DE10003739A1 - System parameters identification in vehicle, involves obtaining movement equations with respect to measured speed and acceleration based on vehicle substitute model - Google Patents

System parameters identification in vehicle, involves obtaining movement equations with respect to measured speed and acceleration based on vehicle substitute model

Info

Publication number
DE10003739A1
DE10003739A1 DE2000103739 DE10003739A DE10003739A1 DE 10003739 A1 DE10003739 A1 DE 10003739A1 DE 2000103739 DE2000103739 DE 2000103739 DE 10003739 A DE10003739 A DE 10003739A DE 10003739 A1 DE10003739 A1 DE 10003739A1
Authority
DE
Germany
Prior art keywords
vehicle
system parameters
measured values
determined
equations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2000103739
Other languages
German (de)
Other versions
DE10003739C2 (en
Inventor
Dieter Ammon
Zoltan A Zomotor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Priority to DE10003739A priority Critical patent/DE10003739C2/en
Publication of DE10003739A1 publication Critical patent/DE10003739A1/en
Application granted granted Critical
Publication of DE10003739C2 publication Critical patent/DE10003739C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0182Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0521Roll rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/187Digital Controller Details and Signal Treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/187Digital Controller Details and Signal Treatment
    • B60G2600/1871Optimal control; Kalman Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/187Digital Controller Details and Signal Treatment
    • B60G2600/1873Model Following
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/92ABS - Brake Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/95Automatic Traction or Slip Control [ATC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/96ASC - Assisted or power Steering control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/97Engine Management System [EMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Feedback Control In General (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Speed and acceleration of the vehicle are measured and the vector of these values is determined. Movement equations with respect to the measurement values are obtained based on a vehicle substitute model. The ratio of estimated and measurement values is weighted by optimization parameter which is determined based on the covariance matrix.

Description

Die Erfindung betrifft ein Verfahren und ein System zur Identi­ fikation von Systemparametern in Fahrzeugen nach dem Oberbeg­ riff des Anspruches 1 bzw. 10.The invention relates to a method and a system for identi System parameters in vehicles after the upper beg Reef of claim 1 and 10 respectively.

Zur Beurteilung des Fahrverhaltens von Fahrzeugen werden übli­ cherweise im Fahrbetrieb oder auf einem Prüfstand Zustandsgrö­ ßen des Fahrzeugs gemessen und aus den gewonnenen Messgrößen Kennwerte ermittelt, über die das Fahrverhalten des Fahrzeugs charakterisierbar ist, beispielsweise der Eigenlenkgradient, der Schwimmwinkelgradient oder der Wankwinkelgradient. Anhand dieser Kenngrößen kann das Fahrverhalten des Fahrzeuges im Zeitbereich oder Frequenzbereich beurteilt werden. Um die ge­ wünschten Kenngrößen gewinnen zu können, muss zunächst ein ma­ thematisches Fahrzeug-Ersatzmodell formuliert werden, mit des­ sen Bewegungsgleichungen das Fahrverhalten des Fahrzeugs nähe­ rungsweise zu beschreiben ist. Das Fahrzeug-Ersatzmodell ist üblicherweise in der Weise aufgebaut, dass zumindest die Quer­ dynamik des Fahrzeuges - Querbeschleunigung und Gierbeschleuni­ gung - zu erfassen sind. Unter Berücksichtigung der Messgrößen und der Bewegungsgleichungen des Fahrzeug-Ersatzmodells können die gesuchten Kenngrößen aus den Parametern des Ersatzmodelles bestimmt werden.To assess the driving behavior of vehicles, übli Usually in driving mode or on a test bench measured from the vehicle and from the measurements obtained Characteristic values determined by means of the driving behavior of the vehicle can be characterized, for example the self-steering gradient, the slip angle gradient or the roll angle gradient. Based these parameters can determine the driving behavior of the vehicle Time range or frequency range can be assessed. To the ge To be able to gain the desired parameters, a ma thematic vehicle replacement model can be formulated with the equations of motion approximate the driving behavior of the vehicle is to be described approximately. The vehicle replacement model is usually constructed in such a way that at least the cross vehicle dynamics - lateral acceleration and yaw acceleration supply - are to be recorded. Taking into account the measurands and the equations of motion of the vehicle replacement model the parameters sought from the parameters of the replacement model be determined.

Die interessierenden Kenngrößen müssen mit hinreichender Genau­ igkeit bestimmt werden, damit eine verlässliche Aussage über das Fahrverhalten des Fahrzeuges anhand dieser Kenngrößen mög­ lich ist. Um die Kenngrößen mit der erforderlichen Güte bestimmen zu können, muss bei den bisher üblichen Identifikationsmo­ dellen zur Bestimmung von Systemparametern während der Mess­ fahrt ein breites Spektrum von Fahrmanövern und von unter­ schiedlichen Straßenanregungen abgedeckt werden, um sicherzu­ stellen, dass dem Identifikationsmodell die für die Parameter­ identifikation erforderlichen Daten zugeführt werden können. Die Vielzahl von Fahrmanövern unter unterschiedlichen Bedingun­ gen sind zeitintensiv durchzuführen und nicht immer mit hinrei­ chender Genauigkeit reproduzierbar.The parameters of interest must be accurate enough be determined so that a reliable statement about the driving behavior of the vehicle based on these parameters is. To determine the parameters with the required quality  To be able to, with the usual identification mo dents to determine system parameters during the measurement drives a wide range of driving maneuvers and under various road stimuli are covered to ensure safe make that the identification model for the parameters identification required data can be supplied. The variety of driving maneuvers under different conditions conditions are time-consuming and not always necessary reproducible accuracy.

Identifikationsverfahren, die auf einem linearen Einspurmodell eines Fahrzeuges basieren, sind beispielsweise in den Druck­ schriften DE 42 26 749 A1 und DE 43 25 413 A1 beschrieben wor­ den.Identification procedure based on a linear single-track model of a vehicle are, for example, in the print Writings DE 42 26 749 A1 and DE 43 25 413 A1 described wor the.

Der Erfindung liegt das Problem zugrunde, die Identifikation von Systemparametern eines Fahrzeuges zu verbessern bzw. zu vereinfachen. Es soll insbesondere eine Möglichkeit angegeben werden, den Messaufwand ohne Beeinträchtigung der Qualität der Kenngrößen zu reduzieren.The invention is based on the problem of identification system parameters of a vehicle to improve or simplify. One possibility in particular is to be given the measuring effort without impairing the quality of the Reduce parameters.

Dieses Problem wird erfindungsgemäß mit den Merkmalen des An­ spruches 1 bzw. 10 gelöst.This problem is solved according to the invention with the features of the Proverbs 1 and 10 solved.

Gemäß dem neuen Verfahren wird zur Identifikation von Systempa­ rametern in Fahrzeugen ein Parameterschätzverfahren verwendet, welches zweckmäßig auf der Methode der Covariance-Intersection basiert, welche eine Weiterentwicklung des Kalman-Filters für Schätzungs-, Filterungs- und Datenfusionsapplikationen dar­ stellt. Die Covariance-Intersection-Methode ist jedoch im Un­ terschied zum Kalman-Filter in der Lage, eine Parameteridenti­ fikation auch dann mit hoher Qualität durchzuführen, wenn Schätzwerte des Verfahrens und Fehler- bzw. Rauschanteile kor­ relieren. Die Covariance-Intersection erlaubt die Fusion von Größen, deren Korrelationsgrad unbekannt ist. According to the new procedure for the identification of system pa parameters in vehicles uses a parameter estimation method, which is expedient on the method of covariance intersection which is a further development of the Kalman filter for Estimation, filtering and data fusion applications poses. However, the covariance intersection method is in the Un Unlike the Kalman filter, it was able to identify a parameter to carry out high-quality fication even if Estimated values of the process and error or noise components cor relate. The covariance intersection allows the fusion of Quantities whose degree of correlation is unknown.  

Erfindungsgemäß ist vorgesehen, dass zur Identifikation der Systemparameter eine iterative Berechnungsvorschrift durchge­ führt wird, in welcher ein Optimierungsparameter berücksichtigt wird, mit dem die Anteile aus der Schätzung und aus der Messung in Abhängigkeit der Güte der Messwerte unterschiedlich gewich­ tet werden können. Der Optimierungsparameter wird hierbei über eine Optimierungsfunktion gemäß einem vorgegebenen Funktional bestimmt.According to the invention it is provided that the System parameters an iterative calculation rule in which an optimization parameter is taken into account with which the shares from the estimate and from the measurement weighted differently depending on the quality of the measured values can be tet. The optimization parameter is over an optimization function according to a given functional certainly.

Die Bewegungsgleichungen des Fahrzeug-Ersatzmodells werden ins­ besondere über die Berechnungsvorschrift der Covariance- Intersection-Methode berücksichtigt. In der Regel reicht ein Einspur-Fahrzeug-Ersatzmodell zur Bestimmung der Querdynamik und der Wankdynamik eines Fahrzeuges für die Ermittlung der Systemparameter aus.The equations of motion of the vehicle replacement model are ins particular about the calculation rule of covariance Intersection method considered. Usually it is enough Single-track vehicle replacement model for determining the lateral dynamics and the roll dynamics of a vehicle for determining the System parameters.

Das auf der Covariance-Intersection-Methode basierende Verfah­ ren zur Identifikation von Systemparametern bietet den Vorteil, dass über die in jedem Iterationsschritt neu zu treffende Be­ stimmung des Optimierungsparameters eine der Güte der aktuellen Messwerte entsprechende Gewichtung im Iterationsalgorithmus zwischen Schätzwerten und Messwerten durchgeführt wird. Dadurch funktioniert das Schätzverfahren auch bei einer geringen oder einer fehlenden Anregung ohne Verschlechterung der Ergebnisse für die Systemparameter, da im Falle einer geringen oder feh­ lenden Anregung der Schätzanteil in der Berechnungsvorschrift für die Parameteridentifikation bedeutend stärker gewichtet wird als der Messanteil. Im umgekehrten Fall, wenn die Messung wesentlich mehr Informationen beinhaltet als die Schätzung, wird dementsprechend der Messanteil stärker gewichtet als der Schätzanteil.The method based on the covariance intersection method for the identification of system parameters offers the advantage that the Be. to be met in each iteration step the optimization parameter is one of the quality of the current one Weighting corresponding to measurement values in the iteration algorithm between estimates and measurements. Thereby does the estimation method work even with a low or a lack of excitation without worsening the results for the system parameters, since in the case of a low or wrong lent suggestion of the estimated proportion in the calculation rule weighted significantly more for parameter identification is called the measurement portion. Conversely, when the measurement contains much more information than the estimate, accordingly, the measurement portion is weighted more than that Estimate.

Ein weiterer Vorteil der Anwendung des Covariance-Intersection- Verfahrens liegt darin, dass ein Divergieren der Verfahrensergebnisse im Gegensatz zu bisher bekannten Verfahren in der Re­ gel ausgeschlossen werden kann.Another advantage of using the covariance intersection The process is that the process results diverge  in contrast to previously known methods in Re gel can be excluded.

Als Systemparameter werden insbesondere der Eigenlenkgradient, der Schwimmwinkelgradient und der Wankwinkelgradient bestimmt. Die bei der Messfahrt aufzunehmenden Messgrößen sind insbeson­ dere die Längsgeschwindigkeit des Fahrzeuges, die Querbeschleu­ nigung, die Giergeschwindigkeit sowie gegebenenfalls die Wank­ geschwindigkeit, der Lenkgradwinkel und die Quergeschwindig­ keit. Diese Messgrößen werden zur Bestimmung der Systemparame­ ter herangezogen.In particular, the self-steering gradient, the slip angle gradient and the roll angle gradient are determined. The measurands to be recorded during the measurement trip are in particular the longitudinal speed of the vehicle, the transverse acceleration inclination, the yaw rate and, if necessary, the roll speed, the steering angle and the cross speed speed. These measurands are used to determine the system parameters ter used.

Die online identifizierten Systemparameter können zur Bewertung des Fahrverhaltens herangezogen werden. Darüber hinaus ist es auch möglich, im Anschluss an die Parameteridentifikation Fahr­ manöver des Fahrzeug-Ersatzmodells im Zeit- oder Frequenzbe­ reich zu simulieren, um zu einer weiteren bzw. genaueren Bewer­ tung des Fahrverhaltens zu gelangen.The system parameters identified online can be used for evaluation of driving behavior can be used. Beyond that it is also possible after the parameter identification Fahr maneuvers of the vehicle replacement model in time or frequency richly simulate in order to make another or more accurate reviewer direction of driving behavior.

Das erfindungsgemäße System zur Durchführung des Verfahrens um­ fasst eine Messeinrichtung, mit der im Fahrzeug die benötigten Fahrzeug-Zustandsgrößen gemessen bzw. ermittelt werden können, sowie eine Recheneinheit, die ebenfalls im Fahrzeug angeordnet ist und in der die in der Messeinrichtung aufgenommenen Mess­ größen insbesondere unter Anwendung der Covariance- Intersection-Methode ausgewertet werden. In dieser Ausführung stehen die das Fahrverhalten charakterisierenden Systemparame­ ter online im Fahrzeug zur Verfügung und können gemäß einer be­ vorzugten Weiterbildung für die Erzeugung von Stellsignalen he­ rangezogen werden, über die das Fahrverhalten des Fahrzeuges beeinflusst werden kann. Derartige Stellsignale werden bei­ spielsweise den Stellgliedern eines aktiven, regelbaren Fahr­ werks, eines Anti-Blockier-Systems, eines Antriebs-Schlupf- Regelungssystems, einer Motorsteuerung oder einer Getriebesteu­ erung zugeführt. Man ist damit in der Lage, das Fahrzeug- Fahrverhalten für den Fall positiv manipulieren zu können, dass die das Fahrverhalten charakterisierenden Kenngrößen außerhalb eines definierten Bereichs liegen, wodurch konstruktive Abwei­ chungen von einem Idealwert ebenso ausgeglichen werden können wie Produktions- oder Montagefehler oder Verschleiß im Fahr­ zeug.The system according to the invention for performing the method holds a measuring device with which the required ones are in the vehicle Vehicle state variables can be measured or determined, and a computing unit, which is also arranged in the vehicle and in which the measurement recorded in the measuring device sizes in particular using the covariance Intersection method can be evaluated. In this version are the system parameters that characterize the driving behavior are available online in the vehicle and can be used according to a be preferred training for the generation of control signals he be drawn about the driving behavior of the vehicle can be influenced. Such control signals are used for example the actuators of an active, controllable driving plant, an anti-lock braking system, a drive slip Control system, an engine control or a transmission control supply. This enables you to  To be able to positively manipulate driving behavior in the event that the parameters characterizing the driving behavior outside a defined area, which means constructive deviation can also be compensated for by an ideal value such as production or assembly errors or wear and tear while driving stuff.

Weitere Vorteile und zweckmäßige Ausführungsformen sind den weiteren Ansprüchen, der Figurenbeschreibung und der Zeichnung zu entnehmen, die ein Ablaufdiagramm mit den Verfahrensschrit­ ten zur Messung von Zustandsgrößen, Identifikation von System­ parametern und Erzeugung von das Fahrverhalten beeinflussenden Stellsignalen zeigt.Further advantages and practical embodiments are the further claims, the description of the figures and the drawing refer to the flow chart with the process step for measuring state variables, identifying systems parameters and generation of driving behavior influencing Control signals shows.

Das Covariance-Intersection-Verfahren, welches für die Online- Identifikation von Systemparametern θ in Fahrzeugen herangezo­ gen wird, geht aus von einer iterativ durchzuführenden Berech­ nungsvorschrift auf der Grundlage der Gleichungen
The covariance intersection method, which is used for the online identification of system parameters θ in vehicles, is based on an iterative calculation rule based on the equations

P-1 k+1 = ωP-1 k + (1 - ω)HT k+1 R-1 Hk+1
P -1 k + 1 = ωP -1 k + (1 - ω) H T k + 1 R -1 H k + 1

P-1 k+1θk+1 = ωP-1 k θk + (1 - ω)HT k+1 R-1 yk+1.P -1 k + 1 θ k + 1 = ωP -1 k θ k + (1 - ω) H T k + 1 R -1 y k + 1 .

Hierin bezeichnen "k" den den aktuellen Iterationsschritt an­ zeigenden Index, "P" eine Kovarianzmatrix, "θ" die zu ermit­ telnden Systemparameter, "R" eine in der Regel konstante Mo­ dellvarianzmatrix, "H" eine von Messwerten und den Bewegungs­ gleichungen des zu Grunde liegenden Fahrzeug-Ersatzmodells ab­ hängige Jacobimatrix, "ω" einen Optimierungsparameter und "y" Messwerte, wobei "k" und "ω" skalare Größen sind, "y" und "θ" Vektoren bezeichnen und "P", "H" und "R" Matrizen sind.Here, "k" denotes the current iteration step index, "P" a covariance matrix, "θ" to be determined telenden system parameters, "R" a generally constant Mo dell variance matrix, "H" one of measured values and the motion equations of the underlying vehicle replacement model pending Jacobi matrix, "ω" an optimization parameter and "y" Measured values, where "k" and "ω" are scalar quantities, "y" and "θ" Denote vectors and are "P", "H" and "R" matrices.

Das Covariance-Intersection-Verfahren wird online im Fahrzeug iterativ durchgeführt. Hierfür ist das Fahrzeug mit einer Messeinrichtung zur Messung von Fahrzeug-Zustandsgrößen und einer Recheneinheit zur Auswertung der Messergebnisse und gegebenen­ falls zur Erzeugung von Stellsignalen, die das Fahrverhalten beeinflussende Fahrzeugaggregate zuzuführen sind, ausgerüstet. Die Messung umfasst folgende Fahrzeug-Zustandsgrößen, die in einem Messvektor z zusammen gefasst sind:
The covariance intersection procedure is carried out iteratively online in the vehicle. For this purpose, the vehicle is equipped with a measuring device for measuring vehicle state variables and a computing unit for evaluating the measurement results and, if appropriate, for generating control signals which are to be supplied to vehicle assemblies which influence driving behavior. The measurement includes the following vehicle state variables, which are summarized in a measurement vector z:

zk+1 = [yT k+1, uT k+1]T,
z k + 1 = [y T k + 1 , u T k + 1 ] T ,

wobei mit "y" die Messwerte der Systemausgänge und mit "u" die Messwerte der Systemeingänge bezeichnet sind. Die Messwerte y der Systemausgänge entsprechen den Bewegungsgleichungen h des mathematischen Fahrzeug-Ersatzmodells nach dem Zusammenhang
where "y" denotes the measured values of the system outputs and "u" denotes the measured values of the system inputs. The measured values y of the system outputs correspond to the equations of motion h of the mathematical vehicle replacement model according to the context

y = h(uk+1, θ).y = h (u k + 1 , θ).

Die Messwerte u der Systemeingänge fließen unmittelbar in die Berechnung der rechten Seite der Bewegungsgleichungen ein.The measured values u of the system inputs flow directly into the Calculate the right side of the equations of motion.

Im Falle eines Einspur-Fahrzeugmodells mit Berücksichtung der Fahrzeug-Querdynamik und der Fahrzeug-Wankdynamik lautet der Vektor der Messwerte y der Systemausgänge
In the case of a single-track vehicle model taking into account the vehicle lateral dynamics and the vehicle roll dynamics, the vector of the measured values is y of the system outputs

y = [ay, d2Ψ/dt2, ϕ]T
y = [a y , d 2 Ψ / dt 2 , ϕ] T

mit der Querbeschleunigung ay, der Gierbeschleunigung d2Ψ/dt2 und dem Wankwinkel ϕ. Die Bewegungsgleichungen h werden in der Recheneinheit gemäß dem hinterlegten Ersatzmodell berechnet; die Bewegungsgleichungen h hängen von den Systemparametern θ und den Messwerten u der Systemeingänge ab, wobei im Einspurmo­ dell im Messvektor u gemäß
with the lateral acceleration a y , the yaw acceleration d 2 Ψ / dt 2 and the roll angle ϕ. The equations of motion h are calculated in the computing unit according to the stored substitute model; the equations of motion h depend on the system parameters θ and the measured values u of the system inputs, with u in the single-track model in the measurement vector

u = [vx, vy, dΨ/dt, dϕ/dt, δH]T
u = [v x , v y , dΨ / dt, dϕ / dt, δ H ] T

die Fahrzeug-Längsgeschwindigkeit vx, die Fahrzeug- Quergeschwindigkeit vy, die Giergeschwindigkeit dΨ/dt, die Wankgeschwindigkeit dϕ/dt und der Lenkwinkel δH zu berücksich­ tigen sind.the longitudinal vehicle speed v x , the transverse vehicle speed v y , the yaw rate dΨ / dt, the roll speed dϕ / dt and the steering angle δ H must be taken into account.

Die Kovarianzmatrix P und die Systemparameter θ im Covariance- Intersection-Algorithmus werden, ausgehend von vorzugebenden Startwerten P0, θ0, iterativ bestimmt. Die Jacobimatrix H wird gemäß dem Zusammenhang
The covariance matrix P and the system parameters θ in the covariance intersection algorithm are determined iteratively based on the starting values P 0 , θ 0 that are to be specified. The Jacobian matrix H is according to the context

HT k+1 = dhT(uk+1, θ)/dθ
H T k + 1 = ie T (u k + 1 , θ) / dθ

als Differenzial oder als Differenzenquotient aus den Bewe­ gungsgleichungen h und den Systemparametern θ bestimmt.as a differential or as a quotient of differences from the be equations h and the system parameters θ are determined.

Der Optimierungsparameter ω, der das Verhältnis von Schätzwer­ ten zu Messwerten im Covariance-Intersection-Verfahren be­ stimmt, wird zweckmäßig in der Weise festgelegt, dass das Opti­ mierungskriterium
The optimization parameter ω, which determines the ratio of estimated values to measured values in the covariance intersection method, is expediently determined in such a way that the optimization criterion

det(Pk+1) = Minimum,
det (P k + 1 ) = minimum,

wonach die Determinante der Kovarianzmatrix P ein Minimum erge­ ben soll, erfüllt ist. In alternativen Ausführungen kann es a­ ber auch angezeigt sein, hiervon abweichende Kostenfunktionale für die Bestimmung des Optimierungsparameters ω vorzugeben.according to which the determinant of the covariance matrix P is a minimum should be fulfilled. In alternative versions, a Be also indicated, different cost functions for determining the optimization parameter ω.

Zusammengefasst lässt sich das Covariance-Intersection- Verfahren unter Berücksichtigung zweckmäßiger Umformungen für ein Einspur-Fahrzeugmodell mit dem Gleichungssatz
In summary, the covariance intersection method can be calculated using the equation theorem, taking into account appropriate transformations for a single-track vehicle model

θk+1 = θk + Kk+1[yk+1 - h(uk+1, θk)]
θ k + 1 = θ k + K k + 1 [y k + 1 - h (u k + 1 , θ k )]

Kk+1 = (1 - ω)PkHT k+1[Hk+1PkHT k+1 + R]-1
K k + 1 = (1 - ω) P k H T k + 1 [H k + 1 P k H T k + 1 + R] -1

HT k+1 = dhT(uk+1, θ)/dθ
H T k + 1 = ie T (u k + 1 , θ) / dθ

P-1 k+1 = ωP-1 k + (1 - ω)HT k+1R-1Hk+1
P -1 k + 1 = ωP -1 k + (1 - ω) H T k + 1 R -1 H k + 1

ω aus: det(Pk+1) = Minimum
beschreiben.
ω off: det (P k + 1 ) = minimum
describe.

Zur Verdeutlichung wird der Algorithmus für die ersten beiden Iterationsschritte mit k = 0 und k = 1 aufgeführt:
k = 0 (Initialisierungsschritt):
For clarification, the algorithm for the first two iteration steps is listed with k = 0 and k = 1:
k = 0 (initialization step):

θ1 = θ0 + K1[y1 - h(u1, θ0)]
θ 1 = θ 0 + K 1 [y 1 - h (u 1 , θ 0 )]

K1 = (1 - ω)P0HT 1[H1P0HT 1 + R]-1
K 1 = (1 - ω) P 0 H T 1 [H 1 P 0 H T 1 + R] -1

HT 1 = dhT(u1, θ)/dθ
H T 1 = dh T (u 1 , θ) / dθ

P-1 1 = ωP-1 0 + (1 - ω)HT 1R-1H1
P -1 1 = ωP -1 0 + (1 - ω) H T 1 R -1 H 1

ω aus: det(P1) = Minimum,
wobei die Modelvarianzmatrix R konstante Werte aufweist und θ0, P0 als Startwerte für die Systemparameter bzw. die Kovarianz­ matrix vorgegeben werden. Mit "K" ist eine Korrekturmatrix be­ zeichnet.
k = 1:
ω off: det (P 1 ) = minimum,
where the model variance matrix R has constant values and θ 0 , P 0 are specified as starting values for the system parameters or the covariance matrix. With "K" is a correction matrix.
k = 1:

θ2 = θ1 + K2[y2 - h(u2, θ1)]
θ 2 = θ 1 + K 2 [y 2 - h (u 2 , θ 1 )]

K2 = (1 - ω)P1HT 2[H2P1HT 2 + R]-1
K 2 = (1 - ω) P 1 H T 2 [H 2 P 1 H T 2 + R] -1

HT 2 = dhT(u2, θ)/dθ
H T 2 = dh T (u 2 , θ) / dθ

P-1 2 = ωP-1 1 + (1 - ω)HT 2R-1H2
P -1 2 = ωP -1 1 + (1 - ω) H T 2 R -1 H 2

ω aus: det(P2) = Minimum.ω off: det (P 2 ) = minimum.

Das in der Figur dargestellte Ablaufdiagramm verdeutlicht die Funktionsweise der Covariance-Intersection-Methode bzw. die Funktionsweise des in ein Fahrzeug integrierten Systems, in welchem diese Methode zur Online-Identifikation von Fahrzeugpa­ rametern implementiert ist.The flow chart shown in the figure illustrates the How the covariance intersection method works Functioning of the system integrated in a vehicle, in which this method for online identification of vehicle pa rametern is implemented.

In einem ersten Ablaufschritt 1 wird zu Beginn des Verfahrens zunächst der den Iterationsschritt repräsentierende Index k auf den Wert Null initialisiert. Im nächsten Ablaufschritt 2 werden über die in das Fahrzeug integrierte Messeinrichtung bei beweg­ tem Fahrzeug Messwerte aufgenommen, insbesondere Zustandsgrößen des Fahrzeugs auf Lage-, Geschwindigkeits- und Beschleunigungs­ ebene. Es wird der Vektor der Messwerte zk+1 ermittelt, der so­ wohl Systemausgangs-Messwerte yk+1 als auch Systemeingangs- Messwerte uk+1 umfasst. Im Anschluss an die Messung werden im Ablaufschritt 3 unter Berücksichtigung der Messwerte yk+1 und uk+1 die Bewegungsgleichungen h ermittelt, welche auf dem aktu­ ell eingesetzten Fahrzeug-Ersatzmodell beruhen. Es wird weiter­ hin der Optimierungsparameter ω berechnet, insbesondere aus der Bedingung, dass die Determinante der Kovarianzmatrix ein Minimum einnimmt. Gemäß der Covariance-Intersection-Methode werden die Systemparameter θk+1 ermittelt, welche zweckmäßig zu­ mindest den Eigenlenkgradienten, den Schwimmwinkelgradienten und den Wankwinkelgradienten umfassen.In a first process step 1, the index k representing the iteration step is initially initialized to the value zero at the beginning of the method. In the next step 2, measured values are recorded via the measuring device integrated in the vehicle when the vehicle is moving, in particular state variables of the vehicle at the position, speed and acceleration level. The vector of the measured values z k + 1 is determined, which probably includes system output measured values y k + 1 as well as system input measured values u k + 1 . Following the measurement, the equations of motion h are determined in sequence step 3, taking into account the measured values y k + 1 and u k + 1 , which are based on the vehicle replacement model currently in use. The optimization parameter ω is also calculated, in particular from the condition that the determinant of the covariance matrix takes a minimum. According to the covariance intersection method, the system parameters θ k + 1 are determined, which expediently comprise at least the self-steering gradient, the slip angle gradient and the roll angle gradient.

Im Schritt 4 werden die ermittelten Systemparameter einer Güte­ abfrage unterzogen. Sofern der Betragwert |θk+1| eines Systempa­ rameters außerhalb eines zulässigen, vorgegebenen Bereiches θLimit liegt, wird der "Ja"-Verzweigung entsprechend zum Ablaufschritt 6 fortgefahren und es wird in der Recheneinheit ein Stellsignal SSt erzeugt, um ein Stellglied eines Fahrzeugaggre­ gates zu manipulieren, mit dem die fahrdynamischen Eigenschaf­ ten des Fahrzeugs beeinflusst werden können. Hierfür kommen ak­ tiv regelbare Komponenten des Fahrwerks in Frage, aber auch Komponenten, über die der Zustand der Bremsen, des Motors oder des Getriebes zu beeinflussen ist. Über die Manipulation eines den Fahrzustand beeinflussenden Aggregates können Abweichungen der Systemparameter von einem Idealwert online im Fahrzeug kom­ pensiert werden.In step 4, the system parameters determined are subjected to a quality check. If the absolute value | θ k + 1 | of a system parameter lies outside a permissible, predetermined range θ limit , the "yes" branching continues in accordance with sequence step 6 and an actuating signal S St is generated in the computing unit in order to manipulate an actuator of a vehicle unit with which the driving dynamics Properties of the vehicle can be influenced. For this, actively controllable components of the chassis come into question, but also components via which the condition of the brakes, the engine or the transmission can be influenced. Manipulating an aggregate influencing the driving condition can compensate for deviations in the system parameters from an ideal value online in the vehicle.

Nach der Erzeugung des Stellsignals SSt wird zum Ablaufschritt 5 fortgefahren, in welchem der Index k um den Wert eins erhöht wird. Anschließend wird das Verfahren von Neuem durchlaufen, beginnend bei Ablaufschritt 2, der Messung der Fahrzeug- Zustandsgrößen.After the control signal S St has been generated, the process proceeds to step 5, in which the index k is increased by the value one. The method is then run through again, starting with step 2, the measurement of the vehicle state variables.

Sofern der Betragwert |θk+1| eines Systemparameters in der Ab­ frage nach Ablaufschritt 4 innerhalb des zulässigen, vorgegebe­ nen Bereiches θLimit liegt, wird der "Nein"-Verzweigung entspre­ chend unmittelbar zum Ablaufschritt 5 zur Erhöhung des Index k um den Wert eins verfahren und schließlich zum Anfang des Ver­ fahrens zum Ablaufschritt 2 zurückgekehrt.If the absolute value | θ k + 1 | a system parameter in the query for sequence step 4 is within the permissible, predetermined range θ limit , the "no" branch is accordingly moved to sequence step 5 to increase the index k by the value one and finally to the beginning of the method returned to step 2.

Es kann gegebenenfalls zweckmäßig sein, das Verfahren nach dem Ablaufschritt 3, der Messung der Zustandsgrößen und der Ermitt­ lung der Systemparameter, abzubrechen und die gewonnenen Er­ kenntnisse über die Systemparameter einer konstruktiven Anpas­ sung des Fahrzeugs zu Grunde zu legen.It may be appropriate to use the method according to the Sequence step 3, the measurement of the state variables and the determ development of the system parameters, cancel and the Er knowledge of the system parameters of a constructive adjustment solution of the vehicle.

Claims (16)

1. Verfahren zur Identifikation von Systemparametern in Fahr­ zeugen, bei dem Fahrzeugzustandsgrößen repräsentierende Mess­ werte (y, u) im Fahrbetrieb des Fahrzeugs gemessen und in einer Recheneinheit gemäß einer Berechnungsvorschrift zur Ermittlung der Systemparameter (θ) ausgewertet werden, wobei in der Be­ rechnungsvorschrift Bewegungsgleichungen (h) eines Fahrzeug- Berechnungsmodells und sowohl Schätzwerte als auch Messwerte (y, u) berücksichtigt werden, dadurch gekennzeichnet, dass über einen Optimierungsparameter (ω) das Verhältnis von Schätzwerten und Messwerten in der Berechnungsvorschrift zur Parameteridentifikation gewichtet wird, wobei die Gewichtung in der Weise erfolgt, dass
  • - für den Fall, dass die Messung im aktuellen Messschritt mehr Informationen als die Schätzung enthält, die Messung stärker berücksichtigt wird und
  • - für den Fall, dass die Messung im Verhältnis zur Schätzung keine neuen Informationen liefert, die Schätzung stärker be­ rücksichtigt wird.
1.Procedure for identifying system parameters in vehicles, measured values (y, u) representing vehicle state variables are measured while the vehicle is in motion and evaluated in a computing unit in accordance with a calculation rule for determining the system parameters (θ), with equations of motion in the calculation rule (h) of a vehicle calculation model and both estimated values and measured values (y, u) are taken into account, characterized in that the ratio of estimated values and measured values in the calculation rule for parameter identification is weighted via an optimization parameter (ω), the weighting in the Way that
  • - in the event that the measurement in the current measurement step contains more information than the estimate, the measurement is taken into account more and
  • - In the event that the measurement does not provide new information in relation to the estimate, the estimate is taken into account more.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
dass der Optimierungsparameter (ω) in der Weise bestimmt wird,
dass eine Funktion der Kovarianzmatrix (P) einem vorgegebenem Funktional entspricht:
f(Pk+1) = Funktional.
2. The method according to claim 1, characterized in that
that the optimization parameter (ω) is determined in such a way
that a function of the covariance matrix (P) corresponds to a given functional:
f (P k + 1 ) = functional.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet,
dass der Optimierungsparameter (ω) in der Weise bestimmt wird,
dass die Determinante der Kovarianzmatrix (P) ein Minimum ein­ nimmt:
det(Pk+1) = Minimum.
3. The method according to claim 2, characterized in that
that the optimization parameter (ω) is determined in such a way
that the determinant of the covariance matrix (P) has a minimum:
det (P k + 1 ) = minimum.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,
dass die Berechnungsvorschrift gemäß dem Zusammenhang
P-1 k+1 = ωP-1 k + (1 - ω)HT k+1R-1Hk+1
P-1 k+1θk+1 = ωP-1 kθk + (1 - ω)HT k+1R-1yk+1
iterativ durchgeführt wird, worin
k den den aktuellen Iterationsschritt anzeigenden Index
P eine Kovarianzmatrix
θ die zu ermittelnden Systemparameter
R eine Modellvarianzmatrix
H eine von Messwerten abhängige Jacobimatrix
ω den Optimierungsparameter und
y die Messwerte
bezeichnet und die Jacobimatrix (H) in Abhängigkeit von Mess­ werten (u) und Bewegungsgleichungen (h) aus dem Differenzial bzw. dem Differenzenquotienten
HT k+1 = dhT(uk+1, θ)/dθ
ermittelt wird, wobei der Optimierungsparameter (ω) mittels der Optimierungsfunktion bestimmt wird.
4. The method according to any one of claims 1 to 3, characterized in
that the calculation rule according to the context
P -1 k + 1 = ωP -1 k + (1 - ω) H T k + 1 R -1 H k + 1
P -1 k + 1 θ k + 1 = ωP -1 k θ k + (1 - ω) H T k + 1 R -1 y k + 1
is carried out iteratively, in which
k the index showing the current iteration step
P is a covariance matrix
θ the system parameters to be determined
R is a model variance matrix
H is a Jacobian matrix dependent on measured values
ω the optimization parameter and
y the measured values
referred to and the Jacobian matrix (H) as a function of measured values (u) and equations of motion (h) from the differential or the difference quotient
H T k + 1 = ie T (u k + 1 , θ) / dθ
is determined, the optimization parameter (ω) being determined by means of the optimization function.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in den Bewegungsgleichungen (h) zumindest die Querbe­ schleunigung (ay) und die Gierbeschleunigung (d2Ψ/dt2) berück­ sichtigt werden.5. The method according to any one of claims 1 to 4, characterized in that in the equations of motion (h) at least the transverse acceleration (a y ) and the yaw acceleration (d 2 Ψ / dt 2 ) are taken into account. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in den Bewegungsgleichungen (h) die Wankbeschleunigung (d2ϕ/dt2) berücksichtigt wird.6. The method according to any one of claims 1 to 5, characterized in that the roll acceleration (d 2 ϕ / dt 2 ) is taken into account in the equations of motion (h). 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine oder mehrere der folgenden Größen gemessen werden: die Längsgeschwindigkeit (vx), die Quergeschwindigkeit (vy), die Querbeschleunigung (ay), die Giergeschwindigkeit (dΨ/dt), die Wankgeschwindigkeit (dϕ/dt) und der Lenkradwinkel (δH).7. The method according to any one of claims 1 to 6, characterized in that one or more of the following variables are measured: the longitudinal speed (v x ), the lateral speed (v y ), the lateral acceleration (a y ), the yaw rate (dΨ / dt), the roll speed (dϕ / dt) and the steering wheel angle (δ H ). 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Modellvarianzmatrix (R) in der Berechnungsvorschrift zur Ermittlung der Systemparameter (θ) konstant ist.8. The method according to any one of claims 1 to 7, characterized, that the model variance matrix (R) in the calculation rule to determine the system parameters (θ) is constant. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Verfahren online im Fahrzeug durchgeführt wird.9. The method according to any one of claims 1 to 8, characterized,  that the procedure is carried out online in the vehicle. 10. System zur Durchführung des Verfahrens nach einem der An­ sprüche 1 bis 9, mit einer Messeinrichtung und einer Rechenein­ heit im Fahrzeug, in der die in der Messeinrichtung aufgenomme­ nen Messwerte zur Ermittlung von das Fahrverhalten charakteri­ sierender Systemparameter (θ) ausgewertet werden.10. System for performing the method according to one of the An Proverbs 1 to 9, with a measuring device and an arithmetic unit unit in the vehicle in which it is recorded in the measuring device measured values to determine the driving behavior system parameters (θ) can be evaluated. 11. System nach Anspruch 10, dadurch gekennzeichnet,
dass in der Recheneinheit Steilsignale (SSt) zur Beeinflussung des Fahrverhaltens des Fahrzeugs für den Fall erzeugbar sind,
dass die ermittelten Systemparameter (θ) außerhalb eines defi­ nierten Bereichs liegen.
11. System according to claim 10, characterized in
that steep signals (S St ) can be generated in the computing unit to influence the driving behavior of the vehicle,
that the determined system parameters (θ) are outside a defined range.
12. System nach Anspruch 11, dadurch gekennzeichnet, dass die Stellsignale (SSt) Stellgliedern eines aktiven Fahr­ werks zuführbar sind.12. System according to claim 11, characterized in that the control signals (S St ) actuators of an active chassis can be supplied. 13. System nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Stellsignale (SSt) einem Anti-Blockier-System zuführ­ bar sind.13. System according to claim 11 or 12, characterized in that the control signals (S St ) are an anti-lock system feed bar. 14. System nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Stellsignale (SSt) einem Antriebs-Schlupf- Regelungssystem zuführbar sind.14. System according to any one of claims 11 to 13, characterized in that the control signals (S St ) can be fed to a traction control system. 15. System nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Stellsignale (SSt) einer Motorsteuerung zuführbar sind.15. System according to any one of claims 11 to 14, characterized in that the control signals (S St ) can be fed to an engine control. 16. System nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass die Stellsignale (SSt) einer Getriebesteuerung zuführbar sind.16. System according to any one of claims 11 to 15, characterized in that the control signals (S St ) can be fed to a transmission control.
DE10003739A 2000-01-28 2000-01-28 Method and system for identifying system parameters in vehicles Expired - Fee Related DE10003739C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10003739A DE10003739C2 (en) 2000-01-28 2000-01-28 Method and system for identifying system parameters in vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10003739A DE10003739C2 (en) 2000-01-28 2000-01-28 Method and system for identifying system parameters in vehicles

Publications (2)

Publication Number Publication Date
DE10003739A1 true DE10003739A1 (en) 2001-08-09
DE10003739C2 DE10003739C2 (en) 2002-12-05

Family

ID=7629055

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10003739A Expired - Fee Related DE10003739C2 (en) 2000-01-28 2000-01-28 Method and system for identifying system parameters in vehicles

Country Status (1)

Country Link
DE (1) DE10003739C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318111A1 (en) * 2003-04-22 2004-11-11 Continental Aktiengesellschaft Method and device for recognizing a driving state
AT500978B1 (en) * 2003-05-13 2006-05-15 Avl List Gmbh METHOD FOR OPTIMIZING VEHICLES
CN108829121A (en) * 2018-06-15 2018-11-16 北京空天技术研究所 Separation control based on parameter identification
DE102021206880A1 (en) 2021-06-30 2023-01-05 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for the optimal parameterization of a driving dynamics control system for vehicles
AT525592A1 (en) * 2021-11-09 2023-05-15 Avl List Gmbh Method for creating a virtual prototype of a vehicle
CN116577997A (en) * 2023-07-06 2023-08-11 西北工业大学 Omnidirectional trolley parameter identification method based on concurrent learning

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030782A1 (en) * 2004-06-25 2006-01-19 Fev Motorentechnik Gmbh Vehicle control unit with a neural network
DE102009013291A1 (en) * 2009-03-14 2010-09-16 Audi Ag Method for preparing control process for active vehicle component influencing driving dynamics of vehicle, involves simulating defined vehicle maneuver by vehicle-modeling system for vehicle components
CN102967728A (en) * 2012-11-19 2013-03-13 珠海德百祺科技有限公司 Method and device for detecting automobile motion state by using acceleration sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945688A1 (en) * 1999-09-23 2000-05-18 Siemens Ag Method of filtering measurement signal for process measurement applications enables time averaging to be performed with high level of signal smoothing, low useful signal distortion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4226749C2 (en) * 1992-08-13 1996-02-08 Daimler Benz Ag Method for determining variables that characterize driving behavior
DE4325413C2 (en) * 1993-07-29 1995-05-18 Daimler Benz Ag Method for determining the behavior of characteristic quantities

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945688A1 (en) * 1999-09-23 2000-05-18 Siemens Ag Method of filtering measurement signal for process measurement applications enables time averaging to be performed with high level of signal smoothing, low useful signal distortion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
at-Automatisierungstechnik 46 (1998) 9, S.420-425 *
atp 41 (1999) H.7, Bild 4,3 S.35-42 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318111A1 (en) * 2003-04-22 2004-11-11 Continental Aktiengesellschaft Method and device for recognizing a driving state
US7209818B2 (en) 2003-04-22 2007-04-24 Continental Aktiengesellschaft Method and arrangement for detecting a driving state
AT500978B1 (en) * 2003-05-13 2006-05-15 Avl List Gmbh METHOD FOR OPTIMIZING VEHICLES
CN108829121A (en) * 2018-06-15 2018-11-16 北京空天技术研究所 Separation control based on parameter identification
DE102021206880A1 (en) 2021-06-30 2023-01-05 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for the optimal parameterization of a driving dynamics control system for vehicles
AT525592A1 (en) * 2021-11-09 2023-05-15 Avl List Gmbh Method for creating a virtual prototype of a vehicle
CN116577997A (en) * 2023-07-06 2023-08-11 西北工业大学 Omnidirectional trolley parameter identification method based on concurrent learning
CN116577997B (en) * 2023-07-06 2023-10-03 西北工业大学 Omnidirectional trolley parameter identification method based on concurrent learning

Also Published As

Publication number Publication date
DE10003739C2 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
DE112018006161B4 (en) System and method for controlling a vehicle
DE102016218863B4 (en) Apparatus and method for controlling a motorized power steering system
DE102010050474B4 (en) Method for determining the drawbar length of a trailer of a towing vehicle and use of this method
EP1954537B1 (en) Method and vehicle dynamics control system for stabilizing a vehicle combination
DE10019150A1 (en) Estimating transverse acceleration on axle of trailer in vehicle combination involves setting measured/estimated tractor yaw rate and longitudinal speed in relation to each other by computer
DE102016209896A1 (en) A method of estimating the length of trailers using a trailer yaw rate signal
DE102004019320A1 (en) System for reproducing the dynamic behavior of a vehicle
DE102006054425A1 (en) Method for determination of value of model parameter of reference vehicle model, involves determination of statistical value of model parameter whereby artificial neural network is adapted with learning procedure
DE19753145C2 (en) Brake force control device for motor vehicles
DE4011976A1 (en) CONTROL DEVICE FOR SHOCK ABSORBER
DE112009004766T5 (en) Specification information determining device and vehicle
DE10003739C2 (en) Method and system for identifying system parameters in vehicles
DE102010050278A1 (en) Method for estimating attitude angle settled during travel of vehicle, involves providing mathematical model, which interrelates to measured input parameters by non-measured parameter
EP4038463B1 (en) Technology for dead time compensation during transversal and longitudinal guidance of a motor vehicle
DE102004058359A1 (en) Vehicle movement control process, involves matching modeled measured values obtained from reference values with modeled control system based on comparison of modeled values with actual measured values of control system
DE102019127906A1 (en) Method and device for determining a value of a vehicle parameter
EP2407364A2 (en) Method and device for recognising and compensating for a vehicle being angled across a roadway
DE102021206880A1 (en) Method and device for the optimal parameterization of a driving dynamics control system for vehicles
DE102009005889A1 (en) Method for actively setting an inclination of a wheel of a motor vehicle, in particular of camber and track, and corresponding device
DE112016005072T5 (en) Method and system for facilitating the steering of a vehicle while driving along a road
DE10215464A1 (en) Determining method for an assessed value of a flotation angle in motor vehicles to be measured indirectly uses a non-linear differential equation to describe the flotation angle
DE102006016769B3 (en) Method for optimizing a one-track model
DE102021203951A1 (en) Computer-implemented method for detecting a steering wheel intervention state, computer program product, driver assistance system and motor vehicle
DE102021003148A1 (en) Method and detection unit for detecting a probability that a steering element of a vehicle is held by a driver's hand
DE102020212259A1 (en) Determination of a rack force for a vehicle steering system

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee