- oder Acrylat-Partikel.
Als Antiblockmittel können auch Mischungen von zwei und mehreren verschiedenen Antiblockmitteln oder Mischungen von Antiblockmitteln gleicher Zusammensetzung, aber unterschiedlicher Partikelgröße gewählt werden. Die Partikel können den einzelnen Schichten in den jeweils vorteilhaften Konzentrationen, z. B. als glykolische Dispersion während der Polykondensation oder über Masterbatche bei der Extrusion zugegeben werden.
Bevorzugte Partikel sind SiO2 in kolloidaler und in kettenartiger Form. Diese Partikel werden sehr gut in die Polymermatrix eingebunden und erzeugen nur geringfügig Vakuolen. Die Partikeldurchmesser der eingesetzten Teilchen sind prinzipiell nicht eingeschränkt. Für die Lösung der Aufgabe hat es sich jedoch als zweckmäßig erwiesen, Teilchen mit einem mittleren Primärpartikeldurchmesservon kleiner als 100 nm, bevorzugt kleiner als 60 nm und besonders bevorzugt kleiner als 50 nm und/oder Teilchen mit einem mittleren Primärpartikeldurchmesservon größer als 1 µm, bevorzugt größer als 1,5 µm und besonders bevorzugt größer als 2 µm zu verwenden. Diese zuletzt beschriebenen Teilchen sollten jedoch keinen mittleren Partikeldurchmesser aufweisen, der größer ist als 5 µm.
Zur Erzielung der vorgenannten Eigenschaften, insbesondere des gewünschten Weißgrades der Folie, enthält die Basisschicht die dazu notwendige Pigmentierung. Geeignete Weißpigmente sind vorzugsweise Titandioxid, Bariumsulfat, Calciumcarbonat, Kaolin, Siliciumdioxid, wobei Titandioxid und Bariumsulfat bevorzugt sind. Hierbei hat es sich als besonders günstig erwiesen, Bariumsulfat in einer Korngröße von 0,3-0,8 µm, vorzugsweise 0,4-0,7 µm auszuwählen. Die Folie erhält hierdurch ein brillantes weißes Aussehen, ohne gelbstichig zu sein.
Das Weißpigment wird ebenfalls bevorzugt über die Masterbatch-Technologie zudosiert, kann aber auch direkt beim Rohstoffhersteller eingearbeitet werden. Die Konzentration des Weißpigments liegt zwischen 12 Gew.-% und 40 Gew.-%, vorzugsweise zwischen 14 Gew.-% und 35 Gew.-%, besonders bevorzugt zwischen 16 Gew.-% und 25 Gew.-% bezogen auf das Gewicht der Schicht des verwendeten Polyesters.
In der vorteilhaften Verwendungsform besteht die Folie aus drei Schichten, der Basisschicht B und beidseitig auf dieser Basisschicht aufgebrachten Deckschichten A und C, wobei die Deckschicht A gegen sich selbst und gegen die Deckschicht C siegelfähig ist.
Zur Erzielung des genannten Eigenschaftsprofils der Folie weist die Deckschicht C mehr Pigmente (d. h. höhere Pigmentkonzentration) als die Deckschicht A auf. Die Pigmentkonzentration in dieser zweiten Deckschicht C liegt zwischen 0,1 und 1,0%, vorteilhaft zwischen 0,12 und 0,8% und insbesondere zwischen 0,15 und 0,6%. Die andere, der Deckschicht C gegenüberliegenden, siegelfähige Deckschicht A ist dagegen weniger mit inerten Pigmenten gefüllt. Die Konzentration der inerten Partikeln in der Schicht A liegt zwischen 0,01 und 0,2 Gew.-%, vorzugsweise zwischen 0,015 und 0,15 Gew.-% und insbesondere zwischen 0,02 und 0,1 Gew.-%.
Zwischen der Basisschicht und den Deckschichten kann sich gegebenenfalls jeweils noch eine Zwischenschicht befinden. Diese kann wiederum aus den für die Basisschichten beschriebenen Polymeren bestehen. In einer besonders bevorzugten Ausführungsform besteht sie aus dem für die Basisschicht verwendeten Polyester. Sie kann auch die beschriebenen üblichen Additive enthalten. Die Dicke der Zwischenschicht ist im allgemeinen größer als 0,3 µm und liegt vorzugsweise im Bereich von 0,5 bis 15 µm, insbesondere im Bereich von 1,0 bis 10 µm und ganz besonders bevorzugt im Bereich von 1,0 bis 5 µm.
Bei der besonders vorteilhaften dreischichtigen Ausführungsform der erfindungsgemäßen Folie ist die Dicke der Deckschichten A und C im allgemeinen größer als 0,1 µm und liegt allgemein im Bereich von 0,2 bis 4,0 µm, vorteilhaft im Bereich von 0,2 bis 3,5 µm, insbesondere im Bereich von 0,3 bis 3 µm und ganz besonders bevorzugt im Bereich von 0,3 bis 2,5 µm, wobei die Deckschichten A und C gleich oder verschieden dick sein können.
Die Gesamtdicke der erfindungsgemäßen Polyesterfolie kann variieren. Sie beträgt 5 bis 350 µm, insbesondere 5 bis 300 µm, vorzugsweise 5 bis 250 µm, wobei die Schicht B einen Anteil von vorzugsweise 5 bis 90% an der Gesamtdicke hat.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Polyesterfolie nach dem an sich bekannten Koextrusionsverfahren.
Die Polymere für die Basisschicht B und die beiden Deckschichten A und C werden drei Extrudern zugeführt. Etwa vorhandene Fremdkörper oder Verunreinigungen lassen sich aus der Polymerschmelze vor der Extrusion abfiltrieren. Die Schmelzen werden dann in einer Mehrschichtdüse zu flachen Schmelzefilmen ausgeformt und übereinander geschichtet. Anschließend wird der Mehrschichtfilm mit Hilfe einer Kühlwalze und gegebenenfalls weiteren Walzen abgezogen und verfestigt.
Dis Folie wird anschließend biaxial gestreckt (orientiert), thermofixiert und gegebenenfalls an der zur Behandlung vorgesehenen Oberflächenschicht corona- oder flammbehandelt wird.
Die biaxiale Verstreckung wird im allgemeinen sequentiell durchgeführt. Dabei wird vorzugsweise erst in Längsrichtung (d. h. in Maschinenrichtung, = MD-Richtung) und anschließend in Querrichtung (d. h. senkrecht zur Maschinenrichtung, = TD-Richtung) verstreckt. Dies führt zu einer Orientierung der Molekülketten. Das Verstrecken in Längsrichtung lässt sich mit Hilfe zweier entsprechend dem angestrebten Streckverhältnis verschieden schnell laufenden Walzen durchführen. Zum Querverstrecken benutzt man allgemein einen entsprechenden Kluppenrahmen.
Die Temperatur, bei der die Verstreckung durchgeführt wird, kann in einem relativ großen Bereich variieren und richtet sich nach den gewünschten Eigenschaften der Folie. Im allgemeinen wird die Längsstreckung bei 80 bis 130°C und die Querstreckung bei 90 bis 150°C durchgeführt. Das Längsstreckverhältnis liegt allgemein im Bereich von 2,5 : 1 bis 6 : 1, bevorzugt von 3 : 1 bis 5,5 : 1. Das Querstreckverhältnis liegt allgemein im Bereich von 3,0 : 1 bis 5,0 : 1, bevorzugt von 3,5 : 1 bis 4,5 : 1. Vor der Querstreckung kann man eine oder beide Oberfläche(n) der Folie nach den bekannten Verfahren in-line beschichten. Die In- Line-Beschichtung kann beispielsweise zu einer verbesserten Haftung der Metallschicht oder einer eventuell aufgebrachten Druckfarbe, aber auch zur Verbesserung des antistatischen Verhaltens oder des Verarbeitungsverhaltens dienen.
Für die Herstellung einer Folie mit sehr guten Siegeleigenschaften hat es sich als günstig erwiesen, wenn die planare Orientierung p der Folie kleiner ist als Δp = 0,165, besonders aber kleiner ist als Δp = 0,163. In diesem Fall ist die Festigkeit der Folie in Dickenrichtung so groß, dass bei der Messung der Siegelnahtfestigkeit definitiv die Siegelnaht aufgetrennt wird und die Folie nicht einreißt und weiterreißt.
Es hat sich herausgestellt, dass die wesentlichen Einflussgrößen auf die planare Orientierung Δp die Verfahrensparameter in der Längsstreckung und in der Querstreckung sind, sowie der SV-Wert (Standard Viscosity) des verwendeten Rohstoffes. Zu den Verfahrensparametern gehören insbesondere die Streckverhältnisse in Längs- und in Querrichtung (λMD und λTD), die Strecktemperaturen in Längs- und in Querrichtung (TMD und TTD), die Folienbahngeschwindigkeit und die Art der Streckung, insbesondere diejenige in Längsrichtung der Maschine. Erhält man beispielsweise mit einer Maschine eine planare Orientierung von Δp = 0,167 mit dem Parametersatz λMD = 4,8 und λTD = 4,0, die Strecktemperaturen in Längs- und in Querrichtung TMD = 80-118°C und TTD = 80-125°C, so erhält man durch Erhöhung der Längsstrecktemperatur auf TMD = 80-125°C oder durch Erhöhung der Querstrecktemperatur auf TTD = 80-135°C oder durch Absenkung des Längstreckverhältnisses auf λMD = 4,3 oder durch Absenkung des Querstreckverhältnisses auf λTD = 3,7 eine planare Orientierung Δp, die im gewünschten Bereich liegt. Die Folienbahngeschwindigkeit betrug hierbei 340 m/min und der SV-Wert (Standard Viscosity) des Materials etwa 730. Die genannten Daten beziehen sich bei der Längsstreckung auf die sogenannte N-TEP Streckung, die sich zusammensetzt aus einem niedrig orientierenden Streckschritt (LOE = Low Orientation Elongation) und einem hoch orientierenden Streckschritt (REP = Rapid Elongation Process). Bei anderen Streckwerken ergeben sich prinzipiell die gleichen Verhältnisse, jedoch können die Zahlenwerte für die jeweiligen Verfahrensparameter leicht verschieden sein. Die angegebenen Temperaturen beziehen sich bei der Längsstreckung auf die jeweiligen Walzentemperaturen und bei der Querstreckung auf die Folientemperaturen, die mittels Infrarot gemessen wurden.
Bei der nachfolgenden Thermofixierung wird die Folie etwa 0,1 bis 10 s lang bei einer Temperatur von 150 bis 250°C gehalten. Anschließend wird die Folie in üblicher Weise aufgewickelt.
Bevorzugt wird/werden nach der biaxialen Streckung eine oder beide Oberfläche/n der Folie nach einer der bekannten Methoden corona- oder flammbehandelt. Die Behandlungsintensität liegt im allgemeinen im Bereich von über 45 mN/m.
Zur Einstellung weiterer gewünschter Eigenschaften kann die Folie zusätzlich beschichtet werden. Typische Beschichtungen sind haftvermittelnde, antistatisch, schlupfverbessernd oder dehäsiv wirkende Schichten. Es bietet sich an, diese zusätzliche Schichten über in-line coating mittels wässriger Dispersionen vor dem Streckschritt in Querrichtung auf die Folie aufzubringen.
Die erfindungsgemäße Folie zeichnet sich durch eine hervorragende Siegelfähigkeit, eine sehr gute Stabilität gegenüber UV-Licht, eine schwere Entflammbarkeit, ein sehr gutes Handling und durch ein sehr gutes Verarbeitungsverhalten aus. Bei der Folie siegelt die siegelfähige Deckschicht A nicht nur gegen sich selbst (fin sealing), sondern auch gegen die nicht siegelfähige Deckschicht C (lap sealing). Bei der lap sealing ist die Siegelanspringtemperatur lediglich um ca. 10 K nach oben verschoben und die Siegelnahtfestigkeit ist um nicht mehr als 0,3 N/15 mm verschlechtert.
Bei der Herstellung der Folie wurde festgestellt, dass sich mittels Masterbatch- Technologie, einer geeigneten Vortrocknung bzw. Vorkristallisation des Masterbatches und durch Einsatz von geringen Konzentrationen an Hydrolysestabilisator die schwer entflammbare Folie ohne Verklebung im Trockner herstellen lässt. Desweiteren wurden keine Ausgasungen und Ablagerungen im Produktionsprozess gefunden.
Darüber hinaus ergaben Messungen, dass die erfindungsgemäße Folie bei Temperaturbelastungen von 100°C über einen längeren Zeitraum nicht versprödet, was mehr als überraschend ist. Dieses Resultat ist auf die synergistische Wirkung von geeigneter Vorkristallisation, Vortrocknung, Masterbatch-Technologie und Hydrolysestabilisator zurückzuführen.
Desweiteren ist die erfindungsgemäße Folie ohne Umweltbelastung und ohne Verlust der mechanischen Eigenschaften problemlos rezyklierbar, wodurch sie sich beispielsweise für die Verwendung als kurzlebige Werbeschilder, beim Messebau und für andere Werbeartikel, wo Brandschutz gewünscht wird, eignet.
Überraschenderweise erfüllen schon erfindungsgemäße Folien im Dickenbereich 5-350 µm die Baustoffklassen B2 und B1 nach DIN 4102 und dem UL-Test 94.
Außerdem besticht die Folie durch einen hervorragenden Weißgrad von < 70 (nach Berger), der der Folie zusätzlich ein sehr attraktives, werbewirksames Aussehen verleiht. Bei der Herstellung der Folie ist gewährleistet, dass das Regenerat in einer Konzentration von 20 bis 60 Gew.-%, bezogen auf das Gesamtgewicht der Folie, wieder der Extrusion zugeführt werden kann, ohne dass dabei die physikalischen Eigenschaften der Folie nennenswert negativ beeinflusst werden.
Die Folie eignet sich auf Grund ihrer hervorragenden Siegeleigenschaften, auf Grund ihres sehr guten Handlings und auf Grund ihrer sehr guten Verarbeitungseigenschaften insbesondere für die Verarbeitung auf schnelllaufenden Maschinen.
Darüber hinaus eignet sich die Folie auf Grund ihrer hervorragender Eigenschaftskombinationen für eine Vielzahl verschiedener Anwendungen, beispielsweise für Innenraumverkleidungen, für Messebau und Messeartikel, als Displays, für Schilder, für Schutzverglasungen von Maschinen und Fahrzeugen, im Beleuchtungssektor, im Laden- und Regalbau, als Werbeartikel und als Kaschiermedium.
Aufgrund der guten UV-Stabilität eignet sich die erfindungsgemäße, weiße Folie weiterhin für Außenanwendungen, wie z. B. für Gewächshäuser, Überdachungen, Außenverkleidungen, Abdeckungen von Materialien, wie z. B. Stahlblechen, Anwendungen im Bausektor und Lichtwerbeprofile, Schattenmatten, Elektroanwendungen.
Die nachstehende Tabelle (Tabelle 1) fasst die wichtigsten erfindungsgemäßen Folieneigenschaften noch einmal zusammen.
Zur Charakterisierung der Rohstoffe und der Folien wurden die folgenden Messwerte benutzt:
Meßmethoden SV (DCE), IV (DVE)
Die Standardviskosität SV (DCE) wird, angelehnt an DIN 53726, in Dichloressigsäure gemessen.
Die intrinsische Viskosität (IV) berechnet sich wie folgt aus der Standardviskosität:
IV (DCE) = 6,67 . 10-4 SV . (DCE) + 0,118
Siegelanspringtemperatur (Mindestsiegeltemperatur)
Mit dem Siegelgerät HSG/ET der Firma Brugger werden heißgesiegelte Proben (Siegelnaht 20 mm × 100 mm) hergestellt, wobei die Folie bei unterschiedlichen Temperaturen mit Hilfe zweier beheizter Siegelbacken bei einem Siegeldruck von 2 bar und einer Siegeldauer von 0,5 s gesiegelt wird. Aus den gesiegelten Proben wurden Prüfstreifen von 15 mm Breite geschnitten. Die T-Siegelnahtfestigkeit wurde wie bei der Bestimmung der Siegelnahtfestigkeit gemessen. Die Siegelanspringtemperatur ist die Temperatur, bei der eine Siegelnahtfestigkeit von mindestens 0,5 N/15 mm erreicht wird.
Siegelnahtfestigkeit
Zur Bestimmung der Siegelnahtfestigkeit wurden zwei 15 mm breite Folienstreifen übereinandergelegt und bei 130°C, einer Siegelzeit von 0,5 s und einem Siegeldruck von 2 bar (Gerät: Brugger Typ NDS, einseitig beheizte Siegelbacke) versiegelt. Die Siegelnahtfestigkeit wurde nach der T-Peel-Methode bestimmt.
Reibung
Die Reibung wurde nach DIN 53 375 bestimmt. Die Gleitreibungszahl wurde 14 Tage nach der Produktion gemessen.
Oberflächenspannung
Die Oberflächenspannung wurde mittels der sogenannten Tintenmethode (DIN 53 364) bestimmt.
Glanz
Der Glanz wurde nach DIN 67 530 bestimmt. Gemessen wurde der Reflektorwert als optische Kenngröße für die Oberfläche einer Folie. Angelehnt an die Normen ASTM-D 523-78 und ISO 2813 wurde der Einstrahlwinkel mit 20° eingestellt. Ein Lichtstrahl trifft unter dem eingestellten Einstrahlwinkel auf die ebene Prüffläche und wird von dieser reflektiert bzw. gestreut. Die auf den photoelektronischen Empfänger auffallenden Lichtstrahlen werden als proportionale elektrische Größe angezeigt. Der Messwert ist dimensionslos und muss mit dem Einstrahlwinkel angegeben werden.
Korngrößen auf Folienoberflächen
Die Bestimmung der Größenverteilung von Erhebungen auf Folienoberflächen erfolgt mit einem Rasterelektronenmikroskop und einem Bildanalysesystem. Verwendet wird das Rasterelektronenmikroskop XL30 CP der Fa. Philips mit einem integrierten Bildanalyseprogramm AnalySIS der Fa. Soft-Imaging System.
Für diese Messungen werden Folienproben flach auf einen Probenhalter aufgebracht. Anschließend werden diese unter einem Winkel a mit einer dünnen Metallschicht (z. B. aus Silber) schräg bedampft. Dabei ist a der Winkel zwischen Probenoberfläche und der Ausbreitungsrichtung des Metalldampfes. Durch diese Schrägbedampfung entsteht hinter der Erhebung ein Schattenwurf. Da die Schatten noch nicht elektrisch leitfähig sind, wird die Probe anschließend noch mit einem zweiten Metall (z. B. Gold) bedampft oder gesputtert, wobei die zweite Beschichtung senkrecht auf die Probenoberfläche auftrifft und somit bei der zweiten Beschichtung keine Schatten entstehen.
Die so präparierten Probenoberflächen werden in einem Rasterelektronenmikroskop (REM) abgebildet. Die Schatten der Erhebungen sind infolge des Materialkontrastes der Metalle sichtbar. Die Probe wird im REM so orientiert, dass die Schatten parallel zu einem Bildrand verlaufen. Für die Bildaufnahme werden folgende Bedingungen am REM eingestellt: Sekundärelektronendetektor, Arbeitstabstand 10 mm, Beschleunigungsspannung 10 kV und Spot 4,5. Die Helligkeit und Kontrast werden so eingestellt, dass sämtliche Bildinformationen als Grauwerte dargestellt werden und die Intensität des Grundrauschens so klein ist, dass er nicht als Schatten detektiert wird. Die Länge der Schatten wird mit dem Bildanalyse ausgemessen. Der Schwellwert für die Schattenerkennung wird auf die Stelle gelegt, wo die 2. Ableitung der Grauwertverteilung des Bildes den Nullpunkt durchquert. Vor der Schattenerkennung wird das Bild mit einem N × N-Filter (Größe 3, 1 Iteration) geglättet. Durch die Setzung eines Rahmens ("frame") wird sichergestellt, dass Erhebungen, die im Bild nicht vollständig abgebildet werden, nicht mitgemessen werden. Die Vergrößerung, die Rahmengröße und die Anzahl der ausgewerteten Bildern werden so gewählt, dass insgesamt 0,36 mm2 Folienoberfläche ausgewertet werden.
Die Höhe der einzelnen Erhebungen wird aus den einzelnen Schattenlängen mit folgen­ der Beziehung errechnet:
h = (tan a) . L
wobei h die Höhe der Erhebung, a der Bedampfungswinkel und L die Schattenlänge ist. Die so ermittelten Erhebungen werden in Klassen eingeteilt, um zu einer Häufigkeitsverteilung zu kommen. Die Einteilung erfolgt in 0,05 mm breite Klassen zwischen 0 und 1 mm, wobei die kleinste Klasse (0 bis 0,05 mm) für weitere Auswertungen nicht verwendet wird. Die Durchmesser (Ausbreitung senkrecht zur Schattenwurfsrichtung) der Erhebungen werden in ähnlicher Weise in 0,2 mm breiten Klassen von 0 bis 10 mm eingestuft, wobei auch hier die kleinste Klasse für die weitere Auswertung verwendet wird.
Oberflächengasströmungszeit
Das Prinzip des Messverfahrens basiert auf der Luftströmung zwischen einer Folienseite und einer glatten Silizium-Wafer-Platte. Die Luft strömt von der Umgebung in einen evakuierten Raum, wobei die Grenzfläche zwischen Folie und Silizium-Wafer- Platte als Strömungswiderstand dient.
Eine runde Folienprobe wird auf einer Silizium Wafer-Platte, in deren Mitte eine Bohrung die Verbindung zu dem Rezipienten gewährleistet, gelegt. Der Rezipient wird auf einen Druck kleiner 0,1 mbar evakuiert. Bestimmt wird die Zeit in Sekunden, die die Luft benötigt, um in dem Rezeptienten einen Druckanstieg von 56 mbar zu bewirken.
Messbedingungen
Messfläche 45,1 cm2
Anpressgewicht 1276 g
Lufttemperatur 23°C
Luftfeuchte 50% relative Feuchte
Gassammelvolumen 1,2 cm3
Druckintervall 56 mbar
Planare Orientierung Δp
Die Bestimmung der planaren Orientierung erfolgt über die Messung der Brechungsindizes mit dem Abbe-Refraktometer nach folgendem Verfahren:
Probengröße und Probenlänge: 60 bis 100 mm,
Probenbreite: entspricht Prismenbreite von 10 mm.
Zur Bestimmung von nMD und nα (= nz) muss die zu messende Probe aus der Folie ausgeschnitten werden, bei der die Laufkante der Probe exakt mit der TD-Richtung übereinstimmen muss. Zur Bestimmung von nTD und nα (= nz) muss die zu messende Probe aus der Folie ausgeschnitten werden, bei der die Laufkante der Probe exakt mit der MD-Richtung übereinstimmen muss. Die Proben sind aus der Mitte der Folienbahn zu entnehmen. Es ist dafür Sorge zu tragen, dass das Abbe-Refraktometer eine Temperatur von 23°C hat. Auf das vor der Messung gut gesäuberte untere Prisma wird mit Hilfe eines Glasstabes ein wenig Dijodmethan (N = 1,745) bzw. Dijodmethan- Bromnaphthalin-Gemisch aufgetragen. Der Brechungsindex des Gemisches muss größer als 1,685 sein. Darauf wird zuerst die in TD-Richtung ausgeschnittene Probe aufgelegt, so dass die gesamte Prismenoberfläche bedeckt ist. Mit Hilfe eines Papiertaschentuches wird nun die Folie fest auf das Prisma aufgebügelt, so dass die Folie fest und glatt aufliegt. Die überflüssige Flüssigkeit muss abgesaugt werden. Danach wird ein wenig von der Messflüssigkeit auf die Folie getropft. Das zweite Prisma wird heruntergeklappt und fest angedrückt. Nun wird mit Hilfe der rechten Rändelschraube die Anzeigeskala so weit gedreht, bis im Bereich 1,62 bis 1,68 ein Übergang von hell auf dunkel im Sichtfenster zu sehen ist. Ist der Übergang von hell auf dunkel nicht scharf, werden mit Hilfe der oberen Rändelschraube die Farben so zusammengeführt, dass nur eine helle und eine dunkle Zone sichtbar ist. Die scharfe Übergangslinie wird mit Hilfe der unteren Rändelschraube in den Kreuzungspunkt der beiden (im Okular) diagonalen Linien gebracht. Der nun in der Messskala angezeigte Wert wird abgelesen und in das Messprotokoll eingetragen. Dies ist der Brechungsindex in Maschinenrichtung nMD. Nun wird die Skala mit der unteren Rändelschraube so weit verdreht, dass der im Okular sichtbare Bereich zwischen 1,49 und 1,50 zu sehen ist.
Jetzt wird der Brechungsindex in nα bzw. nz (in Dickenrichtung der Folie) ermittelt. Damit der nur schwach sichtbare Übergang besser zu sehen ist, wird auf das Okular eine Polarisationsfolie gelegt. Diese ist solange zu drehen, bis der Übergang deutlich zu sehen ist. Es gilt das gleiche wie bei der Bestimmung von nMD. Ist der Übergang von hell auf dunkel nicht scharf (farbig), dann werden mit Hilfe der oberen Rändelschraube die Farben zusammengeführt, so dass ein scharfer Übergang zu sehen ist. Diese scharfe Übergangslinie wird mit Hilfe der unteren Rändelschraube in den Kreuzungspunkt der beiden diagonalen Linien gebracht und den auf der Skala angezeigten Wert abgelesen und in die Tabelle eingetragen.
Anschließend wird die Probe gedreht und die entsprechenden Brechungsindizes nMD und nα (= nz) der anderen Oberflächenseite gemessen und in eine entsprechende Tabelle eingetragen.
Nach der Bestimmung der Brechungsindizes in MD-Richtung bzw. in Dickenrichtung wird der in MD-Richtung herausgeschnittene Probenstreifen aufgelegt und entsprechend die Brechungsindizes nTD und nα (= nz) bestimmt. Der Streifen wird umgedreht und die Werte für die B-Seite gemessen. Die Werte für die A-Seite und die B-Seite werden zu mittleren Brechungswerten zusammengefasst. Die Orientierungswerte werden dann aus den Brechungsindizes nach den folgenden Formeln berechnet:
Δn = nMD - nTD
Δp = (nMD + nTD)/2 - nz
nav = (nMD + nTD + nz)/3
Oberflächendefekte
Die Oberflächendefekte werden visuell bestimmt.
Mechanische Eigenschaften
Der E-Modul, die Reißfestigkeit und die Reißdehnung werden in Längs- und Querrichtung nach ISO 527-1-2 gemessen.
Bewitterung (beidseitig) UV-Stabilität
Die UV-Stabilität wird nach der Testspezifikation ISO 4892 wie folgt geprüft:
Testgerät: Atlas Ci 65 Weather Ometer
Testbedingungen: ISO 4892, d. h. künstliche Bewitterung
Bestrahlungszeit: 1000 Stunden (pro Seite)
Bestrahlung: 0,5 W/m2, 340 nm
Temperatur: 63°C
Relative Luftfeuchte: 50%
Xenonlampe: innerer und äußerer Filter aus Borosilikat
Bestrahlungszyklen: 102 Minuten UV-Licht, dann 18 Minuten UV-Licht mit Wasserbesprühung der Proben, dann wieder 102 Minuten UV-Licht usw.
Farbveränderung
Die Farbveränderung der Proben nach der künstlichen Bewitterung wird mit einem Spektralphotometer nach DIN 5033 gemessen.
Je größer die numerische Abweichung vom Standard ist, desto größer ist der Farbunterschied. Numerische Werte von 0,3 sind vernachlässigbar und bedeuten, dass keine signifikante Farbänderung vorliegt.
Gelbwert
Der Gelbwert (YID) ist die Abweichung von der Farblosigkeit in Richtung "Gelb" und wird gemäß DIN 6167 gemessen. Gelbwert (YID) von < 5 sind nicht sichtbar.
Brandverhalten
Das Brandverhalten wird nach DIN 4102 Teil 2, Baustoffklasse B2 und nach DIN 4102 Teil 1, Baustoffklasse B1 sowie nach dem UL-Test 94 ermittelt.
Mechanische Eigenschaften
Der E-Modul und die Reißfestigkeit werden in Längs- und Querrichtung nach ISO 527- 1-2 gemessen.
Beispiele Beispiel 1
Chips aus Polyethylenterephthalat (hergestellt über das Umesterungsverfahren mit Mn als Umesterungskatalysator, Mn-Konzentration: 100 ppm) wurden bei 150°C auf eine Restfeuchte von unterhalb 100 ppm getrocknet und dem Extruder für die Basisschicht B zugeführt. Ebenfalls wurden Chips aus Polyethylenterephthalat und einem Füllstoff dem Extruder für die nicht siegelfähige Deckschicht C zugeführt.
Daneben wurden Chips aus einem linearen Polyester hergestellt, der aus einem amorphen Copolyester mit 78 Mol.-% Ethylenterephthalat und 22 Mol-% Ethylenisophthalat besteht (hergestellt über das Umesterungsverfahren mit Mn als Umesterungskatalysator, Mn-Konzentration: 100 ppm). Der Copolyester wurde bei einer Temperatur von 100°C auf eine Restfeuchte von unterhalb 200 ppm getrocknet und dem Extruder für die siegelfähige Deckschicht A zugeführt.
Der UV-Stabilisator 2-(4,6-Diphenyl-1,3,5-triazin-2-yl)-5-(hexyl)-oxyphenol (®Tinuvin 1577) wird in Form von Masterbatchen zudosiert. Die Masterbatche setzten sich aus 5 Gew.-% ®Tinuvin 1577 als Wirkstoffkomponente und 95 Gew.-% Polyethylenterephthalat (für die Deckschicht C), bzw. 95 Gew.-% Polyethylenisophthalat (für die Deckschicht A) zusammen. Das 5 gew.-%ige ®Tinuvin 1577 wird lediglich den beiden dicken Deckschichten 20 Gew.-% der jeweiligen Masterbatche über die Masterbatchtechnologie zudosiert werden.
Als Weißpigment wurde Bariumsulfat eingesetzt.
Der Hydrolysestabilisator und das Flammschutzmittel werden in Form eines Masterbatches zudosiert. Das Masterbatch setzt sich aus 20 Gew.-% Flammschutzmittel, 1 Gew.-% Hydrolysestabilisator und 79 Gew.-% Polyethylenterephthalat zusammen. Bei dem Hydrolysestabilisator handelt es sich um Pentaerylthrityl-Tetrakis-3-(3,5-di-Tertiärbutyl-4-Hydroxylphenyl)-Propionat. Bei dem Flammschutzmittel handelt es sich um Dimethylphosphonat (®Armgard P 1045). Das Masterbatch hat ein Schüttgewicht von 750 kg/m3 und einen Erweichungspunkt von 69°C.
Das Masterbatch wurde bei Raumtemperatur aus separaten Dosierbehältern in einem Vakuumtrockner gefüllt, der von dem Einfüllzeitpunkt bis zum Ende der Verweilzeit ein Temperaturspektrum von 25°C bis 130°C durchläuft. Während der ca. 4-stündigen Verweilzeit wird das Masterbatch mit 61 Upm gerührt. Das vorkristallisierte bzw. vorgetrocknete Masterbatch wird in dem nachgeschalteten, ebenfalls unter Vakuum stehenden Hopper bei 140°C 4 Stunden nachgetrocknet.
Der Basischicht B werden 10 Gew.-% des Masterbatches und der nicht siegelfähigen Deckschicht C 20 Gew.-% des Masterbatches zugegeben.
Es wurde durch Koextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine weiße dreischichtige Folie mit ABC-Aufbau und einer Gesamtdicke von 20 µm hergestellt. Die Dicke der jeweiligen Deckschichten ist der Tabelle 2 zu entnehmen.
Deckschicht A, Mischung aus:
20,0 Gew.-% UV-Masterbatch auf Basis von Polyethylenisophthalat,
77,0 Gew.-% Copolyester mit einem SV-Wert von 800,
3,0 Gew.-% Masterbatch aus 97,75 Gew.-% Copolyester (SV-Wert von 800) und 1,0 Gew.-% ®Sylobloc 44 H (synthetisches SiO2 der Fa. Grace) und 1,25 Gew.-% ®Aerosil TT 600 (pyrogenes SiO2 der Fa. Degussa).
Basisschicht B:
70,0 Gew.-% Polyethylenterephthalat mit einem SV-Wert von 800,
20,0 Gew.-% Bariumsulfat einer mittleren Korngröße von 0,5 µm,
10,0 Gew.-% Masterbatch, welches Flammschutzmittel und Hydrolysestabilisator enthält.
Deckschicht C, Mischung aus:
20,0 Gew.-% Masterbatch, welches Flammschutzmittel und Hydrolysestabilisator enthält,
20,0 Gew.-% UV-Masterbatch auf Basis von Polyethylenterephthalat,
48 Gew.-% Polyethylenterephthalat mit einem SV-Wert von 800,
12 Gew.-% Masterbatch aus 97,75 Gew.-% Copolyester (SV-Wert von 800) und 1,0 Gew.-% ®Sylobloc 44 H (synthetisches SiO2 der Fa. Grace) und 1,25 Gew.-% ®Aerosil TT 600 (kettenartiges SiO2 der Fa. Degussa).
Die Herstellungsbedingungen in den einzelnen Verfahrensschritten waren:
Längsstreckung: Temperatur 80-125°C
Längsstreckverhältnis: 4,2
Querstreckung: Temperatur: 80-135°C
Querstreckverhältnis: 4,0
Fixierung: Temperatur: 230°C
Dauer: 3 s
Die Folie hatte die geforderten guten Siegeleigenschaften, den gewünschten Weißgrad und zeigt das gewünschte Handling und das gewünschte Verarbeitungsverhalten. Der Folienaufbau und die erzielten Eigenschaften derart hergestellter Folien sind in den Tabellen 2 bis 4 (Folienaufbau und Ergebnisse) dargestellt.
Die Folie in diesem und in allen nachfolgenden Beispielen wurden nach der Testspezifikation ISO 4892 beidseitig je 1000 Stunden pro Seite mit dem Atlas Ci 65 Weather Ometer der Fa. Atlas bewittert und anschließend bezüglich der mechanischen Eigenschaften, der Verfärbung, der Oberflächendefekte und des Glanzes geprüft.
Die Folie erfüllt nach DIN 4102 Teil 2 und Teil 1 die Baustoffklassen B2 und B1. Die Folie besteht den UL-Test 94.
Beispiel 2
Im Vergleich zu Beispiel 1 wurde die Deckschichtdicke der siegelfähigen Schicht A von 1,5 auf 2,0 µm angehoben. Die Siegeleigenschaften haben sich hierdurch verbessert, insbesondere ist die Siegelnahtfestigkeit deutlich größer geworden (siehe Tabellen 2 bis 4).
Beispiel 3
Im Vergleich zu Beispiel 1 wurde jetzt eine 30 µm dicke Folie produziert. Die Deckschichtdicke der siegelfähigen Schicht A betrug 2,5 µm und diejenige der nicht siegelfähigen Schicht C betrug 2,0 µm. Die Siegeleigenschaften haben sich hierdurch nochmals verbessert, insbesondere ist die Siegelnahtfestigkeit deutlich größer geworden. Das Handling der Folie hat sich dabei tendenziell verbessert (siehe Tabellen 2 bis 4).
Beispiel 4
Im Vergleich zu Beispiel 3 wurde das Copolymere für die siegelfähige Deckschicht A geändert. Anstelle des amorphen Copolyesters mit 78 Mol.-% Polyethylenterephthalat und 22 Mol-% Ethylenterephthalat wurde jetzt ein amorpher Copolyester mit 70 Mol.-% Polyethylenterephthalat und 30 Mol-% Ethylenterephthalat verwendet. Der Rohstoff wurde auf einem Zweischneckenextruder mit Entgasung verarbeitet, ohne dass er vorgetrocknet werden musste. Die Deckschichtdicke der siegelfähigen Schicht A betrug wiederum 2,5 µm und diejenige der nicht siegelfähigen Schicht C betrug 2,0 µm. Die Siegeleigenschaften haben sich hierdurch verbessert, insbesondere ist die Siegelnahtfestigkeit deutlich größer geworden. Zur Erzielung eines guten Handlings und eines guten Verarbeitungsverhalten der Folie wurde die Pigmentkonzentration in den beiden Deckschichten leicht angehoben (siehe Tabellen 2 bis 4).
Vergleichsbeispiel 1
Im Vergleich zu Beispiel 1 wurde jetzt die siegelfähige Deckschicht A nicht pigmentiert. Die Siegeleigenschaften haben sich zwar hierdurch etwas verbessert, jedoch ist das Handling der Folie und das Verarbeitungsverhalten inakzeptabel schlechter geworden (siehe Tabellen 2 und 3).
Vergleichsbeispiel 2
Im Vergleich zu Beispiel 1 wurde jetzt die siegelfähige Deckschicht A so hoch pigmentiert wie die nicht siegelfähige Deckschicht C. Das Handling und die Verarbeitungseigenschaften der Folie haben sich durch diese Maßnahme verbessert, jedoch sind die Siegeleigenschaften deutlich schlechter geworden (siehe Tabellen 2 und 3).
Vergleichsbeispiel 3
Im Vergleich zu Beispiel 1 wurde jetzt die nicht siegelfähige Deckschicht A deutlich weniger pigmentiert. Das Handling der Folie und das Verarbeitungsverhalten der Folie ist deutlich schlechter geworden (siehe Tabellen 2 und 3).
Vergleichsbeispiel 4
Es wurde Beispiel 1 aus der EP-A 0 035 835 nachgearbeitet. Das Siegelverhalten der Folie, das Handling der Folie und das Verarbeitungsverhalten der Folie ist schlechter als bei den erfindungsgemäßen Beispielen (siehe Tabellen 2 und 3).

Claims (37)

1. Weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, biaxial orientierte Polyesterfolie mit mindestens einer Basisschicht B, einer siegelfähigen Deckschicht A und einer weiteren Deckschicht C, wobei die siegelfähige Deckschicht A eine Siegelanspringtemperatur von ≦ 110°C und eine Siegelnahtfestigkeit von ≧ 1,3 N/15 mm aufweist.
2. Polyesterfolie nach Anspruch 1, dadurch gekennzeichnet, daß die siegelfähige Deckschicht A eine mittlere Rauhigkeit Ra von kleiner 30 nm aufweist.
3. Polyesterfolie nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die siegelfähige Deckschicht A einen Messwertbereich für die Gasströmung von 500-4000 s aufweist.
4. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die siegelfähige Deckschicht A einen Glanz von größer 120 (Messwinkel 20°) aufweist.
5. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die nicht siegelfähige Deckschicht C einen Reibungskoeffizienten COF kleiner 0,5 aufweist.
6. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die nicht siegelfähige Deckschicht C eine mittlere Rauhigkeit Ra von 40-100 nm aufweist.
7. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die nicht siegelfähige Deckschicht C einen Messwertbereich für die Gasströmung von kleiner 120 s aufweist.
8. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die nicht siegelfähige Deckschicht C einen Glanz von kleiner 100 (Messwinkel 20°) aufweist.
9. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Polyesterfolie einen Weißgrad von größer 70 aufweist.
10. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Polyesterfolie eine planare Orientierung von kleiner 0,165 aufweist.
11. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Polyesterfolie die Bewitterungsprüfung/UV-Stabilität nach ISO 4892 mit kleiner 20% besteht.
12. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Polyesterfolie die Baustoffklassen B2 und B1 nach DIN 4101 Teil 2/Teil 1 erfüllt und den UL-Test 94 besteht.
13. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die nicht siegelfähige Deckschicht C eine Anzahl von Erhebungen N pro mm2 Folienoberfläche aufweist, die mit der jeweiligen Höhe h über folgende Gleichungen korreliert ist:
AC1 - BC1 . log h/µm < NC/mm2 < AC2 - BC2 . log h/µm
0,01 µm < h < 10 µm
AC1 = 0,29; BC1 = 3,30;
AC2 = 1,84; BC2 = 2,70.
14. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 13, wobei die Basisschicht B zu mindestens 90 Gew.-% aus einem thermoplastischen Polyester aus der Reihe PET, PEN, PCDT und PENBB besteht und die anderen Monomereinheiten aus anderen aliphatischen, cycloaliphatischen oder aromatischen Diolen bzw. Dicarbonsäuren stammen.
15. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 14, wobei die Basisschicht B zu mindestens 95 Gew.-% aus einem thermoplastischen Polyester aus der Reihe PET und PEN besteht.
16. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 15, wobei die siegelfähige Deckschicht A auf Basis von Polyestercopolymeren aufgebaut ist und im wesentlichen aus Ethylenterephthalat-Einheiten (40 bis 95 Mol-%) und Ethylenisophthalat-Einheiten (60 bis 5 Mol-%) besteht und die anderen Monomereinheiten aus anderen aliphatischen, cycloaliphatischen oder aromatischen Diolen bzw. Dicarbonsäuren stammen.
17. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 16, wobei die siegelfähige Deckschicht A 0,2 µm bis 4,0 µm dick ist.
18. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 17, wobei die nicht siegelfähige Deckschicht C zu mindestens 95 Gew.-% aus einem thermoplastischen Polyester aus der Reihe PET, PEN, PCDT und PENBB besteht.
19. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 18, wobei die nicht siegelfähige Deckschicht C 0,2 µm bis 4,0 µm dick ist.
20. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 19, wobei der UV- Stabilisator in der nicht siegelfähigen Decksicht C enthalten ist.
21. Polyesterfolie nach den Ansprüchen 1 bis 20, wobei die Konzentration des UV- Stabilisators im Bereich von 0,01 bis 5 Gew.-%, bezogen auf das Gewicht der Schicht in der der UV-Stabilisator eingearbeitet ist, liegt.
22. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 21, wobei der UV-Stabilisator ausgewählt ist unter 2-Hydroxybenzotriazolen und Triazinen.
23. Polyesterfolie gemäß Anspruch 22 enthaltend 0,01 bis 5,0 Gew.-% 2-(4,6- Diphenyl-1,3,5-triazin-2-yl)-5-(hexyl)oxy-phenol oder 0,01 bis 5,0 Gew.-% 2,2'- Methylen-bis(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol als UV- Stabilisator.
24. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 23, wobei das Flammschutzmittel in der nicht siegelfähigen Decksicht C enthalten ist.
25. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 24, wobei das Flammschutzmittel ausgewählt wird aus einer oder mehreren organischen Phosphorverbindungen, die im PET löslich ist/sind.
26. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 25, wobei die Konzentration des Flammschutzmittels zwischen 0,5 und 30,0 Gew.-%, bezogen auf das Gewicht der Schicht des verwendeten Polyesters, liegt.
27. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 26, wobei das Weißpigment in der Basisschicht B enthalten ist.
28. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 27, wobei das Weißpigment ausgewählt ist aus einem oder mehreren der Weißpigmente Titandioxid, Bariumsulfat, Calciumcarbonat, Kaolin und Siliciumdioxid.
29. Polyesterfolie nach Anspruch 28, wobei das Weißpigment Bariumsulfat ist.
30. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 29, wobei die Folie 12 bis 40 Gew.-% Weißpigment, bezogen auf das Gewicht der Schicht in welcher das Weißpigment eingesetzt ist.
31. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 30, wobei das Weißpigment Bariumsulfat eine mittlere Korngröße von 0,3 bis 0,8 µm besitzt.
32. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 31, wobei die Folie gegebenenfalls noch jeweils eine Zwischenschicht zwischen der Basisschicht B und den Deckschichten A und C aufweist.
33. Verfahren zur Herstellung einer Polyesterfolie nach Anspruch 1, dadurch gekennzeichnet, dass das Polymere bzw. die Polymermischung der einzelnen Schichten in einem Extruder komprimiert und verflüssigt werden, die Schmelzen dann gleichzeitig durch eine Flachdüse (Breitschlitzdüse) gepresst werden, die ausgepresste mehrschichtige Folie auf einer oder mehreren Abzugswalzen abgezogen wird, die so erhaltene Vorfolie anschließend biaxial verstreckt und thermofixiert wird und gegebenenfalls an der zur Behandlung vorgesehenen Oberflächensicht corona- oder flammbehandelt wird.
34. Verfahren gemäß Anspruch 33, dadurch gekennzeichnet, dass die Zugabe des Flammschutzmittels über die Masterbatchtechnologie durchgeführt wird.
35. Verfahren gemäß Anspruch 33, dadurch gekennzeichnet, dass die Zugabe des Weißpigments über die Masterbatchtechnologie durchgeführt wird.
36. Verfahren gemäß Anspruch 33, dadurch gekennzeichnet, dass die Zugabe des UV-Stabilisators über die Masterbatchtechnologie durchgeführt wird.
37. Verwendung einer Folie gemäß den Ansprüchen 1 bis 32 als Innenraumverkleidung, für Messebau und Messeartikel, als Display, für Schilder, für Schutzverglasungen von Maschinen und Fahrzeugen, im Beleuchtungssektor, im Laden- und Regalbau, als Werbeartikel, als Kaschiermedium, für Gewächshäuser, Überdachungen, Außenverkleidungen, Abdeckungen von Materialien, im Bausektor, als Lichtwerbeprofil, Schattenmatten oder in Elektroanwendungen.
DE2000107729 2000-02-19 2000-02-19 Weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung Withdrawn DE10007729A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE2000107729 DE10007729A1 (de) 2000-02-19 2000-02-19 Weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
PCT/EP2001/001302 WO2001060140A2 (de) 2000-02-19 2001-02-07 Weisse, siegelfähige, uv stabilisierte und flammhemmend ausgerüstete, biaxial orientierte polyesterfolie, verfahren zu ihrer herstellung und ihre verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000107729 DE10007729A1 (de) 2000-02-19 2000-02-19 Weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung

Publications (1)

Publication Number Publication Date
DE10007729A1 true DE10007729A1 (de) 2001-08-23

Family

ID=7631633

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000107729 Withdrawn DE10007729A1 (de) 2000-02-19 2000-02-19 Weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung

Country Status (2)

Country Link
DE (1) DE10007729A1 (de)
WO (1) WO2001060140A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829175B2 (en) * 2006-04-05 2010-11-09 Mitsubishi Polyester Film Gmbh Multilayer, white polyester film
US11634548B2 (en) 2018-04-27 2023-04-25 Dupont Teijin Films U.S. Limited Partnership Polyester film comprising a polymeric phosphonate flame retardant
US11965073B2 (en) 2018-04-27 2024-04-23 Dupont Teijin Films U.S. Limited Partnership Polyester film comprising a polymeric phosphonate flame retardant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063590A1 (de) * 2000-12-20 2002-06-27 Mitsubishi Polyester Film Gmbh Einseitig matte, siegelfähige,biaxial orientierte Polyesterfolie
DE102006024323A1 (de) * 2006-05-24 2007-11-29 Mitsubishi Polyester Film Gmbh Mehrschichtige haftvermittelnde, weiße biaxial orientierte Polyesterfolie

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9110902D0 (en) * 1991-05-21 1991-07-10 Ici Plc Polymeric film
US5972445A (en) * 1996-01-17 1999-10-26 Mitsubishi Chemical Corporation Multilayer polyester sheet
GB9617185D0 (en) * 1996-08-15 1996-09-25 Ici Plc Polymeric film
DE19734437A1 (de) * 1997-08-08 1999-02-11 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Polymere
DE19814710A1 (de) * 1998-04-01 1999-10-07 Hoechst Diafoil Gmbh Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung als Magnetbandfolie
DE19827845A1 (de) * 1998-06-23 1999-12-30 Basf Ag Flammgeschützte Polyesterformmassen
GB2344596A (en) * 1998-12-09 2000-06-14 Du Pont Flame retarded and UV light stabilised polyester film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829175B2 (en) * 2006-04-05 2010-11-09 Mitsubishi Polyester Film Gmbh Multilayer, white polyester film
US11634548B2 (en) 2018-04-27 2023-04-25 Dupont Teijin Films U.S. Limited Partnership Polyester film comprising a polymeric phosphonate flame retardant
US11965073B2 (en) 2018-04-27 2024-04-23 Dupont Teijin Films U.S. Limited Partnership Polyester film comprising a polymeric phosphonate flame retardant

Also Published As

Publication number Publication date
WO2001060140A2 (de) 2001-08-23
WO2001060140A3 (de) 2002-03-28

Similar Documents

Publication Publication Date Title
EP1268207B1 (de) Weisse, siegelfähige, flammhemmend ausgerüstete, biaxial orientierte polyesterfolie, verfahren zu ihrer herstellung und ihre verwendung
EP1261481B1 (de) Matte, uv-stabile, flammhemmend ausgerüstete koextrudierte polyesterfolie, verfahren zu ihrer herstellung und ihre verwendung
EP1268632B1 (de) Einseitig matte, siegelfähige, uv stabilisierte, flammhemmend ausgerüstete, biaxial orientierte polyesterfolie, verfahren zu ihrer herstellung und verwendung
EP1125732B1 (de) Transparente, siegelfähige, UV-stabilisierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10002169A1 (de) Matte, UV-stabile, thermoformbare, koextrudierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1274577B1 (de) Transparente, siegelfähige, flammhemmend ausgerüstete polyesterfolie, verfahren zu ihrer herstellung und ihre verwendung
EP1274579B1 (de) Einseitig matte, siegelfähige, uv stabilisierte, koextrudierte, biaxial orientierte folie, verfahren zu ihrer herstellung und verwendung
EP1268205B1 (de) Einseitig matte, siegelfähige, flammhemmend ausgerüstete, koextrudierte, biaxial orientierte folie, verfahren zu ihrer herstellung und verwendung
EP1274574B1 (de) Transparente, siegelfähige, uv-stabiliserte und flammhemmend ausgerüstete polyesterfolie, verfahren zu ihrer herstellung und ihre verwendung
DE10002178A1 (de) Matte, UV-stabile, koextrudierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10007729A1 (de) Weiße, siegelfähige, UV-stabilisierte und flammhemmend ausgerüstete, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10002170A1 (de) Amorphe, einseitig matte, siegelfähige, UV stabilisierte, flammhemmend ausgerüstete, thermoformbare, koextrudierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10007727A1 (de) Weiße, siegelfähige, UV stabilisierte, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2002055301A1 (de) Antimikrobiell ausgerüstete, mehrschichtige polyesterfolie mit matter oberfläche
WO2001053092A1 (de) Amorphe, weisse, siegelfähige, uv-stabilisierte, flammhemmend ausgerüstete, thermoformbare polyesterfolie, verfahren zu ihrer herstellung und ihre verwendung
DE10022946A1 (de) Weisse, zumindest einseitig matte, biaxial orientierte, UV-stabilisierte und schwer entflammbare Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
WO2001053093A1 (de) Amorphe, transparente, siegelfähige, uv-absorbierende, flammhemmend ausgerüstete, thermoformbare polyesterfolie, verfahren zu ihrer herstellung und ihre venwendung
EP1274578B1 (de) Matte, uv-stabile, sulfonatgruppenenthaltende, schwerentflammbare, thermoformbare koextrudierte polyesterfolie, verfahren zu ihrer herstellung und ihre verwendung
DE10030239A1 (de) Weiße, siegelfähige, UV stabilisierte, schwer entflammbare, biaxial orientierte, koextrudierte Polyesterfolie mit Cycloolefincopolymer(COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10100703A1 (de) Funktionalisierte, antimikrobiell ausgerüstete, mehrschichtige Polyesterfolie mit matter Oberfläche

Legal Events

Date Code Title Description
8141 Disposal/no request for examination