DD298524A5 - Analysekit fuer hcv-polynucleotide, hcv-antigene und gegen hcv-antigene gerichtete antikoerper - Google Patents

Analysekit fuer hcv-polynucleotide, hcv-antigene und gegen hcv-antigene gerichtete antikoerper Download PDF

Info

Publication number
DD298524A5
DD298524A5 DD34440188A DD34440188A DD298524A5 DD 298524 A5 DD298524 A5 DD 298524A5 DD 34440188 A DD34440188 A DD 34440188A DD 34440188 A DD34440188 A DD 34440188A DD 298524 A5 DD298524 A5 DD 298524A5
Authority
DD
German Democratic Republic
Prior art keywords
hcv
cdna
clone
sequence
sequences
Prior art date
Application number
DD34440188A
Other languages
English (en)
Inventor
Michael Houghton
Qui-Lim Choo
George Kuo
Original Assignee
Chiron Corp,Us
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22404317&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DD298524(A5) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chiron Corp,Us filed Critical Chiron Corp,Us
Publication of DD298524A5 publication Critical patent/DD298524A5/de

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Es wird eine Familie von cDNA-Sequenzen, die von Hepatitis-C-Virus (HCV) abgeleitet wird, zur Verfügung gestellt. Diese Sequenzen codieren für Antigene, die immunologisch mit Antikörpern reagieren, die in Individuen mit Nicht-A-Nicht-B-Hepatitis (NANBH) vorhanden sind, die aber im allgemeinen nicht in Individuen vorkommen, die mit dem Hepatitis-A-Virus (HAV) oder Hepatitis-B-Virus (HBV) infiziert sind und die auch in Kontrollindividuen fehlen. Ein Vergleich dieser cDNA-Sequenzen mit den Sequenzen auf der Genebank und mit den Sequenzen des Hepatitis-Delta-Virus (HDV) und des HBV zeigt ein Fehlen an substantieller Homologie. Ein Vergleich der Sequenz von Aminosäuren, die in der cDNA codiert sind mit den Sequenzen von Flaviviren zeigt, dass das HCV ein Flavivirus oder ein flaviartiges Virus ist. Die HCV-cDNA-Sequenzen sind beim Entwurf von Polynucleotidsonden und für die Synthese von Polypeptiden, die in Immunoassays angewandt werden können, nützlich. Sowohl die Polynucleotidsonden als auch die Polynucleotide können für die Diagnose von HCV-induzierter NANBH und zum Screenen von Blutbankproben und Spendern nach HCV-Infektion nützlich sein. Außerdem können diese cDNA-Sequenzen für die Synthese von immunogenen Polypeptiden, die in Vakzinen für die Behandlung, Prophylaxe und/oder Therapie bei einer HCV-Infektion verwendet werden können, nützlich sein. Die in den cDNA-Sequenzen codierten Polypeptide können auch zur Entwicklung von Antikörpern gegen HCV-Antigene und für die Reinigung der gegen die HCV-Antigene gerichteten Antikörper verwendet werden. Diese Antikörper können in Immunoassays zum Nachweis von HCV-Antigenen, die im Zusammenhang mit NANBH in Individuen sowie in Blutspendebanken stehen, nützlich sein. Darüber hinaus können diese Antikörper für die Behandlung von NANBH in Individuen angewandt werden. Die erfindungsgemäß zur Verfügung gestellten Reagenzien ermöglichen auch die Isolierung von NANBH-Erreger(n) und die Reproduktion dieses(r) Erreger(s) in Gewebekultursystemen. Weiterhin stellen sie Reagenzien zur Verfügung, die beim Sceeren nach antiviralen Erregern von HCV, insbesondere in Gewebekultur- oder Tiermodellsystemen nützlich sind.{Hepatitis-C-Virus; Nicht-A-Nicht-B-Hepatitis; cDNA-Sequenzen; Flaviviren; flaviartige Viren; Polynucleotide; Polynucleotidsonden; Polypeptide; HCV-Epitope; Antikörper; HCV-Antigene; Screenen von Blutbankproben; Analysekit}

Description

Hierzu 63 Zeichnungen
Analysekit für HCV-Polynucleotide, HCV-Antigene und gegen HCV-Antigone gerichtete Antikörper
Technisches Gebiet
Die Erfindung betrifft Materialien und Methologien zur Beherrschung der Verbreitung der Infektion durch das Nicht-A-Nicht-B-Hepatitisvirus (NANBV). Genauer gesagt, betrifft sie diagnostische DNA-Fragmente, diagnostische Proteine, diagnostische Antikörper und Schutzantigene und Antikörper für einen Krankheitserreger von NANB-Hepatitis, d. h. das Hepatitis-C-Virus.
In der Anmeldung zitierte Literatur
Barr und Mitarbeiter (1986), Biotechniques 4:428.
Botsein (1979), Gene 8:17.
Brinton, M. A. (1986) in: The Viruses: TheTogaviradae and Flaviviridae, (Serien herausgegeben von Fraenkel-Conrat und Wagner, Band herausgegeben von Schlesinger unci Schlesinger, Plenum Press), S.327-374.
Broach (1981) in: Molecular Biology of the Yeast Saccharomyces (Molecolarbiologie der Saccharomyces), Band 1, S.445, Cold Spring Harbor Press.
Broach und Autorenkollektiv (1983), Meth. Enz. 101:307.
Chang und Autorenkollektiv (1977), Nature 198:1056.
Chirgwin und Autorenkollektiv (1979), Biochemistry 18,5294.
Chomczynski und Sacchi (1987), Analytical Biochemistry 162:156.
Clewell und Autorenkollektiv (1969), Proc. Natl. Acad. Sei. USA 62:1159.
Clewell(1972),J.Bacteriol. 110:667.
Cohen (1972), Proc. Natl. Acad. Sei. USA 69:2110.
Cousens und Autorenkollektiv (1987), Gene 61:265.
De Boer und Autorenkollektiv (1983), Proc. Natl. Acad. Sei. USA 292:128.
Dreesman und Autorenkollektiv (1985), J. Infect. Disease 151:761.
Feinstone, S.M. und Hoofnagle, J.H. (1984), New Englan, J. Med. 311:185.
Fields und Knipe (1986), Fundamental Virology (Grundlagen der Virologie), (Raven Press, New York).
Fiers und Autorenkollektiv (1978), Nature 273:113.
Gerety, R. J. und Autorenkollektiv, in Viral Hepatitis and Liver Disease (Virus-Hepatitis und Leberkrankheit) iVyas, B. N., Dienstag,
J. L. und Hoofnagle, J. H., herausgegeben von Grüne und Stratton, Inc., 1984), S.23-47.
Goeddel und Autorenkollektiv (1980), Nucleic Acids Res. 8:4057.
Graham and Van der Eb (1978), Virology 52:546.
Grunstein und Hogness (1975), Proc. Natl. Acad, Sei. USA 73:3961.
Grych u. Autorenkollektiv (1985), Nature 316:74.
Gubler und Hoffman (1983) Gene, 25,263.
Hammerling und Autorenkollektiv (1981), Monoclonal Antibodies and T-CeII Hybridomas (Monoclonal Antikörper undT-Zellen-Hybridome).
Hess u. Autorenkollektiv (1968), J. Adv. Enzyme Reg. 7:149.
Hinnen U.Autorenkollektiv(1978), Proc. Natl. Acad. Sei. 75:1929.
Hitzeman u. Autorenkollektiv (1980), J. Biol. Chem. 255:2073.
Holland u. Autorenkollektiv (1978), Biochemistry 17:4900.
Holland (1981), J. Biol.Chem. 256:1335.
Houghton u. Autorenkollektiv (1981), Nucleic Acids Res. 9:247.
Hunyh, T. V. u. Autorenkollektiv (1985) in: DNA Cloning Techniques; A Practical Approach (Verfahren zur DNA-Clonierung; Praktisches Herangehen), (herausgegeben von D. Glover, IRL Press, Oxford, Großbritannien), S.49-78.
Immun. Rev. (1982)62:185.
Iwarson (1987), British Medical J. 295,946.
Kennett u. Autorenkollektiv (1980), Monoclonal Antibodies. (Monoclonal Antikörper) Laemmli (1970), Nature 227,680.
Lee u. Autorenkollektiv (1988), Science 239:1288.
Maniatis, T. u. Autorenkollektiv (1982), Molecular Cloning; A Laboratory manual (Molekularclonierung, ein Laborhandbuch) (Cold Spring Harbor Press, Cold Spring Harbor, New York).
Mayer und Walker, Herausgeber (1987), lmmunochemical Methods in Cell and Molecular Biology (lmmunochemische Methoden in der Zeil- und Molelularbiologiu), (Academic Press, London).
Maxam u. Autorenkollektiv (1980), Methods in Enzymology 65:499.
MacNamara u. Autorenkollektiv (1984), Science 226:1325.
Messing u. Autorenkollektiv (1981), Nucleic Acids Res. 9:309.
Messing (1983), Methods in Enzymology 101:20-37.
Methods in Enzymology (Academic Press).
Michelle u. Autorenkollektiv, Internationales Symposium über Virushepatitis.
Monath (1986) in: The Viruses: TheTogaviradae and Flaviviridae (Serie herausgegeben von Fraenkel-Conrat und Wagner, Band herausgegeben von Schlesinger u. Schlesinger, Plenum Press), S.375-440.
Nagahuma u. Autorenkollektiv (1984), Anal. Biochem. 141:74.
Neurath u. Autorenkollektiv (1984), Science 24:392.
Nisonoff u. Autorenkollektiv (1981), Clin. Immunol., Immunopathol. 21:397:406.
Overby, LR. (1985), Curr. Hepatol. 5:49.
Overby, LR. (1986), Curr. Hepatol. 6:65.
Overby, LR. (1987), Curr. Hepatol. 7:35.
Peleg (1969), Nature 221,193.
Pfefferkorn und Shepirs (1974), in: Comprehensive Virology (Allgemeine Virologie), Bd.2 (herausgegeben von Fraenkel-Conrat
u. Wagner, Plenum Press, New York) S. 171-230.
Prince, A.M. (1983), Annu. Rev. Microbiol. 37:217.
Rice u. Autorenkollektiv (1986) in: The Viruses: Togaviradae and Flaviviridae (Serie herausgegeben von Fraenkel-Conrat und Wagner, Band herausgegeben von Schlesinger und Schlesinger, Plenum Press), S.213-328.
Roehrig (1986) in: The Viruses: The Togaviridae and Flaviviridae (Serie herausgegeben von Fraenkel-Conrat and Wagner, Band herausgegeben von Schlesinger u. Schlesinger, Plenum Press).
Sadler u. Autorenkollektiv (1980), Geno 8,279.
Saiki u. Autorenkollektiv (1986), Nature 324:163.
Sanger u. Autorenkollektiv (1977), Proc. Natl. Acad. Sei. USA 74:5463.
Schlesinger u. Autorenkollektiv (1986), J. Virol. 60:1153.
Schreier, M. u. Autorenkollektiv (1980), Hybridoma Techniques. (Hybridom-Techniken) Scopes (1984), Protein Purification, Principles and Practice, Second Edition (Protein, Reinigung, Prinzipien und Praxis, Ausgabe) (Springer-Verlag, New York).
Shimatake u. Autorenkollektiv (1981), Nature 292:128.
Steimer u. Autorenkollektiv (19867, J. Virol. 58:9.
Stoller (1980) In: Die Togaviren (Herausgeber: R.W. Sohlesinger, Academic Press, New York), S.584-622.
Taylor u. Autorenkollektiv (1976), Biochem. Biophys. Acta 442:324.
Towbin u. Autorenkollektiv (1979), rroc. Natl. Acad. Sei. USA 76; 4350.
Tsu und Herzenberg (1980), in: Selected Methods in Cellular Immunology (Ausgewählte Methoden in der Zellimmunologie) (W.H. Freeman u. Co.), S.373-391.
Vytdehaag u. Autorenkollektiv (1985), J. Immunol. 134:1225.
Valenzuela, P. u. Autorenkollektiv (1982), Nature 298:344.
Valenzuela, P. u. Autorenkollektiv (1984), in: Hepatitis B (Millman, I. u. Autorenkollektiv, Herausgeber: Plenum Press) S. 225-236.
Warner (1984), DNA3:401.
Wu und Grossman (1987), Methodsin Enzymology, Bd. 154, Recombinant DNA, Teil E.
Wu (1987), Methods in Enzymology, Bd. 155, Recombinant DNA, Teil F. Zoller (1982), Nucleic Acids Res. 10:6487.
Zitierte Patent-Nr.
US-Patent Nr. 4,341,761 US-Patent Nr. 4,399,121 US-Patent Nr. 4,427,783 US-Patent Nr. 4,444,887 US-Patent Nr. 4,466,917 US-Patent Nr. 4,472,500 US-Patent Nr. 4,491,632 US-Patent Nr. 4,493,890
Vorgeschichte der Erfindung
Nicht-A-Nicht-B-Hepatitis (NANBH) ist eine übertragbare Krankheit oder Familie von Krankheiten, von der angenommen wird, daß sie durch ein Virus induziert wird, und die sich von anderen Formen Virus-bogleitender Leberkrankheiten, einschließlich derjenigen, die durch die bekannten Hepatitisviren, d.h. Hepatitis-A-Virus (HAV), Hepatitis-B-Virus (HBV) und Delta-Hepatitis-Viruo (HDV) verursacht werden, wie auch von der durch das Zytomegalie-Virus (CMV) oder das Epstein-Barr-Virus (EBV) induzierten Hepatitis unterscheidet. NANBH wurde erstmals bei Menschen mit Bluttransfusionen identifiziert. Die Übertragung vom Menschen auf Schimpansen und Serienpassagen in Schimpansen lieferten den Nachweis, daß NANBH auf (einen) übertragbare(n) Infektionserreger zurückzuführen ist. Das für NANBH verantwortliche Übertragungsmittel ist jedoch immer noch nicht identifiziert und die Zahl der diese Krankheit verursachenden Erreger ist unbekannt. Die epidemiologischen Beweise lassen darauf schließen, daß es drei Typen NANBH geben kann: den durch Wasser übertragenen epidemischen Typ, den Blutoder Nadeltyp und den sporadisch auftretenden (in der Gemeinschaft erworbenen) Typ. Die Anzahl der die NANBH verursachenden Erreger ist jedoch unbekannt.
Die klinische Diagnose und der Nachweis von NANBH erfolgte bis jetzt hauptsächlich durch Ausschluß anderer Virusmarker. Zu den Ver'ahren, die zum Nachweis mutmaßlicher NANBV-Antigene oder -Antikörper angewandt werden, gehören Agar-Gel-Diffusion, Überwanderungselektrophorese, Immunfluoreszenzmikroskopie, Immunelektronenmikroskopie, Radioimmunassay und Enzymimmunoassay. Keiner dieser Assays hat sich jedoch als ausreichend empfindlich, spezifisch und reproduzierbar erwiesen, um als Diagnosetest für NANBH anwendbar sein zu können.
Bis jetzt gibt es weder Klarheit noch Übereinstimmung in bezug auf die Identität oder die Spezifität der Antigen Antikörper-Systeme, die mit den Erregern von NANBH in Beziehung stehen. Das ist zumindest teilweise auf eine vorherige oder gleichzeitige HBV-Infektion bei Individuen mit NANBV und auf die bekannte Komplexität der mit HBV assoziierten löslichen und feinverteilten Antigene sowie auch auf die Integration der HBV-DNA in das Genom der Leberzellen zurückzuführen. Weiterhin besteht die Möglichkeit, daß NANBH durch mehr als einen Infektionserreger verursacht wild und es könnte außerdem eine Fehldiagnose von NANBH vorliegen. Es ist außerdem gar nicht klar, was die serologischen Assays im Serum von Patienten mit NANBH entdecken. Es wurde postuliert, daß die Agar-Gel-Diffusion und das Überwanderungsalektrophoreseassay Autoimmunreaktionen oder unspezifische Proteinwechselwirkunge ·, die manchmal zwischen Serumproben vorkommen, nachweisen, und daß sie keine spezifischen NANBV-Antigen-Antikörper-Reaktionen darstellen. Immunfluoreszenz, Enzymimmunoassay und Radioimmunassay scheinen geringe Anteile eines rheumafaktorartigen Materials, das häufig im Serum von Patienten mit NANBH und auch von Patienten mit anderen Hopatitis- und Nicht-Hepatitiserkrankungen vorkommt, nachzuweisen. Ein Teil der festgestellten Reaktivität kann ein Antikörper zu wirtsdeterminierten Zyioplasmaantigenen sein. Es gibt eine Reihe von NANBV-Anwärtern. Siehe z. B. die Zusammenfassungen von Prince (1983), Feinstone und Hoofnagle (1984), Overby (1985,1986,1987) und die Artikel von Iwarson (1987). Es gibt jedoch keinen Beweis, daß einer dieser Kandidaten der ätiologische Erreger von NANBH ist.
Die Forderung nach sensitiven, spezifischen Screening- und Nachweisverfahren von NANBV-Träger und für mit NANBV kontaminiertes Blut oder Blutprodukte ist von großer Bedeutung. Posttransfusionshepatitis (PTH) tritt bei fast 10% der Transfusionspatienten auf, wobei NANBH für bis zu 90% dieser Fälle verantwortlich ist. Die Hauptproblem bei dieser Krankheit ist die häufige Verschlimmerung bis zu chronischer Leberschädigung (25-55%).
Die Patientenbehandlung wie auch die Vermeidung der Übertragung von NANBH durch Blut und Blutprodukte oder durch enge persönliche Kontakte erfordern zuverlässige diagnostische und prognostische Mittel zum Nachweis von Nucleinsäuren, Antigenen und Antikörpern, die mit dem NANBV in Verbindung stehen.
Außerdem besteht ein dringender Bedarf an wirksamen Vakzinen und immunotherapeutischen Mitteln zur Vorbeugung und/ oder Behandlung der Krankheit.
Offenbarung der Erfindung
Die Erfindung betrifft die Isolierung und Charakterisierung eines neu entdeckten ätiologischen Erregers von NANBH, das Hepatitis-C-Virus (HCV). Genauer gesagt, stellt die Erfindung eine Familie von cDNA-Kopien von Teilen des HCV-Genoms zur Verfügung. Diese cDNA-Kopien wurden durch eine Technik isoliert, die folgendes umfaßt: eine neuartige Stufe des Screenings von Expressionsproduktion aus cDNA-Bibliotheken, die aus einem feinverteilten Erreger in infiziertem Gewebe mit Seren von Patienten mit NANBH geschaffen wurden, um neu synthetisierte Antigene, die aus dem Genom des bisher nicht isolierten und nicht charakterisierten Viruserregers abgeleitet wurden, nachzuweisen, und die Seioktion von Clonnn, dio Produkte herstellten, die immunologisch nur mit Seren von infizierten Individuen im Vergleich zu nichtinfizierten Individuen reagierten. Untersuchungen der Natur des HCV-Genoms unter Verwendung von aus der HCV-cDNA entwickelten Sonden wie auch der Sequenzinformation, die in der HCV-cDNA enthalten ist, weisen darauf hin, daß das HCV ein Flavirus oder ein flaviartiges Virus ist.
Teile der cDNA-Sequenzen, die aus dem HCV abgeleitet wurden, sind als Sonden nützlich, um die Anwesenheit des Virus in Proben nachzuweisen, und um natürlich vorkommende Variante!, des Virus zu isolieren. Diese cDNAs machen auch Polypeptidsequenzen von HCV-Antigenen verfügbar, die in dem (di n) HCV-Genom(en) codiert sind, und gestatten die Produktion von Polypeptiden, die als Standards oder als Reagenzien in diagnostischen Tests und/oder als Komponenten von Vakzinen nützlich sind. Antikörper, und zwar sowohl polyclonale als auch monoclonale, die gegen die HCV-Epitope gerichtet sind, die in diesen Polypeptidsequenzen enthalten sind, sind ebenfalls für diagnostische Tests und für therapeutische Mittel für das Screening von antiviralen Mitteln und für die Isolierung des NANBV-Erregers, aus dem diese cDNAs abgeleitet werden, nützlich. Außerdem wird es durch Anwendung der aus diesen cDNAs abgeleiteten Sonden möglich, andere Teile des HCV-Genoms zu isolieren und zu sequenzieren, so daß weitere Sonden und Polypeptide entstehen, die für die Diagnose und/oder prophylaktische als auch therapeutische Behandlung von NANBH nützlich sind.
In bezug auf die Polynucleotide betreffen dementsprechend einige Aspekte der Erfindung: ein gereinigtes HCV-Polynucleotid; ein rekombinanantes HCV-Polynucleotid; ein rekombinantes Polynucleotid, da eine aus einem HCV-Genom oder aus HCV-cDNA abgeleitete Sequenz enthält; ein rekombinantes Polynucleotid, das für ein Epitop von HCV codiert; einen rekombinanten Vektor, der beliebige der oben genannten rekombinanten Polynucleotide enthält, und eine Wirtszelle, die mit beliebigen dieser Vektoren transformiert wird. Andere erfindungsgemäße Aspekte sind: ein rekombinantes Expressionssystem, das einen offenen Leserahmen (ORF) der aus einem HCV-Genom oder aus HCV-cDNA abgeleiteten DNA umfaßt, wobei der ORF an eine
Kontrollsequenz operabel gebunden ist, die mit einem erwünschten Wirt kompatibel ist; eine Zelle, die mit dem rekombinanten Exprossionssystem transformiert wird; und ein Polypeptid, das von der transformierten Zelle produziert wird. Weitere erfindungsgemäße Aspekte sind: gereinigtes HCV, ein Präparat von Polypeptiden aus dem gereinigten HCV; ein gereinigtes HCV-Polypeptid; ein gereinigte Polypeptid, das ein Epitop enthält, das immunologisch mit einem in HCV-enthaltenem Epitop identifizierbar ist.
In die erfindungsgemäßen Aspekte sind eingeschlossen: ein rekombinantes HCV-Polypeptid; ein rekombinantes Polypeptid, das aus einer Sequenz besteht, die aus einem HCV-Genom oder aus HCA-cDNA gewonnen wurde; ein rekombinantes Polypeptid, das aus einem HCV-Epitop besteht; und ein Fusionspolypeptid, das aus einem HCV-Polypeptid besteht. In die Erfindung sir d weiterhin eingeschlossen: ein monoclonaler Antikörper, der gegen ein HCV-Epitop gerichtet ist; und ein gereinigtes Präparat von polyclonalen Antikörpern, die gegen ein HCV-Epitop gerichtet sind. Ein weiterer erfindungsgemäßer Aspekt ist ein Partikel, das gegen HCV-lnfektion immunogen wirkt und ein Nicht-HCV-Polypeptid enthält, das eine Aminoäuresequenz besitzt, die ein Partikel bilden kann, wenn diese Sequenz in einem eukaryontischon Wirt erzeugt wird, und ein HCV-Epitop.
Ein weiterer erfindungsgemäßer Aspekt ist eine Polynucleotidsonde für das HCV. Erfindungsgemäße Aspekte, die zu Analysekits gehören, sind diejenigen für: Analyse von Proben auf die Anwesenheit von Polynucleotide^ die aus dum HCV abgeleitet wurden mittels einer Polynucleotidsonde, welche eine Nucleotidsequenz aus dem HCV von etwa 8 oder mehr Nucleotiden enthält in einem geeigneten Behälter (engl. container); Analyse von Proben auf die Anwesenheit eines HCV-Antigens mittels eines gegen das nachzuweisende HCV-Antigen gerichteten Antikörpers in ein. τι geeigneten Behälter; Analyse von Proben auf die Anwesenheit eines gegen ein HCV-Antigen gerichteten Antikörpers mittels eines Polypeptids, das ein in dem HCV-Antigen vorhandene HCV-Epitop enthält, in einem geeigneten Behälter.
Andere erfindungsgemäße Aspekte sind: ein Polypeptid, das aus einem HCV-Epitop besteht, das an ein festes Substrat geknüpft ist; und ein Antikörper gegen ein HCV-Epitop, der an ein festes Substrat geknüpft ist.
Weitere erfindungsgemäße Aspekte sind: ein Verfahren zur Erzeugung eines Polypeptids, das ein HCV-Epitop enthält, indem mit einem Expressionsvektor transformierte Wirtszellen, wobei der Vektor eine Sequenz enthält, die für ein ein HCV-Epitop enthaltendes Polypeptid codiert, unter Bedingungen inkubiert werden, die die Expression des Polypeptids e. lauben; und ein Polypeptid, das ein HCV-Epitop enthält, das durch dieses Verfahren erzeugt wurde.
Die Erfindung umfaßt auch ein Verfahren zum Nachweis von HCV-Nucleinsa'uren in einer Probe, wobei die Nucleinsäuren der Probe mit einer Sonde für ein HCV-Polynucleotid unter Bedingungen miteinander reagieren, die die Bildung eines Polycucleotidduplexes zwischen der Sonde und der HCV-Nucleinsäure aus der Probe erlauben; und zum Nachweis eines Polynuclootidduplexes, der die Sonde enthält.
Immunoassays sind ebenfalls in die Erfindung eingeschlossen. Dazu gehören ein Immunoassay zum Nachweis eines HCV-Antigens, wobei eine Probe, die vermutlich ein HCV-Antigen enthält, mit einem Sondenantikörper, der gegen das nachzuweisende HCV-Antigen gerichtet ist, unter Bedingungen inkubiert wird, die die Bildung eines Antigen-Antikörper-Komplexes gestatten; und zum Nachweis eines Antigen-Antikörper-Komplexes, der den Sondenantikörper enthält. Ein Immunoassay zum Nachweis von Antikörpern, die gegen ein HCV-Antigen gerichtet sind, wobei eine Probe, die vermutlich Anti-HCV-Antikörper enthält, mit einem Sondenpolypeptid, das ein Epitop des HCV enthält, unter Bedingungen inkubiert wird, die die Bildung eines Antikörper-Antigen-Komplexes gestatten; und zum Nachweis des Antikörper-Antigen-Komplexes, der das Sondenantigen enthält.
In die Erfindung sind auch Vakzine zur Behandlung der HCV-lnfektion eingeschlossen, die ein immunogenes Peptid, das ein HCV-Epitop enthält, oder ein inaktiviertes HCV-Präparat oder ein abgeschwächtes HCV-Präparat umfassen. Ein weiterer erfindungsgemäßer Aspekt ist eine mit HCV infizierte Gewebekultur.
Ein noch weiterer erfindungsgemäßer Aspekt ist ein Verfahren zur Erzeugung von Antikörpern gegen das HCV, indem einem Individuum ein isoliertes immunogenes Polypeptid, das ein HCV-Epitop enthält, in einor Menge verabreicht wird, die ausreicht, eine Immunreakton hervorzurufen.
Ein noch weiterer erfindungsgemäßer Aspekt ist ein Verfahren zur Isolierung von cDNA, die aus dem Genom eines nicht identifizierten Infektionserregers abgeleitet wurde, indem (a) Wirtszellen bereitgestellt werden, die mit Expressionsvektoren transformiert wurden, die eine cDNA-Bibliothek enthalten, welche aus Nucleinsäuren hergestellt wurde, die aus dem mit dem Erreger infizierten Gewebo isoliert wurden und man diese Wirtszellen unter Bedingungen wachsen läßt, die die Expression von in der cDNA codiertem(n) Polypeptid(en) gestatten; (b) eine Wechselwirkung der Expressionsprodukte der cDNA mit einer Antikörper enthaltenden Körperkomponente eines mit dem Infektionserreger infizierten Individuums unter Bedingungen besteht, die eine Immunreaktion erlauben, und die im Ergebnis der Wechselwirkung gebildeten Antikörper-Antigen-Komplexe nachgewiesen werden; (c) Wirtszellen gezüchtet werden, dia Polypeptide exprimieren, die Antikörper-Antigen-Komplexe gemäß Stufe (b) unter Bedingungen bilden, die ihr Wachstum als individuelle Clone erlauben und diese Clone isoliert werden; (d) Zellen aus den Clonen gemäß (c) unter Bedingungen gezüchtet werden, die die Expression von Polypeptid(en), die in der cDNA codiert sind, gestatten, und die Expressionsprodukte mit Antikörper enthaltenden Körperkomponenten von anderen als in Stufe (a) genannten Individuen, die mit dem Infektionserreger infiziert sind, und mit Kontrollindividuen, die nicht mit dem Erreger infiziert sind, in Wechselwirkung stehen, und die im Ergebnis dieser Wechselwirkung gebildeten Antikörper-Antigen-Komplexe nachgewiesen werden; (e) Wirtszellen gezüchtet werden, die Polypeptide exprimieren, die Antikörper-Antigen-Komplexe mit Antikörper enthaltenden Körperkomponenten von infizierten Individuen und von Individuen, die vermutlich infiziert sind, und nicht mit den Komponenten von Kontrollindividuen, unter Bedingungen bilden, die ihr Wachstum als individuelle Clone erlauben, und diese Clone isoliert werden; und (f) die cDNA aus den Wirtszellclonen aus Stufe (e) isoliert wird.
Kurze Beschreibung der Zeichnungen
Fig. 1: zeigt die doppelsträngige Nucleotidsequenz des HCV-cDNA-lnserts in Clon 5-1-1 und die vermutliche Aminosäuresequenz des darin codierten Polypeptids.
Fig. 2: zeigt die Homologien der überlappenden HCV-cDNA-Sequenzen in den Clonen 5-1-1,81,1 -2 und 91. Fig. 3: zeigt eine zusammengesetzte Sequenz von HCV-cDNA, die aus den überlappenden Clonen 81,1-2 und 91 abgeleitet wurde, und die darin codierte Aminosäuresequenz.
Fig. 4: zeigt die doppelsträngige Nucleotidsequenz des HCV-cDNA-lnserts in Clon 81 und die vermutliche
Aminosäuresequenz des darin codierten Polypeptide
Fig. 5: zeigt die HCV-cDNA-Sequenz in Clon 36, das Segment, das die NANBV-cDNA von Clon 81 überlappt und die in Clon 36
codierte Polypeptidsequenz
Fig. 6: zeigt die kombinierten offenen Leserahmen (ORF) von HCV-cDNAs in den Clonen 36 und 81 und das darin codierte Polypeptid.
Fig. 7: zeigt die HCV-cDNA-Sequenz in Clon 32, das Segment, das Clon 81 überlappt und das darin codierte Polypeptid. Fig. 8: zeigt die HCV-cDNA-Sequonz in Clon 35, das Segment, das Clon 36 überlappt und das darin codierte Polypeptid. Fig. 9: zeigt die kombinierten offenen Leserahmen (ORF) von HCV-cDNAs in den Clonen 35,36,81 und 32 und das darin codierte Poiy peptid.
Fiy. 10: zeigt die HCV-cDNA-Sequenz in Clon 37 b, das Segment, das Clon 35 überlappt und das darin codierte Polypeptid. Fig. 11: zeigt die HCV-cDNA-Sequenz in Clon 33 b, das Segment, das Clon 32 überlappt und das darin codierte Polypeptid. Fig. 12: zeigt die HCV-cDNA-Sequenz in Clon 40 b, das Segment, das Clon 37 b überlappt und das darin codierte Polypeptid. Fig. 13: zeigt die HCV-cDNA-Sequenz in Clon 25 o, das Segment, das Clon 33b überlappt und das darin codierte Polypeptid. Fig. 14: zeigt die Nucleotidsequenz und das darin codierte Polypeptid des offenen Leserahmens (ORF), der durch die
HCV-cDNAs in den Clonen 40 b, 37 b, 35,36,81,32,33 b und 25 c erweitert ist. Fig. 15: zeigt die HCV-cDNA-Sequenz in Clon 33 c, das Segment, das die Clone 40 b und 33 c überlappt und die darin codierten Aminosäuren.
Fig. 16: zeigt die HCV-cDNA-Sequenz in Clon 8 h, das Segment, das Clon 33 c übet läppt und die darin codierten Aminosäuren. Fig. 17: zeigt die HCV-cDNA-Sequenz in Clon 7 e, das Segment, das Clon 8 h überlappt und die darin codierten Aminosäuren. Fig. 18: zeigt die HCV-cDNA-Sequenz in Clon 14 c, das Segment, das Clon 25 c überlappt und die darin codierten Aminosäuren. Fig. 19: zeigt die HCV-cDNA-Sequenz in Clon 8 f, das Segment, das Clon 14 c überlappt und die darin codierten Aminosäuren. Fig. 20: zeigt die HCV-cDNA-Sequenz in Clon 33 f, das Segment, das Clon 8 f überlappt und die darin codierten Aminosäuren. Fig. 21: zeigt die HCV-cDNA-Sequenz in Clon 33 g, das Segment, das Clon 33 f überlappt und die darin codierten Aminosäuren. Fig. 22: zeigt die HCV-cDNA-Sequenz in Clon 7 f, das Segment, das die Sequen? in Clon 7 e überlappt und die darin codierten
Aminosäuren
Fig. 23: zeigt die HCV-cDNA-Sequenz in Clon 11 b, das Segment, das die Sequenz in Clon 7 f überlappt und die darin codierten
Aminosäuren
Fig. 24: zeigt die HCV-cDNA-Sequenz in Clon 14 i, das Segment, das die Sequenz in Clon 11b überlappt und die darin codierten
Aminosäuren
Fig. 25: zeigt die HCV-cDNA-Sequenz in Clon 39c, das Segment, das die Sequenz in Clon 33g überlappt und die darin codierten
Aminosäuren
Fig. 26: zeigt eine zusammengesetzte HCV-cDNA-Sequenz, die aus ausgerichteten (engl. aligned) cDNAs in den Clonen 14 i, 11 b,7f,7e, 8h, 33c, 40b, 37 b, 35,36,81,32,33b, 25c, 14c, 8f,33f und 33g abgeleitet wurden; weiterwird die im
erweiterten ORF in der abgeleiteten Sequenz codierte Aminosäuresequenz des Polypeptids gezeigt. Fig. 27: zeigt die Sequenzder HCV-cDNA in Clon 12f, das Segment das Clon 14i überlappt und die darin codierten
Aminosäuren
Fig. 28: zeigt die Sequenz der HCV-cDNA in Clon 35f, das Segment, das Clon 39c überlappt und die darin codierten
Aminosäuren
Fig. 29: zeigt die Sequenz der HCV-cDNA in Clon 19g, das Segment, das Clon 35f überlappt und die darin codierten Aminosäuren.
Fig. 30: zeigt die Sequenz von Clon 26g, das Segment, das Clon 19g überlappt und die darin codierten Aminosäuren. Fig. 31: zeigt die Sequenz von Clon 15e, das Segment, das Clon 26g überlappt und die darin codierten Aminosäuren. Fig. 32: zeigt die Sequenz in einer zusammengesetzten cDNA, die durch Ausrichten (engl. aligning) der Clone 12f bis 15e in der
5'-3'-Richtung abgeleitet wurden, sowie die im kontinuierlichen (engl. continuos) ORF codierten Aminosäuren. Fig. 33: zeigt ein Foto von Western blots eines Fusionsproteins, SOD-NAND^1.(· mit Schimpansenserum aus mit BB-NANB,
HAV und HBV Schimpansen
Fig. 34: zeigt ein Foto von Western blots eines Fusionsproteins, SOD-NANB5.,.,. mit Serum aus mit NANBV, HAV und HBV infizierten Menschen und aus Kontrollpersonen.
Fig. 35: zeigt in einer Karte die signifikanten Merkmale des Vektors pAB 24. Fig. 36: zeigt die vermutliche Aminosäuresequenz des Carboxy-Terminus des Fusionspolypeptids C100-3 und die dafür codierende Nucleotidsequenz.
Fig. 37 A: ist ein Foto eines Coomassieblau-gefärbten Polyacrylamidgels, das in Hefe exprimierten C100-3 identifiziert. Fig. 378: zeigt ein Western blot von C100-3 mit Serum aus einem mit NANBV infizierten Menschen. Fig. 38: zeigt ein Autoradiogramm eines Northern blot von RNA, die aus der Leber eines mit BB-NANBV infizierten
Schimpansen isoliert und mit BB-NANBV-cDNA von Clon 81 sondiert worden war. Fig. 39: zeigt ein Autoradiogramm von NANBV-Nucleinsäure, die mit RNase A oder DNase I behandelt und mit
BB-NANBV-cDNA von Clon 81 sondiert worden war
Fig. 40: zeigt ein Autoradiogramm von Nucleinsäuren, die aus NAN-Partikeln extrahiert wurden, die mit Anti-N ANB5.,., aus
infiziertem Plasma eingefangen und mit 32P-markierter NANBV-cDNA aus Clon 81 sondiert worden waren. Fig. 41: zeigt Autoradiogramme von Filtern, die isolierte NANBV-Nucleinsäuren enthielten, welche mit 32P-markierten plus-
und minussträngigen DNA-Sonden, die aus NANBV-cDNA in Clon 81 abgeleitet worden waren, sondiert wurden. Fig. 42: zeigt die Homologion zwischen einem in HCV-cDNA codierten Polypeptid und einem NS-Protein aus dem
Dengue-Flavivirus
Fig. 43: zeigt ein Histogramm der Verteilung von HCV-lnfektion in Stichproben nach einer Bestimmung durch ein
ELISA-Screening
Fig. 44: zeigt ein Histogramm der Verteilung von HCV-lnfektion in Stichproben mittels zweier Konfigurationen von
Immunoglobulin-Enzym-Konjugat in einem ELISA-Assay
Fig. 45: zeigt die Sequenzen in einer Startermischung, die aus einer konservierten Sequenz in NSI von Flaviviren abgeleitet worden waren.
Wege zur eriindungsgemSßen Ausführung
I. Definitionen
Der Begriff Hepatitis-C-Virus wurde von den auf diesem Gebiet arbeitenden Wissenschaftlern für einen bisher unbekannten Erreger von NANBH reserviert. Dementsprechend bezieht sich der Begriff „Hepatitis-C-Virus" (HCV) in der hier gebrauchten Bedeutung auf einen Erreger, der NANBH verursacht, der früher als NANBV und/oder BB-NANBV bezeichnet wurde. Die Begriffe HCV, NANBV und BB-NANBV werden hier austauschbar gebraucht. Als Erweiterung dieserTerminologie wird die durch das HCV verursachte Krankheit, früher als NANB-Hepatitis (NANBH) bezeichnet, jetzt Hepatitis C gonannt. Die Begriffe NANBH und Hepatitis C können hier austauschbar gebraucht werden.
Der Begriff ,HCV" bezeichnet in der hier gebrauchten Bedeutung eine Virusspezies, die NANBH verursacht, sowie geschwächte Stämme oder davon gewonnene unvollständige, interferierende (defective interfering) Partikel. Wie im folgenden gezeigt wird, besteht das HCV-Genom aus RNA. Es ist bekannt, daß RNA-haltige Viren relativ hoha, spontane Mutationsraten, die im Bereich von 10~3 bis 10"4 pro Nucleotid liegen sollen (Fields & Knipe (1986)), aufweisen. Es gibt daher vielfältige Stämme innerhalb der im folgenden beschriebenen HCV-Spezies. Die hier beschriebenen Zusammensetzungen und Verfahren ermöglichen Vermehrung, Identifizierung, Nachweis und Isolierung der verschiedenen verwandten Stämme. Darüber hinaus erlauben sie auch die Durchführung von Diagnosen und Herstellung von Vakzinen für die verschiedenen Stämme und sind für Screening-Untersuchungen nach antiviralen Mitteln für pharmakologische Zwecke nützlich, indem sie die Replikation des HCV hemmen. Die hierzur Verfügung gestellte Information, obwohl sie von einam HCV-Stamm gewonnen wurde, im folgenden als CDC/HCV1 bezeichnet, reicht für einen Virustaxonomisten aus, andere, zu diesen Spezies gehörende Stämme zu identifizieren. Wie hier beschrieben wird, haben wir entdeckt, daß das HCV ein Flavivirus oder flaviartiges Virus ist. Morphologie und Zusammensetzung von Flaviviurspartikeln sind bekannt und wurden in Brinton (1986) besprochen. Im Hinblick auf die Morphologie enthalten die Flaviviren allgemein gesagt in der Mitte ein Nucleokapsid, das von einer lipoidhaltigen Doppelschicht umgeben ist. Die Virionen sind kugelförmig und haben einen Durchmesser von etwa 40-50 rar. Ihre Kerne haben einen Durchmesser von etwa 25-30 nm. Auf der Außenfläche der Virionhülle befinden sich Projektionen mit einer Länge von etwa 5-10nm mit Uirminalon Knöpfen (knobs) von etwa 2 nm Durchmesser.
Das HCV codiert für ein Epitop, das immunologisch mit einem Epitop im HCV-Genom identifizierbar ist, aus dem die hier beschriebenen cDNAs abgeleitet wurden, das Epitop ist vorzugsweise in einer hier beschriebenen cDNA codiert. Im Vergleich zu anderen bekannten Flaviviren ist das Epitop einzigartig zum HCV. Diese Einzigartie'.eit des Epitops kann durch seine immunologische Reaktivität mit dem HCV und der fehlenden immunologischen Reaktivität mit anderen Flavivirusspezies bestimmt werden. Verfahren zur Bestimmung der immunologischen Reaktivität sind im Fachgebiet bekannt, beispielsweise durch Radioimmunassay, durch ELISA, durch Hämagglutination, wobei mehrere Beispiele geeigneter Techniken für Assays hier vorgestellt werden.
Zusätzlich zu dem oben Gesagten sind die folgenden Parameter entweder allein oder in Kombination miteinander bei der Identifizierung eines Stammes als HCV anwendbar. Da HCV-Stämme evolutionsmäßig verwandt sind, wird erwartet, daß die Gesamthomologie der Genome auf Nucleotidebene mindestens etwa 40%, vorzugsweise etwa 60% oder mehr, und noch besser etwa 80% oder mehr beträgt. Außerdem werden die entsprechenden angrenzenden Sequenzen von mindestens etwa 13 Nucleotiden erwartet. Die Übereinstimmung zwischen der vermutlichen Genomsequenz des HCV-Stammes und der CDC/CH1 -HCV-cDNA-Sequenz läßt sich durch im Fachgebiet bekannte Techniken feststellen. Beispielsweise können sie durch einen direkten Vergleich der Sequenzinformation des Polynucleotide aus dem vermutlichen HCV und der (den) hier beschriebenen HCV-cDNA-Sequenz(en) bestimmt werden. Zum Beispiel können sie auch durch Hybridisierung der Polynucleotide unter Bedingungen, unter denen sich stabile Duplexe zwischen homologen Regionen (z. B. solchen, die vor der S,-Digestion angewandt werden würden) herausbilden, bestimmt werden, dann schließt sich eine Digestion mit einzelsträngiger(n) spezifischer(en) Nuclease(n) und danach eine Größenbestimmung der digerierten Fragmente an. Wegen der evolutionären Verwandtschaft der HCV-Stämme sind die vermutlichen HCV-Stämme durch ihre Homologie auf der Polypeptidebene identifizierbar. Allgemin gesagt, sind über 40%, vorzugsweise über etwa 60% und noch besser über etwa 80% der HCV-Stämme auf der Polypeptidebene homolog. Die Techniken zur Bestimmung der Aminosäuresequenzhomologie sind im Fachgebiet bekannt. Die Aminosäuresequenz kann beispielsweise direkt bestimmt und mit den hier vorgestellten Sequenzen verglichen werden. Beispielsweise kann auch die Nucleotidsequenz des Genommaterials des vermutlichen HCV bestimmt werden (gewöhnlich durch eine cDNA-Zwischenverbindung); die darin codierte Aminosäuresequenz kann bestimmt und die entsprechenden Regionen können verglichen werden.
In der hier gebrauchten Bedeutung bezieht sich ein Polynucleotid, „das abgeleitet wird von" einer bezeichneten Sequenz, z. B. der HCV-cDNA, insbesondere die in den Fig. 1-32 dargestellten, oder von einem HCV-Genom, auf eine Polynucleotidsequenz, die sich aus einer Sequenz von mindestens etwa 6 Nucleotiden, vorzugsweise mindestens etwa 8 Nucleotiden und besser mindestens etwa 10-12 Nucleotiden und am besten mindestens etwa 15-20 Nucleotiden zusammensetzt, die einer Region der bezeichneten Nucleotidsequenz entsprechen, d. h. homolog oder komplementär zu ihr sind. Vorzugsweise ist die Sequenz der Region, aus der das Polynucleotid abgeleitet wird, zu einer Sequenz, dio zu einem HCV-Genom einzigartig ist, homolog oder komplementär. Ob eine Sequenz zu dem HCV-Genom einzigartig ist oder nicht, läßt sich durch den Fachleuten auf diesem Gebiet bekannte Techniken feststellen. Beispielsweise kann die Sequenz Mit Sequenzen in Datenbanken, z. B. Genebank, verglichen werden, um festzustellen, ob sie im nicht infizierten Wirt oder in anderen Organismen vorhanden ist. Die Sequenz kann auch mit bekannten Seq.. }nzen anderer Virusagenzien, einschließlich derjenigen, die bekannterweise Hepatitis induzieren, wie z. B. HAV, HBV und HDV, sowie mit anderen Mitgliedern der Flaviviridae verglichen werden. Die Übereinstimmung oder Nicht-Übereinstimmung der abgeleiteten Soquenz mit anderen Sequenzen kann auch durch Hybridisierung unter geeigneten strengen Bedingungen festgestellt werden. Hybridisiertechniken zur Bestimmung der Komplementarität der Nucleinsäuresequenzen sind im Fachgebiet bekannt und werden im folgenden erläutert. Sieh: beispielsweise auch Maniatis und Mitarbeiter (1982). Weiterhin können durch Hybridisierung entstandene Fehlbildungen von Duplexpolynucleotiden durch bekannte Techniken, wie z. B. Digestion mit einer Nuclease wie S1, die speziell einsträngige Gebiete in Duplexpolynucleotiden digeriert, festgestellt werden, Regionen, aus denen typische DNA-Sequenzen „abgeleitet" werden können, umfassen, sind jedoch nicht auf diese beschränkt, beispielsweise Regionen, die für spezifische Epitope codieren, sowie auch nichttranskribierte und/oder nichttranslatierte Regionen.
Das abgeleitete Polynucleotid wird nicht unbedingt physikalisch aus der gezeigten Nucleotidsequenz gewonnen, sonderen kann auf verschiedene Weise, einschließlich z.B. chemischer Synthese oder DNA-Replikation oder Reverser Transkription oder
Transkription, die auf den durch die Basensequenz in der(n) Region(en), aus der (denen) das Polynucleotid gewonnen wird, gegebenen Informationen beruhen, erzeugt werden. Weiterhin können Kombi.lationen von Regionen, die der der bezeichneten Sequenz entsprechen, auf im Fachgebiet bekannte Weise modifiziert werden, damit sie dem beabsichtigten Zweckentsprechen. In gleicher Weise bezieht sich ein Polypeptid oder eine Aminosäuresequenz, die „abgeleitet werden von" einer bezeichneten Nucleinsäuresequenz, .·. B. den in Fig. 1-32 gezeigten Sequenzen, oder von einem HCV-Genom, auf ein Polypeptid, das eine Aminosäuresequenz aufweist, die mit der eines Polypeptide identisch ist, die in der Sequenz codiert ist, oder auf einen Teil davon, wobei der Teil aus mindestens 3-5 Aminosäuren, vorzugsweise aus mindestens 8-10 Aminosäuren und noch besser aus mindestens 11-15 Aminosäuren besteht, oder der immunologisch mit einem in der Sequenz codierten Polypeptid identifizierbar ist.
Ein rekombinantes oder abgeleitetes Polypeptid ist nicht unbedingt aus einer bezeichneten Nucleinsäuresequenz, z. B. den in Fig. 1-32 gezeigten Sequenzen, oder aus einem HCV-Genom translated, es kann auf verschiedene Weisen erzeugt werden, einschließlich z. B. chemischer Synthese oder Expression eines Rekombinant-Expressionssystems, oder Isolierung aus mutiertem HCV.
Der Begriff „rekombinantes Polynucleotid" bezeichnet in der hier gebrauchten Bedeutung ein Polynucleotid von genomischen, cDNA-, semisynthetischom oder synthetischem Ursprung, welchos dank seines Ursprungs oder seiner Manipulation (1) nicht mit dem gesamten oder einem Teil des Polynucleotide verknüpft ist, mit dem es in Natur oder in Form einer Bibliothek verknüpft ist; und/oder (2) mit einem anderen Polynucleotid verbunden ist als es in der Natur verbunden wäre.
Der Begriff „Polynucleotid" in der hier gebrauchten Bedeutung bezieht sich auf eine polymere Form von Nucleotiden beliebiger Länge, und zwar entweder Ribonucleotide oder Desoxyribonucleotide. Dieser Begriff bezieht sich nur auf die Primärstruktur des Moleküls. Dieser Begriff schließt somit sowohl doppel- und einsträngige DNA wie auch doppel- und einsträngige RNA ein. Er umfaßt auch beispielsweise durch Methylierung und/oder „capping" modifizierte und nicht modifizierte Formen des Polynucleotide.
In dem hier gebrauchten Sinn bedeutet der Begriff „HCV, das eine einer cDNA entsprechenden Sequenz enthält", daß das HCV eine Poiynucieotidsequenz enthält, die zu einer Sequenz in der bezeichneten DNA homolog oder komplementär ist; der Grad der Homologie oder Komplementarität zur cDNA wird etwa 50% oder mohr, vorzugsweise etwa mindestens 70% und noch besser etwa mindestens 90% betragen. Die entsprechenden Sequenzen werden in der Länge etwa mindestens 70 Nucleotide, vorzugsweise etwa mindestens 80 Nucleotide und noch besser etwa mindestens 90 Nucleotide betragen. Die Übereinstimmung zwischen der HCV-Sequenz und der cDNA kann durch im Fachgebiet bekannte Techniken bestimmt werden, wie beispielsweise durch einen direkten Vergleich des sequenzierten Materials mit den beschriebenen cDNAs oder durch Hybridisierung und Digestion mit einzelsträngigen Nucleasen und anschließender Bestimmung der digerierten Fragmente. Der Begriff „gereinigt von Virusnucleotid" bezieht sich auf ein HCV-Genom oder Fragment davon, das im wesentlichen frei von, d. h. es enthält weniger als etwa 50%, vorzugsweise weniger als etwa 70% und noch besser weniger als etwa 90% an Polypeptiden, mit denen das Viruspolynucleotid natürlicherweise verbunden ist. Die Techniken zur Reinigung der Viruspolynucleotide von den viralen Partikeln sind im Fachgebiet bekannt und schließen z. B. das Auseinanderreißen (engl. disruption) der Partikel mit einem chaoiropen Mittel und Trennung des (der) Polynucleotids(e) und Polypeptids(e) durch lonenaustauschchromatographie, Affinitätschromatographie und Sedimentation nach der Dichte ein. Der Begriff „gereinigtes Viruspolypeptid" bezieht sich auf ein HCV-Polypeptid oder Fragment davon, das im wesentlichen frei von, d. h. es enthält weniger als 50%, vorzugsweise weniger als etwa 70% und noch besser weniger als etwa 90% an zellularen Komponenten, mit denen das Viruspolypeptid natürlicherweise verbunden ist. Die Techniken zur Reinigung der Viruspolypeptide sind im Fachgebiet oekannt und Beispiele dieser Techniken werden im folgenden erläutert. „Rekombinante Wirtszellen", „Wirtszellen", „Zellen", „Zellinien", „Zellkulturen" und andere derartige Begriffe, die Mikroorganismen oder höhere eukaryontische Zellinien, die als unizellulare Einheiten in Kultur genommen wurden, bezeichnen, beziehen sich auf Zellen, die als Rezipienten für einen andere Transfer-DNA verwendet werden können oder verwendet wut 1en und schließen auch die Nachkommenschaft der Originalzelle, die transfiziert wurde, ein. Es versteht sich, daß die Nachkommenschaft einer einzelnen Elternzelle nicht notwendigerweise in Morphologie oder als Genom- oder Gesamt-DNA-Komplement infolge einer zufälligen oder beabsichtigten Mutation mit der Originalelternzelle identisch sein muß. Die Nachkommenschaft der Elternzelle, die zur Elternzelle ausreichende Ähnlichkeit aufweist und durch relevante Eigenschaften, wie die Anwesenheit einer Nucleotidsequenz, die für ein gewünschtes Peptid codiert, charakterisiert ist, ist in der durch diese Definition erläuterten Nachkommenschaft inbegriffen und durch die oben genannten Begriffe erfaßt.
Ein „Replicon" ist jedes genetische Element, d. h. ein Plasmid, ein Chromosom, ein Virus, das sich als eine autonome Einheit der Polynucleotidreplikation innerhalb einer Zelle verhält, d. h. daß es unter eigener Steuerung zur Replikation fähig ist. Ein „Vektor" ist ein Replikon, an den ein anderes Polynucleotidsegment geknüpft ist, um so die Replikation und/oder Expression des angeknüpften Segments zu bewirken.
„Kontrollsequenz" bezieht sich auf Polynucleotidsequsnzen, die notwendig sind, um die Expression der Codiersequenzen, an die sie ligiert sind, zu bewirken. Die Art dieser Kontrollsequenzen unterscheidet sich je nach Wirtsorganismus; in Prokaryonten sind diese Kontrollsequenzen im allgemeinen Promotor, Ribosombindastellen und Terminatoren; in Eukaryonten sind diese Kontrollsequenzeti Promoter, Terminatoren und in einigen Fällen Verstärket. Der Begriff „Kontrollsequenzen" soll mindestens alle Komponenten umfassen, deren Anwesenheit für die Expression notwendig ist und kann auch zusätzliche Komponenten umfassen, deren Anwesenheit vorteilhaft ist, wie z. B. Leadersequenzen. „Operably linked" (operabel geknüpft) bezieht sich auf eine Juxtaposition, in der die so beschriebenen Komponenten in einer Beziehung miteinander stehen, die ihre Funktion in der beabsichtigten Woise erlaubt. Eine Kontrollsequenz, die an die Codiersequenz „operabel geknüpft" ist, ist auf eine solche Weise ligiert, daß die Expression der Codiersequenz unter Bedingungen erreicht wird, die für die Kontrollsequenzen verträglich sind. Ein „offener Leserahmen" (ORF) ist eine Region einer Poiynucieotidsequenz, die für ein Polypeptid codiert; diese Region kann einen Teil einer Codiersequenz oder eine vollständige Codiersequenz darstellen.
Eine „Codiersequenz" ist eine Poiynucieotidsequenz, die in mRNA transkribiert und/oder in ein Polypeptid translatiert wird, wenn sie sich unter der Kontrolle von geeigneten Regulationssequenzen befindet. Die Grenzen der Codiersequenz werden durch ein Translationsstartcodon am 5'-Terminus und durch ein Translationsstopcodon am 3'-Terminus bestimmt. Eine Codiersequenz kann mRNA, cDNA und rekombinante Polynucleotidsequenzen umfassen, ist aber nicht auf diese beschränkt. „Immunologisch identifizierbar mit/als" bezieht sich auf das Vorhandensein eines (von) Epitops (Epitopen) und Polypeptides (Polypeptiden), die in dem (den) bezeichneten Polypeptid(en), gewöhnlich HCV-Proteinen, vorhanden und zu diesen einzigartig sind. Immunologische Identität kann durch Antikörperbindung und/oder Bindungskonkurrenz bestimmt werden; diese
Techniken sind den Fachleuten auf diesem Gebiet bekannt und werden auch weiter unten illustriert. Die Einzigartigkeit eines Epitops kann auch d-n oh Computerforschungen in bekannten Datenbanken, z. B. Genebank, nach den Polynucleotidsequenzen, die für das Epitop codieren, sowie durch Aminosäuresequenzvergleiche mit anderen bekannten Proteinen bestimmt werden.
Im hier gebrauchten Sinn bezieht sich „Epitop" auf eine Antigendeterminante eines Polypeptide; ein Epitop könnte 3 Aminosäuren in einer räumlichen Anordnung umfassen, die für das Epitop einzigartig isc, im allgemeinen besteht ein Epitop aus mindestens 5 solcher Aminosäuren und noch allgemeiner besteht es aus mindestens 8-10 solcher Aminosäuren. Die Verfahren zur Bestimmung der räumlichen Anordnung der Aminosäuren sind im Fachgebiet bekannt und umfassen beispielsweise Röntgenkristallographie und zweidimensional magnetische Kernresonanz.
Ein Polypeptid ist mit einem Antikörper „immunologisch reaktiv", wenn es an einen Antikörper bindet aufgrund der Tatsache, daß der Antikörper ein spezifisches Epitop, das im Polypeptid enthalten ist, erkennt. Die immunologische Reaktivität kann bestimmt werden durch die Antikörperbindung, insbesondere durch die Kinetik der Antikörperbindung, und/oder durch Bindungskonkurrenz, indem ein bekanntes Polypeptid oder bekannte Polypeptide, das/die ein Epitop enthält/enthalten, gegen dfs/die der Antikörper gerichtet ist, als Konkurrent(en) verwendet wird/werden. Die Techniken zur Bestimmung, ob ein Polypeptid mit einem Antikörper immunologisch reaktiv ist, sind im Fachgebiet bekannt.
In der hier gebrauchten Bedeutung beinhaltet der Begriff „ein HCV enthaltendes immunogones Polypeptid" natürlich vorkommende HCV-Polypeptide oder Fragmente davon ebenso wie Polypeptide, die durch andere Maßnahmen hergestellt wurden, wie beispielsweise chemische Synthese, oder die Expression des Polypeptids in einem rekombinanten Organismus.
Der Begriff „Polypeptid" bezieht sich auf eine Molekülkette von Aminosäuren und nicht auf eine spezifische Länge des Produktes, so daß Peptide, Oligopeptide und Proteine in die Definition des Polypeptids eingeschlossen sind. Der Begriff bezieht sich auch nicht auf die Modifikationen des Polypeptids nach der Expression wie beispielsweise Glycosylierungen, Acetylierungen, Phosphorylierungen und dergleichen.
„Transformation" in der hier gebrauchten Bedeutung bezieht sich auf die Insertion eines exogenen Polynucleotide in eine Wirtsze'le, ungeachtet des für die Insertion angewandten Verfahrens, wie beispielsweise direkte Aufnahme, Transduktion oder „f-mr::° ig". Das exogene Polynucleotid kann als nicht integrierter Vektor erhalten bleiben, wie z. B. ein Piasmid, oder kann auf eine andere Weise in das Wirtsgenom integriert werden.
„Behandlung" in dem hier gebrauchten Sinn bezieht sich auf Prophylaxe und/oder Therapie.
Ein „Individuum" im hier gebrauchten Sinn bezieht sich auf Vertebrates insbesondere Mitglieder der Säugetierspezies und schließt Haustiere, Sporttiere, Primaten und Menschen ein, ist jedoch nicht darauf beschränkt. In der hier gebrauchten Bedeutung enthält der „Plus-Strang" einer Nucleinsäure die Sequenz, die für das Polypeptid codiert.
Der „Minus-Strang" enthält eine Sequenz, die zu der des „Plus-Strangs" komplementär ist.
In der hier gebrauchten Bedeutung ist ein „positiv-strängiges Genom" eines Virus eines, in dem das Genom, ob RNAoder DNA, einsträngig ist und für ein Viruspolypeptid/Viruspolypeptide codiert. Beispiele positiv-strängiger RNA-Viren sind Togaviridae, Coronaviridae, Retroviridae, Picornaviridae und Caliciviridae. Ebenfalls eingeschlossen sind die Flaviviridae die früher als Togaviridae klassifiziert waren. Siehe Fields & Knipe (1986).
In der hier gebrauchten Bedeutung bezieht sich „Antikörper enthaltende Körperkomponente" auf eine Komponente des Körpers eines Individuums, der eine Quelle für die in Frage kommenden Antikörper ist. Antikörper enthaltende Körperkomponenten sind im Fachgebiet bekannt und umfassen z. B. Plasma, Serum, Liquor, Lymphe, die äußeren Abschnitte des Respirations-, Verdauungs- und Urogenitcltraktes, Tränen, Speichel, Milch, weiße Blutzellen und Myelomzellen.
In der hier gebrauchten Bedeutung bezieht sich „gereinigtes HCV-Präparat" auf ein HCV-Präparat, das aus den zellularen Bestandteilen, mit denen das Virus normalerweise assoziiert ist und aus anderen Virusspezies, die im infizierten Gewebe vorkommen können, isoliert wurde. Die Techniken zur Isolierung der Viren sind den Fachleuten auf diesem Gebiet bekannt und schließen z. B. Zentrifugierung und Affinitätschromatographie ein; ein Verfahren zur Herstellung von gereinigtem HVC wird im folgenden erläutert.
II. Beschreibung der Erfindung
Für die Durchführung der vorliegenden Erfindung werden, wenn nicht anders angegeben, herkömmliche Techniken der Molekularbiologie, Mikrobiologie, Rekombinant-DNA-Technik und Immunologie angegeben, die im Fachbereich üblich sind. Diese Techniken werden in der Literatur ausführlich erklärt. Siehe z. B. Maniatis, Fitsch & Sambrook, MOLECULAR CLONING; A LABORATORY MANUAL (Molekulare Clonierung, ein Laborhandbuch) (1982); DNA CLONING, VOLUMES I AND Il (DNA-Clonierung, Band I und II) (Herausgeber D. N. Glover, 1985); OUGONUCLEOTIDE SYNTHESIS (Oligonucleotidsynthese) (Herausgeber MJ. Gait, 1984); NUCLEIC ACID HYBRIDIZATION (Nucleinsäurehybridisierung) (Herausgeber B. D.Hames& S J.Higgins, 1984); TRANSCRIPTION AND TRANSLATION (Transkription und Translation) (Herausgeber B. D. Harnes & SJ. Higgins, 1984); ANIMAL CELL CULTURE (Tierzellenkultur) (Herausgeber R. I. Frishney, 1986); IMMOBILIZED CELLS AND ENZYMES (Immobilisierte Zellen und Enzyme) (IRL Press, 1986); B. Perbai, A PRACTICAL GUIDE TO MOLECULAR CLONING (Eine praktische Führung für die molekulare Clonierung) (1984); die Serien: METHODS IN ENZYMOLOGY (Methoden der Enzymologie) (Academic Press, Inc.); GENE TRANSFER VECTORS FOR MAMALIAN CELLS (Gentransfervektoren für Säugetierzellen) (Herausgeber J. H. Miller und M. P. Calos, 1987, Cold Spring Harbor Laboratory), Methods in Enzymology Vol. 154 and Vol. 155 (Methoden der Enzymologie, Band 154 und Band 155) (Herausgeber Wu und Grossman bzvv. Wu), Herausgeber Mayer und Walker (1987), IMMUNOLOGICAL METHODS IN CELL AND MOLECULAR BIOLOGY (Immunologische Verfahren in der Zeil- und Molekularbiologie) (Academic Press, London), Scopes (1987), PROTEIN PURIFICATION: PRINCIPLES AND PRACTICE (Proteinreinigung: Prinzipien und Praxis), zweite Auflage, (Springer-Verlag, N. Y.) und HANDBOOK OF EXPERIMENTAL IMMUNOLOGY, VOLUMES WV (Handbuch der experimentellen Immunologie, Band HV), (Herausgeber D. M.Weir und CC. Blackwell, 1986).
Alle hier im vorangegangenen und im folgenden erwähnten Patente, Patentanmeldungen und Publikationen werden durch Bezugnahme darauf hierin eingeschlossen.
Die nützlichen Materialien und Prozesse der vorliegenden Erfindung werden möglichst durch die Bereitstellung einer Familie von eng homologen Nucleotidsequenzen, die aus einer cDNA-Bibliothek isoliert wurden, welche aus Nucleinsäuresequenzen abgeleitet wurden, die im Plasma eines HCV-infizierten Schimpansen vorhanden waren. Diese Familie von Nucleotidsequenzen hat ihren Ursprung weder beim Menschen noch beim Schimpansen, da sie weder an Human- noch an Schimpansen-Genom-DNA von nicht infizierten Individuen hybridisiert und da Nucleotide dieser Sequenzfamilie nur in der Leber und im Plasma von Schimpansen mit HCV-lnfektion vorkommen und da die Sequenz auf der Genebank nicht vorhanden ist. Außerdem zeigt diese
Sequenzfemilie keine signifikante Homologie zu Sequenzen, die im HBV-Genom enthalten sind.
Die Sequenz eines Mitgliedes der Familie, die im Clon 5-1-1 enthalten ist, hat einen kontinuierlichen offenen Lenorahmen (ORP), der für ein Polypeptid von etwa 50 Aminosäuren codiert. Die Seren von HCV-infizierten Menschen enthalten Antikörper, die an dieses Polypeptid binden, während die Seren von nicht infizierten Menschen keine Antikörper enthalten, die an dieses Polypeptid binden. Während schließlich die Seren von nicht infizierten Schimpansen keine Antikörper enthalten, die an dieses Polype,>tic binden, werden die Antikörper in Schimpansen nach einer akuten NANBH-Infektion induziert. Darüber hinaus werden Antikörper, die an dieses Polypeptid binden in Schimpansen und Menschen, die mit HAV und HBV infiziet sind, nicht nachgewiesen. Nach diesen Kriterien ist dia Sequenz eine cDNA gegen eine Virussequenz, wobei das Virus die NANBH verursacht oder damit verbunden ist; diese cDNA-Sequenz wird in Fig. 1 gezeigt. Wie welter unten diskutiert wird, unterscheidet sich die cDNA-Sequenz in Clon 5-1-1 von uer der anderen isolierten cDNAs darin, daß sie 28 extra Basenpaare enthält. Eine Zusammensetzung anderer identifizierter Mitglieder der cDNA-Familie, die isoliert wurden, indem eine synthetische Sequenz, die einem Fragment der cDNA in Clon 5-1 -1 entspricht, als Sonde verwendet wurde, wird in Fig. 3 gezeigt. Ein Mitglied der cDNA-Familie, die isoliert wurde, indem eine ous der cDNA in Clon 81 abgeleitete synthetische Sequenz verwendet wurde, wird in Fig. 5 gezeigt, und eine Zusammensetzung dieser Sequenz mit der von Clon 81 wird in Fig. 6 gezeigt. Andere Mitglieder der cDNA-Familie, einschließlich derjenigen, die in den Clonen 17f, 14i, 11 b, 7f, 7e, 8h, 33c, 40b, 37 b 35,36,81,32,33b, 25c, 14c, 8f, 33f, 35f, 19g, 26g, 15c, 33g und 39c vorhanden sind, werden im Abschnitt IV.A. beschrieben. Eine Zusammensetzung der cDNAs in diesen Clonen wird in Abschnitt IV.A.9. beschrieben und in Fig. 39 gezeigt. Die zusammengesetzte cDNA zeigt, daß sie einen kontinuierlichen offenen Leserahmen enthält und damit für ein Polyprotein codiert. Diese Daten stimmen mit der im folgenden erörterten Vermutung überein, daß HCV ein Flavivirus oder f laviartiges Virus ist.
Die Verfügbarkeit dieser in den Fig. 1-32 gezeigten Familie von cDNAs gestattet die Konstruktion von DNA-Sor.den und Polypeptiden, die für die Diagnostizierung von NANBH infolge einer HCV-lnfektion und für Screening-Untersuchungen bei Blutspendern sowie auch bei Spenderblut und Blutprodukten auf eine Infektion nützlich sind. Zum Beispiel ist es möglich, aus den Sequenzen DNA-Oligomere von etwa 8-10 Nucleotiden oder mehr zu synthetisieren, die als Hybridisiersonden nützlich sind, um das Vorhandensein des Virusgenoms in beispielsweise Seren von Individuen, die möglicherweise das Virus beherbergen, nachzuweisen, oder die zum Screening von Spenderblut auf das Vorhandensein des Virus nützlich sind. Die Familie von cDNA-Sequenzen erlaubt auch den Entwurf und die Erzeugung von HCV-spezifischen Polypeptiden, die als Diagnosemittel für die Anwesenheit von Antikörpern, die während der NANBH entstanden, nützlich sind. Antikörper gegen gereinigte Polypeptide, die aus den cDNAs abgeleitet wurden, können ebenfalls zum Nachweis viraler Antigene in infizierten Individuen und in Blut verwendet werden.
Die Kenntnis diesercDNA-Sequenzen erlaubt auch den Entwurf und die Produktion von Polypeptiden, die als Vakzine gegen das HCV und auch für die Produktion von Antikörpern, die wiederum als Schutz vor dieser Krankheit verwendet werden können, und/oder für die Therapie von mit HCV infizierten Individuen eingesetzt werden können. Darüber hinaus erlaubt die Familie von cDNA-Sequenzen die weitere Charakterisierung des HCV-Genoms. Die von diesen Sequenzen abgeleiteten Polynucleotidsonden können zum Screening von cDNA-Bibliotheken nach zusätzlichen überlappenden cDNA-Sequenzen genutzt werden, welche wiederum dazu verwendet werden können, noch mehr überlappende Sequenzen zu erhalten. Falls nicht das Genom segmentiert wird und den Segmenten gemeinsame Sequenzen fehlen, kann diese Technik verwendet werden, um die Sequenz des gesamten Genoms zu erhalten. Wenn das Genom jedoch segmentiert wird, können andere Segmente des Genoms durch Wiederholung des Lambdagtll-serologischen Screening-Verfahrens zur Isolierung der hier beschriebenen cDNA-Clone oder auf eine alternative Weise durch Isolierung des Genoms aus gereinigten HCV-Partikeln gewonnen werden.
Die Familie von cDNA-Sequenzen und die aus diesen Sequenzen abgeleiteten Polypeptide wie auch die gegen diese Polypeptide gerichteten Antikörper sind bei der Isolierung und Identifizierung der (des) BB-NANBV-Erreger(s) nützlich. Beispielsweise könrrn Antikörper, die gegen HCV-Epitope gerichtet sind, die in aus den cDNAs gewonnenen Polypeptiden enthalten sind, in Prozessen eingesetzt werden, die auf der Affinitätschromatographie zur Isolierung oes Virus beruhen. Alternativ können die Antikörper verwend .t werden, um die durch andere Techniken isolierten Viruspartikel zu identifizieren. Die viralen Antigene und das genomische Material innerhalb der isolierten Viruspartikel können dann weiter charakterisiert werden. Die aus der weiteren Sequenzierung des (der) HCV-Genoms (Genome) sowie aus der weiteren Charakterisierung der HCV-Antigene und der Charakterisierung des Genoms gewonnenen Informationen erlauben den Entwurf und die Synthese von zusätzlichen Sonden und Polypeptiden und Antikörpern, die für die Diagnose, Vorbeugung und Therapie von HCV-induzierter NANBH sowie zum Screening von infiziertem Blut und blutähnlichen Produkten eingesetzt werden können. Die Verfügbarkeit von Sonden für HCV, einschließlich Antigenen und Antikörpern, sowie Polynucleotide^ die aus dem Genom abgeleitet wurden, aus dem die Familie von cDNAs abgeleitet wurde, erlaubt auch die Entwicklung von Gewebekultursystemen, die für die Aufhellung der Biologie des HCV von größtem Nutzen sein werden. Dies wiederum kann zur Entwicklung neuer Behandlungsmethoden auf der Grundlage antivireler Komponenten, die vorzugsweise die Replikation des oder die Infektion durch das HCV hemmen, führen.
Die zur Identifizierung und Isolierung des Erregers von NANBH angewandte Methode ist neuartig und kann angewandt werden bei der Identifizierung und/oder Isolierung von zuvor nicht charakterisierten Erregern, die ein Genom enthalten, und die mit einer Vielzahl von Krankheiten, einschließlich solcher, die durch Viren, Viroide, Bakterien, Pilze nd Parasiten induziert werden, verbunden sind. Bei dieser Methode wurde eine cDNA-Bibliothek aus den im infizierten Gewebe aus einem infizierten Individuum vorhandenen Nucleinsäuren geschaffen. Die Bibliothek wurde in einem Vektor geschaffen, der die Expression der in der cDNA codierten Polypeptide erlaubte. Clone von Wirtszellen, die den Vektor enthielten, der ein immunologisch reaktives Fragment eines Polypeptides des Krankheitserregers exprimierte, wurden durch immunologisches Screening der Expressionsprodukte der Bibliothek mit einer Antikörper enthaltenden Körperkompo.iento aus einem anderen, zuvor mit dem vermutlichen Erreger infizierten Individuum selektioniert. Die Stufen des immunologischen Screening-Verfahrens schlossen die Wechselwirkung der Expressionsprodukte der cDNA enthaltenden Vektoren mit der Antikörper enthc Itenden Körperkomponente eines zweiten infizierten Individuums und den Nachweis der Bildung von Antikörper-Antigen-> <omp!exen zwischen dem (den) Expressionsprodukt(en) und Antikörpern des zweiten infizierten Individuums ein. Die isolierten Clone werden weiterhin immunologischen Screening-Verfahren unterzogen, indem ihre Expressionsprodukte mit den Antikörper enthaltenden Körperkomponenten der anderen mit dem vermutlichen Erreger infizierten Individuell und mit Kontrollindividuen, die mit dem vermutlichen Erreger nicht infiziert wurden, in Wechselwirkung traten und die Bildung von Antigen-Antikörper-Komplexen mit Antikörpern aus den infizierten Individuen nachgewiesen wurde; und die cDNA enthaltenden Vektoren, die für Polypeptide
codieren, die immunologisch mit Antikörpern aus infizierten Individuen und aus Individuen, die vermutlich mit dem Erreger infiziert sind, jedoch nicht mit Kontrollindividuen, reagieren, isoliert werden. Die für die Konstruktion der cDNA-Bibliothek und für das immunologische Screening benutzten infizierten Individuen müssen nicht von der gleichen Spezies sein. Die im Ergebnis dieser Methode isolierten cDNAs und it.re Expressionsprodukte und die gegen die Expressionsprodukte gerichteten Antikörper sind für die Charakterisierung uno/oder das Einfangen des äthiologischen Erregers nützlich. Wie im folgenden ausfüh;licher beschrieben wird, wurde diese Methode erfolgreich zur Isolierung einer aus dem HCV-Genom gewonnenen Familie von cDNAs genutzt.
U.A. Herstellung der cDNA-Sequonz
Von einem Schimpansen mit chronischer HCV-lnfektion gesammeltes Serum, das einen hohen Virustiter enthält, das heißt mindestens eine 10° Schimpansa-lnfektionsdosis/ml (CID/ml), wurde zur Isolierung von viralen Partikeln verwendet; die aus diesen Partikeln isolierten Nucleinsäuren wurden als Matrize bei der Konstruktion einer cDNA-Bibliothek zum viralen Genom verwendet. Die Verfahren zur Isolierung von putativen HVC-Partikeln und für die Konstruktion der cDNA-Bibliothek in Lambdagtll werden in Abschnitt IV. A. 1 diskutiert. Lambda-gt 11 ist ein Vektor, der speziell entwickelt werde, um inserierte cDNAs als Fusionsnolypeptide mit Beta-Galactosidase zu exprimieren und eine große Anzahl rekombinante Phage mit spezifischen Antiseren gegen ein bestimmtes Antigen zu bilden. Die Lambda-gt 11-cDNA-Bibliothek, hergestellt aus einer cDNA-Ansammlung, die cDNA von ungefähr mittlerer Größe von 200 Basenpaaren enthält, wurde bezüglich codierter Epitope gescreent, die speziell Seren binden könnten, die von zuvor mit NANB-Hepatitis erkrankten Patienten stammten. Huynh, T. V. et al. (1085). Es wurden ungefähr 10e Phagen gescreent, und fünf positive Phagen wurden identifiziert, gereinigt und anschließend hinsichtlich der Spezifität der Bindung an Seren von verschiedenen Menschen und Schimpansen, die zuvor mit HCV-Agens infiziert wurden, getestet. Eine der Phagen, 5-1-1, hatte 5 der 8 ge'esteten menschlichen Seren gebunden. Diese Bindung schien für Seren von zuvor NANB-Hepatitisinfektionen ausgesetzten Patienten selektiv zu erfolgen, da 7 normale Blutspenderseren eine derartige Bindung nicht aufwiesen.
Die Sequenz der cDNA in dem rekombinanten Phage 5-1-1 wurde ermittelt und in Fig. 1 dargestellt. Das durch diese clonierte cDNA codierte Polypeptid, das in dem gleichen translational Raster wie die N-terminale Beta-Galactosidasekomponente des Fusionspolypeptids ist, wird über der Nuclectidsequenz gezeigt. Daher codiert dieses translational offene Leseraster ein Epitop od-jr Epitope, die speziell durch die Seren von Patienten mit NANB-Hepstitisinfektionen erkannt werden.
Die Verfügbarkeit der cDNA in rekombinantem Phage 5-1 -1 gestattete die Isolierung anderer Clone, die zusätzliche Segmente und/oder alternative Segmente der cDNA für das virale Genom enthielten. Die oben beschriebene Lambda-gt 11-cDNA-Bibliothek wurde unter Verwendung eines aus der Sequenz der clonierten 5-1-1 cDNA abgeleiteten synthetischen Polynucleotide gescreent. Dieses Screening ergab drei andere Clone, die als 81,1-2 und 91 identifiziert wurden; die in diesen Clonen enthaltenen cDNAs wurden sequenziert. Siehe Abschnitt IV.A.3. und IV. A.4. Die Homologien zwischen den vier unabhängigen Clonen werden in Fig. 2 gezeigt, wo die Homologien durch vertikale Linien angezeigt werden. Nucleotidsequenzen sind ausschließlich in den Clonen 5-1-1,81 und 91 vorhanden und werden durch kleine Buchstaben bezeichnet.
Die in den rekombinanten Phagen in den Clonen 5-1-1,81,1-2 vorhandenen clonierten cDNAs sind äußerst homolog und unterscheiden sich nur in zwei Regionen. Erstens ist die Nucleotidzahl 67 in Clon 1-2 ein Thymidin, während die anderen drei Clone in dieser Stellung einen Cytidinrest enthalten. Diese Substitution verändert jedoch nicht die Natur der codierten Aminosäure.
Derzweite Unterschied zwischen den Clonen besteht darin, daß Clon 5-1 -1 28 Basenpaare an seinem 5'-Terminus enthält, die in anderen Clonen nicht vorhanden sind. Diese zusätzliche Sequenz kann ein 5'-terminales cloniertes Artefakt sein; 5'-terminale clonierte Artefakts werden im allgemeinen in den Produkten von cDNA-Verfahren beobachtet.
Von der 5'-Region und 3'-Region der HCV-cDNA in Clon 81 abgeleitete synthetische Sequenzen wurden zum Screenen und Isolieren von cDNAs aus der Lambda-gt 11-NANBV-cDNA-Bibliothek verwendet, die die Clon-81-cDNA (Abschnitt IV. A. 5.) überlappen. Die Sequenzen der resultierenden cDNAs, die in Clon 36 bzw. Clon 32 vorhanden sind, werden in Fig.5 und Fig.7 gezeigt.
Ein auf der 5'-Region von Clon 36 basierendes synthetisches Polynucleotid wurde gleichfalls zum Screenen und Isolieren von cDNAs aus der Lambda-gt 11 -NANBV-cDNA-Bibliothek verwendet, die die Clon-36-cDNA (Abschnitt IV. A. 8.) überlappen. Ein gereinigter Clon von rekombinante Phage enthaltender cDNA, das an die synthetische Polynucleotidsonde hybridisierte, wurde als Clon 35 bezeichnet und die NANBV-cDNA-Sequenz, die in diesem Clon enthalten ist, wird in Fig.8 gezeigt.
Durch Anwendung des Verfahrens zur Isolierung überlappender cDNA-Sequenzen erhielt man zusätzliche upstream- und downstream-HCV-cDNA-Sequenzen. Die Isolierung dieser Clone wird später in Abschnitt IV. A. beschrieben.
Die Analyse der Nucleotidsequenzen von innerhalb der isolierten Clone codierten HCV-cDNAs zeigen, daß die zusammengesetzte cDNA ein langes kontinuierliches offenes Leseraster enthält. Fig. 26 zeigt die Sequenz der zusammengesetzten cDNA aus diesen Clonen gemeinsam mit dem darin codierten mutmaßlichen HCV-Polypeptid.
Die Beschreibung des Verfahrens zur Gewinnung der cDNA-äequenzen ist meistens von historischem Interesse. Die resultierenden Sequenzen (und ihre Komplements) sind hierin bereitgestellt, und die Sequenzen, oder irgendein Teil davon, können unter Verwendung von synthetischen Verfahren oder durch eine Kombination der synthetischen Verfahren mit Wiederherstellung von Teilsequenzen unter Verwendung ähnlicher wie der hierin beschriebenen Verfahren hergestellt werden.
Lambda-gt 11-Stämme, die aus der HCV-cDNA-Bibliothek und aus den Clonen 5-1-1,81,1-2 und 91 repliziert wurden, wurden entsprechend den Bestimmungen des Budapester Vertrags bei der American Type Culture Collection (ATCC), 12301 Parklawn Dr., Rockville, Maryland 20852 hinterlegt und mit den folgenden Zugriffsnummern bezeichnet.
Lambda-gt 11 ATCC-Nr. Hinterlegungsdatum
HCV-cDNA-Bibliothek 40394 1. Dez. 1987
Clon 81 40388 17. Nov. 1987
Clon 91 40389 17. Nov. 1987
Clon 1-2 40390 17. Nov. 1987
Clon 5-1-1 40391 18. Nov. 1987
Bei der Bewilligung und Ausgabe dieser Anmeldung als ein Patent der Vereinigten Staaten werden alle Beschränkungen bezüglich der Verfügbarkeit dieser Hinterlegungen unwiderruflich aufgehoben; der Zugang zu den designierten Hinterlegungen wird während des Anhängigseins der obigen Anmeldung demjenigen ermöglicht, der durch den dafür unter 37 CFR 1.14 und 35 USC 1.22 berechtigten Patentbeauftragten bestimmt wird. Darüber hinaus werden die bezeichneten Hinterlegungen über einen Zeitraum von dreißig (30) Jahren vom Datum der Hinterlegung an, oder für fünf (5) Jahre nach der letzten Anforderung an die Hinterlegung aufbewahrt; oder über die geltende Lebensdauer des US-Patents, je nachdem, was länger ist. Diese Hinterlegungen und andere hierin erwähnte hinterlegte Materialien sind nur der Zweckdienlichkeit halber beabsichtigt und nicht erforderlich, um die vorliegende Erfindung im Sinne der Beschreibung in die Praxis umzusetzen. Die HCV-cDNA-Sequenzen in allen der hinterlegten Materialien sind darin unter Bezugnahme darauf eingeschlossen.
Die obige Beschreibung, die sich mit dem „walking" eines Genoms durch Isolieren überlappender cDNA-Sequenzen aus der HCV-Lambda-gt 11-Bibliothek befaßt, stellt ein Verfahren zur Vorfügung, durch t'as cDNAs entsprechend dem gesamten HCV-Genom isoliert werden können. Für Fachleute ist jedoch klar, daß die darin bereitgestellte Information andere Verfahren für die Isolierung dieser cDNAs ermöglicht. Einige dieser Verfahren werden in Abschnitt IV. A., siehe unti n, beschrieben.
II. B. Herstellung von vlralen Polypeptiden und Fragmenten
Die Verfügbarkeit von cDNA-Sequenzen, entweder von jenen, die durch Nutzung der in den Fig. 1 bis 26 dargestellten cDNA-Sequenzen isoliert wurden, wie weiter unten ausgeführt wird, wie auch der cDNA-Sequenzen in diesen Figuren, gestattet die Konstruktion der Expressionsvektoren, die die antigenwirksamen Regionen des in jedem Strang codierten Polypeptids codieren. Diese antigenwirksamen Regionen können aus den Überrigs- oder Hüllantigenen oder aus Kernantigenen einschließlich z. B. Polynucleotidbindungsproteinen, Polynucleotidpolymerasefn) und anderen viralen Proteinen hergestellt werden, die für die Replikation und/oder Assemblierung (assembly) der Viruspartikel erforderlich sind. Die die gewünschten Polypeptide codierenden Fragmente werden aus cDNA-Clonen unter Verwendung herkömmlicher Restriktionsdigestion oder synthetischer Verfahren abgeleitet und in Vektoren hgiert, die z. B. Teile von Fusionssequenzen wie Beta-Galactosidase oder Superoxiddismutase (SOD), vorzugsweise SOD, enthalten. Verfahren und Vektoren, die für die Erzeugung von Polypeptiden nützlich sind, die Fusionssequenzen von SOD enthalten, werden in der EPO-Veröffentlichungs-Nr.0196056, veröffentlicht am 10.Oktober 1986, beschrieben. Vektoren, die Fusionspolypeptide von SOD- und HCV-Polypeptiden, d.h. NANB5.,.,, NANB8, und C100-3 codieren, die in einer Zusammensetzung von HCV-cDNAs codiert sind, werden in den Abschnitten IV. B. 1, IV. B. 2 bzw. IV. B. 4 beschrieben. Jeder gewünschte Abschnitt der HCV-cDNA, die ein offenes Leseraster in jedem der beiden codierenden Stränge enthält, kann als rekombinantes Polypeptid, z. B. als matures oder Fusionsprotein, gewonnen werden; alternativ dazu kann ein in der cDNA codiertes Polypeptid durch chemische Synthese hergestellt werden.
Die das gewünschte Polypeptid codierende cDNA, ganz gleich, ob in fusionierter oder maturer Form, und je nachdem, ob eine Signal^equenz, die Sekretion gestattet, enthalten ist oder nicht, kann in Expressionsvektoren ligiert werden, die für jeden Wirt geeignet sind. Sowohl eukaryontische als auch prokaryontische Wirtssysteme werden gegenwärtig bei der Bildung von rekombinanten Polypeptiden verwendet, und eine Zusammenfassung von einigen der üblicheren Kontrollsysteme und Wirtszeilinien wird in Abschnitt III. A., siehe unten, gegeben. Das Polypeptid wird dann aus lysierten Zellen oder aus dem Kulturmedium isoliert und in dem Umfang gereinigt, wie es für den beabsichtigten Verwendungszweck erforderlich ist. Die Reinigung kann nach im Fachgebiet bekannten Verfahren, z. B. Salzfraktionierung, Chromatographie auf lonenaustauschharzen, Affinitätschromatographie, Zentrifugation usw. erfolgen. Bezüglich der Vielfalt von Verfahren für die Reinigung von Proteinen siehe z. B. „Methods in Enzymology" (Verfahren in der Enzymologie). Derartige Polypeptide können als Diagnosen verwendet werden, oder diejenigen, die Neutralisation von Antikörpern bewirken, können in Vakzine formuliert werden. Die gegen diese Polypeptide wirkenden Antikörper können auch als Diagnosen oder für die passive Immuntherapie verwendet werden. Daneben sind, wie hier in Abschnitt II. J. später erörtert wird, die Antikörper zu diesen Polypeptiden für das Isolieren und Identifizieren der HCV-Partikel nützlich.
Die HCV-Antigene können auch aus HCV-Virionen isoliert werden. Die Virionen können in HCV-inf izierten Zellen in der Gewebekultur oder in einem infizierten Wirt gezüchtet werden.
II. C. Herstellung von antlgenen Polypeptiden und Konjugation mit Trägermitteln Eine antigene Region eines Polypeptids ist im allgemeinen relativ klein, typisch sind 8 bis 10 Aminosäuren oder eine geringere Länge. Fragmente von nur 5 Aminosäuren können eine antigene Region charakterisieren. Disso Segmente können Regionen des HCV-Antigens entsprechen. Demzufolge können, bei Verwendung der cDNAs von HCV als Basis, DNAs, die kurze Segmente von HCV-Polypeptiden codieren, rekombinant entweder als Fusionsproteine oder als isolierte Polypeptide exprimiert werden. Außerdem können kurze Aminosäuresequenzen bequem durch chemische Synthese gewonnen werden. Zum Beispiel in dem Falle, wo das synthetisierte Polypeptid korrekt konfiguriert wird, um das richtige Epitop zu liefern, jedoch zu klein ist, um immunisierend zu wirken, kann es an einen geeigneten Trägerstoff gebunden werden.
Eine Reihe von Techniken für die Erzielung derartiger Verbindungen sind den Fachleuten bekannt einschließlich der Bildung von Disulfidverbindungen unter Verwendung von N-Succinimidyl-3-(2-pyridylthio)propionat (SPDP) und Succinimidyl-4-(N-maleinimidomöthyDcyclohexan-i-carboxylat (SMCC), die von der Pierce Company, Rockford, Illinois, erworben wurden. (Falls das Peptid keine Sulfhydrylgruppe aufweist, kann dieses durch Addition eines Cystein-Restes bereitgestellt werden.) Diese ,Reagenzien bewirken eine Disulfidbindung zwischen ihnen und den Peptidcystein-Resten an emem Protein sowie eine Amidbindung durch das Epsilon-Amino an ein Lysin, oder andere freie Aminogruppen in anderen. Die Vielfalt derartiger Disulfid/ Amici-bildendar Agenzien ist bekannt, siehe zum Beispiel Immun. Rev. (1982) 62:185.
Andere bifunktionelle Kopplungsagenzien bilden ehor eine Thioether- als eine Disulfidverbindung. Viele diese Thioetherbildenden Agenzien stehen handelsüblich zur Verfügung und umfassen wirksame Ester von 6-Maleimidocapronsäure, 2-Bromessigsäure, 2-Jcdessigsäure, 4-(N-Maleimidomethyl)-cyclohexan-1-carbonsäure und dergleichen. Die Carboxylgruppen können durch Kombination mit Succinimid oder 1-Hydroxyl-2-nitro-4-sulfonsäure-Natriumsalz aktiviert werden. Die vorstehende Aufzählung ist als nicht erschöpfend anzusehen und Modifikationen der genannten Verbindungen können natürlich verwendet werden.
Es kann jede Trägersubstanz verwendet werden, die selbst nicht die Erzeugung von für den Wirt schädlichen Antikörpern induziert. Geeignete Trägermitial sine typischerweise große, langsam metabolisiorte Makromoleküle wie Proteine; Polysaccharide wie Latex-funktionalisierte Sepharose, Agarose, Cellulose, Celluloseperlen und dergleichen; polymere
Aminosäuren wie Polyglutaminsäure, Polylysin und dergleichen; Aminosäurecopolymere; und inaktive Viruspartikel, siehe z. B. Abschnitt II.D. Besonders nützliche Proteinsubstrate sind Serumalbumine, „keyhole limpet" Hämocyanin, Immunglobulinmoleküle, Thyroglobulin, Eieralbumin, Tetanustoxoid und andere den Fachleuten allgemein bekennte Proteine.
D.D. Herstellung von HCV-Epltopo enthaltenden Hybrldpartlkelimmunogenen
Die Imrruinogenizität der Epitope von HCV kann auch durch die Herstellung derselben in Säugetier- oder Hefesystemen, die mit Partikel-bildenden Proteinen fusionieren und assemblieren, wie z. B. das mit Hepatitis-B-Oberflächenantigen assoziierte, verstärkt werden. Die Konstrukte, in denen das NANBV-Epitop direkt an Partikel-bildende Protein-codierende Sequenzen gebunden ist, erzeugen Hybride, die bezüglich des HCV-Epitops immunisierend sind. Außerdem enthalten alle der hergestellten Vektoren gegenüber HBV spezifische Epitope mit verschiedenen Immunogenizitätsgraden wie z. B. das pre-S-Peptid. Somit sind aus Partikel-bildendem Protein konstruierte Partikel, die HCV-Sequenzen einschließen, bezüglich dem HCV und HBV immunisierend. Das Hepatitisoberflächenantigen (HBSAg) wurde in S.cerevlslae (Valenzuela u.a. [1982]) wie z.B. auch in Säugetterzellen (Valenzuela, P., u.a. [19841) vorhandenen Partikeln gebildet und assemblies. Die Bildung derartiger Partikel ergab, daß die Immunogenizität der Monomeruntereinheit verstärkt wird. Die Konstrukte können auch das immunodominante Epitop von HBSAg enthalten, die 55 Aminosäuren der presurface (pre-S)-Region umfassen, Neurath u. a. (1985). Konstrukte der pre-S-HBSAg-Partikel, die in Hefe exprimierbar sind, werden In der EPO 174444, veröffentlicht am 19. März 1986, offenbart; Hybride einschließlich heterologer viraler Sequenzen für die Hefeexpression werden in der EPO 175261, veröffentlicht am 26. März 1966, offenbart. Beide Anmeldungen werden hierin an den genannten Zessionär abgetreten und sind hierin durch Bezugnahme darauf eingeschlossen. Diese Konstrukte können auch in Säugetierzellen, wie in China-Hamster-Ovarium(CHO)-Zellen, unter Verwendung eines SV40-Dihydrofolat-Reduktasevektors (Michelle u.a. [1984]) exprimiert werden. Außerdem können Teile der Partikel-bildenden Protein-codierenden Sequenz durch ein HCV-Epitop codierende Codone ausgetauscht werden. Bei diesem Austausch können Regionen, die bei der Vermittlung der Aggregation der Einheiten nicht erforderlich sind, um immunisierende Partikel in Hefe oder Säugetieren zu bilden, getilgt werden, so daß auf diese Weise zusätzliche mit dem HCV-Epitop konkurrierende HBV-an'tigenische Stellen eliminiert werden.
U.E. Herstellung von Vakzinen
Vakzine können aus einem oder mehreren immunisierenden Polypeptiden hergestellt werden, die aus einer HCV-cDNA wie auch aus den in den Fig. 1 bis 32 dargestellten cDNA-Sequenzen oder aus dem HCV-Genom, dem sie entsprechen, gewonnen werden. Die zwischen HCV und Flaviviren beobachtete Homologie liefert die Polypeptide betreffende Information, welche als Vakzine höchstwahrscheinlich am effektivsten sind wie auch hinsichtlich der Regionen des Genoms, in die sie codiert sind. Die allgemeine Struktur des Flavivirusgenoms wird bei Rice u.a. (1986) diskutiert. Es wird angenommen, daß die Flavivirusgenomische RNA die einzige Virus-spezifische mRNA-Spezies ist und sie wird in drei virale Strukturproteine translatiert, d. h. C, M und E wie auch in zwei große nichtstrukturelle Proteine, NV4 und NV 5, und in eine Komplexgruppe kleinerer nichtstruktureller Proteine. Es ist bekannt, daß sich die Hauptneutralisierungsepitopn für Flaviviren im E-(Hüll)-Protein befinden (Roehring [1986]). Die das entsprechende HCV-E-Gen und Polypeptid codierende Region kann aufgrund der Homologie zum Flavivirus vorausgesagt werden. Somit können rekombinante Polypeptide umfassende Vakzine Epitope von HCV-E enthalten. Diese Polypeptide können in Bakterien-, Hefe- oder Säugetierzellen exprimiert werden, oder können wahlweise aus viralen Präparationen isoliert werden. Es wird auch angenommen, daß die anderen strukturellen Proteine ebenfalls Epitope onthalten, die schützende Anti-HCV-Antikörper bewirken. Folglich können auch in HCV-Vakzinen Polypeptide verwendet werden, die entweder einzeln oder in Kombination die Epitope E, C und M enthalten.
Zusätzlich zu dem obigen wurde nachgewiesen, daß die Immunisierung mit NS1 (nichtstrukturellem Protein 1) in Schutz gegen Gelbfieber resultiert (Schlesinger u. a. [1986]). Dieses ist wahr, wenn auch die Immunisierung nicht die Entstehung von neutralisierenden Antikörpern bewirkte. Somit ist wahrscheinlich, besonders da dieses Protein unter den Flaviviren äußerst konserviert zu sein scheint, daß HCV-NS1 ebenfalls gegen HCV-lnfektion schützt. Darüber hinaus ist auch bekannt, daß nichtstrukturelle Proteine Schutz gegen virale Pathogonität bewirken, auch wenn sie nicht die Erzeugung von neutralisierenden Antikörpern verursachen.
Angesichts der obigen Ausführungen können multivalente Vakzine gegen HCV ein oder mehrere strukturelle Proteine, und/oder ein oder mehrere nichtstrukturelle Proteine einschließen. Diese Vakzine können zum Beispiel rekombinante HCV-Polypeptide und/oder aus Virionen isolierte Polypeptide enthalten. Außerdem ist es möglich, inaktiviertes HCV in Vakzinen zu verwenden; die Inaktivierung kann durch die Herstellung von Viruslysaten oder durch andere den Fachleuten bekannte Mittel erfolgen, die die Inaktivierung der Flaviviren bewirken, zum Beispiel durch die Behandlung mit organischen Lösungsmitteln oder Detergenzien, oder durch die Behandlung mit Formalin. Daneben können Vakzine auch aus abgeschwächten HCV-Stämmen hergestellt werden. Die Herstellung der abgeschwächten HCV-Stämme wird später beschrieben. Es ist bekannt, daß einige der in flaviviren vorhandenen Proteine äußerst konservierte Regionen enthalten, so daß einige immunologische Quer-Reaktivität zwischen HCV und anderen Flaviviren angenommen werden muß. Es ist möglich, daß zwischen den Flaviviren und HCV geteilte Epitope .schützende Antikörper gegen eine oder mehrere Erkrankungen, die durch diese pathogenen Agenzien hervorgerufen wurden, bewirken. Daher könnte es möglich sein, Mehrzweckvakzine auf der Grundlage dieses Wissens zu entwickeln.
Die Herstellung von Vakzinen, die ein immunisierendes Polypeptid(e) als wirksamen Bestandteil enthalten, ist den Fachleuten bekannt. Typisch ist die Herstellung derartiger Vakzine als injizierbare Stoffe, entweder als flüssige Lösungen oder Suspensionen; feste Formen, die für die Lösung oder Suspension in einer Flüssigkeit vor der Injektion geeignet sind, können ebenfalls hergestellt werden. Das Präparat kenn auch emulgiert werden, oder das Protein kann in Liposome eingekapselt werden. Die immunisierenden Wirkstoffe werden oftmals mit pharmazeutisch annehmbaren und mit dem Wirkstoff verträglichen Trägersubstanzen gemischt. Geeignete Trägersubstanzen sind z. B. Wasser, physiologische Kochsalzlösung, Dextrose, Glycerol, Ethanol usw. und Kombinationen davon. Falls gewünscht, können die Vakzine kleine Mengen von Hilfssubstanzen wie Benetzungs- oder Emulgiermittel, pH-Puffermittel und/oder Adjuvanzien enthalten, die die Wirksamkeit der Vakzine verstärken. Beispiele für wirksame Adjuvanzien schließen ein, sind jedoch darauf nicht beschränkt: Aluminiumhydroxid, N-Acetylmuramyl-L-threonyl-D-isoglutamin (thr-MPD), N-Acetyl-nor-muramyl-L-alanyl-D-isoglutamin (CGP 11637, bozeichnet alsnor-MDP), N-Acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanin^-li'^'-dipalmitoyl-sn-glycero-S-hydroxyphosphryloxylethylamin (CGP 19835A, bezeichnet als MTP-PE) und RIBI, das drei aus Bakterien extrahierte Bestandteile enthält, Monophosphoryllipid A, Trehalosedimycolat und Zellwandskeleton (MPL + TDM + CWS) in 2% Squalone/Tween-80-
Emulsion. Die Wirksamkeit eines Adjuvans kann durch Messen der Antikörpermenge ermittelt werden, die gegen ein immunisierendes Polypeptid gerichtet ist, das eine HCV-antigene Sequenz enthält, die sich aus der Verabreichung dieses Polypeptids in Vakzinen ergibt, die ebenfalls aus verschiedenen Adjuvanzien bestehen.
Die Vakzine werden üblicherweise parenteral, durch Injektion zum Beispiel subkutan oder intramuskulär verabreicht. Weitere Rezepturen, die für andere Verabreichungsformen geeignet sind, schließen Suppositorien und in einigen Fällen orale Rezepturen ein. Suppositorien können traditionelle Binde- und Trägermittel, z. B. Polyalkylenglycole oder Triglyceride umfassen; derartige Suppositorien können aus Gemischen gebildet werden, die einen Wirkstoffanteil im Bereich von 0,5% bis 10%, vorzugsweise von 1 % bis 2%, enthalten. Orale Rezepturen schließen soiche normalerweise angewandten Trägersubstanzen ein wie z. B. pharmazeutische Qualitäten von Mannitol, Lactose, Stärke, Magnesiumstearat, Natriumsaccharin, Cellulose, Magnesiumcarbonat und dergleichen. Diese Zusammensetzungen können die Form von Lösungen, Suspensionen, Tabletten, Pillen, Kapseln, langzeitwirkenden Rezepturen oder Pulvern aufweisen und 10% bis 95% de· Wirkstoffs, vorzugsweise 25% bis 70%, enthalten.
Die Proteine könne.i in neutraler oder salziger Form in die Vakzine formuliert werden. Pharmazeutisch annehmbare Salze umfassen Säureadditionssalze (die mit freien Aminogruppen des Peptids gebildet werden) und die mit anorganischen Säuren, z.B. Chlorwasserstoff- oder Phosphorsäuren, oder solchen organischen Säuren wie Essig-, Oxal-, Tartar-, Maleinsäure usw., gebildet werden. Die mit den freien Carboxylgruppen gebildeten Salze können auch von anorganischen Basen, z. B. Natrium-, Kalium-, Ammonium-, Calcium- oder Eisen(lll)-hydroxiden, oder solchen organischen Basen wie Isopropylamin, Trimethylamin, 2-Ethylaminoethanol, Histidin, Procain und dergleichen abgeleitet werden.
II.F. Dosierung und Verabreichung von Vakzinen
Die Vakzine werden in einer mit der Dosierungsformulierung kompatiblen Weise verabreicht und in einer solchen Menge, die prophylaktisch und/oder therapeutisch wirksam ist. Die zu verabreichende Menge liegt im allgemeinen im Bereich von 5 Mikrogramm bis 250 Mikrogramm Antigen pro Dosis und hängt von der zu behandelnden Person ^b, der Fähigkeit des Immunsystems der Person Antikörper zu synthetisieren und dem gewünschten Schutzgrad ab. Genaue Mengen des erforderlichen Wirkstoffs, der verabreicht werden soll, hängen von der Beurteilung des Arztes ab und können für jede Person unterschiedlich sein.
Das Vakzin kann als Einzeldosis oder vorzugsweise als mehrfache Dosis verabreicht werden. Eine Mehrfachdosisverordnung bedeutet, daß ein Hauptvakzinationsverlauf aus 1 bis 10 einzelnen Dosen bestehen kann, an die sich andere Dosen anschließen, die während nachfolgender Zeitintervalle, die erforderlich sind, um die Immunitätsreaktion aufrechtzuerhalten oder wieder zu verstärken, z. B. in 1 bis 4 Monat(en) eine zweite Dosis und, falls erforderlich, nach mehreren Monaten eine weitere Dosis oder mehrere Dosen, verabreicht werden. Das Dosierungsschema wird auch, d.h. mindestens teilweise, anhand des Bedarfs des Individuums ermittelt und hängt von der Einschätzung des Arztes ab.
Darüber hinaus kann das immunisierende HCV-Antigen(e) enthaltende Vakzin in Verbindung mit anderen immunoregulierenden Mitteln, z.B. Immunglobulinen, verabreicht werden.
II.G. Herstellung von Antikörpern gegen HCV-Epitope
Die wie zuvor geschildert hergestellten immunisierenden Polypeptide werden zur Erzeugung von Antikörpern, und zwar sowohl von polyclonalen als auch von monoclonalen, verwendet. Wenn polyclonale Antikörper gewünscht werden, wird ein ausgewähltes Säugetier (z. B. eine Maus, Ziege, ein Kaninchen, Pferd usw.) mit einem Immunität erzeugenden Polypeptid, das ein oder mehrere HCV-Epitop(e) trägt, immunisiert, Das Serum des immunisierten Tieres wird gesammelt und entsprechend den bekannten Prozeduren behandelt. Wenn das polyclonale Antikörper gegenüber HCV-Epitop enthaltende Serum Antikörper gegen andere Antigene enthält, können die polyclonalen Antikörper durch Immunoaffinitätschromatographie gereinigt werden.
Techniken für die Erzeugung und Verarbeitung polyclonaler Antiseren sind im Fachgebiet bekannt, siehe z. B. Mayer und Walker
Im anderen Falle können polyclonale Antikörper von einem Säugetier isoliert werden, das sich zuvor mit HCV infiziert hatte. Ein Beispiel für ein Reinigungsverfahren von Antikörpern gegen HCV-Epitope aus Serum von einem infizierten Individuum, das auf Affinitätschromatographie und unter Nutzung eines Fusionspolypeptids von SOD und eines innerhalb cDNA-Clon 5-1-1 codierten Polypeptids basiert, wird in Abschnitt V. E, dargestellt.
Monoclonale Antikörper, die gegen HCV-Epitope gerichtet sind, können durch einen Fachmann ebenfalls leicht hergestellt werden. Die generelle Verfahrensweise für die Herstellung monoclonaler Antikörper durch Hybridomas ist allgemein bekannt.
Immortale Antikörper-produzierende Zellinien können durch Zellfusion und auch durch andere Techniken, wie direkte Transformation von B-Lymphocyten mit geschwulstbildender DNA oder Transfektion mit dem Epstein-Barr-Virus, erzeugt werden. Siehe z. B. M. Schreier u. a., (1980); Hammerling u. a. (1981); Kennett u. a. (1980); steige auch US-Patent-Nr.4,341,761, 4,399,121,4,427,783,4,444,887,4,466,917,4,472,500,4,491,632 und 4,493,890. Gegen HCV-Epilope hergestellte monoclonale Antikörper können hinsichtlich ihrer unterschiedlichen Eigenschaften, d. h. Isotyps, Epitopaff inität usw. anhand von Listen gescreent werden.
Antikörper, sowohl monoclonale als auch polyclonale, die gegen HCV-Epitope gerichtet sind, sind besonders nützlich bei der Diagnose, und jene, die neutralisierend wirken, sind bei der passiven Immunotherapie nützlich. Monoclonale Antikörper können spezieil dazu verwendet werden, Anti-Idiotypus-Antikörper zu entwickeln.
Anti-Idiotypus-Antikörper sind Immunoglobuline, die ein „inneres Ebenbild" des Antigens des infektiösen Agens, gegen das der Schutzgewünscht wird, tragen. Siehe z.B. Nisonoff, A., u.a. (1981) und Dreesman u.a. (1985).
Techniken für die Züchtung von Anti-Idiotypus-Antikörpern sind im Fachgebiet allgemein bekannt. Siehe z. B. Grzych (1985), MacNamara u.a. (1984) und Uytdehaag u.a. (1985). Diese Anti-Idiotypus-Antikörper können auch für die Behandlung von NANBH wie auch für eine Aufhellung der immunisierenden Regionen des HCV-Antigens nützlich sein.
II. H. Diagnostische» Ollgonucleotidsonden und -kits
Unter Verwendung der offenbarten Teile der isolierten HCV-cDNAs 'As Grundlage, einschließlich jener in den Fig. 1 bis 32, können Oligomere von ungefähr 8 Nucleotiden oder mehr, entweder durch Exzision oder synthetisch, hergestellt werden, die mit dem HCV-Genom hybridieren und bei der Identifikation des Virusagens bzw. der Virusagenzien, sowie bei der Charakterisierung der Virusgenome wie auch beim Nachweis der Viren in erkrankten Menschen nützlich ist. Die Sonden für HCV-Polynucleotide (natürliche oder abgeleitete) sind von einer Länge, die den Nachweis von einzigartigen Virussequenzen
durch Hybridisierung gestatten. Während 6 bis 8 Nucleotiden eine bearbeitungsfähige Länge darstellen, werden Sequenzen von 10 bis 12 Nucleotiden bevorzugt, und etwa 20 Nucleotide erscheinen oine optimale Länge zu sein. Diese Sequenzen werden vorzugsweise aus Regionen abgeleitet, denen es an Heterogenität mangelt. Diese Sonden können unter Verwendung von Routinemethoden, einschließlich automatisierter Oligonucleotldsyntheseverfahren hergestellt werden. Unter den nützlichen Sonden sind z. B. der Clon 5-1 -1 und die hierin offenbarten zusätzlichen Clone wie auch die versi: iiedenen Oligomere, die bei der Sondierung der cDNA-Bibliotheken, die im weiteren Text bekanntgegeben werden, nützlich sind. Ein Komplement zu irgendeinem einzigartigen Teil des HCV-Genoms wird ausreichend sein. Für die Verwendung als Sonden ist die vollständige Komplementarität wünschenswert, obgleich dieses unnötig sein kann, da sich die Länge des Fragments vergrößert. Für die Verwendung derartiger Sonden als Diagnosemittel wird die zu analysierende biologische Probe wie Blut oder Serum, falls gewünscht, behandelt, um die darin enthaltenden Nucleinsäuren zu extrahieren. Die aus der Probe resultierende Nucleinsäure kann der Gelelektrophorese oder anderen Größentrennungsverfahren unterzogen werden; im anderen Falle können die Nucleinsäureproben ohne Größentrennung punktförmig angebracht werden. Anschließend werden die Proben markiert.
Geeignete Markierungen und Methoden für die Markierung der Proben sind im Fachgebiet bekannt und schließen z. B. durch nick-Translation oder Kinase, Biotin, fluoreszierende Sonden und chemilurnineszente Sonden eingefügte radioaktive Markierungen ein. Die aus der Probe extrahierten Nucleinsäuren werden dann mit der markierten Sonde unter Kybridisierungsbedingungen, die geeigneten Kontrollen unterworfen sind, behandelt.
Die Sonden können zu dem HCV-Genom vollständig komplementär gemacht werden. Daher sind gewöhnlich sehr strenge Kontrollbedingungen wünschenswert, um falsch-positive Resultate zu verhindern. Die strengen Kontrollbedingungen sollten jedoch nur anrjewendet werden, wenn die Sonden zu Regionen des Virusgenoms mit mangelnder Heterogenität komplementär sind.
Die stringenter Kontrolle unterworfena Hybridisierung wird durch eine Anzahl Faktoren während der Hybridisierung und während des Waschverfahrens bestimmt, einschließlich der Temperatur, lonenstärke, Zeitdauer und Formamidkonzentration. Diese Faktoren werden z.B. von Maniatis, T. (1982) umrissen.
Im allgemeinen wird davon ausgegangen, daß die HCV-Genomsequenzen im Serum von infizierten Individuen in relativ niedrigen Anteilen, d.h. von ungefähr 102 bis 103 Sequenzen pro ml vorhanden sind. Diese Größenordnung kann es erforderlich machen, daß bei den Hybridisierungsassays Verstärkungstechniken angewendet werten. Derartige Techniken sind im Fachgebiet bekannt. Das von der Enzo Biochemical Corporation zur Verfügung gestellte „ Bio-Bridge"-System verwendet z. B. terminal«,- Desoxynucleotidtransferasi, um an eine DNA-Sondo nichtmodifizierte 3'-poly-dT-Schwänze anzufügen. Die poly-dT-tailed Sonde wird zur Targetnucleotidsequonz hybridisiere und anschließend zu einem Biotin-modifizierten poly-A. Die PCT-Anmeldunp 84/03520 und EPA 124221 beschreiben ein DNA-Hybridisiarungsassay, indem: (DAnalytzu einer einzelsträngigen DNA-Sonde hybridisiert wird, die zu einem Enzym-markierten Oligonucleotid komplementär ist; und (2) das resultierende „tailed" Duplex wird zu einem Enzym-markierten Oligonucleotid hybridisiert. Die EPA 204510 beschreibt einen DNA-Hybridisierungsassay, bei dem Analyt-DNA mit einer Sondo in Berührung gebracht wird, die einen Schwanz hat, wie einen poly-dT-Schwanz, einen Verstärkerstrang, der eine Sequenz hat, die an den Schwanz der Sonde, wie eine poly-A-Sequenz, hybridisiert und in der Lage ist, eine Vielzahl markierter Stränge zu binden. Eine besonders wünschenswerte Technik kann zuerst die Amplifizierung der Target-HCV-Sequenzen in Seren auf ungefähr das 10.000fache beinhalten, d. h. auf ungefähr 106 Sequenzen/ml. Dieses kann z. B. durch die Technik von Saiki u.a. (1986) erreicht werden. Die amplifizierte(n) Sequenz(en) kann bzw. können dann unter Nutzung eines Hybridisierungsassays, der in der gleichfalls anhängigen US-Anmeldung, Anwalt Oocket-Nr. 2300-0171, die am 15. Oktober 1987 eingereicht und an dan darin genannten Zessionär abgetreten wurde und hiermit unter Bezugnahme darauf eingeschlossen ist, nachgewiesen werden. Dieser Hybridisierungsassay, der Sequenzen in einer Höhe von 10Vml nachweisen soll, nutzt Nucleinsäuremultimere, die sich an dieeinzelsträngige Analyt-Nucleinsäure und ebenfalls an eine Vielzahl einzelsträngiger markierter Oligonucleotide binden. Ein geeigneter Lösungsphase-Sandwich-Assay, bei dem markierte Polynucleotidsonden verwendet werden können, und db Methoden für die Herstellung von Sonden werden in der EPO 225307 (?), veröffentlicht am 16. Juni 1987, Anmeldeaktenzeichen-Nr. 807,624 beschrieben, die an den hierin genannten Zessionär abgetreten und hiermit unter Bezugnahme daiauf eingeschlossen wird.
Die Sonden können in Diagnose-Kits verpackt werden. Diagnose-Kits beinhalten die Sonden-DNA, die markiert sein kann; im anderen Fall kann die Sonden-DNA nicht markiert sein und die Zusatzstoffe für die Markierung können in dem Kit enthalten sein. Der Kit kann auch andere geeignete verpackte Reagenzien und Materialien enthalten, die für das spezielle Hybridisierungsprotokoll benötig werden, wie z. B. Standards und auch Vorschriften für die Durchführung des Tests.
II.I. Immunoassay und Diagnose-Kits
Beide Pol/peptide, die immunologisch mit HCV-Antikörper enthaltendem Serum reagieren, z. B. jene, die von den Clonen abgeleite', oder in diesen codiert wurden und in Abschnitt IV. A. beschrieben sind, sowie deren Zusammensetzungen (siehe Abschnitt IV. A.) und die Antikörper, die gegen die HCV-spezifischen Epitope in diesen Polypeptiden entwickelt wurden, siehe z. B. Abschnitt IV. E., sind bei Immunoassays zum Nachweis der Anwesenheit von HCV-Antiktf-p?rn oder hinsichtlich der Anwesenheit des Virus und/oder viraler Antigene in biologischen Proben, einschließlich z. B. Blut- oder Serumproben nützlich. Die Gestaltung der Immunoassays wird häufig verändert und eine Vielzahl davon ist im Fachgebiet bekannt. Der Immunoassay kann z. B. ein Virusantigen nutzen, z. B. ein Polypeptid, das von irgendeinem der HCV-cDNA enthaltenden Clone abgeleitet wurde, siehe Abschnitt IV. A., oder von den zusammengesetzten cDNAs, die von den cDNAs in diesen Clonen abgeleitet wurde, oder vom HCV-Genom, von dem die cDNA in diesen Clonen abgeleitet wurden; im anderen Falle kann der Immunoassay eine Kombination der aus diesen Quellen abgeleiteten Virusantigene verwenden. Es kann z. B. verwendet werden: ein monoclonaler Antikörper, der gegen ein Virusapitop(e) gerichtet ist, eine Kombination von monoclonalen Antikörpern, die gegen ein Virusantigen gerichtet ist, monoclonale Antikörper, die gegen unterschiedliche Virusantigene gerichtet sind, polyclonale Antikörper, die gegen das gleiche Virusantigen gerichtet sind, oder polyclonale Antikörper, die gegen unterschiedliche Virusantigene gerichtet sind. Die Protokolle können z. B. auf Konkurrenz-, oder auf direkten Reaktions- oder auf Sandwich-artigen Assays basieren. Die Protokolle können B. auch feste Unterlagen verwenden, oder können durch Immunopräzipitation zustande kommen. Die meisten Assays beinhalten die Verwendung eines markierten Antikörpers oder Polypeptide; die Markierungen können z. B. durch fluoreszierende, chemilumineszente, radioaktive oder Farbmoleküle erfolgen. Assays, die die Signale aus der Sonde verstärken, sind ebenfalls bekannt; Beispiele dafür sind Assays, die Biotin und Avidin nutzen sowie Enzym-markierte und indirekte Immunoassays wie die ELISA-Assays.
Das Flavivirusmodell für HCV gestattet Voraussagen bezüglich der wahrscheinlichen Lokalisation von Diagnose-Epitopen für Virion-Strukturproteine. Die C-, pre-M-, M- und Ε-Domänen enthalten wahrscheinlich alle Epitope signifikanten Potentials für den Nachweis von Virusantigenen und besonders für Diagnosen. Des gleichen wird angenommen, daß die Domänen der nichtstrukturellen Proteine wichtige Diagnoseepitope (z.B. NS5, das eine mußmaßliche Polymerase codiert; und NS1, das ein mußmaßliches Komplerr.ent-bindendes Antigen codiert) enthalten. Rekombinante Polypeptide, oder virale Polypeptide, die Epitope aus diesen spezifischen Domänen einschließen, können für den Nachweis von Virusantikörpern in infizierten Blutspendern und infizierten Patienten nützlich sein.
Außerdem können die gegen B- und/oder M-Proteine gerichteten Antikörper bei Immunoassays für den Nachweis von Virusantigenen in Patienten mit HCV-verursachter NANBH und bei infizierten Blutspendern verwendet werden. Darüber hinaus können diese Antikörper besonders nützlich sein beim Aufspüren von Spendern und Patienten in der akuten Phase. Kits, die für die Immunodiagnose geeignet sind und die die entsprechenden markierten Reagenzien enthalten, werden durch Verpackung der zweckdienlichen Materialien, einschließlich der erfindungsgemäßen Polypeptide, die HCV-Epitope oder Antikörper, die gegen HCV-Epitope gerichtet sind, in geeigneten Containern enthalten, gemeinsam mit den verbleibenden Reagenzien und Stoffen, die für die Durchführung des Assays erforderlich sind, wie auch einem geeigneten Satz Assayvorschriften konstruiert.
N.J. Weitere Charakterisierung des HCV-Genoms, der Virionen und Virusantigene unter Verwendung von aus der cDNA vom Virusgenom abgeleiteten Sonden
Die HCV-cDNA-Sequenzinfoi mation in den Clonen, die in Abschnitt IV. A. beschrieben und in den Fig. 1 bis 32 dargestellt werden, richtet sich gegen HCV-Epitope, die bei der Diagnose und/oder Behandlung von HCV-verursachter NANBH nützlich sein würden. Die cDNA-Sequenzinformation in den zuvor erwähnten Clonen ist für das Design von Sonden für die Isolierung von zusätzlichen cDNA-Sequenzen nützlich, die von bis jetzt Undefinierten Regionen des HCV-Genoms bzw. der HCV-Genome abgeleitet werden, von denen die in Abschnitt IV.A. beschriebenen cDNAs in Clonen gewonnen wurden. Zum Beispiel können die markierten Sonden, die eine Sequenz von ungefähr 8 oder mehr Nucleotide und vorzugsweise 20 oder mehr Nucleotide enthalten, die aus Regionen in der Nähe der 5'-Termini oder 3'-Termine der Familie der HCV-cDNA-Sequenzen abgeleitet wurden und in den Fig. 1, 3,6,9,14 und 32 gezeigt werden, zur Isolierung überlappender cDNA-Sequenzen aus HCV-cDNA-Bibliotheken verwendet werden. Diese Sequenzen, die die cDNAs in den zuvor erwähnten Clonen überlappen, die aber auch Sequenzen enthalten, die aus den Regionen des Genoms, aus dem die cDNAs in den zuvor erwähnten Clonen nicht abgeleitet werden herrühren, können dann zum Synthetisieren von Sonden für die Identifikation der anderen überlappenden Fragmente, die nicht notwendigerweise die cDNAs in den in Abschnitt IV. A. beschriebenen Clonen überlappen, verwendet werden. Sofern das HCV-Genom segmentiert wird und die Segmente keine gemeinsamen Sequenzen aufweisen, ist es möglich, das gesamte bzw. die gesamten Virusgenom(e) unter Verwendung der Technik der Isolierung von überlappenden cDNAs, die von dem bzw. den Virusgenom(en) abgeleitet sind, zu sequenzieren. Obgleich es unwahrscheinlich ist, falls das Genom ein segmentiertes Genom ist, das keine gemeinsame Sequenzen aufweist, kann die Sequenz des Genoms durch serologisches Screening der Lambda-gt 11 -HCV-cDNA-Bibliotheken ermittelt werden, wie bei der Isolierung von Clon-5-1 -1, durch Sequenzieren von cDNA-lsolation und durch Verwendung der isolierten cDNAs zum Isolieren überlappender Fragmente, indem die für die Isolierung und Sequenzierung der Clone in Abschnitt IV.A. beschriebene Technik angewandt wurde. Im anderen Falle könnte die Charakterisierung der Genomsegmente aus dem aus den gereinigten HCV-Partikeln isolierten Virusganom(en) stammen. Verfahren für die Reinigung der HCV-Pattikel ur,d für den Nachweis derselben während des Reinigungsverfahrens werden hier weiter untenstehend beschrieben. Verfahren für die Isolierung der Polynucleotidgenome aus Viruspartikeln sind im Fachgebiet bekannt, und ein anwendbares Verfahren wird in Beispiel IV.A. 1. dargestellt. Die isolierten Genomsegmente könnten anschließend doniert und sequenziert werden. Somit ist es mit der darin bereitgestellten Information möglich, das bzw. die gesamten HCV-Genom(e) ungeachatet seiner bzw. ihrer Natur zu clonen und zu sequenzieren.
Methoden für die Konstruktion von cDNA-Bibliotheken sind im Fachgebiet bekannt und werden im vorstehenden wie auch weiter unten erörtert; eine Methode für die Konstruktion von HCV-cDNA-Bibliotheken in Lambda-gt 11 wird in Abschnitt IV.A. im weiteren Text erörtert. Die für das Screening mit Nucleinsäuresonden nützlichen CDNA-Bibliotheken können auch in anderen im Fachgebiet bekannten Vektoren konstruiert werden, z.B. Lambda-gt 10 (Huynh u.a. [1985]). Die HCV-abgeleitete cDNA, die durch aus den cDNAs in den Fig. 1 bis 32 abgeleitete Sonden nachgewiesen wurde und aus den aus diesen cDNAs abgeleiteten Polynucleotiden synthetisierten Sonden, kann aus dem Clor. durch Digestion des isolierten Polynucleotids mit dem bzw. den geeigneten Restriktionsenzym(en) isoliert und sequenziert werden. Siehe -. B. Abschnitt IV.A. 3. und IV.A. 4. bezüglich der für die Isolierung und Sequenzierung der HCV-cDNA', die die HCV-cDNA in Clon-5-1-1 überlappt, verwendeten Techniken; die Abschnitte IV.A. 5. bis IV. A.7. bezüglich der Isolierung und Sequenzierung von HCV-cDNA, die die in Clon 81 überlappt, und Abschnitt IV. A.8 und IV. A.9 bezüglich der Isolierung und Sequenzierung eines Clons, der einen anderen Clon (Clon 36) überlappt, der Clon 81 überlappt.
Die aus diesen überlappenden HCV-cDNAs abgeleitete Sequenzinformation ist für die Bestimmung von Homologie und Heterogenitätsgebieten innerhalb des bzw. der Virusgenom(e) nützlich, die wiederum auf die Anwesenheit von unterschiedlichen Genomstämmen hinweisen könnten, und/oder auf Populationen von defekten Partikeln. Sie sind ebenfalls für das Design der Hybridisierungssonden nützlich, um HCV oder HCV-Antigene oder HCV-Nucleinsäuren in biologischen Proben festzustellen, und während der Isolierung von HCV (wird weiter unten erörtert) die in Abschnitt II. G beschriebenen Techniken zu nutzen. Darüber hinaus können die überlappenden cDNAs verwendet werden, um Expressionsvektoren für aus dem bzw. den HCV-Genom(en) abgeleitete Polypeptide zu erzeugen, die auch die in den Clonen 5-1-1,36,81,91 und 1-2 und in den anderen in Abschnitt IV.A beschriebenen Clonen codierten Polypeptide codieren. Diese Techniken für die Erzeugung dieser HCV-Epitope enthaltenden Polypeptide und für Antikörper, die gegen die in ihnen enthaltenen HCV-Epitope gerichtet sind wie auch ihre Verwendungsmöglichkeiten werden analog zu jenen für Polypeptide beschrieben, die aus NANBV-cDNA-Sequenzen abgeleitet wurden und in den Clonen 5-1-1,32,35,36,1-2,81 und 91 enthalten sind und im vorstehenden sowie im nachstehenden Text erörtert werden.
In der Familie der cDNA-Sequenzen codierte, in den Clonen 5-1-1,32,35,36,81,91,1-2 und in den anderen in Abschnitt IV.A. beschriebenen Clonen ist Antigen bzw. sind Antigene enthalten, die Epitope aufweisen, die gegenüber HCV einzigartig erscheinen, d.h. Antikörper, die gegen diese Antigene gerichtet sind, sind bei den mit HAV oder HBV infizierten Individuen und bei nicht mit HCV infizierten Individuen abwesend (siehe in Abschnitt IV. B. aufgeführte serologische Daten). Darüber hinaus zeigt ein Vergleich der Sequenzinformation dieser cDNAs mit den Sequenzen von HAV, HBV, HDV und mit den genomischen
Sequenzen in der Genbank, daß zwischen diesen cDNAs und den Polynucleotidsequenzen dieser Quellen eine minimale Homologie besteht. Folglich können Antikörper, die gegen innerhalb der cDNAs dieser Clone codierten Antigene gerichtet sind, zur Identifizierung von BB-NANBV-Partikeln verwendet werden die aus infizierten Individuen isoliert wurden. Außerdem sind sie auch für die Isolierung von NANBH-Wirkstoff(en) nützlich.
HCV-Partikel können aus den Seren von BB-NANBV-infizierten Individuen oder aus Zellkulturen durch im Fachgebiet bekannte Methoden, einschließlich z.B. auf der Größendiskriminierung basierende Techniken wie Sedimentations- oder Exclusionsmethoden oder auf der Dichte basierende Techniken wie Ultrazentrifugieren in Dichtearadienten, oder Präzipitation mit Agenzien wie Polyethylennjycol oder Chromatographie auf einer Vielzahl von Materialien wie anionische oder kationische Austauschmaterialien, und Materialien, die aufgrund von Hydrophobie binden, wie auch Affinitätssäulen isoliert werden. Während der Isolierungsprozedur kann die Anwesenheit von HCV durch die Hybridisierungsanalyse des extrahierten Genoms ermittelt werden, wobei Sonden verwendet werden, die von im vorstehenden beschriebenen HCV-cDNAs abgeleitet wurden, oder durch Immunoassay (siehe Abschnitt II. I.), wobei als Sonden gegen HCV-Antigene gerichtete Antikörper genutzt werden, die innerhalb der Familie der in den Fig. 1 bis 32 gezeigten cDNA-Sequenzen codiert sind, und auch gegen HCV-Antigene gerichtet sind, die innerhalb der im vorstehenden erörterten überlappenden HCV-cDNA-Sequenzen codiert sind. Die Antikörper können monoclonal oder polyclonal sein, und es kann wünschenswert sein, die Antikörper vor ihrer Verwendung im Immunoassay zu reinigen. Ein Reinigungsverfahren für polyclonale Antikörper, die gegen Antigen(e) gerichtet sind, die innerhalb Clon 5-1-1 codiert sind, wird in Abschnitt IV. E. beschrieben; analoge Reinigungsverfahren können für gegen andere HCV-Antigene gerichtete Antikörper eingesetzt werden.
Antikörper, die gegen HCV-Antigene gerichtet sind, die innerhalb der Familie von in den Fig. 1 bis 32 gezeigten cDNAs codiert sind wie auch jene, die innerhalb überlappender HCV-cDNAs codiert und die an feste Unterlagen geheftet sind, sind für die Isolierung von HCV durch die Immunoaffinitätschromatographie nützlich. Techniken für die Immunoaffinitätschromatographie sind im Fachgebiet bekannt, einschließlich Techniken, für die Anheftung von Antikörpern an feste Unterlagen, so daß sie ihre immunoselektive Aktivität behalten; die Techniken können aus jenen bestehen, in denen die Antikörper an die Unterlage adsorbiert werden (siehe z. B. Kurstak in „Enzyme Immunodiagnosis", Seite 31 bis 37) wie auch aus jenen, in denen die Antikörper kovalent an die Unterlage gebunden werden. Im allgemeinen ähneln die Techniken jenen, die für die kovalente Bindung von Antigenen an eine feste Unterlage verwendet werden und die in Abschnitt II. C. allgemein beschrieben werden, Spacer-Gruppen können jedoch in die bifunktionellen Kupplungsmittel eingeschlossen werden, so daß die Antigenbindungsstelle des Antikörpers zugänglich bleibt.
Während der Reinigungsprozedur kann die Anwesenheit von HCV durch Nucleinsäurehybridisierung nachgewiesen und/oder überprüft werden, indem als Sonden von der Familie der HCV-cDNA-Sequenzen, dargestel.t in den Fig. 1 bis 32, abgeleitete Polynucleotide verwendet werden wie auch solche, die von überlappenden HCV-cDNA-Sequenzen abgeleitet und im vorstehenden Text beschrieben wurden. In diesem'Falle würden die Fraktionen unter Bedingungen behandelt, die Auseinanderreißen der Viruspartikel bewirken, z. B. mit Detergenzien in Anwesenheit von Cnelatbildnern und in Anwesenheit von viralen Nucleinsäuren, die durch in Abschnitt H.H. beschriebene Hybridierungstechniken ermittelt wurden Weitere Bestätigung, daß die isolierten Partikel die Wirkstoffe sind, die HCV induzieren, können durch Infizieren von Schimpansen mit den isolierten Viruspartikeln mit anschließender Bestimmung, ob die NANBH-Symptome aus der Infektion herrühren, gewonnen werden.
Virale Partikel aus den gereinigten Präparationen können dann weiterhin charakterisiert werden. Die genomische Nucleinsäure wurde gereinigt. Auf der Grundlage ihrer Sensivität zu RNase, und nicht DNase I, sieht es so aus, als ob das Virus aus einem RNA-Genom zusammengesetzt ist. Siehe Beispiel IV.C. 2., weiter unten. Die Strängigkeit und Zirkularität oder Nichtzirkularität kann durch im Fachgebiet bekannte Techniken, einschließlich z. B. ihrer Sichtbarmachung durch Elektronenmikroskopie, ihrer Migration bei den Dichtigkeitsgradienten und ihrer Sedimentationscharakteristika ermittelt werden. Auf der Grundlage der Hybridisierung des eingefangenen (captured) HCV-Genoms an die negativen Stränge von HCV-cDNAs scheint es, daß das HCV aus einem positiv-strängigen RNA-Genom (siehe Abschnitt IV. H. 1) besteht. Techniken wie diese werden z. B. in „Methods in Enzymology" beschrieben. Außerdem kann die gereinigte Nucleinsäure cloniert und sequenziert werden mittels bekannter Techniken, einschließlich Reserver Transkriptase, da das genomische Material RNA ist. Siehe z. B. Maniatis (1982) und Glover (1985). Bei Verwendung der aus den viralen Partikeln abgeleiteten Nucleinsäure ist es möglich, das gesamte Genom zu sequenzieren, je nachdem, ob es oder ob es nicht segmentiert ist.
Die Untersuchung der Homologie des innerhalb des kontinuierlichen offenen Leserahmens von kombinierten Clonen 141 bis 390 (siehe Fig. 26) codierten Polypeptide zeigt, daß das HCV-Polypeptid Homologieregionen bei den entsprechenden Proteinen in den konservierten Regionen der Flaviviren enthält. Ein Beispiel dazu wird im Abschnitt IIV. H.3 beschrieben. Diese Feststellung weist viele wichtige Aspekte auf. Erstens steht dieser Beweis in Verbindung mit den Ergebnissen, daß das HCV ein positivsträngiges Genom enthält, dessen Größe ungefähr 10.000 Nucleotide umfaßt, in Einklang mit der Vermutung, daß das HCV sin Flavirirus oder ein flaviartiges Virus ist. Im allgemeinen weisen Flavivirus-Virionen und ihre Genome eine relativ konsistente Struktur und Organisation auf, die bekannt sind. Siehe Rice u.a. (1988) sowie Brinton, M. A. (1988). Folglich können die die strukturellen Gene codierenden Polypeptide C, pre-M/M und E im 5'-Terminus des Genoms upstream von Clon 14i lokalisiert werden. Darüber hinaus können unter Einbeziehung des Vergleichs mit anderen Flaviviren Voraussagen hinsichtlich der genauen Lokalisation der diese Proteine codierenden Sequenzen gemacht werden.
Die Isolierung der Sequenzen upstream von jenen in Clon 14 i kann auf vielfache Welse erfolgen und die hierin zur Verfügung gestellten Informationen sind für einen Fachmann einleuchtend. Zum Beispiel kann die Genom-„walking"-Technikzur Isolierung anderer Sequenzen angewendet werden, die 5' zu jenen in Clon 14 i sind, die jedoch jenen Clon überlappen; dieses führt wiederum zur Isolierung zusätzlicher Sequenzen. Diese Technik ist ausführlich in Abschnitt IV. A„ siehe weiter unten, dargestellt. Es ist z. B. bekannt, daß die Flaviviren konservierte Epitope und Regionen von konservierten Nucleinsäuresequenzen besitzen. Polynucleotide, die die konservierten Sequenzen enthalten, können als Sonden verwendet werden, die das HCV-Genom binden und somit seine Isolierung gestatten. Daneben können diese konservierten Sequenzen in Verbindung mit den aus den HCV-cDNAs, siehe Fig. 22, abgeleiteten zum Design von Startern für die Verwendung in Systemen eingesetzt werden, - lie Genomsequenzen upstream von denen in Clon 14i unter Verwendung der Polymerasekettenreaktlonstechnologie amplifizierten. Ein Beispiel dafür wird im weiteren Text beschrieben.
Die Struktur des HCV kann ebenfalls ermittelt und seine Komponenten isoliert werden. Die Morphologie und Größe kann zum Beispiel durch Elektronenmikroskopie bestimmt werden. Die Identifizierung und Lokalisierung von spezifischen Viruspolypeptidantigenen wie „coat" oder Hüllantigene, oder innere Antigene wie Nucleinsäurebindungsproteine,
Kernantigene und Polynucleoatidpolymerase(n) können ebenfalls ermittelt werden durch z. B. Bestimmung, ob die Antigene als größte oder kleinste Viruskomponenten vorhanden sind, wie auch durch die Nutzung der gegen die spezifischen Antigene, die innerhalb von isolierten cDNAs als Sonden codiert sind, gerichteten Antikörper. Diese Information ist für das Design von Vakzinen nützlich, z. B. kann es günstig sein, ein äußeres Antigen in ein Vakzinpräparat einzubeziehen. Multivalente Vakzine können z. B. ein aus dem Genom, das ein Strukturprotein codiert, z. B. E, abgeleitetes Polypeptid wie auch ein Polypeptid aus einem anderen Teil des Genoms, z. B. ein nicht-strukturelles oder strukturelles Polypeptid enthalten.
II. K. Zellkultursysteme und tierische Modellsysteme für die HCV-Replikation
Die Annahme, daß HCV ein Flavivirus oder ein flaviartiges Virus ist, liefert auch Informationen über Methoden für das wachsende HCV. Der Terminus „flaviartig" bedeutet, daß das Virus einen signifikanten Anteil an Homologie gegenüber den bekannten konservierten Regionen der Flaviviren aufweist und daß der größere Teil des Genoms ein einzelner offener Leserahmen ist. Methoden für die Züchtung von Flaviviren sind den Fachleuten bekannt (siehe z. B. die Reviews von Brinton (1986) Slollar, V. [1080]). Im allgemeinen können geeignete Zellen oder Zellinien für die Züchtung von HCV diejenigen einschließen, die dafür bekannt sind, daß sie die Flavivirus-Replikation unterstützen, z.B. folgende: Affennieren-Zellinien (z. B. HK3, VERQ); Schweinenieren-Zellinien(z.B. PS); Baby-Hamsterniere-Zellinien (z.B. BHK); Mäuse-Makrophage-Zellinien (z.B. P38801, MK1, MmI); Human-Makrophagezellinien (z.B. U-937); periphere Humanblutleucocyten, adhärenste Humanmonocyten; Hepatocyten oder Hepatocyt-Zellinien (z. B. HUH7, HEPC2); Embryo-oder embryonale Zellen (z. B. Hühnerembryofibroblasten oder Zellinien, die von wirbellosen Tieren, vorzugsweise von Insekten (z. B. Drosophila-Zellinien), oder besonders bevorzugt von Gliederfüßlern, z. B. Moskito-Zellinien (z. B. Albopictus, Aedes aegypti, Cutex tritaeniohynchus) oder Zecken-Zellinien (z. B. RML-14, Dermacentor parumaportus) abgeleitet sind.
Es ist möglich, daß primäre Hepatocyten gezüchtet werden können und anschließend mit HCV infiziert werden; oder im anderen Falle könnten die Hepatocytkulturen aus den Lebern der infizierten Individuen (z.B. Menschen oder Schimpansen) gewonnen werden.
Im letzteren Falle ist ein Beispiel das einer Zelle, die In vivo infiziert und In vitro übertragen wird.
Darüber hinaus können verschiedene Immortalisationsmethoden eingesetzt werden, um von Hepatocytkulturen abgeleitete Zellinien zu gewinnen. Zum Beispiel können primäre Leberkulturen (vor und nach Anreicherung der Hepatocyt-Population) mit einer Anzahl Zellen fusionieren, um ihre Stabilität aufrechtzuerhalten. Es können z. B. auch Kulturen mit transformierenden Viren infiziert werden, oder mit transformierenden Genen transferiert werden, um permanente oder semipermanente Zellinien zu erzeugen. Außerdem können z. B. Zellen in Leberkulturen zu etablierten Zellinien verschmolzen werden (z. B. HepG 2). Methoden für die Zellfusion sind im Fachgebiet bekannt und schließen z. B. die Verwendung von Fusionsagenzien wie auch Polyethylenglycol, Sendai-Virus und Epstein-Barr-Virus ein.
Wie bereits erörtert ist das HCV ein Flavivirus oder ein flaviartiges Virus. Daher ist wahrscheinlich, daß die HCV-lnfektion von Zellinien durch im Fachgebiet bekannte Techniken für die Infizierung der Zellen mit Flaviviren durchgeführt werden kann. Diese umfassen z. B. Inkubieren der Zellen mit Viruspräparaten unter Bedingungen, die den Viruseintritt in die Zelle gestatten. Darüber hinaus ist es möglich, die Virusproduktion durch Transfektieren der Zellen mit isolierten Viruspolynucleotiden zu erreichen. Es ist bekannt, daß Togavirus- und Flavivirus-RNAs bei einer Anzahl von Wirbeltier-Zellinien (Pfefferkorn und Shapiro [1974)) und in iner Moskito-Zellinie (Peleg [1969]) übertragbar sind.
Methoden für das Transfektieren von Gewebekulturzellen mit RNA-Duplexen, positiv-strängigen RNAs und DNAs (einschließlich cDNAs) sind im Fachgebiet bekannt und schließen z. B. Techniken ein, wie die Elektroporation und Präzipitation mit DEAE-Dextran oder Calciumphosphat. Eine ergiebige Quelle für HCV-RNA kann mittels der Durchführung der in vltro-Transkription einer dom vollständigen Genom entsprechenden HCV-gewonnen werden. Die Transfektion mit diesem Material oder mit clonierter HCV-cDNA müßte in die Virusreplikation und in die In vitro-Propagation des Virus resultieren. Zu den gezüchteten Zellen können zusätzlich tierische Modellsysteme für die virale Replikation eingesetzt werden; tierische Systeme, in denen Flaviviren vorkommen, sind den Fachleuten bekannt (siehe z, B. „Review" von Monath [1986]). Somit kann die HCV-Replikation nicht nur in Schimpansen auftreten, sondern z.B. auch in Krallenaffen und säugenden Mäusen.
II. L. Screening hinsichtlich Antivirusagenzien für HCV
Die Verfügbarkeit von Zellkulturen und tierischen Modellsystemen für HCV gestattet auch das Screening hinsichtlich Antivirusagenzien, die die HCV-Replikation inhibieren und besonders hinsichtlich jener Agenzien, die vorzugsweise Zellwachstum und -multiplikation erlauben, während die virale Replikation inhibiert wird. Diese Screening-Methoden sind den Fachleuten bekannt. Im allgemeinen werden die Antivirusagenzien in einer Anzahl von Konzentrationen hinsichtlich ihres Effekts, die virale Replikation in Zellkultursystemen zu verhindern, die die virale Replikation unterstützen, und dann hinsichtlich einer Inhibierung der Infektiosität oder vlralen Pathogenität (und einem geringen Anteil von Toxizität) in einem tierischen Modellsystem getestet.
Die darin für den Nachweis von HCV-Antigenen und HCV-Polynucleotiden zur Verfügung gestellten Methoden und Zusammensetzungen sind für das Screening von Antivirusagenzien insofern nützlich, als sie eine Alternative und vielleicht ein sensitiveres Mittel für den Nachweis des Einflusses des Agens auf die virale Replikation bereitstellen als der Zell-Plaquo-Assay oder ID30-Assay. Die hierin beschriebenen HCV-Polynucleotidsonden können zum Beispiel zum Quantifizieren der Menge orzeugter viraler Nucleinsäuren in einer Zellkultur verwendet werden. Dieses könnte z. B. durch Hybridisierung oder „competition" (Konkurrenz)-Hybridisierung der infizierten Zellnucleinsäuren mit einer markierten HCV-Polynucleotidsonde durchgeführt werden. Anti-HCV-Antikörper können z. B. auch zur Identifizierung und Quantifizierung von HCV-Antigen(en) in den Zellkulturen unter Verwendung des hierin beschriebenen Immunoassay eingesetzt werden. Da es außerdem wünschenswert sein kann, HCV-Antigene in den infizierten Zellkulturen durch einen „competition"-Assay zu quantifizieren, sind die in den hierin beschriebenen cDNAq codierten Polypeptide bei diesen „competition"-Assays nützlich. Im allgemeinen wi'irde ein aus der HCV-cDNA abgeleitetes rekombinantes HCV-Polypeptid markiert sein, und die Inhibierung der Bindung dieses markierten Polypeptide an ein HCV-Polypeptid infolge des in dem Zellkultursystem erzeugten Antigens würde überwacht werden. Darüber hinaus sind die Techniken besonders in Fällen nützlich, wo das HCV in der Lage sein kann, in einer Zellinie zu replizieren ohne Zelltod zu verursachen.
U.M. Präparation von abgeschwächten HCV-StSmmen
Zusätzlich zu dem obigen und unter Verwendung der Gewebekultursysteme und/oder tierischer Modellsysteme kann es möglich sein, abgeschwächte HCV-Stämme zu isolieren. Diese Stämme wurden sich für Vakzine eignen oder für das Isolieren von Virusantigenen. Abgeschwächte Stämme sind nach mehrfachen Passagen in Zellkulturen und/oder einem tierischen Modell isolierbar. Der Nachweis eines abgeschwächten Stammes in einem infizierten Kalb oder Individuum wird durch im Fachgebiet bekannte Techniken erreicht und könnte z. B. die Verwendung von Antikörpern zu einem oder mehreren in HCV als Sonde codierten Epitopen für die Verwendung eines Poly nucleotids einschließen, das eine HCV-Sequ6nz von mindestens etwa 8 Nucleotiden als eine Sonde erhält. Im anderen Falle oder außerdem kann ein abgeschwächter Stamm unter Verwendung der hierinzur Verfügung gestellten genomischen Information von HCV und unter Verwendung rekombinanter Techniken konstruiert werden. Im allgemeinen würde man vorsuchen, eine Region des Genoms auszulöschen, die z. B. eine Polypeptid-bezogene Pathogenizität codiert, die aber virale Replikation erlaubt. Außerdem würde die Genomkonstruktion die Expression eines Epitops gestatten, das die Neutralisierung der Antikörper für das HCV bewirkt. Das veränderte Genom könnte dann zum Transformieren von Zellen genutzt werden, die die HCV-Replikation erlauben, und die unter diesen Bedingungen gewachsenen Zellen gestatten die virale Replikation.
Die abgeschwächten HCV-Stämme sind nicht nur für Vakzinzwecke nützlich, sondern auch als Quellen für die kommerzielle Produktion von Virusantigen, da die Verarbeitung dieser Viren weniger stringente Schutzmaßnah nen für die in der Virusproduktion und/oder Produktion viraler Produkte involvierten Mitarbeiter erfordern würde.
III. Allgemeine Methoden
Die allgemeinen Techniken, die für das Extrahieren des Genoms aus einem Virus verwendet werden, für das Herstellen und Sondieren einer cDNA-Bibliothek, Sequenzieren der Clone, Konstruieren von Expressionsvektoren, Transformieren der Zellen, für das Durchführen immunologischer Tests wie Radioimmunoassays und ELISA-Assays, für das Züchten von Zellen in Kulturen und dergleichen sind im Fachgebiet bekannt, und es stehen Laborhandbücher zur Verfügung, die diese Techniken beschreiben. Der folgende Text stellt einen allgemeinen Leitfaden dar, der einige gegenwärtig verfügbare Quellen für solche Prozeduren und Materialien, die bei der Ausführung derselben nützlich sind, aufzeigt.
III.A. Wirte und Expressionskontrollsequenzen
Sowohl prokaryontische als auch eukaryontische WirUizellen können für die Expression der gewünschten codierenden Sequenzen verwendet werden, wenn geeignete Kontrollsequenzen, die mit dem gekennzeichneten Wirt kompatibel sind, verwendet werden. Unter den prokaryontischen Wirten iöt E. coil der am häufigsten verwendete. Expressionskontrollsequenzen für Prokaryonten beinhalten Promotoren, die wahlweise Operatorportionen enthalten und Ribosombildungsstellen. Transfervektoren, die mit den prokaryontischen Wirten kompatibel sind, werden üblicherweise von z. B. pBR322, einem Operone enthaltenden Plasmit abgeleitet, die Ampicillin- und Tetracyclinresistenz verleihen, und verschiedenen pUC-Vektoren, die auch Sequenzen enthalten, die antibiotische Resistenzmarker übertragen. Diese Marker können dazu eingesetzt werden, erfolgreiche Transformanten durch Selektion zu gewinnen. Die üblicherweise verwendeten prokaryontischen Kontrollsequenzen beinhalten Beta-Lactamase (Penicillinase) und LactosePromotorsysteme (Chang, u. a. (1977)), Tryptophan-(trp)-Promotersystem (Goeddel u.a. [1980]) und den Lambda-abgeleiteten PL-Promotor und die N-Gen-Ribosom-Bindungsstelle (Shimatake u. a. [1981 ]) und den Hybrid-tac-Promotor (De Boer u. a. [1983]), der von den Sequenzen der trp- und lac-UVS-Promotoren abgeleitet ist. Die vorstehenden Systeme sind besonders kompatibel mit E. coil; wenn gewünscht, können andere prokaryontische Wirte wie Stämme von Bacillus oder Pseudomonas mit den entsprechenden Kontrollsequenzen verwendet werden. Eukaryontische Wirte enthalten in den Kultursystemen Hefe- und Säugetierzellen. Saccharomyces cerevislae und Saccharomyces carlsbergensis sind die am meisten verwendeten Hefewirte und sind auch günstige Pilzwirte. Hefekompatible Vektoren tragen Marker, die die Selektion von erfolgreichen Transformanten durch Übertragen von Prototropie auf auxotrophe Mutanten oder Resistenz gegenüber Schwermetallen auf wilde Stämme gestatten. Hefekompatible Vektoren können den
2 Mikron-Replikationsstartpunkt (Broach u.a. [1981 ]), die Kombination von CDN3 und ARS 1 oder andere Mittel für die Sicherstellung der Replikation einsetzon, <vie auch Sequenzen, die in die Inkorporation eines geeigneten Fragments in das Wirtszellengenom resultieren. Kontrollsec, lenzen für Hefevektoren sind im Fachgebiet bekannt und umfassen Promotoren für die Synthese von glycolytischen Enzymen (Hess u.a. [1968]; Holland u.a. [1978]), einschließlich des Promotors für
3 Phosphoglyceratkinasen (Hitzeman [1980]). Terminatoren können ebenfalls einbezogen werden, wie jene, die aus dem Enolasegen abgeleitet wurden (Holland [1981 ]). Besonders nützlich sind Kontrollsysteme, die Glyceraldehyd-3-phosphatdehydrogenase-(GAPDH)-Promotor oder Alcoholdehydrogenase-(ADH)-regulierbaren Promotor, ebenfalls von GAPDH abgeleitete Terminatoren, und wenn Sekretion gewünscht wird, „Leader"-Sequenzaus Hefe-Alpha-Faktoren umfassen. Außerdem können die transkriptionale Regulatorregion und die transkriptionale Initierungsregion, die operabel miteinander verbunden sind, von der Art sein, daß sie natürlicherweise nicht in dem Wildtyp-Organismus assoziiert sind. Diese Systeme werden ausführlich in der EPO 120551, veröffentlicht am 3.Oktober 1984; EPO 1162Oi, veröffentlicht am 22. August 1984 und EPO 164446, veröffentlicht am 18.Dezember 1985, beschrieben, die alle an den hierin genannten Zessionär abgetreten werden und hierdurch unter Bezugnahme darauf eingeschlossen sind.
Säugetierzellinien, die als Wirte für die Expression zur Verfugung stehen, sind im Fachgebiet bekannt und schließen viele immortalisierte Zellinien ein, die von dei American Type Culture Collection (ATCC) zur Verfügung gescellt werden einschließlich HeLa-Zellen, China-Hamster-Ovarium-(CHO)-Zellen, Baby-Hamsterniere-(BHK)-Zellen und eine Reihe anderer Zellinien. Geeignete Promotoren für Säugetierzellen sind im Fachgebiet bekannt und schließen virale Promotoren ein wie jene aus Simian-Virus 40 (SV40) (Fiers [1978]), Rous sarcoma-Virus (RSV), Adenovirus (ADV) und Bovine-Papillom-Virus (BPV). Säugetierzellen können auch Terminatorsequenzen und Poly(A)-Additionssequenzen erfordern; Verstärkersequenzen, die die Expression erhöhen, können ebenfalls eingeschlossen werden sowie Sequenzen, die die Amplifizierung der Gene bewirken, können auch wünschenswert sein. Diese Sequenzen sind im Fachgebiet bekannt. Für die Replikation in Säugetierzellen geeignete Vektoren können virale Replikone oder Sequenzen enthalten, die die Integration geeigneter Sequenzen garantieren, die NANBV-Epitope in das Wirtsgenom codieren.
III. Transformationen
Die Transformation kann durch irgendeine bekannte Methode für die Einführung von Polynucleotiden in eine Wirts^elle, einschließlich*. B. Verpacken des Polynucleotide in ein Virus und Transduktion einer Wirtszelle mit dem Virus, und durch direkte Aufnahme des Polynucleotide erfolgen. Die angewendete Transformationsprozedur hängt von dem zu transformierenden Wirt ab. Die Transformation von E. coli-Wirtszellen mit Lambda-gt 11, die BB-NANBV-Sequenzen enthalten, wird z. S. in dem später folgenden Abschnitt „Beispiele" erörtert. Die bakterielle Transformation durch direkie Aufnahme beinhaltet im allgemeinen die Behandlung mit Calcium oder Rubidiumchlorid (Cohen [1972]; Maniatis [1982]). Die Hefetransformation durch direkte Aufnahme kann unter Verwendung der Methode von Hinnen u. a. (1978) durchgeführt werden. Die Säugetierzellentransformation durch direkte Aufnahme kann unter Verwendung der Calciumphosphat-Präzipitationsmethode von Graham und Van der Eb (1978) oder den verschiedenen bekannten Modifikationen davon durchgeführt werden.
III.C. Vektorkonstruktion
Die Vektorkonstruktion erfolgt mit Techniken, die im Fachgebiet bekannt sind. Das sequenzspezifische Schneiden wird durch die Behandlung mit geeigneten Restriktionsenzymen unter Bedingungen durchgeführt, die generell durch den Hersteller dieser kommerziell verfügbaren Enzyme spezifiziert werden. Im allgemeinen werden etwa 1 Mikrogramm Plasmid oder DNA-Sequenz durch 1 Einheit Enzym in etwa 20 Mikroliter Pufferlösung durch Inkubation über 1 bis 2 Stunden bei 370C geschnitten. Nach der Inkubation mit dem Restriktionsenzym wird das Protein durch Phenol/Chloroform-Extraktion entfernt und die DNA durch Präzipitation mit Ethanol zurückgewonnen. Die geschnittenen Fragmente können unter Verwendung von Polyacrylamid oder Agarosegel-Elektrophoresetechniken entsprechend den allgemeinen Prozeduren, die in „Methods in Enzymology" (1980) 65:499-560 dargestellt sind, getrennt werden.
Geschnittene Fragmente mit kohäsiven Enden können bei Verwendung von E. coli-DNA-Polymerase I (Klenow) in Anwesenheit geeigneter Desoxynucleoitidtriphosphaten (dNTPs), die in dem Gemisch vorhanden sind, glatte Enden aufweisen. Die Behandlung mit S1-Nuclease, die in die Hydrolyse beliebiger einzelsträngiger DNA-Abschnitte resultiert, kann auch durchgeführt werden.
Ligationsn werden unter Verwendung von Standardpuffern und Temperaturbedingungen durchgeführt, dieT4-DNA-Ligase und ATP verwenden; Ligationen von kohäsiven Enden erfordern weniger ATP und weniger Ligase als Ligationen von glatten Enden. Wenn Vektorfragmente als Teil eines Ligationsgemisches verwendet werden, wird das Vektorfragment oftmals mit bakterieller alkalischer Phospl atose (BAP) oder alkalischer Kälberdarm-Phosphatase behandelt, um das 5'-Phosphat zu entfernen und somit die Re-Ligation des Vektors zu verhindern; im anderen Falle kann die Restriktionsenzym-Digestion ungewünschter Fragmente zur Verhinderung der Ligation eingesetzt werden. Ligationsgemische werden in geeignete Clonierungswirte wie E. coli transformiert, und erfolgreiche Transformanten werden z. B. durch antibiotische Resistenz selektioniert und für die korrekte Konstruktion gescreent.
III.D. Konstruktion von gewünschten DNA-Sequenzen
Synthetische Oligonucleotide können unter Verwendung automatischer Oligonuck idsynthesizer wie von Warner (1984) beschrieben, hergestellt werden. Falls gewünscht, können die synthetischen Stränge mit "p durch die Behandlung mit Polynucleotidkinase in Anwesenheit von 32P-ATP, unter Anwendung von Standardbedingungen für die Reaktion markiert werden.
DNA-Sequenzen, einschließlich der aus den cDNA-Bibliotheken isolierten, können durch bekannte Techniken, einschließlich zum Beispiel gerichteter Mutagenese wie von Zoller (1982) beschrieben, modifiziert werden. Kurzum, die zu modifizierende DNA wird in ein Phage als eine einzeltirängige Sequenz verpackt und in eine doppelsträngige DNA mit DNA-Polymerase umgewandelt, wobei Is Starter ein synthetisches Oligonucleotid verwendet wird, das zu dem Teil der DNA komplementär ist, das modifiziert werden soll, u td das die gewünschte Modifikation in seiner eigenen Sequenz enthält. Die sich ergebende doppelsträngige DNA wird in eine Phage transformiert, der das Wirtsbakterium unterstützt. Die Kulturen der transformierten Bakterien, die Replikationen jeden Stranges des Phage enthalten, werden in Agar plattiert, um Plaques zu erhalen. Theoretisch enthalten 50% der neuen Plaques Phage mit mutierter Sequenz. Die restlichen 50% weisen die ursprüngliche Sequenz auf. Replikate der Plaques werden an die markierte synthetische Sonde bei Temperaturen und Bedingungen hybridisiert, die die Hybridisieruiig mit dem korrekten Strang gestatten, jedoch nicht mit der unveränderten Sequenz. Die durch Hybridisierung identifizierten Sequenzen werden wiedergewonnen und cloniert.
III.E. Hybridisierung mit Sonden
DNA-Bibliotheken können unter Verwendung des Verfahrens von Grunstein und Hogness (1975) sondiert werden. Kurz gesagt, bei diesem Verfahren wird die zu sondierende DNA auf Nitrocellulosefiltern immobilisiert, denaturiert und pre-hybridisiert mit einem Puffer, der 0 bis 50% Formamid, 0.75M NaCI, 75mM Na-Citrat, 0,02% (M/V) von jeweils Rinderserumalbumin, Polyvinylpyrollidon sowie Ficoll, 5OmM Na-Phosphat (pH = 6,5), 0,1 % SDS und 100 Mikrogramm/ml „carrier"-denaturierte DNA enthält. Der Prozentanteil Formamid in dem Puffer wie auch die Zeit- und Temperaturbedingungen der Pre-Hybridisierung und anschließende Hybridisierungsschritte hängen von der erforderlichen Stringenz ab. Oligomere Sonden, die weniger stringente Bedingungen erfordern, werden im allgemeinen mit niedrigeren prozentualen Anteilen von Formamid, niedrigeren Temperaturen und längeren Hybridisierungszeiten eingesetzt. Sonden, die über 30 bis 40 Nucleotide wie die aus cDNA oder genomischen Sequenzen abgeleiteten enthalten, verlangen im allgemeinen höhere Temperaturen, z. B. etwa 40°C bis42°C, und einen hohen Formamidanteil, z. B. 50%. Anschließend an die Pre-Hybridisierung wird die 5'-32p-markierte Oligonucleotidsonde zu dem Puffer zugesetzt, und die Filter werden unter Hybridisierungsbedingungen in diesem inkubiert. Nach dem Waschen werden die behandelten Filter Autoradiographie unterzogen, um die Lage der hybridisierten Sonde zu zeigen; die DNA in entsprechenden Lokalisationen auf den originalen Agarplatten wird als Quelle der gewünschten DNA verwendet.
III.F. Verifizierung von Konstruktion und Sequenzierung
Für Routinevektorkonstruktionen werden Ligationsgemische im E. coll-Stamm-HB 101 oder einem anderen geeigneten Wirt transformiert, und erfolgreiche Transformanten werden durch antibiotische Resistenz oder andere Marker solektioniert. Plasmic/e aus den Transformanten werden dann entsprechend der Methode von Clewell u. a. (1969), üblicherweise durch Verfolgung der Chloramphenicol-Amplifizierung (Clewell [1972]) hergestellt. Die DNA wird isoliert und analysiert auf der Grundlage der Restriktionsenzymanalyse und/oder Sequenzierung. Die Sequenzierung kann mittels der Dideoxy-Methode von Sanger u.a. (1977) durchgeführt werden, die weiterhin von Messing u.a. (1981) oder durch die Methode von Maxam u.a. (1980) beschrieben wurde. Probleme mit der Bandenkompression, die manchmal in den GC-reichen Regionen beobachtet werden, wurden durch die Verwendung von T-Deazo-guanosin entsprechend Barr u.a. (1986) überwunden.
III.G. Enzym-gekoppelter Immunosorbent Assay
Der Enzym-gekoppelte immunologische Tist (ELISA) kann eingesetzt werden, um entweder Antigen- oder Antikörperkonzentrationen zu messen. Diese Methode hängt von der Konjugation eines Enzyms entweder zu einem Antigen oder Antikörper ab und nutzt die gebundene Enzymaktivität als quantitative Markierung. Um den Antikörper zu messen, wird das bekannte Antigen an eine feste Phase fixiert (z.B. eine Mikroplatte oder einen Kunststofftiegel), mit Testserumverdünnungen inkubiert, gewaschen, mit Antiimmunoglobulin inkubiert, das mit einem Enzym markiert ist, und wiederum gewaschen. Für die Markierung geeignete Enzyme sind im Fachgebiet bekannt und umfassen z.B. Meerrettichperoxidase. Die an die feste Phase gebundene Enzymaktivität wird durch die Zi'-j^be des spezifischen Substrats gemessen, und die Bestimmung der Produktbildung oder Substratverwertung e folgt kolorimetrisch. Die gebundene Enzymaktivität ist eine direkte Funktion der Menge gebundenen Antikörpers.
Zur Messung des Antigens wird ein bekannter spezifischer Antikörper an die feste Phase fixiert, das das Antigen enthaltende Testmaterial wird zugesetzt, nach Inkubierung der festen Phase gewaschen und ein zweiter Enzym-markierter Antikörper zugegeben. Nach dem Waschen wird das Substrat zugefügt, und die Enzymaktivität wird kolorimetrisch bewertet und zur Antigenkonzentration in Beziehung gesetzt.
IV. Beispiele
Im untenstehenden werden erfindungsgemäße Beispiele beschrieben, die nur zur Veranschaulichung dienen und den Geltungsbereich der vorliegenden Erfindung nicht einschränken. Angesichts der vorliegenden Erfindung sind den ständig auf diesem Gebiet arbeitenden Fachleuten zahlreiche Ausführungsformen im Geltungsbereich df>r Ansprüche offenbar.
Die z. B. in Abschnitt IV.A. geschilderten Prozeduren können, falls gewünscht, müssen jedoch rieht wiederholt werden, da für die Konstruktion der gewünschten Nucleotidsequenzen Techniken auf der Grundlage der durch die Erfindung gelieferten Informationen zur Verfügung stehen. Die Expression wird in E. coil veranschaulicht, es stehen jedoch auch andere Systeme zur Verfügung, die in Abschnitt III.A. ausführlicher geschildert werden. Zusätzliche von der genomischen Struktur abgeleitete Epitope können ebenfalls produziert und dazu verwendet werden, Antikörper wie im weiteren Text beschrieben zu erzeugen.
IV.A. Herstellung, Isolierung und Sequenzierung von HCV-cDNA IV.A.1. Herstellung von HCV-cDNA
Die Quelle des NANB-Agens war ein von einem Schimpansen mit chronischer NANBH abgeleiteter Plasma-Pool. Der Schimpanse wurde experimentell mit Blut von einem anderen Schimpansen mit chronischer NANBH infiziert, die wiederum aus der Infektion mit HCV in einer kontaminierten Konzentrationsmenge mit Faktor 8, das von gesammeltem Human-Serum abgeleitet wurde, herrührte. Der Schimpansen-Plasma-Pool wurde durch Kombinieren vieler individueller Plasmaproben, die einen hohen Grad von Alaninaminotransferaseaktivität aufwiesen, hergestellt, diese Aktivität resultierte aus der hepatitischen Schädigung infolge der HCV-lnfektion. Da 1 ml einer 10~e-Verdünnung dieses gesammelten und intravenös verabreichten Serums in anderen Schimpansen NANBH verursachte, sein CID (Zytomegaliesyndrom) war mindestens 10e/ml, d. h. es hatte einen hohen infektiösen Virustiter.
Eine cDNA-Biblitohek aus dem Plasma-Pool mit hohem Titer wurde wie folgt erzeugt. Zuerst wurden virale Partikel aus dem Plasma isoliert; eine90-ml-Aliquote wurde mit 310ml einer 5OmM Tris-HCI, pH 8,C 1mM EDTA, 10OmM NaCI enthaltenden Lösung verdünnt. Reste wurden durch 20 min Zentrifugieren bei 15000xg bei 20°C entfernt. Virale Partikel in dem resultierenden Überstehenden wurden anschließend pelletiert durch Zentrifugieren in einem Beckman-SW28-Rotor bei 28000 U/min über 5 Stunden bei 2O0C. Zur Freisetzung des viralen Genoms wurden die Partikel durch Suspendieren der Pellets in 15 ml Lösung, die 1 % Natriumdodecylsulfat (SDS), 1OmM EDTA, 1OmM Tris-HCI, pH 7, j, enthielt sowie auch 2 mg/ml Proteinase k aufgebrochen und anschließend bei 45°C über 90min inkubiert. Die Nucleinsäuren wurden durch Zugabe von 0,8 Mikrogramm MS2 Bakteriophage RNA als Trägersubstanz isoliert und das Gemisch wurde viermal mit einem 1:1 -Gemisch von Phenol-Chloroform (Phenol gesättigt mitO,5M Tris-HCI, pH 7,5,0,1 % (V/V) Beta-Mercaptoethanol, 0,1 % (M/V) Hydroxychinolin extrahiert, und anschließend zweimal mit Chloroform extrahiert. Die wäßrige Phase wurde vor der Präzipitation mit 2,5 Volumen absolutes Ethanol und Stehenlassen über Nacht bei -20°C mit 1-Butanol konzentriert. Die Nucleinsäure wurde durch Zentrifugieren in einem Beckman-SW41 -Rotor bei 40000 U/min über 90 min bei 4°C zurückgewonnen und in Wasser gelöst, das mit 0,05% (V/V) Diethylpyrocarbonat behandelt und im Autoklaven gekocht wurde.
Die durch das oben geschilderte Verfahren gewonnene Nucleinsäure (<2Mikrogramm) wurde mit 17,5mM CH3HgOH denaturiert; cDNA wurde unter Verwendung dieser denaturierten Nucleinsäure als Matrize synthetisiert und in die EcoRi-Stelle von Phage Lambda-gt11 unter Verwendung von durch Huynh (1985) beschriebenen Methoden cloniert, außer daß die zufälligen Starter Oligo(dT)-12-18 während der Synthese des ersten cDNA-Stranges durch Umkehrtranskriptase ersetzten (Taylor u.a. [1976]). Die resultierenden doppelsträngigen cDNAs wurden entsprechend der Größe auf einer Sepharose-CL-4 B-Säule fraktioniert; eluiertes Material von ungefähr mittlerer Größe 400,300,200 und 100 Basenpaaren wurden in den cDNA-Pools 1,2, 3 bzw. 4 gepoolt. Die Lambda-gt 11 -cDNA-Bibliothek wurde aus der cDNA in Pool 3 erzeugt.
Die Lambda-gt 11-cDNA-Bibliothek, die aus Pool 3 erzeugt wurde, wurde auf Epitope gescreent, die spezifisch von einem zuvor an NANBH erkrankten Patienten abgeleitetes Serum binden können. Unter Verwendung der Methoden von Huynh u.a. (1985) wurden etwa 10s Phagen mit Patientenseren gescreent, außer daß gebundene Human-Antikörper mit Schaf-Anti-Human-IG-Antiseren, die mit 126I radioaktiv markiert wurden, nachgewiesen werden konnten. Fünf positive Phagen wurden identifiziert und gereinigt. Die fünf positiven Phagen wurden anschließend hinsichtlich Spezifität der Bindung an Seren von 8 unterschiedlichen, zuvor mit der NANBH-Agens infizierten Menschen unter Verwendung dergleichen Methode getestet. Vier der Phagen codierten
ein Polypeptid, das immunologisch mit nur einem Human-Serum reagierte, d.h.dem einen, das für das primäre Screening der Phage-Bibliothek eingesetzt wurde. Der fünfte Phage (5-1 -1) codierte ein Polypeptid, das immunologisch mit 5 der 8 getesteten Seren reagierte. Darüber hinaus reagierte dieses Polypeptid immunologisch nicht mit Seren von 7 normalen Blutspendern. Deshalb sieht es so aus, als ob Clon 5-1-1 ein Polypeptid codiert, das immunologisch speziell durch Seren von NANB-Patienten erkannt wird.
IV.A.2. Sequenzen der HCV-cDNA In rekomblnantem Phage 5-1-1 und vom Innerhalb der Sequenz codierten Polypeptid Die cDNA in rekombinantem Phage 5-1-1 wurde nach einer Methode von Sanger u.a. (1977) sequenziert. Die cDNA wurde im wesentlichen mit EcoRI ausgeschnitten und unter Verwendung von Gelelektrophorese durch Größenfraktionierung isoliert. Die EcoRI-Restriktionsfragmente wurden subcloniert in die M 13-Vektoren mp 18 und mp 19 (Messing [1983]) und unter Verwendung der Dideoxyk'Mter-t srminationsmethode von Sanger u. a. (1977) sequenziert. Die gewonnene Sequenz wird in Fig. 1 gezeigt. Das in Fig. 1 coJie te Polypeptid, das in der HCV-cDNA codiert ist, befindet sich in dem gleichen translational Rahmen wie die N-terminale Beta-Galactosidasekomponente, an die es fusioniert ist. Wie in Abschnitt IV.A. gezeigt wird, codiert der translational offene Leserahmen (ÜRF) von 5-1 -1 ein Epitop bzw. Epitope, die speziell von Seren von mit NANBH-lnfektionen konfrontierten Patienten und Schimpansen erkannt werden.
IV.A.3. Isolierung von HCV-cDNA, die die cDNA in Clon 5-1-1 überlappt
Zur cDNA in Clon 5-1 -1 überlappende HCV-cDNA wurde durch Screening der gleichen Lambda-gt 11 -Bibliothek, die wie in Abschnitt IV.A.1 beschrieben geschaffen wurde, lit einem aus der Sequenz der HCV-cDNA in den Clonen 5-1-1, wie in Fig. 1 dargestellt, abgeleiteten synthetischen Polynucleotid gewonnen. Die Sequenz des für das Screening verwendeten Polynucleotide war:
5'-TCC CTT GCT CGA TGT ACd GTA AGT CCT GAG AGC ACT CTT CCA TCT CAT CGA ACT CTC GGT AGA GGA CTT CCC TGT GAG GT-3'.
Die I.ambda-gt11-Bibliothek wurde mit dieser Sonde unter Verwendung der bei Huynh (1985) beschriebenen Methode gescreent. Ungefähr 1 in 50000 Clonen hybridisierte mit dieser Sonde. Drei Clone, die cDNAs enthielten, hybridisierten mit der synthetischen Sonde, die mit 81,1-2 und 91 numeriert ist.
IV.A.4. Nucleotld-Sequenzen von Oberlappenden HCV-cDNAs zur cDNA In Clon 5-1-1 Die Nucleotid-Sequenzen der drei cDNAs in den Clonen 81,1-2 und 91 wurden im wesentlichen wie in Abschnitt IV.A.2. beschrieben ermitte't. Die Sequenzen dieser Clone im Verhältnis zur HCV-cDNA-Sequenz in Phage 5-1-1 werden in Fig. 2 dargestellt, die den Strang zeigt, der das nachgewiesene HCV-Epitop codiert und wo die Homologien in den Nucleotidsequenzen durch vertikale Linien zwischen den Sequenzen angedeutet werden.
Die Sequenzen der clonierten HCV-cDNAs sind äußerst homolog in den überlappenden Regionen (siehe Fig. 2). In zwei Regionen bestehen jedoch Unterschiede. Nucl jotid 67 in Clon 1-2 ist ein Thymidin, wohingegen die anderen drei Clone einen Cytidin-Rest an dieser Stelle enthalten. Es ist jedoch festzustellen, daß die gleiche Aminosäure codiert wird, wenn entweder C oder T diese Position einnehmen.
Der zweite Unterschied besteht darin, daß Clon 5-1 -1 28 Basenpaare enthält, die in den anderen drei Clonen nicht vorhanden sind. Diese Basenpaare treten am Start der cDNA-Sequonz in 5-1 -1 auf und werden durch kleine Buchstabon angezeigt. Auf der Grundlage der Radioimmunoassay-Daten, die im folgenden in Abschnitt IV.D. erörtert werden, ist es möglich, daß ein HCV-Epitop in dieser 28 bB-Region codiert werden kann.
Die Anwesenheit der 28 Basenpaare von 5-1-1 aus den Clonen 81,1-2 und 91 kann bedeuton, daß die cDNA in diesen Clonen aus defekten HCV-Genomen abgeleitet wurde; alternativ dazu könnte die 28-bp-Region ein terminaler Artefakt in Clon 5-1-1 sein. Die mit den kleinen Buchstaben gekennzeichneten Sequenzen in der Nucleotidsequenz von Clon 81 und 91 zeigen einfach an, daß diese Sequenzen nicht in anderen cDNAs gefunden wurden, da cDNAs, die diese Regionen überlappen, bis jetzt noch nicht isoliert wurden.
Eine aus den überlappenden cDNAs in den Clonen 5-1-1,81,1-2 und 91 abgeleitete zusammengesetzte HCV-cDNA-Sequenz wird in Fig.3 dargestellt. In dieser Fig. sind jedoch die einzigartigen 28 Basenpaare von Clon 5-1-1 weggelassen worden. Die Figur zeigt auch die Sequenz des in dem ORF der zusammengesetzten HCV-cDNA codierten Polypeptids.
IV.A.5. Isolierung von HCV-cDNAs, die die cDNA in Clon 81 überlappen
Die Isolierung der HCV-cDNA-Sequenzen upstream von, und die jene in Clon-81 -cDNA überlappen, wurde wie folgt durchgeführt. Die Lambda-gt 11-cDNA-Bibliothek, die entsprechend Abschnitt IV.A.1. hergestellt wurde, wurde durch Hybridisierung mit einer synthetischen Polynucleotidsonde, die zu einer 5'-terminalen Sequenz von Clon 81 homolog war, gescreent. Die Sequenz von 81 wird in Fig.4 dargestellt. Die Sequenz des für das Screening verwendeten synthetischen Polynucleotide lautete:
5' CTG TCA GGT ATG ATT GCC GGC TTC CCG GAC 3'.
Die Methoden waren im wesentlichen die von Huynh (1985) beschriebenen, außer daß die Bibliothekfilter zwei Waschungen unter stringenten Bedingungen unterzogen wurden, d.h., die Waschungen wurden in 5x SSC, 0,1 % SDS bei 550C und jeweils über 30min durchgeführt. Ungefähr 1 in 50000 Clonen hybridisierte mit der Sonde. Ein positiver rekombinanter Phage, der cDNA enthielt, die mit der Sequenz hybridisierte, wurde isoliert und gereinigt
Dieser Phage wurde mit Clcn 36 numeriert.
Downstream-cDNA-Sequenzen, die die Carboxyl-Ende-Sequenzen in Clon 81-cDNA überlappen, wurden unter Verwendung eines Verfahrens, das dem für die Isolierung von upstream-cDNA-Sequenzen ähnelt, isoliert, außer daß eine synthetische Oligonucleotid-Sonde, die zu einer 3'-terminalen Sequenz von Clon 81 homolog ist, hergestellt wurde. Die Sequenz des synthetischen Polynucleotide, die für das Screening eingesetzt wurde, lautete:
5' TTT GGC TAG TGG TTA GTG GGC TGG TGA CAG 3'.
Ein positiver rekombinanter Phage, der cDNA enthielt, die mit dieser letzteren Sequenz hybridisierte, wurde isoliert und gereinigt und mit Clon 32 numeriert.
IV.A.6. Nucleotid-Sequenz von HCV-cDNA In Clon 36
Die Nucleotid-Sequenz der cDNA in Clon 36 wurde im wesentlichen wie in Abschnitt IV.A.2. beschrieben ermittelt. Die doppelsträngige Sequenz dieser cDNA, ihre Überlappungsregion mit der HCV-cDNA in Clon 81 und das durch den ORF codierte Polypeptid werden in Fig.5 dargestellt.
Der ORF in Clon 36 befindet sich in dem gleichen translational Rahmen wie das in Clon 81 codierte HCV-Antigen. Somit codieren die ORFs in den Clonen 36 und 81 in Kombination ein Polypeptid, das einen Teil eines großen HCV-Antigens repräsentiert. Die Sequenz dieses mutmaßlichen HCV-Polypeptids und die es codierende doppelsträngige DNA-Sequenz, die aus den kombinierten ORFs der HCV-cDNAs der Clone 36 und 81 abgeleitet ist, wird in Fig.6 gezeigt.
IV.A.7. Nucleotld-Sequenzen von HCV-cDNA In Clon 32
Die Nucleotid-Sequenz der cDNA in Clon 32 wurde im wesentlichen nach der in Abschnitt IV.A.2. beschriebenen Methode für die Sequenz von Clon 5-1-1 ermittelt. Die Sequenzdaten zeigten, daß die cDNA in Clon-32-rekombinante-Phage aus zwei unterschiedlichen Quellen abgeleitet wurde. Ein Fragment der cDNA enthielt 418 aus dem HCV-Genom abgeleitete Nucleotide; das andere Fragment umfaßte 172 aus dem Bacteriophage-MS2-Genom abgeleitete Nucleotide, das während der Präparation der Labda-gt 11 -Plasma-cDNA-Bibliothek als Träger verwendet wurde.
Die dem HCV-Genom entsprechende Sequenz der cDNA in Clon 32 wird in Fig.7 gezeigt. Die Region der Sequenzen, die die von Clon 81 überlappt, und das durch den ORF codierte Polypeptid werden ebenfalls in dieser Fig. dargestellt. Diese Sequenz enthält ein kontinuierliches ORF, das sich in dem gleichen translatorischen Rahmen befindet wie das durch Clon 81 codierte HCV-Antigen.
IV.A.8. Isolierung von HCV-cDNA, die die cDNA In Clon 36 überlappt
Die Isolierung von HCV-cDNA-Sequenzen upstream von, und die jene in Clon-36-cDNA überlappen, wurde wie in Abschnitt IV.A.5. beschrieben, für jene, die Clon-81-cDNA überlappen, durchgeführt, außer daß das synthetische Polynucleotid auf der 5'-Region von Clon 36 basierte. Die Sequenz des für das Screening verwendete synthetischen Polynucleotide war:
5' AAG CCA CCG TGT GCG CTA GGG CTC AAG CCC 3'.
Ungefähr 1 in 50000 Clonen hybridisierte mit der Sonde. Der isolierte, gereinigte Clon des rekombinanten Phage, die cDNA enthielt, die an diese Sequenz hybridisierte, wurde Clon 35 genannt.
IV.A.9. Nucleotid-Sequenz von HCV-cDNA in Clon 35
Die Nucleotid-Sequenz der cDNA in Clon 35 wurde im wesentlichen wie in Abschnitt IV.A.2. beschrieben ermittelt. Die Sequenz, ihre Überlappungsregion mit der der cDNA in Clon 36 und das darin codierte mutmaßliche Polypeptid, werden in Fig. 8 gezeigt. Clon 35 enthalt offensichtlich einen einzelnen kontinuierlichen ORF, der in den gleichen translational Rahmen ein Polypeptid codiert'.vie das durch Clon 36, Clon 81 und Clon 32 codierte. Fig. 9 zeigt die Sequenz des langen kontinuierlichen ORFs, die durch die Clone 35,36,81 und 32 reicht und gemeinsam mit dem mutmaßlichen HCV-Polypeptid darin codiert ist. Diese kombinierte Sequenz ist unter Verwendung anderer unabhängiger cDNA-Clone, die aus der gleichen Lambda-gt 11-cDNA-Bibliothek abgeleitet wurden, bestätigt worden.
IV.A.10. Isolierung von HCV-cDNA, die die cDNA In Clon 35 überlappt
Die Isolierung von HCV-cDNA-Sequenzen upstream von, und die jene in Clon-35-cDNA überlappen, wurde wie in Abschnitt IV.A.8. beschrieben für jene durchgeführt, die Clon-36-cDNA überlappen, außer daß das synthetische Polynucleotid auf der 5'-Region von Clon 35 basierte. Die Sequenz des für das Screening verwendeten synthetischen Polynucleotide war:
5' CAG GAT GCT GTG TCC CGC ACT CAA CGT 3'.
Ungefähr 1 in 50000 Clonen hybridisiert mit der Sonde. Der isolierte, gereinigte Clon von rekombinanter Phage, der cDNA enthielt, die an diese Sequenz hybridisierte, wurde Clon 37b genannt.
IV.A.11. Nucleotid-Sequenz von HCV In Clon 37 b
Die Nucleotid-Sequenz der cDNA in Clon 37 b wurde im wesentlichen wie in Abschnitt IV.A.2. beschrieben ermittelt. Die Sequenz, ihre Überlappungsregion mit der der cDNA in Clon 35 und das darin codierte mutmaßliche Polypeptid werden in Fig. 10 dargestellt.
Das 5'-terminale Nucleotid von Clon 35 ist ein T, wohingegen das entsprechende Nucleotid in Clon 37b ein A ist. Die cDNAs aus drei anderen unabhängigen Clonen, die während der Prozedur isoliert wurden, in der Clon 37 b entsprechend der Beschreibung in Abschnitt IV.A.10. isoliert wurde, wurden ebenfalls sequenziert. Die cDNAs aus diesen Clonen enthalten ebenfalls ein A in dieser Position. Somit kann das 5'-terminaleT in Clon 35 ein Artefakt der Clonierungsprozedur sein. Es ist bekannt, daß Artefakts oftmals an den 5'-Termini von cDNA-Molekülen auftreten.
Clon 37 b enthält offensichtlich einen kontinuierlichen offenen Leserahmen (ORF), der ein Polypeptid codiert, welches eine Fortsetzung des Polypeptids ist, das in dem sich durch die überlappenden Clone 35,36,81 und 32 erstreckenden offenen Leserahmen codiert ist.
IV.A.12. Isolierung von HCV-cDNA, die cDNA In Clon 32 überlappen
Die Isolierung von HCV-cDNA-Sequenzen „downstream" von Clon 32 wurde wie folgt durchgeführt. Zuerst wurde Clon da isoliert, wobei eine synthetische Hybridisierungssonde verwendet wurde, die auf der Nucleotidsequenz der HCV-cDNA-Sequenz in Clon 32 basierte. Die Methode entsprach im wesentlichen der in Abschnitt IV.A.5. beschriebenen, nur daß die Sequenz der synthetischen Sonde so aussah:
-23- 298 524 5' AGT GCA GTG GAT GAA CCG GCT GAT AGC CTT 3'.
Unter Verwendung der Nucleotidsequenz von Clon de wurde ein weiteres synthetisches Nucleotid synthetisiert, das die folgende Sequenz hatte:
5' TCC TGA GGC GAC TGC ACC AGT GGA TAA GCT 3'.
Screening der Lambda-gt 11 -Bibliothek unter Verwendung der von Clon da abgeleiteten Sequenz als Sonde ergab ungefähr 1 in 50000 positiven Kolonien. Ein isolierter gereinigter Clon, der mit dieser Sonde hybridisierte, wurde Clon 33b genannt.
IV.A.13. Nucleotidsequenz von HCV-cDNA In Clon 33b
Die Nucleotidsequenz der cDNA in Clon 33b wurde im wesentlichen wie in Abschnitt IV.A.2. beschrieben bestimmt. Die Sequenz, ihre Region der Überlappung mit der der cDNA in Clon 32 und das darin codierte putative Polypeptid sind in Fig. 11 dargestellt. Clon 33b enthält augenscheinlich einen kontinuierlichen offenen Leserahmen, der eine Erweiterung der offenen Leserahmen in den überlappenden Clonen, 37 b, 35,36,81 und 32 ist. Das in Clon 33 b codierte Polypeptid befindet sich im gleichen translational Rahmen wie das im erweiterten offenen Leserahmen dieser überlappenden Clone codierte.
IV.A.14. Isolierung von HCV-cDNAs, die cDNA in Clon 37 b und cDNA in Clon 33 b überlappen
Zur Isolierung von HCV-cDNAs, die die cDNAs in Clon 37b und in Clon 33b überlappen, wurden die folgenden synthetischen Oligonucleotidsonden, die von den cDNAs in jenen Clonen abgeleitet wurden, verwendet, um die Lambda-gt 11 -Bibliothek zu „screenen", wobei im wesentlichen die in Abschnitt IV.A.3. beschriebene Methode angewendet wurde. Die Sonden:
5' CAG GAT GCT GTC TCC CGC ACT CAA CCT C 3'
und 5' TCC TGA GGC GAC TGC ACC AGT GGA TAA GCT 3'
wurden verwendet, um Kolonien zu finden, die HCV-cDNA-Sequenzen enthalten, die jene in den Clonen 37 b bzw. 3 b überlappen. Etwa 1 in 50000 Kolonien wurde mit jeder Sonde festgestellt. Ein Clon, der cDNA enthielt, die „upstream" von der cDNA in Clon 37 b war und diese überlappte, wurde Clon 40 b genannt. Ein Clon, der cDNA enthielt, die „downstream" von der cDNA in Clon 33b war und diese überlappte, wurde Clon 25c genannt.
IV.A.15. Nucleotidsequenzen von HCV-cDNA in Clon 40b und In Clon 25c
Die Nucleotidsequenzen der cDNAs in Clon 40b und in Clon 25c wurden im wesentlichen wie in Abschnitt IV.A.2. beschrieben bestimmt. Die Sequenzen von 40 b und 25c, ihre Überlappungsregionen mit den cDNAs in den Clonen 37 b und 33 b und die darin codierten putativen Polypeptide werden in Fig. 12 (Clon 40b) und in Fig. 13 (Clon 25c) dargestellt.
Das 5'-terminale Nucleotid von Clon 40b ist ein G. Jedoch wurden die cDNAs von fünf anderen unabhängigen Clonen, die während der Prozedur isoliert wurden, in der Clon 40b isoliert wurde, Beschreibung in Abschnitt IV.A.14., ebenfalls sequenziert.
Die cDNAs von αίβεβη Clonen enthalten auch ein T in dieser Position. Somit kann das G ein Clonierungsartefakt darstellen (siehe Diskussion in Abschnitt IV.A.11.).
Das 5"-Ende von Clon 25c ist ACT, aber die Sequenz dieser Region in Clon da (Sequenz nicht dargestellt) und in Clon 33b ist TCA.
Diese Differenz kann auch ein Clonierungsartefr' !erstellen, wie die 20 extra 5'-terminalen Nucleotide In Clon 5-1-1.
Die Clone 40b und 25c enthalten augenscheinlich jeweils einen offenen Leserahmen (ORF), der eine Erweiterung des kontinuierlichen offenen Leserahmens in den vorher sequenzierten Clonen ist. Die Nucleotidsequenz des offenen Leserahmens, die durch die Clone 40b, 37 b, 35,36,81,32,33b und 25c verläuft und die Aminosäuresequenz des darin codierten putativen Polypeptide werden in Fig. 14 dargestellt. In der Fig. wurden die potentiellen Artefakte von der Sequenz weggelassen und statt dessen sind die entsprechenden Sequenzen in nicht-5'-terminalen Regionen multipler Überlappungsclone dargestellt.
IV.A.16. Herstellung einer zusammengesetzten HCV-cDNA aus den cDNAs in den Clonen 36,81 und 32 Die zusammengesetzte HCV-cDNA, C100, wurde wie folgt konstruiert. Zuerst wurden die cDNAs aus den Clonen 36,81 und 32 mit EcoRI ausgeschnitten. Das EcoRI-Fragment der cDNA von jedem Clon wurde individuell in die EcoRI-Stelle des Vektors pGEM 3-blue (Promega Biotec) cloniert. Die entstehenden rekombinanten Vektoren, die die cDNAs der Clone 36,81 und 32 enthielten, wurden pGEM 3-blue/36, pGEM 3-blue/81 bzw. pGEM3-blue/3 genannt. Die angemessen orientierte pGEM3-blue/81 Rekombinante wurde mit Nael und Narl digeriert, und das große ("2850 bp) Fragment wurde gereinigt und mit dem kleinen (~570 bp) Nael/Narl-gereinigten Restriktionsfragment von pGEM 3-blue/36 ligiert. Diese Zusammensetzung der cDNAs der Clone 36 und 81 wurde verwendet, um einen weiteren pGEM3-blue-Vektor zu erzeugen, der den kontinuierlichen HCV-ORF enthielt, der in der Überlappungs-cDNA innerhalb dieser Clone enthalten war. Dieses neue Plasniid wurde dann mit Pvull und EcoRI digeriert, um ein Fragment von etwa 680bp freizusetzen, das dann mit dem kleinen (580 bp) Pvull/EcoRI-Fragment ligiert wurde, welches von dem entsprechend orientierten pGEM 3-blue/32-Plasmid isoliert wurde, und die zusammengesetzte cDWA aus den Clonen 36,81 und 32 wurde in den EcoRI-linearisierten Vektor pSODcf 1 ligiert, der in Abschnitt IV.B.1. beschrieben wird, und der verwendet wurde, um Clon 5-1-1 in Bakterien zu exprimieren. Rekombinanten, die das ~1270bp-EcoRI-Fragment von zusammengesetzter HCV-cDNA (C 100) enthalten, wurden selektioniert, und die cDNA von den Plasmiden wurde mit ticoRI ausgeschnitten und gereinigt.
IV.A.17. Isolierung und Nucleotidsequenzen von HCV-cDNAs in Clon 14i, 11 b, 7f, 7e, 8h, 33c, 14c, 8f, 33f, 33g und 39c Die HCV-cDNAs in Clon 14i, 11b, 7f,7e, 8 h, 33c, 14c, 8f,33f, 33g und 39c wurden durch dieTechnikder Isolierung überlappender cDNA-Fragmente aus der Lambda-gt 11 -Bibliothek von HCV-cDNAs isoliert, die in Abschnitt IV.A.1. beschrieben werden. Die angewendete Technik entsprach im wesentlichen der Beschreibung in Abschnitt IV.A.3., ausgenommen, daß die verwendeten Sonden aus der Nucleotidsequenz der zuletzt isolierten Clone des 5'- und des 3'-Endes der kombinierten HCV-Sequenzen entworfen wurden. Die Frequenz der Clone, die mit den nachstehend beschriebenen Sonden hybridisierten, betrug etwa jeweils 1 in 50000.
Die Nucleotidsequenzen der HCV-cDNAs in den Clonen 14i, 7f, 7e, 8h, 33c, 14c, 8f, 33f, 33g und 39c wurden im wesentlichen entsprechend der Beschreibung in Abschnitt IV.A.2, bestimmt, cusgenommen, daß die aus diesen Phagen ausgeschnittene cDNA an die Stelle dor aus Clon 5-1-1 isolierten cDNA gesetzt wurde.
Clon 33c wurde unter Verwendung einer Hybridisierungssonde isoliert, die auf der Sequenz von Nucleotiden in Clon 40b basierte. Die Nucleotidsequenz von Clon 40b wird in Fig. 12 dargestellt. Die Nucleotidsequenz der zur Isolierung von 33c verwendeten Sonde war:
5' ATC AGG ACC GGG GTG AGA ACA ATT ACC ACT 3'.
Die Sequenz der HCV-cDNA in Clon 33a und die Überlappung mit der in Clon 40b sind in Fig. 15 dargestellt, die auch die darin codierten Aminosäuren zeigt.
Clon 8 h wurde mit einer Sonde isoliert, die auf der Sequenz der Nucleotide in Clon 33c basierte. Die Nucleotidsequenz der Sonde
51 AGA GAC AAC CAT GAG GTC CCC GGT GTT C 3'.
Die Sequenz der HCV-cDNA in Clon 8h und die Überlappung mit der in Clon 33c und die darin codierten Aminosäuren sind in Fig. 16 gezeigt.
Clon 7 e wurde unter Verwendung einer Sonde isoliert, die auf der Sequenz der Nucleotide in Clon 8 h basierte. Die Nucleotidsequenz der Sonde war
5' TCG GAC CTT TAC CTG GTC ACG AGG CAC 3'.
Die Sequenz der HCV-cDNA in Clon 7e, die Überlappung mit Clon 8h sowie die darin codierten Aminosäuren sind in Fig. 17 dargestellt.
Clon 14c wurde mit einer Sonde isoliert, die auf der Sequenz der Nucleotide in Clon 25c basierte. Die Sequenz von Clon 25c ist in Fig. 13 durgestellt. Die Sonde hatte bei der Isolierung von Clon 14c die Sequenz
5' ACC TTC CCC ATT AAT GCC TAC ACC ACG GGC 3'.
Die Sequenz der HCV-cDNA in Clon 14c, ihre Überlappung mit der in Clon 25c und die darin codierten Aminosäuren sind in Fig.
dargestellt.
Clon 8f wurde unter Verwendung einer Sonde isoliert, die auf der Sequenz von Nucleotiden in Clon 14 c basierte. Die Nucleotidsequenz der Sonde war
5' TCC ATC TCT CAA GGC AAC TTG CAC CGC TAA 3'.
Die Sequenz von HCV-cDNA in Clon 8f, ihre Überlappung mit der in Clon 14c und die darin codierten Aminosäuren sind in Fig. 19 dargestellt.
Clon 33 f wurde unter Einsatz einer Sonde isoliert, die auf der in Clon 8 f vorhandenen Nucleotidsequenz basierte. Die Nucleotidsequenz der Sonde war
5' TCC ATG GCT GTC CGC TTC CAC CTG CAA AGT 3'.
Die Sequenz von HCV-cDNA in Clon 33f, ihre Überlappung mit der in Clon 8f und die darin codierten Aminosäuren werden in Fig. 20 gezeigt.
Clon 33g wurde unter Verwendung einer Sonde isoliert, die auf der Sequenz von Nucleotiden in Clon 33f basierte. Die Nucleotidsequenz der Sonde war
5' GCG ACA ATA CGA CAA CAT CCT CTG AGC CCG 3'.
Die Sequenz von HCV-cDNA in Clon 33g, ihre Überlappung mit der in Clon 33f und die darin codierten Aminosäuren sind in Fig. 21 dargestellt.
Clon 7f wurde unter Einsatz einer Sonde isoliert, die auf der Sequenz von Nucleotiden in Clon 7 e basierte. Die Nucleotidsequenz der Sonde war
5' AGC AGA CAA GGG GCC TCC TAG GGT GCA TAA T 3'.
Die Sequenz von HCV-cDNA in Clon 7f, ihre Überlappung mit Clon 73 und die darin codierten Aminosäuren sind in Fig. 22 dargestellt.
Clon 11b wurde unter Verwendung einer Sonde isoliert, die auf der Sequenz von Clon 7f basierte. Die Nucleotidsequen.: war
5' CAC CTA TGT TTA TAA CCA TGT CAC TCC TCT 3'.
Die Sequenz der HCV-cDNA in Clon 11 b, ihre Überlappung mit Clon 7 f und die darin codierten Aminosäuren sind in Fig. 23 dargestellt.
Clon 14 i wurde unter Verwendung einer Sonde isoliert, die auf der Sequenz von Nucleotiden in Clon 11b basierte. Die Nucleotidsequenz der Sonde war:
5' CTC TGT CAT CAT ATT ACA AGC GCT ATA TCA 3'.
Die Sequenz der HCV-cDNA in Clon 14i, ihre Überlappung mit Clon 11b und die darin codierten Aminosäuren sind in Fig. 24 dargestellt.
Clon 39c wurde unter Einsatz einer Sonde isoliert, die auf der Sequenz von Nucleotiden in Clon 33g basierte. Die Nucleotidsequenz der Sonde war
5' CTC GTT GCT ACG TCA CCA CAA TTT GGT GTA 3'.
Die Sequenz von HCV-cDNA in Clon 39c, ihre Überlappung mit Clon 33g und die darin codierten Aminosäuren sind in Fig. 25 dargestellt.
IV. A. 18. Die von Isolierten, HCV-cDNA enthaltenden Clonen abgeleitete zusammengesetzte HCV-cDNA-Sequenz Die HCV-cDNA-Sequenzen in den oben beschriebenen isolierten Clonen wurden in einer Linie angeordnet, um eine zusammengesetzte HCV-cDNA-Sequenz zu schaffen. Die in der 5'- 3'-Richtung angeordneten isolierten Clone sind: 14i, 7 f, 7e, 8h, 33c, 40b, 37 b, 35,36,81,32,33b, 25c, 14c, 8f, 33f, 33g und 39c. Eine von den isolierten Clonen abgeleitete zusammengesetzte HCV-cDNA-Sequenz und die darin codierten Aminosäuren sind in Fig. 26 dargestell;.
Bei der Schaffung der zusammengesetzten Sequenz wurden die folgenden Sequenzheterogenitäten berücksichtigt. Clon 33c enthält eine '. iCV-cDNA von 800 Basenpaaren, die die cDNAs in den Clonen 40 b und 37 c überlappt. In Clon 33c sowie in 5 anderen üb. rlappenden Clonen ist Nucleotid 789 ein G. In Clon 37 b (siehe Abschnitt IV.A.11.) ist das entsprechende Nucleotid jedoch ein A. Diese Sequenzdifferenz schafft in den darin codir-ten Aminosäuren eine augenscheinliche Heterogenität, und zwar CYS oder TYR für G bzw. A. Diese Heterogenität kann hinsichtlich der Proteinfaltung wichtige Verzweigungen (ramifications) haben.
Nucleotidrest 2 in Clon-eh-HCV-cDNA ist ein T. Wie jedoch nachstehend aufgezeigt wird, ist der entsprechende Rest in Clon 7 e ein A. Außerdem wird ein A in dieser Position auch in 3 anderen isolierten überlappenden Clonen gefunden. So kann der T-Rest in Clon 8 h ein Clonierungsartefact darstellen. Deshalb wird der Rest in dieser Position in Fig. 26 als ein A bezeichnet.
das 3'-terminale Nucleotid in Clon-8f-HCV-cDNA ist ein G. Der entsprechende Rest in Clon 33f und in zwei anderen überlappenden Clonen ist jedoch ein T. Deshalb wird der Rest in dieser Position in Fig. 26 als ein T bezeichnet.
Die 3'-terminale Sequonz in Clon-33f-HCV-cDNA ist TTGC. Die entsprechende Sequenz in Clon 33g und in zwei anderen überlappenden Clonen ist jedoch ATTC. Deshalb ist in Fig. 26 die entsprechende Region als ATTC dargestellt.
Nucleotidrest 4 in Clon-33g-HCV-cDNA ist ein T. In Clon 33f und in zwei anderen überlappenden Clonen ist der entsprechende Rest jedoch ein A. Deshalb wird der entsprechende Rest in Fig. 26 als ein A bezeichnet.
Das 3'-Ende von Clon 14i ist AA, während da: entsprechende Dinucleotid in Clon 11 b und in drei anderen Clonen TA ist. Deshalb wird in Fig. 26 der TA-Rest dargestellt.
Die Auflösung der anderen Sequanzheterogonitäten wird vorstehend diskutiert.
Eine Untersuchung der zusammengesetzten HCV-cDNA zeigt, daß sie einen großen offenen Leserahmen enthält. Das deuiet darauf hin, daß das Virusgenom in ein großes Polypeptid translatiert wird, das gleichzeitig mit odor anschließend an die Translation prozessiert wird.
IV.A.19. Isolierung und Nucleotldsequenzen von HCV-cDNAs in den Clonen 12f, 35f, 19g, 26g und 15e Die HCV-cDNAs in den Clonen 12f,35f, 19g, 26g und 15e wurden im wesentlichen nach der in Abschnitt IV.A.17. beschriebenen Technik isoliert, ausgenommen, daß die Sonadn wie unten angegeben waren. Die Frequenz von Clonen, die mit den Sonden hybridisierten, betrug in jedem Fall etwa 1 in 5000C. Die Nucleotldsequenzen der HCV-cDNAs in diesen Clonen wurde im wesentlichen gemäß der Beschreibung in Abschnitt IV.A.2. bestimmt, ausgenommen, daß die cDNA aus den angegebenen Clonen anstelle der aus Clon 5-1-1 isolierten cDNA eingesetzt wurde.
Die Isolierung von Clon 12f, der cDNA „upstream" von der HCV-cDNA in Fig.26 enthält, erfolgte unter Verwendung einer Hybridisierungssonde, die auf der Sequenz von Nucleotiden in Clon 14 i basierte. Die Nucleotidsequenz der Sonde war
5' TGC TTG TGG ATG ATG CTA CTC ATA TCC CTA 3'.
Die HCV-cDNA-Sequenz von Clon 12f, ihre Überlappuno mit Clon 14 i und die darin codierten Aminosäuren werden in Fig. 27 dargestellt.
Die Isolierung von Clon 35f, der cDNA „downstream" von der HCV-cDNA in Fig. 26 enthält, wurde unter Verwendung einer Hybridisierungssonde durchgeführt, die auf der Sequenz der Nucleotide in Clon 39c basierte. Die Nucleotidsequenz der Sonde
5' AGC AGC GGC GTC AAA AGT GAA GGC TAA CTT 3'.
Die Sequenz von Clon 35f, ihre Überlappung mit der Sequonz in Clon 39c und die darin codierten Aminosäuren sind in Fig.28 dargestellt.
Die Isolierung von Clon 19g erfolgte unter Einsatz einer Hybridisierungssonde, die auf der 3'-Sequenz von Clon 35f basierte. Die Nucleotidsequenz der Sonde war
5' TTC TCG TAT GAT ACC CGC TGC TTT GAC TCC 3'.
Die HCV-cDNA-Sequenz von Clon 19g, ihre Überlappung mit der Sequenz in Clon 35f und die darin codierten Aminosäuren werden in Fig. 29 dargestellt.
Die Isolierung von Clon 26g erfolgte unter Verwendung einer Hybridisierungssonde, die auf der 3'-Sequenz von Clon 19g basierte. Die Nucleotidsequenz der Sonde war
5' TGT GTG GCG ACG ACT TAG TCG TTA TCT GTG 3'.
Die HCV-cDNA-Sequenz von Clon 26g, ihre Überlappung mit der Sequenz in Clon 19g und die darin codierten Aminosäuren werden in Fig.30 dargestellt.
Clon 15θ wurde unter Verwendung einer Hybridisierungssonde isoliert, die auf der 3'-Sequenz von Clon 26g basierte. Die Nucleotidsequenz der Sonde war
5' CAC ACT CCA GTC AAT TCC TGG CTA GGC AAC 3'.
Die HCV-cDNA-Sequenz von Clon 15e, ihre Überlappung mit der Sequenz in Clon 26g und die darin codierten Aminosäuren werden in Fig.31 dargestellt.
Die in diesem Abschnitt beschriebenen Clon s wurden unter den in Abschnitt U.A. beschriebenen Bedingungen bei der ATCC hinterlegt und erhielten die folgenden Zugrifisnummern:
Lambda-gt11 ATCC-Nr. Hinterlegungsdatum
Clon12f 40514 10.Nov.1988
Clon35f 40511 10. Nov. 1988
Clon15e 40513 10. Nov. 1988
ClonK9-1 40512 10. Nov. 1988
Die HCV-cDNA-Sequenzen in den oben beschriebenen isolierten Clonen wurden in einer Linie angeordnet, um die zusammengesetzte HCV-cDNA-Sequenz zu schaffen. Die in der 5'-3'-Richtung angeordneten isolierten Clone sind:
12f, 14i,7f, 7e, 8h, 33c, 40b, 37b, 35,36,81,32,33b, 25c, 14c, 8f, 33f,33g, 39c, 35f, 1Sg, 26g und 15e.
Eine von den isolierten Clonen abgeleitete zusammengesetzte HCV-cDNA-Sequenz und die darin codierten Aminosäuren sind in Fig. 32 dargestellt.
IV.A.20. Alternative Methode der Isolierung von cDNA-Sequenzen .upstream" von der HCV-cDNA-Sequenz In Clon 12f Auf der Basis der größten 3'-HCV-Sequenz in Fig. 32, die von der HCV-cDNA in Cion 12 f abgeleitet ist, werden kleine synthetische Oligonucleotidprimer von Reverser Transkriptase synthetisiert und zur Bindung an die entsprechende Sequenz in HCV-genomischer RNA, zum Starten der Reversen Transkription der „upstream" Sequenzen, verwendet. Die Primer-Sequenzen sind proximal zu der bekannten 5'-terminalen Sequenz von Clon 12f, aber ausreichend „downstream", um den Entwurf von Sondensequenzen „upstream" von den Primer-Sequenzen zu gestatten.
Bekannte Standardmethoden des Startens und Cionierens werden angewendet. Die entstehenden cDNA-Bibliotheken werden mit Sequenzen „upstream" von den Bindungsorten (priming sites) gescreent (wie von der erläuterten Sequenz bei Clon 12f hergeleitet). Die HCV-genomibi:he RNA wird entweder aus Plasma- oder Leberproben von Schimpansen mit NANBH oder aus analogen Proben von Menschen mit NANBH gewonnen.
IV.A.21. Alternative Methode unter Ausnutzung von „Tallen" zur Isolierung von Sequenzen aus der 5'-term!nalen Region des HCV-Genoms
Zur Isolierung der extremen 5'-terminalen Sequenzen des HCV-RNA-Genoms wird das cDNA-Produkt der ersten Runde d.:_: Reversen Transkription, die mit der Template-RNA duplexiert wird, mit Oligo-C „tailed". Das wird erreicht, indem d?s Produkt in Anwesenheit von CTP mit terminaler Transferase inkubiert wird. Die zweite Runde der cDNA-Synthese, die das Komplement des ersten cDNA-Stranges liefert, erfolgt unter Verwendung von Oligo-G als Primer für die Reserve-Transkriptase-Reaktion. Die Quellen für genomische HCV-RNA werden in Abschnitt IV.A.20. beschrieben. Die Methoden für „tailing" mit Terminal-Transferase sind wie in Maniatis et al. (1982). Die cDNA-Produkte werden dann cloniert, gescreent und sequenziert,
IV.A.22. Alternative Methode unter Ausnutzung von „Tallen" zur Isolierung Diese Methode basiert auf früher angewendeten Methoden zur Clonierung von cDNAs von Flavivirus-RNA. Bei dieser Methode wird die RNA denaturierenden Bedingungen unterzogen, um sekundäre Strukturen am 3'-Ende zu entfernen, und wird dann unter Verwendung von rATP als Substrat mit Poly-A-Polymerase „tailed". Die Reverse Transkription der Poly-A-„tailed"-RNA wird durch Reverse Transkriptase katalysiert, wobei Oligo-dT als Primer eingesetzt wird. Die zweiten cDNA-Stränge werden synthetisiert, die cDNA-Produkte werden cloniert, gescreent und sequenziert.
IV.A.23. Schaffung von Lambda-ßt 11-HCV-cDNA-Blbliotheken, die größere cDNA-lnserts enthalten Die zur Schaffung und zum Screening der Lambda-gt11 -Bibliothek angewendete Methode entspricht im wesentlichen der Beschreibung in Abschnitt IV.A.1., ausgenommen, daß die Bibliothek aus einem Pool größerer cDNAs erzeugt wird, die aus der Sepharose-CL-48-Säuleeluiert wurden.
IV.A.24. Schaffung von HCV-cDNA-Blbliothekan unter Verwendung synthetischer Oligomere als Primer Neue HCV-cDNA-Bibliotheken wurden aus der RNA hergestellt, die von dem in Abschnitt IV.A.1. beschriebenen infektiösen Schimpansenplasmapool gewonnen wurde, und aus der Poly-A+-Fraktion, die von der Leber dieses infizierten Tieres gewonnen wurde. Die cDNA wurde im wesentlichen gemäß der Beschreibung von Gubler und Hoffman (1983) konstruiert, ausgenommen, daß die Primer für die Synthese des ersten cDNA-Stranges zwei synthetische Oligomere waren, die auf der Sequenz des oben beschriebenen HCV-Genoms basierten. Primer, die auf der Sequenz von Clon 11 b und 7 e basierten, waren
5' CTG GCT TGA AGA ATC 3'
bzw
5' AGT TAG GCT GGT GAT TAT GC 3'.
Die entstehenden cDNAs wurden in Lambda-Bakteriophage-Vektoren cloniert und mit verschiedenen anderen synthetischen Oligomere, deren Sequenz auf der HCV-Sequenz, in Fig.32, basierte, gescreent.
IV.B. Expression von in HCV-cDNAs codierten Polypeptiden und Identifizierung der exprlmlerten Produkte als HCV-lnduzlerte Antigene
IV.B.1. Expression des in Clon 5-1-1 codierten Polypeptide
Das ir. Clon 5-1-1 codierte HCV-Polypeptid (siehe Abschnitt IV.A.2. oben) wurde als ein Fusionspolypeptid mit Superoxiddismutase (SOD) exprimiert. Das erfolgte durch Subclonieren des Clon 5-1-1-cDNA-lnserts in den Exprossionsvektor pSODcfi (Steimeretal. [1986]) auf folgende Weise.
Zuerst wurde von pSODcf 1 isolierte DNA mit PamH1 und EcoRI behandelt, und der folgende Linker wurde in die lineare DNA ligiert, die durch die Restriktionsenzyme geschaffen wurde:
5' GAT CCT GGA ATT CTG ATA A 3' 3' GA CCT TAA GAC TAT TTT AA 5'.
Nach der Clonierung wurde das das Insert enthaltende Plasmid isoliert.
Das das Insert enthaltende Plasmid wurde mit EcoRI restringiert (restricted). Das HCV-cDNA-lnsert in Clon F -1 -1 wurde mit EcoRI ausgeschnitten und in diese EcoRI-linearisierte Plasmid-DNA ligiert. Das DNA-Gemisch wurde verwendet, um den E. coli-Stamm D1210 (Sadler et al. [198O)) zu transformieren. Rekombinanten mit der 5-1-1 -cDNA in der richtigen Orientierung für die Expression des ORF, siehe Fig. 1, wurden durch Restriktionskartierung und Nucleotidsequenzierung identifiziert. Rekombinante Bakterien von einem Clon wurden durch Züchten der Baktieren in Anwesenheit von IPTG zur Expression des SOD-NANB5.,.,-Polypeptide induziert.
IV.B.2. Expression des In Clon 81 codierten Polypeptids
Die in Clon 81 enthaltene HCV-cDNA wurdo als ein SOD-NANB8i-Fusionspolypeptid exprimiert. Die Methode zur Herstellung des dieses Fusionspolypeptids codierenden VuKtors war analog zu der Methode, die für die Schaffung des SOD-NANB5.,., codierenden Vektors eingesetzt wurde, mit dem Unterschied, daß die Quelle der HCV-cDNA Clon 81 war, der gemäß der Beschreibung in Abschnitt IV.A.3. isoliert wurde und für den dio DNA-Sequenz gemäß der Beschreibung in Abschnitt IV.A.4.
ermittelt wurde. Die Nucleotidsequenz der HCV-cDNA in Clon 81 und die putative Aminosäuresequenz des darin codierten Polypeptids sind in Fig.4 dargestellt.
Das HCV-cDNA-lnsert in Clon 81 wurde mit EcoRI ausgeschnitten und in pSODcM ligiert, das den Linker (siehe IV.B.1.) enthielt und durch Behandlung mit EcoRI linearisiert wurde. Das DNA-Gemisch wurde zur Transformierung des E. coli-Stamms D1210 verwendet. Rekombinanten mit der Clon-81 -HCV-cDNA in der richtigen Orientierung für die Expression des in Fig.4 dargestellten ORF (offener Leserahmen) wurden durch Restriktionskartierung und Nuclec'<dsequenzierung identifiziert.
Rekombinante Bakterien von einem Clon wurden durch Züchten der Bakterien in Anwesenheit von IPTG zur Expression des SOD-NANBei-Polypeptids induziert.
IV.B.3. Identifizierung des In Clon 5-1-1 codierten Polypaptids als ein HCV- und NANBH-assozliertee Antigen Das in der HCV-cDNA von Clor. 5-1-1 codierte Polypeptid wurde als ein NANBH-assoziiertes Antigen identifiziert, indem demonstriert wurde, daß Seren von mit NANBH infizierten Schimpansen und Menschen immunologisch mit dem Fusionspolypeptid, SOD-NANB6.,.,, reagierten, welches zusammengesetzt ist aus Superoxiddismutase an seinem N-Terminus und dem „in-frame" 5-1-1-Antigen an seinem C-Terminus. Das erfolgte durch „Western blotting" (Towbin et al. [1979]) in folgenderWeise.
Ein rekombinanter Bakterienstamm, der mit einem das SOD-NANB^H-Polypeptid codierenden Expressionsvektor transformiert war, siehe Beschreibung in Abschnitt IV.B.I., wurde durch Züchtung in Anwesenheit von IPTG zur Expression des Fusionspolypeptids induziert. Das gesamte Bakterienlysat wurde der Elektrophorese durch Polyacrylamidgele in Anwesenheit von SDS nach Laemmli (1970) unterzogen. Die separierten Polypeptide wurden auf Nitrocellulosefilter übertragen (Towbin et al. [1979]). Die Filter wurden dann in dünne Streifen geschnitten, und die Streifen wurden einzeln mit den unterschiedlichen Schimpansen- und Humanseren inkubiert. Gebundene Antikörper wurden durch weitere Inkubation mit '"!-markiertem Schaf-Anti-Human-IG, gemäß der Beschreibung in Abschnitt IV.A.1., nachgewiesen.
Die Charakterisierung der für die „Western blots" verwendeten Schimpansenseren und die Ergebnisse, dargestellt in der Fotografie der autoradiografisch aufgenommenen Streifen, sind in Fig.33 zu sehen. Polypeptide enthaltende Nitrocellulosestroifen wurden mit Seren inkubiert, die von Schimpansen zu unterschiedlichen Zeitpunkten während der akuten NANBH-(Hutchinson-Stamm)-lnfektionen (spur [lane] 1-16), Hepatitis-A-Infektionen (Spur 17-24 und 26-33) und Hepatitis-B-Infektionen (Spur 33-44) gewonnen wurden. Die Spuren 25 und 45 zeigen positive Kontrollen, bei denen die Immunoblots mit Serum von dem Patienten inkubiert wurden, der zur Identifizierung des rekombinanten Clons 5-1-1 beim ursprünglichen Screening der Lambda-gt 11 -cDNA-Bibliothek (siehe Abschnitt IV.A.1.) genommen wurde.
Die in den Kontrollspuren 25 und 45 in Fig. 23 sichtbare Bande widerspiegelt die Bindung von Antikörpern an die NANB5.,.,-Komponente des SOD-Fusionspolypeptids. Diese Antikörper weisen nicht nur eine Bindung an SOD auf, da dieses ebenfalls als negative Kontrolle in diese Proben eingeschlossen wurde, sie wären als eine Bande erschienen, die signifikant schneller als das SOD-NANB6.,.,-Fusionspolypeptid migriert.
Die Spuren 1-16 von Fig. 33 zeigen die Antikörperbindung in Serumproben von 4 Schimpansen. Die Proben wurden unmittelbar vor der Infektion mit NANBH und dann während der akuten Infektion gewonnen. Die Fig. vermittelt folgendes: Während in den Serumproben, die vor der Verabreichung des infektiösen HCV-lnoculums und während der frühen akuten Phase der Infektion gewonnen wurden, Antikörper, die immunologisch mit dem SOD-NANB^.i-Polypeptid reagierten, fehlten, induzierten alle 4 Tiere schließlich während des letzten Teils der akuten Phase oder im Anschluß daran zirkulierende Antikörper gegen dieses Polypeptid. Zusätzliche Bande, die bei den Schimpansen Nr. 3 und 4 auf den Immunblots beobachtet wurden, waren auf Hintergrundbindung (background binding) an Wirtsbakterienproteine zurückzuführen.
Im Gegensatz zu den Resultaten, die mit Seren von mit NANBH infizierten Schimpansen gewonnen wurden, wurde die Entwicklung von Antikörpern gegen die NANB^5.,.,-Komponente des Fusionspolypeptids bei 4 Schimpansen, die mit HAV infiziert waren, bzw. 3 Schimpansen, die mit HBV infiziert waren, nicht beobachtet. Die einzige Bindung war in diesen Fällen Hintergrundbindung an Wirtsbakterienproteine, die auch bei den HCV-infizierten Proben auftrat. Die Charakterisierung der für die „Western blots" verwendeten Humanseren und die Ergebnisse, die in der Fotografie der autoradiografisch aufgenommenen Streifen gezeigt sind, sind in Fig.34 zu sehen. Polypeptide enthaltende Nitrocellulosestreifen
wurden mit Seren inkubiert, die von Menschen zu unterschiedlichen Zeitpunkten wahrend der Infektion mit NANBH (Spur 1 -21), HAV (Spur 33-40) und HBV (Spur 41-49) gewonnen wurden. Die Spuren 25 und 50 zeigen positive Kontrollen, bei denen die Immunblots mit Patientenserum inkubiert wurden, das beim ursprünglichen Screening der oben beschriebenen Lambda-gt11 Bibliothek verwendet wurde. Die Spuren 22-24 und 26-32 zeigen „nicht infizierte" Kontrollen, bei denen die Seren von „normalen" Blutspendern stammten.
Wie aus Fig. 34 ersichtlich ist, enthielten die Seren von neun NANBH-Patienten, einschließlich das zum Screening der Lambdagt11 -Bibliothek verwendete Serum, Antikörper gegen die NANB5.,.,-Komponente des Fusionspolypeptids. Die Seren von drei Patienten mit NANBH enthielten diese Antikörper nicht. Es ist möglich, daß sich die ArHi-NANB5.,.,-Antikörper bei diesen Patienten zu einem späteren Zeitpunkt entwickeln. Es ist auch möglich, daß dieser Reaktionsmangel von einem unterschiedlichen NANBV-Agens resultierte, das bei den Individuen, von denen das nicht-ansprechende Serum genommen wurde, auslösend für die Krankheit war.
Fig.34 zeigt auch, daß Seren von vielen mit HAV und HBV infizierten Patienten keine ArItI-NANB6.,.,-Antikörper enthielten, und daß diese Antikörper auch nicht in den Seren von „normalen" Kontrollen vorhanden waren. Obgleich ein HAV-Patient (Spur 36) augenscheinlich Anti-NANBj.,.,-Antikörper hat, Ist es möglich, daß dieser Patient vorher mit HCV infiziert war, da die Inzidenz von NANBH sehr hoch ist und da sie oft subklinisch verläuft.
Diese serologischen Untersuchungen zeigen, daß die cDNA in Clon 5-1-1 Epitope codiert, die von Seren von mit BB-NANBV infizierten Patienten und Tieren spezifisch erkannt werden. Außerdem wird die cDNA augenscheinlich nicht von dem Primatengenom hergeleitet. Eine von Clon 5-1-1 oder von Clon 81 hergestellte Hybridisierungssonde hybridisierte unter Bedingungen, wo einzigartige, „single-copy"-Gene nachweisbar waren, nicht an „Southern blots" von Kontroll-Human- und -Schimpansen-genomischer DNA von nicht infizierten Individuen. Diese Sonden hybridisierten auch nicht an „Southern blots" von Kontroll-Rinder-genomischer DNA.
IV.B.4. Expression des in einer Zusammensetzung der HCV-DNAs in Clon 36,81 un-J 32 codierten Polypeptide Das HCV-Polypeptid, welches In dem offenen Leserahmen codiert ist, der sich durch Clon 36,81 und 32 erstreckt, wurde mit SOD als ein Fusionspolypeptid exprimiert. Das erfolgte durch Inserieren der zusammengesetzten cDNA (composite cDNA), C100, in eine Expressionskassette, die das Human-Superoxiddismutase-Gen enthält, Inserieren der Expressionskassette in einen Hefeexpressionsvektor und Exprimieren des Polypeptids in Hefe.
Eine Expressionskassette, die die von Clon 36,81 und 32 abgeleitete C 100-cDNA enthielt, wurde konstruiert, indem das ~1207bp-EcoRI-Fragment in die EcoRI-Stelle des Vektors pS3-56 (auch pS356 genannt) inseriert wurde, wobei das Plasmid pS3-56c100 gewonnen wurde. Die Konstruktion von C100 ist in vorstehendem Abschnitt IV.A.16. beschrieben.
Vektor pS3-56, der ein pBR322-Derivat ist, enthält eine Expressionskassette, die aus dem ADH2/GAPDH-Hybrid-Hefepromotor „upstream" von dem Human-Superoxiddismutasegen und einem „downstream" GAPDH-Transkriptionsterminator zusammengesetzt ist. Eine ähnliche Kassette, die diese Kontrollelemente und das Superoxiddismutase-Gen enthält, ist bei Cousens et al. (1987) und in der gleichfalls anhängigen Anmeldung GP0196056, veröffentlicht am 1. Oktober 1986, die gemeinschaftliches Eigentum des Zessionärs dieser Anmeldung ist, beschrieben. Die Kassette in pS3-56 unterscheidet sich jedoch von der bei Cousens et al. (1987), wo das heterologe Proinsulingen und das Immunoglobulin „hinge" (Scharnier) deletiert werden, und wo sich an gin,54 der Superoxiddismutase eine Adaptorsequenz anschließt, die ein EcoRI-Stelle enthält. Die Sequenz des Adaptors ist:
5'-AAT TTG GGA ATT CCA TAA TGA G -3'
AC CCT TAA GGT ATT ACT CAG CT
Die EcoRI-Stelle gestattet die Insertion von heterologen Sequenzen, die bei Expression von einem die Kassette enthaltenden Vektor Polypeptide liefern, die über einen die Aminosäuresequenz:
-asn-leu-gly-ile-ar-
enthaltenden Oligopeptidlinker an Superoxiddismutase fusioniert werden.
Eine Probe von pS356 wurde am 29. April 1988 unter den Bedingungen des Budapester Vertrages bei der American Type Culture Collection (ATCC), 12301 Parklawn Dr., Rockville, Maryland 20853, hinterlegt und erhielt die Zugriffsnummer 67683. Die Bedingungen bezüglich Verfügbarkeit und Zugriff zu dem hinterlegten Material und bezüglich Erhaltung des hinterlegten Materials entsprechen den in Abschnitt H.A. spezifizierten für Stämme die NANBV-cDNAs enthalten. Diese Hinterlegung soll nur eine Erleichterung bieten, aber nicht die praktische Ausführung der Erfindung im Hinblick auf die hier gegebene Beschreibung darstellen. Das hinterlegte Material ist hierin durch Bezugnahme eingeschlossen.
Nach der Isolierung von Rekombinanten, die das C100-cDNA-lnsert in der richtigen Orientierung enthalten, wurde die die C 100-cDNA enthaltende Expressionskassette mit BamHI aus pS3-56c,oo ausgeschnitten, und ein die Kassette enthaltendes Fragment von ~3400bp wurde isoliert und gereinigt. Dieses Fragment wurde dann in die BamHI-Stelle des Hefevektors ρ AB 24 inseriert.
Plasmid pAB24, dessen signifikante Merkmale in Figur 35 dargestellt sind, ist ein Hefe-„shuUie"-Vektor, der die komplette 2-Mikrometer-Sequenz für Replikation (Broach [1981 ]) und pBR322-Sequenzen enthält. Er enthält auch das von Plasmid YEp24 (Bostein et al. [1979]) abgeleitete Hefe-URA3-Gen und das von Plasmid pCI/1 abgeleitete Hefe-LEU2d-Gen. EPO Veröffentlichungs-Nr. 116.201. Plasmid pAB24 wurde beschrieben in US-Anmeldeaktenzeichen 138.894, dessen Eigentümer der hier angegebene Zessionär ist. Plasmid pAB24 wurde konstruiert, indem YEp24 mit EcoRI digeriert wurde und der Vektor religiert wurde, um die partielle 2-Mikrometer-Sequenzzu entfernen. Das entstehende Plasmid, YEP24de1taRI wurde durch Digestion mit CIaI linearisiert und mit dem kompletten 2-Mikrometer-Plasmid, das mit CIaI lineariiert worden war, ligiert. Das resultierende Plasmid, pCBou wurde dann mit Sbal digeriert, und das 8605bp-Vektorfragment wurde gel-isoliert. Dieses isolierte Xbal-Fragment wurde mit einem 4460pb-Sbal-Fragment, welches das von pCI/1 -isolierte LEU2d-Gen enthielt, ligiert.
Die Orientierung des LEU2d-Gens hat die gleiche Richtung wie das URA3-Gen. Die Insertion der Expression erfolgte an der einzigartigen EcoRI-Stelle der pBR322-Sequenz (? unleserliche Stelle), wodurch das Gen bezüglich bakterieller Resistenz gegenüber Tetracyclin unterbrochen wurde.
Das rekombinante Plasmid, das die SOD-CIOO-Expressionskassette, pAB24100-3, enthielt, wurde in den Hefestamm JSC 308 sowie in andere Hefestämme transformiert. Die Zellen wurden nach der Beschreibung von Hinnen et al. (1978) transformiert und
auf ura-selektive Platten plattiert. Einzelne Kolonien wurden in leu-selektive Medien inokuliert und bis zur Sättigung gezüchtet. Die Kultur wurde durch Züchten in YEP mit Gehalt von 1 % Glucose zur Expression des SOD-Polypeptids (genannt C100-3) induziert.
Stamm JSC 308 ist vom Genotyp MAT, leu 2, ura 3(del) DM15 (GAP/ADR 1), der am ADR1 -Locus integriert ist. Bei JSC 308 resultiert Überexpression des positiven Aktivatorgenproduktes ADR1 in Hyperderepression (im Verhältnis zu einer ADR1-Wildtyp-Kontrolle) und signifikant höheren Ausbeuten an exprimierten heterologen Proteinen, wenn solche Proteine über ein ADH2-UAS-Reguliersystem synthetisiert werden. Die Konstruktion des Hefestammes JSC308 wird in der gleichfalls anhängigen Anmeldung, US-Anmeldeaktenzeichen (AtU-.ney Docket No. (Anwaltsaktennummer] 2300-0229), offenbart, die gleichzeitig hiermit eingereicht wurde und hier durch Bezugnahme eingeschlossen ist. Eine Probe von JSC 308 wurde am 5. Mai 1988 beim ATCC unter den Bedingungen des Budapester Vertrages hinterlegt und erhielt die Zugriffsnummer 20879. Die Bedingungen bezüglich Verfügbarkeit und Zugriff zu dem hinterlegten Material und bezüglich Erhaltung der Hinterlegung sind di» gleichen wie die in Abschnitt H.A. für HCV-cDNAs enthaltende Stämme spezifizierten.
Das in pAB24C100-3 codierte komplette C100-3-Fusionspolypeptid sollte 154 Aminosäuren von Human-SOD am Amino-Terminus, 5 vom die EcoRI-Stelle enthaltenden synthetischen Adaptor abgeleitete Aminosäurereste, 363 von C100-cDNA abgeleitete Aminosäurereste und 5 Carboxy-terminale Aminosäuren enthalten, die von der MS2-Nucleotidsequenz abgeleitet sind, die der HCV-cDNA-Sequenz in Clon 32 benachbart ist. (Siehe Abschnitt IV.A.7.) Die putative Aminosäuresequenz des Carboxy-Terminus dieses Polypeptids, beginnend am vorletzten Ala-Rest von SOD, wird in Figur 34 dargestellt. Ebenfalls dargestellt ist die diesen Abschnitt des Polypeptids codierende Nucleotidsequenz.
IV.B.5. Identifizierung des In C100 codierten Polypeptide als ein NANBH-assozilertes Antigen Das aus Plasmid pAB24C100-3 in Hefestamm JSC 308 exprimierte CIOO-3-Fusionspolypeptid wurde in bezug auf Größe charakterisiert, und das in C100 codierte Polypeptid wurde aufgrund seiner immunologischen Reaktionsfähigkeit mit Serum von einem Menschen mit chronischer NANBH als ein NANBH-assoziiertes Antigen identifiziert.
Das C10O-3-Polypeptid, das gemäß der Beschreibung in Abschnitt IV.B.4. exprimiert wurde, wurde folgendermaßen analysiert. Hefe-JSC-308-Zellen wurden mit pAB24 oder mit pAB24C100-3 transformiert und wurden zur Expression des heterologen Plasmid-codierten Polypeptids induziert. Die induzierten Hefezellen in 1 ml Kultur (One6Onm~20) wurden durch einminütige Zentrifugation bei 10000 U/min pelletiert und wurden lysiert, indem sie kräftig (10x 1 min) mit 2 Volumen Lösung und 1 Volumen Glasperlen (0,2 Nanometer Durchmesser) verwirbelt wurden. Die Lösung enthielt 5OmM Tris-HCI, pH 8,0.1 mM EDTA, 1 mM Phenylmethylsulfonylfluorid (PMSF) und 1 Mikrogramm/ml Pepstatin. Unlösliches Material im Lysat, das das C 100-3-Polypeptid enthielt, wurde durch Zentrifugation gesammelt (10000 U/min über einen Zeitraum von 5 Minuten) und durch 5minütiges Sieden im Laemmli-SDS-Probenpuffer gelöst. (Siehe Laemmle [1970]). Eine Polypeptidmenge, die der 'n 0,3ml der induzierten Hefekultur äquivalent war, wurde Elektrophorese durch 10%ige-Polyacrylamidgele in Anwesenheit von SDS nach Laemmli (1970) unterzogen. Proteinstandaids wurden auf den Gelen co-elektrophoretisiert. Die exprimierten Polypeptide enthaltende Gele wurde entweder mit Coomassie-Brilliantblau gefärbt oder „Western blotting" nach der Beschreibung in Abschnitt IV.B.2. unterzogen, wobei Serum von einem Patienten mit chronischer NANBH genommen wurde, um die immunologische Reaktionsfähigkeit der aus pAB24 und aus pAB24C100-3 exprimierten Polypeptide zu bestimmen. Die Resultate sind in Figur 37 dargestellt. In Figur 37 A wurden die Polypeptide mit Coomassie-Brilliantblau gefärbt. Die unlöslichen Polypeptide von mit pAB24 transformiertem JSC 308 und von zwei weiteren Kolonien von mit pAB24C100-3 sind in den Spuren 1 (pAB24) bzw. 2 und 3 zu sehen. Ein Vergleich von Spur 2 und 3 mit Spur 1 zeigt die induzierte Expression eines Polypeptids entsprechend einer relativen Molekülmasse von "54000 Dalton aus mit pAB24C100-3 transformiertem JSC 308, die nicht in mit pAB24 transformiertem JSC308 induziert wird. Dieses Polypeptid wird durch den Pfeil angezeigt. Figur 37 B zeigt die Resultate der „Western blots" der in mit pAB24 (Spur 1) oder mit pAB24C100-3 (Spur 2) transformiertem Hefestamm JSC 308 exprimierten unlöslichen Polypeptide. Die aus pAB24 exprimierten Polypeptide waren mit Serum von einem Menschen mit NANBH immunologisch nicht reaktionsfähig. Wie jedoch durch den Pfeil angegeben wird, exprimierte mit pAB24C100-3 transformierter JSC 308 ein Polypeptid mit einer relativen Molekülmasse von ~54000 Dalton, das mit dem Human-NANBH-Serum reagierte. Die anderen immunologisch reaktionsfähigen Polypeptide in Spur 2 können Degradations- und/oder Aggregatioiisprodukte dieses ~54000-Dalton-Polypeptids sein.
IV.B.6. Reinigung von Fuslonspolypeptid C100-3
Das aus SOD am N-Terminus und „in-frame" C 100-HCV-Polypeptid am C-Terminus zusammengesetzte Fusionspolypeptid C100-3 wurde durch differentielle Extraktion der unlöslichen Fraktion der extrahierten Wirtshefezellen, in denen das Polypeptid exprimiert wurde, gereinigt.
Das Fusionspolypeptid C100-3 wurde, woi in Abschnitt IV.B.4. beschrieben, in mit pAB24C100-3 transformiertem Hefestamm JSC308 exprimiert. Die Hefezellen wurden dann durch Homogenisierung lysiert, das unlösliche Material im Lysat wurde bei pH 12,0 extrahiert, und C100-3 in der verbleibenden unlöslichen Fraktion wurde in Puffer mit SDS-Gehalt löslich gemacht.
Das Hefelysat wurde im wesentlichen nach Nagahuma et al. (1984) hergestellt. Es wurde eine Hefezellensuspension hergestellt.
Sie bestand aus 33% Zellen (Vol./Vol.), die in einer Lösung (Puffer A) suspendiert waren, die 20 mM Tris-HCI, pH 8,0,1mM Dithiothreitol und 1 mM Phenylmethylsulfonylfluorid (PMSF) enthielt. Eine aliquote Menge der Suspension (15ml) wurde mit einem gleichen Volumen Glasperlen (0,45 bis 0,50mm Durchmesser) gemischt, und das Gemisch wurde bei Höchstgeschwindigkeit 8 Minuten lang in einem Super-Mixer (Lab Line Instruments, Inc.) verwirbelt. Homogenat und Glasperlen wurden getrennt, und die Glasperlen wurden dreimal mit dem gleichen Volumen von Puffer A wie die anfänglich eingesetzten Zellen gewaschen. Nach der Vereinigung von Waschabgängen und Homogenat wurde das unlösliche Material im Lysat gewonnen, indem das Homogenat 15 Minuten bei 40C zentrifugiert wurde, die Pellets im doppelten Volumen von Puffer A wie die anfänglich eingesetzten Zellen resuspendiert wurden, und das Material durch 15minütiges Zentrifugieren bei 7000 x g repelletiert wurde. Dieser Waschvorgang wurde dreimal wiederholt.
Das unlösliche Material aus dem Lysat wurde bei pH 12,0 wie folgt extrahiert. Das Pellet wurde in Puffer, der 0,5M NaCI, 1 mM EDTA enthielt, suspendiert, wobei das Suspendiervolumen 1,8mal dem der anfänglich eingesetzten Zelien entsprach. Der pH-Wert der Suspension wurde durch Zusatz von 0,2 Volumen 0,4M Na-Phosphatpuffer, pH 12,0 eingestellt. Nach dem Mischen wurde die Suspension 15 Minuten bei 40C bei 7000 χ g zentrifugiert, und die überstehende Flüssigkeit wurde entfernt. Die Extraktion wurde zweimal wiederholt. Die extrahierten Pellets wurde gewaschen, indem sie in 0,5M NaCI, 1 mM EDTA,
suspendiert wurden, wobei ein Suspensionsvolumen verwendet wurde, das zweimal dem der anfänglich eingesetzten Zellen entsprach. Dar?η schieß sich 15minütiges Zentrifugieren bei 4°C bei 700Ox g an.
Das C 100-3-PoIy peptid in dem extrahierten Pallet wurde durch Behandlung mit SDS löslich gemacht. Die Pellets wurden in einer
Puffer-Ä-Menge suspendiert, die 0,9 Volumen des Volumens der anfänglich eingesetzten Zellen entsprach, und 0,1 Volumen 2%iges SDS wurde zugesetzt. Nach dem Mischen der Suspension wurde sie 15 Minuten lang bei 4°C bei 7000 χ g zentrifugiert.
Das entstehende Pellet wurde weitere 3mal mit SDS extrahiert. Die entstehenden Überstände, die C100-3 enthielten, wurden gesammelt.
Diese Verfahrensweise reinigt C100-3 mehr als 1Of ach von der unlöslichen Fraktion des Hefehomogenats, und die Rückgewinnung des Polypeptide beträgt mehr als 50%.
Das gereinigte Fusionspolypeptidpräparat wurde durch Polyacrylamidelektrophorese nach Laemmli (1970) analysiert. Auf Basis dieser Analyse war das Polypeptid zu mehr als 80% rein und hatte eine scheinbare relative Molekülmasse von ~54 000 Dalton.
IV.C. Identifizierung von an HCV-cDNA hybridisierender RNA In infizierten Individuen IV.C.1. Identifizierung von an HCV-cDNA hybridisierender RNA in der Leber eines Schimpansen mit NANBH
Es wurde nachgewiesen, daß RNA aus der Leber eines Schimpansen, der NANBH hatte, eine RNA-Spezies enthielt, die an in Cbn 81 enthaltene HCV-cDNA hybridisierte, und zwar durch „Northern blotting" auf folgende Weise.
RNA wurde aus Leberbiopsiematerial des Schimpansen isoliert, wovon das Plasma mit dem hohen Titer (siehe Abschnitt IV.A.1.) unter Anwendung von Techniken gewonnen wurde, die bei Maniatis et al. (1982) für die Isolierung von totaler RNA aus Säugetierzellen und für ihre Trennung in PoIy-A+- und Poly-A~-Fraktionen beschrieben wurden. Diese RNA-Fraktionen wurden Elektrophorese auf einem Formaldehyd/Agarose-Gel (1 % Masse/Vol.) unterzogen und auf Nitrocellulose transferiert. (Maniatis et al. (1982)). Die Nitrocellulosefilter wurden mit radioaktiv markierter HCV-cDNA von Clon 81 hybridisiert (siehe Fig. 4 bezüglich der Nucleotidsequenz des Inserts). Zur Herstellung der radioaktiv markierten Sonde wurde das aus Cion 81 isolierte HCV-cDNA-Insert durch „nick"-Translation unter Verwendung von DNA-Polymerase I (Maniatis et al. [19821) radioaktiv markiert. Die Hybridisierung erfolgt 18 Stunden bei42°C in einer Lösung, die 10% (Masse/Vol.) Dextransulfat, 50% (Masse/Vol.) deionisiertes Formamid,75OmM NaCI, 75mM Na-Citrat, 2OmM Na2HPO4, pH 6,5,0,1 % SDS,0,02% (Masse/Vol.) Rinderserumalbumin (BSA = bovine serunι albumin), 0,02% (Masse/Vol.) Ficoll-400,0,02% (Masse/Vol.) Polyvinylpyrrolidon, 100 Mikrogramm/ml Salmspermien-DNA, die durch Beschallung geschert und denaturiert worden war, und 10e CPM/ml der „nick"-translatierten cDNA-Sonde enthielt.
Eine autoradiografische Aufnahme des gesondeten Filters wird in Fig. 38 gezeigt. Spur 1 enthält J2p-markierte Restriktionsfragmentmarker. Die Spuren 2-4 enthalten Schimpansenleber-RNA wie folgt: Spur 2 enthält 30 Mikrogramm totale RNA; Spur 3 enthält 30 Mikrogramm PoIy-A--RNA; und Spur 4 enthält 20 Mikrogramm PoIy-A+-RNA. Wie in Fig.32 gezeigt, enthält die Leber des Schimpansen mit NANBH eine heterogene Population von verwandten Poly-A+-RNA-Molekülen, die an die HCV-DNA-Sonde hybridisiert und die augenscheinlich etwa 5000 bis 11000 Nucleotide groß ist. Diese RNA, die an die HCV-cDNA hybridisiert, könnte Virusgenome und/oder spezifische Transkripte des Virusgenoms darstellen.
Das in nachstehendem Abschnitt IV.C.2. beschriebene Experiment bestätigt die Vermutung, daß HCV ein RN Α-Genom enthält.
IV.C.2. Identifizierung von HCV-abgelolteter RNA im Serum von infizierten Individuen
Nucleinsäuren wurden aus Partikeln isoliert, die, wie in Abschnitt IV.A.1. beschrieben, aus Schimpansen-NANBH-Plasma mit hohem Titer isoliert wurden. Aliquoten (die 1 ml Originalplasma äquivalent waren) der isolierten Nucleinsäuren wurden in 20 Mikroliter 5OmM Hepes, pH 7,5,1 mM EDTA und 16 Mikrogramm/ml hefelöslicher RNA resuspendiert. Die Proben wurden durch 5minütiges Sieden mit anschließendem sofortigen Frosten denaturiert und mit RNase A (5 Mikroliter mit Gehalt an 0,1 mg/ml RNase A in 25mM EDTA, 4OmM Hepes, pH 7,5) oder mit DNase I (5 Mikroliter mit Gehalt von 1 Einheit DNase I in 1OmM MgCI2, 25rnM Hepes.. pH 7,5) behandelt. Kontrollproben wurden ohne Enzym inkubiert. Nach der Inkubation wurden 230Mikroliter eiskaltes 2XSSC mit Gehalt an 2 Mikrogramm/ml hefelöslicher RNA zugesetzt und die Proben wurden auf einem Nitrocellulosefilter filtriert. Die Filter wurden mit einer cDNA-Sonde von Clon 81 hybridisiert, die durch „nick"-Translation 32p-markiert worden war. Fig. 39 zeigt eine autoradiografische Aufnahme des Filters. Hybridisierungssignale wurden in den DNase-behandelten Proben und Kontrollproben (Spuren 2 bzw. 1) nachgewiesen, aber nicht in der RNase-behandelten Probe (Spur 3). Da also RNase-A-Behandlung die von den Partikeln isolierten Nucleinsäuren zerstörte und DNase-Behandlung keinen Effekt hatte, kann man als erwiesen annehmen, daß das HCV-Genom aus RNA besteht.
IV.C.3. Nachweis von HCV-Nucleinsäuresequenzen in Leber- und Plasmaproben von Schimpansen mit NANBH abgeleiteten
amplif !zierten Nucleinsäuresequenzen
In der Leber und im Plasma von Schimpansen mit NANBH und bei Kontrollschimpansen vorhandene HCV-Nucleinsäuren wurden im wesentlichen unter Anwendung der von Saiki et al. (1986) beschriebenen PCR-Technik (PCR = polymerase chain reachon) amplifiziert. Die Primer-Oligonucleotide wurden von den HCV-cDNA-Sequenzen in Clon 81 oder Clon 36 und 37 abgeleitet. Die amplifizierten Sequenzen wurden durch Gelelektrophorese und „Southern blotting" nachgewiesen, wobei als Sonden das geeignete cDNA-Oligomer mit einer Sequenz von der Region zwischen, aber nicht einschließlich, der beiden Primer verwendet wurde.
Proben von RNA mit HCV-Sequenzen, die durch das Amplifikationssystem untersucht werden sollten, wurden aus Leberbiopsienmdterial von drei Schimpansen mit NANBH und von zwei Kontrollschimpansen isoliert. Die Isolierung der RNA-Fraktion erfolgte durch die in Abschnitt IV.C.1. beschriebene Guanidiniumthiocyanatprozedur.
Durch das Amplifikationssystem zu untersuchenden RNA-Proben wurden auch aus dem Plasma von zwei Schimpansen mit NANBH und von einem Kontrollschimpansen sowie von einem Pool von Plasmen von Kontrollschimpansen isoliert. Ein infizierter Schimpanse hatte einen CID/ml gleich oder größer als 10e, und der andere infizierte Schimpanse hatte einen CID/ml gleich oder größer als 105.
Die Nucleinsäuren wurden folgendermaßen aus dem Plasma extrahiert. Entweder 0,1 ml oder 0,01 ml Plasma wurden auf ein Endvolumen von 1,0ml verdünnt, und zwar mit einer TENB,Vroteinase-K/SDS-Lösung (0,05 M Tris-HCI, pH 8,0,0,001 M EDTA, 0,1 M NaCI, 1 mg/ml Proteinase Kund 0,5% SDS) mit einem Gehalt von 10 Mikrogramm/ml Polydenylsäure, und 60 Minuten bei 370C inkubiert. Nach dieser Proteinase-K-Digestion wurden resultierenden Plasmafraktionen durch Extraktion mitTE-(10,0mM Tris-HCI, pH 8,0,1 mM EDTA)-gesättigtem Phenol deproteinisiert. Die Phenolphase wurde durch Zentrifugation abgetrennt uno mit 0,1 % SDS enthaltendem TENB reextrahiert. Die entstehenden wäßrigen Phasen von jeder Extraktion wurden gepoolt und
zweimal mit einem gleichen Volumen von Phenol/Chloroform/Isoamylalcohol (1:1 (99:2)) und dann zweimal mit einem gleichen Volumen eines 99:1-Gemisches aus Chloroform/Isoamylalcohol extrahiert. Nach der Phasentrennung durch Zentrifugation wurde die wäßrige Phase auf eine Endkonzentration von 0,2 Μ Na-Acetat gebracht, und die Nucleinsäuren wurden durch den Zusatz von zwei Volumen Ethanol ausgefällt. Die ausgefällten Nucleinsäuren wurden durch Ultrazentrifugalion in einem SW-41 Rotor bei 38K 60 Minuten lang bei 4°C rückgewonnen.
Außerdem wurden das Schimpansenplasma mit dem hohen Titer und das gesammelte Kontrollplasma abwechselnd nach dem Verfahren von Chomcyzaki und Sacchi (1987) mit 50 Mikrogramm Poly-A-Träger extrahiert. Bei dieser Verfahrensweise wird eine Säureguanidiniumthiocyanatextraktion angewendet. RNA wurde durch 10 Minuten lange Zentrifugation bei 10000 U/min bei 4°C in einer Eppendorf-Microfuge rückgewonnen.
In zwei Fällen wurden vor der Synthese von cDNA in der PCR-Reaktion die durch die Proteinase-K/SDS/Pheiiol-Methode aus dem Plasma extrahierten Nucleinsäuren weiter gereinigt, indem sie an S- und S-Elutip-R-Säulen gebunden und aus ihnen eluiert werden. Das Verfahren wurde nach den Richtlinien des Herstellers durchgeführt.
Die als Matrize für die PCR-Reaktion verwendete cDNA wurde von den nach vorstehender Beschreibung hergestellten Nucleinsäuren (entweder totale Nucleinsäuren oder RNA) abgeleitet. Im Anschluß an die Ethanolpräzipitation wurde die präzipitierten Nucleinsäure getrocknet und in DEPC-behandeltem destilliertem Wasser resuspendiert. Sekundäre Strukturen in den Nucleinsäuren wurden durch lOminütiges Halten bei 650C getrennt, undf die Proben wurden sofort auf Eis gekühlt. cDNA wurde unter Verwendung von 1 bis 3 Mikrogramm totaler Schimpansen-RNA aus der Leber oder von aus 10 bis 100 Mikrolitern Plasma extrahierten Nucleinsäuren (oder RNA) synthetisiert. Bei der Synthese wurde Reverse Transkriptase verwendet, und sie erfolgte in einem 25-Mikroliter-Reaktionsgefäß nach dem vom Hersteller, BRL, spezifizierten Protokoll. Bei den Primern für die cDNA-Synthese handelte es sich um diejenigen, die auch bei der nachstehend beschriebenen PCR-Reaktion verwendet wurden.
Alle Reaktionsgemische für die cDNA-Synthese enthielten 23 Einheiten des RNase-lnhibitors RNASIN™ (Fisher/Promega). Im Anschluß an die cDNA-Synthese wurden die Reaktionsgemische mit Wasser verdünnt, 10 Minuten gekocht und schnell auf Eis gekühlt.
Die PCR-Reaktionen wurden im wesentlichen nach den Richtlinien des Herstellers ausgeführt (Cetus-Perkin-Elmer), mit Ausnahme des Zusatzes von 1 Mikrogramm RNase A. Die Reaktionen wurden in einem Endvolumen von 100 Mikroliter durchgeführt. Die PCR-Technik erfolgte in 35 Zyklen mit einem Temperaturregime von 370C, 720C und 940C.
Die Primer für die cDNA-Synthese und für die PCR-Reaktionen wurden von den HCV-cDNA-Sequenzen in Clon 81, Clon 36 oder Clon 37b abgeleitet. (Die HCV-cDNA-Sequenzen von Clon 81,36 und 37b sind in den Figuren 4,5 bzw. 10 dargestellt.) Die Sequenzen der beiden von Clon 81 abgeleiteten 16-mer Primer waren:
5' CAA TCA TAC CTG ACA G 3' und 5' GAT AAC CTC TGC CTG A 3'.
Die Sequenz des Primers von Clon 36 war:
5' GCA TGT CAT GAT GTA T 3'
Die Sequenz des Primers von Clon 37 b war:
5' ACA ATA CGT GTG TCA C 31.
Bei den PCR-Reaktionen bestanden die Primerpaare entweder aus den beiden von Clon 81 abgeleiteten 16-mer von Clon 36 und dem 16-mer von Clon 37 b.
Die Produkte der PCR-Reaktion wurden durch Trennung der Produkte durch Alkaligelelektrophorese, gefolgt von „Southern blotting" und Nachweis der amplifizierten HCV-cDNA-Sequenzen mit einer 32p-markierten internen Oligonucleotidsonde, die von einer nicht die Primer überlappenden Region der HCV-cDNA abgeleitet worden war, analysiert. Die PCR-Reaktionsgemische wurden mit Phenol/Chloroform extrahiert, und die Nucleinsäuren wurden aus der wäßrigen Phase mit Salz und Ethanol präzipitiert. Die präzipitierten Nucleinsäuren wurden durch Zentrifugation gesammelt und in destilliertem Wasser gelöst. Aliquoten der Proben wurden auf 1,8%igen alkalischen Agarosegelen der Elektrophorese unterzogen. Einzelsträngige DNAs mit niner Länge von 60,108 und 161 Nucleotiden wurden auf Gelen als „Marker" für die relative Molekülmasse co-elektrophoretisiert. Nach der Elektrophorese wurden die DNAs in dem Gel auf Biorad-Zeta-Sonden™-Papier transferiert. Prähybridisierurg und Hybridisierung sowie Waschbedingungen entsprachen der Spezifikation des Herstellers (Biorad).
Die für Hybridisierung/Nachweis der amplifizierten HCV-cDNA-Sequenzen verwendeten Sonden waren die folgenden. Wurde das PCR-Primerpaar von Clon 81 gewonnen, war die Sonde ein 108-mer mit einer Sequenz, die der in der Region zwischen den Sequenzen der beiden Primer gelegenen entsprach. Wurde das PCR-Primerpaar von Clon 36 und Clon 37 b abgeleitet, war die Sonde das von Clon 35 abgeleitete „nick"-translatierte HCV-cDNA-lnsert. Die Primer werden von den Nucleotiden 155-170 des Clon-37 b-lnserts und den Nucleotiden 206-268 des Clon-36-lnserts abgeleitet. Das 3'-Ende des HCV-cDNA-lnserts in Clon 35 überlappt die Nucleotide 1-186 des Inserts in Clon 36; und das 5'-Ende des Clon-35-lnserts überlappt die Nucleotide 207-269 des Inserts in Clon 37b. (Vergleiche Figuren 5,8 und 10). So überspannt das cDNA-lnsert in Clon 35 einen Teil der Region zwischen den Sequenzen der von Clon 36 und Clon 37 b abgeleiteten Primer und ist nützlich als Sonde für die amplifizierten Sequenzen, die diese Primer einschließen.
Die Analyse der RNA aus den Leberproben erfolgte nach der obigen Prozedur unter Einsatz beider Gruppen Primer und Sonden. Die RNA aus der Leber der drei Schimpansen mit NANBH lieferte positive Hybridisierungsergebnisse für Amplifikationssequenzen der erwarteten Größe (161 und 586 Nucleotide für 81 bzw. 36 und 37 b), während die Kontiolischimpansen negative Hybridisierungsergebnisse lieferten. Die gleichen Ergebnissen wurden erzielt, wenn das Experiment dreimal wiederholt wurde.
Die Analyse der Nucleinsäuren und RNA aus dem Plasma erfolgte ebenfalls nach der obigen Prozedur unter Einsau der Primer und der Sonde von Clon 81. Die Plasmen stammten von zwei Schimpansen mit NANBH, von einem Kontrollschimpansen und gepoolten Plasmen von Kontrollschimpansen. Beide NANBH-Plasmen enthielten Nucleinsäuren/RNA, was bei dem PCR-amplifizierten Assay zu positiven Ergebnissen führte, während beide Kontrollplasmen negative Resultate lieferten. Diese Resultate wurden mehrere Male in Wiederholungstests erzielt.
IV.D. Radlolmmunoassay zum Nachwels von HCV-Antikörpern Im Serum von Infizierten Individuen Festphasen-Radioimmunoassays zum Nachweis von Antikörpern gegen HCV-Antigene wurden auf der Basis von TSU und Herzenberg (1980) entwickelt. Mikrotiterplatten (Immulon 2, Removaweil-Streifen) werden mit HCV-Epitope enthaltenden gereinigten Polypeptiden beschichtet. Die beschichteten Platten werden mit Humanserumproben inkubiert, von denen angenommen wird, daß sie Antikörper gegen die HCV-Epitope enthalten, oder mit geeigneten Kontrollen. Während der Inkubation wird der Antikörper, sofern vorhanden, immunologisch an das Festphasen-Antigen gebunden. Nach entfernen des ungebundenen Materials und Waschen der Mikrotiterplatten werden Komplexe und Human-Antikörper-NANBV-Antigen durch Inkubation mit '"!-markierten Schaf-Anti-Human-Immunoglobulin nachgewiesen. Ungebundener markierter Antikörper wird durch Aspiration entfernt, und die Platten werden gewaschen. Die Radioaktivität in einzelnen Vertiefungen wird bestimmt; die Menge an gebundenen Human-Anti-HCV-Antikörpern ist proportional zur Radioaktivität in der Vertiefung.
IV.D.1. Reinigung von Fuslonspolypeptld SOD-NANB6.,.,
Das Fusionspolypeptid SOD-NANB6.,.,, exprimiert in rekombinanten Bakterien, wia in Abschnitt IV.B.1. beschrieben, wurde aus den rekombinanten E. coil durch differentielle Extraktion der Zellenextrakte mit Harnstoff und anschließender Chromatografie auf Anionen- und Kationenaustauschersäulen wie folgt gereinigt.
Aufgetaute Zellen von 1 Liter Kultur wurden in 10 ml 20%iger (Masse/Vol.) Sucrose mit Gehalt von 0,01 M Tris-HCI, pH 8,0, resuspendiert, und 0,4ml 0,5M EDTA, pH 8,0 wurden zugesetzt. Nach 5 Minuten bei O0C wurde das Gemisch 10 Minuten bei 4000 x g zentrifugiert. Das entstehende Pullet wurde in 10ml 25%iger (Masse/Vol.) Sucrose mit einem Gehalt von 0,05N Tris-HCI, pH 8,0,1 mM Phenylmethylsulfonylfluorid (PMSF) und 1 Mikrogramm/ml Pepstatin A suspendiert, woran sich die Zugabe von 0,5 ml Lysozym (10 mg/ml) und Inkubation bei O0C über einen Zeitraum von 10 Minuten anschloß. Nach dem Zusatz von 10ml 1%igem (Vol./Vol.) Triton X-100 in 0,05 M Tris-HCI, pH 8,0,1 mM EDTA, wurde das Gemisch weitere 10 Minuten bei O0C unter gelegentlichem Schütteln inkubiert. Die entstehende viskose Lösung wurde homogenisiert, indem sie 6mal durch eine sterile hypoderme Nadel mit einer Feinheit von 20 Gauge geleitet und 25 Minuten bei 13000 χ g zentrifigiert wurde. Das pelletierte Material wurde in 5 ml 0,01 M Tris-HCI, pH 8,0, suspendiert, und die Suspension wurde 10Minuten lang bei 4000 g χ g zentrifugiert. Das Pellet, das SOD-NANB^-Fusionsprotein enthielt, wurde in 5 ml 6 M Harnstoff in 0,02 M Tris-HCI, pH 8,0,1 mM Dithiotreitol (Puffer A) gelöst und auf eine mit Puffer A ausgeglichene Säule von Q-Sepharose Fast Flow gegeben. Polypeptide wurden mit einem linearen Gradienten von 0,0 bis 0,3 M NaCI in Puffer A eluiert. Nach der Elution wurden die Fraktionen durch Polyacrylamidgelelektrophorese in Anwesenheit von SDS zur Bestimmung ihres Gehaltes an SOD-NANB6.,., analysiert. Fraktionen, die dieses Polypeptid enthielten, wurden gesammelt und gegen 5 M Harnstoff in 0,02 M Natriumphosphatpuffer, pH 6,0,1 mM Dithiothreitol (Puffer B) dialysiert. Die dialysierte Probe wurde auf eine mit Puffer B ausgeglichene Säule von S-Spharose Fast Flow gegeben, und Polypeptide wurden mit einem linearen Gradienten von 0,0 bis 0,3 M NaCI in Puffer B eluiert. Die Fraktionen wurden durch Polyacrylamidgelelektrophorese auf die Anwesenheit von SOD-NANB6.,., hin analysiert, und die geeigneten Fraktionen wurden gepoolt.
Das fertige SOD-NANB5.,.,-Polypeptidpräparat wurde durch Elektrophorese auf Polyacrylamidgelen in Anwesenheit von SDS untersucht. Auf der Basis dieser Analyse war das Präparat zu mehr als 80% rein.
IV.D.2. Reinigung von Fusionspolypeptid SOD-NANB11
Das Fusionspolypeptid SOD-NANB81, exprimiert in rekombinanten Bakterien, wie in Abschnitt IV.B.2. beschrieben, wurde aus rekombinanten E. coil durch differentielle Extraktion der Zellenextrakte mit Harnstoff, gefolgt von Chromatografie auf Anionen- und Kationenaustauschersäulen unt^r Anwendung der für die Isolierung von Fusionspolypeptid SOD-NANB6.,., beschriebenen Prozedur (siehe Abschnitt IV.D.1.), gereinigt.
Das fertige SOD-NANBei-Polypeptidpräparat wurde durch Elektrophorese auf Polyacrylamidgelen in Anwesenheit von SDS untersucht. Auf der Basis dieser Analyse war das Präparat zu mehr als 50% rein.
IV.D.3. Nachweis von Antikörpern gegen HCV-Epitope durch Festphasen-Radioimmunoassay Serumproben von 32 Patienten, bei denen NANBH diagnostiziert worden war, wurden durch Radioimmunoassay (RIA) analysiert, um zu ermitteln, ob Antikörper gegen in Fusionspolypeptiden SOD-NANB5.,., und SOD-NANB8, vorhandene HCV-Epitope nachweisbar waren.
Mikrotiterplatten wurden mit SOD-NANBc.,., oder SOD-NANB8, beschichtet, die nach den Abschnitten IV.D.1. bzw. IV.D.2. partiell gereinigt worden waren. Die Assays wurden wie folgt ausgeführt. 10O-Milliliter-Aliquoten mit einem Gehalt von 0,1 bis 0,5 Mikrogramm SOD-NANB6.,., oder SOD-NANB8, in 0,125 M Na-Boratpuffer, pH 8,3,0,075 M NaCI (BBS) wurden in jede Vertiefung einer Mikrotitorplatte (Dynatech Immulon 2 Removawell-Streifen) gegeben. Die Platte wurde über Nacht bei 40C in einer feuchten Kammer inkubiert, wonach die Proteinlösung entfernt wurde und die Vertiefungen dreimal mit BBS mit einem Gehalt von 0,02% Triton X-100 (BBST) gewaschen wurden. Zur Verhinderung nichtspezifischer Bindung wurden die Vertiefungen mit Rinderserumalbumin (BSA) unter Zusatz von 100 Mikrolitern einer 5 mg/ml Lösung von BSA in BBS überzogen, woran sich Inkubation bei Raumtemperatur über einen Zeitraum von einer Stunde anschloß. Nach dieser Inkubation wurde die BSA-Lösung entfernt. Die Polypeptide in den beschichteten Vertiefungen wurden mit Serum zur Reaktion gebracht, indem 100 Mikroliter Serumproben, verdünnt im Verhältnis 1:100 in 0,01 M Na-Phosphatpuffer, pH 7,2,0,15M NaCI (PBS) mit einem Gehalt von 10mg/ml BSA, zugesetzt wurden und die Vertiefungen mit dem Serum 1 Stunde bei37°C inkubiert wurden. Nach der Inkubation wurden die Serumproben durch Aspiration entfernt, und die Vertiefungen wurden 5mal mit BBST gewaschen. An die Fusionspolypeptide gebundenes AnU-NANB5.,., und Anti-NANB8i wurde durch die Bindung von '"!-markiertem F'(ab)2-Schaf-Anti-Human-lgG an die beschichteten Vertiefungen bestimmt. Aliquote Mengen von 100 Mikrolitern der markierten Sonde (spezifische Aktivität 5-20 Mikrocurie/Mikrogramm) wurden in jede Vertiefung gegeben, und die Platten wurden eine Stunde lang bei 370C inkubiert, woran sich Entfernung von überschüssiger Sonde durch Aspiration und 5 Wäschen mit BBST anschlossen. Die Menge Radioaktivität, die in jede Vertiefung gebunden war, wurde durch Zählen in einem Zähler, der Gammastrahlung nachweist, bestimmt
Die Ergebnisse des Nachweises von AnU-NANB5.,., und Anti-NANB8, in Individuen mit NANBH sind in Tabelle 1 angegeben.
Tabelle 1
Nachweis von Anti-5-1-1 und Anti-81 in Seren von NANB-, HAV- und HBV-Hepatitis-Patienten
Patienten Diagnose Anti-5-1-1 S/N Anti-81
bezugs Chronische NANB, IVD21 0,77 4,20
nummer Chronische NANB, IVD 1,14 5,14
1. 28' Chronische NANB, IVD 2,11 4,05
AVH31, NANB, sporadisch 1,09 1,05
Chronisch, NANB 33,89 11,39
2. 29' Chronisch, NANB 36,2Ü 13,67
AVH, NANB, IVD 1,90 1,54
Chronische NANB, IVD 34,17 30,28
3. 30' Chronische NANB, IVD 32,45 30,45
Chronische NANB, PT41 16,09 8,05
Späte AVH NANB, IVD 0,69 0,94
4. 31 Späte AVH NANB, IVD 0.73 0,68
5. 32' AVH, NANB, IVD 1,66 1,96
AVH, NANB, IVD 1,53 0,56
6. 33' Chronische NANB, PT 34,40 7,55
Chronische NANB, PT 45,55 13,11
7. 34' ChronischoNANB,PT 41,58 13,45
Chronische NANB, PT 44,20 15,48
AVH NANB, IVD 31,92 31,95
„Geheilte" rezente NANB, AVH 6,87 4,45
8. 35' SpäteAVHNANBPT 11,84 5,79
AVH NANB, IVD 6,52 1,33
9. 36 SpäteAVHNANB,PT 39,44 39,18
10. 37 Chronische NANB, PT 42,22 37,54
11. 38 AVH, NANB, PT 1,35 1,17
12. 39 Chronische NANB, PT 0.35 0,28
13. 40 AVH, NANB, IVD 6,25 2,34
14. 41 Chronische NANB, PT 0,74 0,61
15. 42 AVH, NANB, PT 5,40 1,83
16. 43 Chronisch, NANB, PT 0,52 0,32
17. 44 AVH, NANB 23,35 4,15
18. 45 AVH,TypA 1,60 1,35
19. 46 AVH, Typ A 1,30 0,66
20. 47 AVH, Typ A 1,44 0,74
21. 48 Gelöste (resolved) 0,48 0,56
22. 49 rezente AVH, Typ A
23. 50 AVH, Typ A 0,68 0,64
GelösteAVH.TypA 0,80 0,65
24. 51 Gelöste rezente AVH, Typ A 1,38 1,04
Gelöste rezente AVH, Typ A 0,80 0,65
25. 52 AVH, Typ A 1,85 1,16
Gelöste rezente AVH, Typ A 1,02 0,88
26. 53 AVH, Typ A 1,35 0,74
Späte AVH, HBV 0,58 0,55
27. 54 Chronisch, HBV 0,84 1,06
28. 55 Späte AVH, HBV 3,20 1,60
29. 56 Chronisch, HBV 0,47 0,46
30. 57 AVH, HBV 0,73 0,60
31. 58 Geheilte AVH, HBV 0,43 0,44
32. 59' AVH, HBV 1,06 0,92
Geheilte AVH, HBV 0,75 0,68
33. 60' AVH, HBV 1,66 0,61
Geheilte AVH, HBV 0,63 0,36
34. 61' AVH, HBV 1,02 0,73
Geheilte AVH, HBV 0,41 0,42
35. 62' AVH, HBV 1,24 1,31
Geheilte AVH, HBV 1,55 0,45
36. 63' AVH, HBV 0,82 0,79
Geheilte AVH, HBV 0,53 0,37
37. 64'
0,95 0,92
0,95 0,92
0,70 0,50
1,03 0,68
1,71 1,39
Fortsetzung Tabelle 1
Patientenbezugs- S/N nummer Diagnose Anti-5-1-1 Anti-81
38. 65' AVH, HBV
Geheilte AVH, HBV Geheilte AVH, HBV
39. 661 AVH, HBV
Geheilte AVH, HBV
1 Von diesen Patienten stehen sequentielle Serumproben zur Ver'^gung.
2 IVD = Intravenous Drug User (Benutzer intravenöser Drogen)
3 AVH = Akute Virushepatitis
4 PT = Post transfusion (nach Transfusion).
Wie aus Tabelle 1 ersichtlich ist, waren 19 von 32 Seren von Patienten, bei denen NANBH diagnostiziert worden war, in bezug auf Antikörper, die gegen in SOD-NANB6.,., und SOD-NANB9, vorhandene HCV-Epitope gerichtet waren, positiv. Die positiven Serumproben waren jedoch nicht gleichermaßen immunologisch reaktionsfähig mit SOD-NANB6.,., und SOD-NANB8I-Serumproben von Patient Nr. 1 waren positiv gegenüber SOD-NAN81, aber nicht gegenüber JOD-NANB5.,.,. Serumproben von den Patienten Nr. 10,15 und 17 waren positiv gegenüber SOD-NANB6.,.,, aber nicht gegenüber SOD-NANB8I-Serumproben von den Patienten Nr.3,8,11 und 12 reagierten gleichermaßen mit beiden Fusionspolypeptiden, während Serumproben von den Patienten Nr.2,4,7 und 9 gegenüber SOD-NANB6.,., eine 2- bis 3mal stärkere Reaktion aufwiesen als gegenüber SOD-NANB8,. Diese Resultate lassen schließen, daß NANB6.,., und NANB81 mindestens drei verschiedene Epitope enthalten können, d.h. es ist möglich, daß jedes Polypeptid mindestens ein einzigartiges Epitop enthält und daß die beiden Polypeptide mindestens ein Epitop teilen.
IV.D.4. Spezifltät der Festphasen-RIA bezüglich NANBH
Die Spezifität der Festphasen-Radioimmunoassays bezüglich NANBH wurde getestet, indem man den Assay auf der Basis von Serum von mit HAV oder mit HBV infizierten Patienten und Seren von Kontrollindividuen durchführte. Die Assays unter Einsatz von teilweise gereinigtem SOD-NANB6.,., und SOD-NANB0, wurden im wesentlichen gemäß der Beschreibung in Abschnitt IV.D.3. durchgeführt, mit dem Unterschied, daß die Seren von Patienten stammten, bei denen vorher HAV oder HBV diagnostiziert worden war, oder von Individuen, die Blutspender waren. Die Resultate für Seren von HAV- und HBV-infizierten Patienten sind in Tabelle 1 dargestellt. Der Radioimmunoassay wurde unter Verwendung von 11 Serumproben von HAV-infizierten Patienten und 20 Serumproben von HBV infizierten Patienten getestet. Wie in Tabelle 1 dargestellt, zeigte keines dieser Seren eine positive immunologische Reaktion mit den BB-I lANBV-Epitope enthaltenden Fusionspolypeptiden. Der RIA unter Verwendung des NANB6.,.,-Antigens wurde benutzt, um die immunologische Reaktionsfähigkeit von Serum von Kontrollindividuen zu bestimmen. Von 230 Serumproben, die von den normalen Blutspendern stammten, zeigten nur zwei positive Reaktionen bei der RIA (Daten nicht dargestellt), es ist möglich, daß die beiden Blutspender, von denen diese Serumproben stammten, früher einmal HCV ausgesetzt waren.
IV.D.5. Reaktionsfähigkeit von NANB5.,., Im Verlaufe der NANBH-Infektlon
Die Anwesenheit von Anti-NANBe-M-Antikörpern im Verlaufe der NANBH-Infektion von zwei Patienten und vier Schimpansen wurde mit RIA gemäß der Beschreibung in Abschnitt IV.D.3. verfolgt. Außerdem wurde der Radioimmunoassay zur Bestimmung der Anwesenheit oder Abwesenheit von Anti-NANB^.pAntikörpern im Verlaufe der HAV- und HBV-Infektion bei infizierten
Schimpansen angewendet.
Die in Tabelle 2 dargestellten Ergebnisse zeigen, daß bei Schimpansen und bei Menschen Anti-NANBs.,.,-Antikörper nach Einsetzen der akuten Phase der NANBH-Infektion nachgewiesen wurden. In Serumproben von mit HAV oder HBV infizierten Schimpansen wurden keine Anti-NANBs.,.,-Antikörper nachgewiesen. Somit dienen Anti-NANB^.rAntikörper als Anzeiger (marker) für die HCV-Exposition eines Individuums.
Tabelle 2
Serokonversion in sequentiellen Serumproben von Hepatitispatienten und -Schimpansen unter Verwendung von 5-1-1-Antigen
Patent/ Probendatum (Tag) Hepatitis Anti-5-1-1 \ ALT - 5 8 4 - - 7 - 15
Schimpanse (0 = Impfungstag) viren (S/N) (mu/ml) 52 205 147 106 83 130
Patient 29 T* NANB 1,09 1180 13 14 18 10 5 8
T+180 33,89 425 - 6 5 5
T+ 208 36,22 - 11 15
Patient 30 T NANB 1,90 1830 132 9
T+ 307 34,17 290 - 6
T+ 799 32,45 276 - 8
Schimpi 0 NANB 0,87 9 96-155 (Pool)
76 0,93 71 9
118 23,67 19 13
154 32,41 11
Schimp2 0 NANB 1,00 8-100 (Pool)
21 1,08 9
73 4,64 10
138 23,01
Schimp3 0 NANB 1,08
43 1,44
53 1,82
159 11,87
Schimp4 -3 NANB 1,12
55 1,25
83 6,60
140 17,51
Schimp5 0 HAV 1,50
25 2,39
40 1,92
268 1,53
Schimp6 -8 HAV 0,85
15 -
41 0,81
129 1,33
Schimp7 0 HAV 1,17
22 1,60
115 1,55
139 1,60
Schimp8 0 HAV 0,77
26 1,98
74 1,77
205 1,27
Schimp9 -290 HBV 0,77
379 3,29
435 2,77
SchimpiO 0 HBV 2,35
111- 118 (Pool) 2,74
205 2,05
240 1,78
SchirnpH 0 HBV 1,82
28-56(PoOl) 1,26
169 1,00
223 0,52
* = Tag der anfänglichen Probenahme
IV.E. Reinigung von polyclonalen Serumantikörpern gegen NANB5.,.,
Auf der Grundlage der spezifischen immunologischen Reaktivität des SOD-NANB5.,.,-Polypeptids mit den Antikörpern in Serumproben von Patienten mit NANBH wurde ein Verfahren zur Reinigung der Serumantikörper, die immunologisch mit dem (den) Epitop(en) in NANB5.1.1 reagieren, entwickelt.
Bei diesem Verfahren wird die Affinitätschromatographie ausgenutzt. Gereinigtes SOD-NANB5.!.,-Polypeptid (siehe Abschnitt IV.D.I.) wurde an eine unlösliche Unterlage geknüpft, wobei das immobilisierte Polypeptid seine Affinität für den Antikörper gegen NANBe-M behält. Der Antikörper in Serumproben wird an dem matrixgebundenen Polypoptid absorbiert. Nach dem
Waschen zum Entfernen der unspezifisch gebundenen Materialien und ungebundenen Materialien wird der gebundene Antikörper durch Änderung des pH-Wertos und/oder chaotrope Reagenzien, wie z. B. Harnstoff, aus dem gebundenen SOD-HCV-Polypeptid freigesetzt.
Nitrocellulosemembranen, die gebundenes SOD-NANB6.,., enthalten, wurden folgendermaßen hergestellt. Eine Nitrocellulosemembran, 2,1 cm Sartorius mit einer Porengröße von 0,2\im, wurde dreimal 3 Minuten lang mit BBS gewaschen. SOD-NANB5.,., wurde durch Inkubation des gereinigten Präparats in BBS bei Raumtemperatur für 2 Stunden an die Membran gebunden; bei einer alternativen Art und Weise wurde über Nacht bei 4°C inkubiert. Die das gebundene Antigen enthaltende Lösung wurde entfernt und der Filter wurde dreimal jeweils drei Minuten lang mit BBS gewaschen. Die verbliebenen aktiven Stellen auf der Membran wurden durch 30minütige Inkubation mit einer BSA-Lösung von 5 mg/ml blockiert. Überschüssige BSA wurde durch fünfmaliges Waschen der Membran mit BBS und dreimaligem Waschen mit destilliertem Wasser entfernt. Die das Virusantigen und BSA enthaltende Membran wurde anschließend mit 0,05M Glycinhydrochlorid, pH 2,5,0,1OM NaCI (GIyHCI) 15 Minuten lang behandelt und anschließend durch drei dreiminütige Waschungen mit PBS weiterbehandelt. Die polyclonalen Anti-NANB&.,.,-Antikörper wurden durch zweistündige Inkubation der das Fusionspolypeptid enthaltenden Membranen mit Serum aus einem Individuum mit NANBH isoliert. Nach der Inkubation wurden die Filter fünfmal mit BBS und zweimal mit destilliertem Wasser gewaschen. Die gebundenen Antikörper wurden dann durch 5 Elutionen von GIyHCI, wobei jede Flution 3 Minuten dauerte, aus jedem Filter entfernt. Der pH-Wert der Eluate wurde auf 8,0 eingestellt, indem jedes Eluat in einem Reagenzglas gesammelt wurde, das 2,OM Tris HCI mit einem pH-Wert von 8,0 enthielt. Die Rückgewinnung des Anti-NANB5.,.,-Antikörpers nach der Affinitätschromatographie betrug etwa 50%.
Die das gebundene Virusantigen enthaltenden Nitrocellulosemembranen können mehrmals ohne nennenswerte Abnahme der Bindungskapazität verwendet werden. Zur Wiederverwendung werden die Membranen, nachdem die Antikörper eluiert worden sind, dreimal jeweils 3 Minuten lang mit BBS gewaschen. Anschließend werden sie bei 4°C in BBS aufbewahrt.
IV.F. Das Einlangen von HCV-Partlkeln aus infiziertem Plasma mittels gereinigter Human-polyclonaler-Anti-HCV-Antikörper; Hybridisierung der Nuclelnsäure in den eingefangenen Partikeln an HCV-cDNA
IV.F.1. Das Einfangon von HCV-Pertikoln aus infiziertem Plasma mittels Human-polyclonaler-Antl-HCV-Antlkörper Proteir jcleinsäurekomplexe, die im infektiösen Plasma eines Schimpansen mit NANBH vorhanden waren, wurden mittels gereinigter Human-polycionaler-Anti-HCV-Antikörper, die an Polystyrenperlen gebunden waren, isoliert. Polyclonale Anti-NANBc,.,.,-Antikörper wurden aus dem Serum eines Menschen mit NANBH gereinigt, indem d3* in C!on 5-1 -1 codierte Polypeptid SOD-HCV verwendet wurde. Zur Reinigung wurde das in Abschnitt IV.E. beschriebene Verfahren angewandt. Die gereinigten Anti-NANB6.|.,-Antikörper wurden an Polystyrenperlen (Durchmesser1/* Zoll, spiegelglatte Oberfläche, Precision Plastic Ball Co., Chicago, Illinois) gebunden, indem jede Perle über Nacht bei Raumtemperatur mit 1 ml Antikörper (1 Mikrogramm/ml in Porat-gepufferter Salzlösung, pH 8,5) inkubiert wurde. Nach der Inkubation über Nacht wurden die Perlen einmal mit TBST (50r.iM Tris HCI, pH 8,0,15OmM NaCI, 0,05% (V/V) Tween 20) und anschließend mit Phosphat-gepufferter Salzlösung (PBS), die 10mg/ml BSA enthielt, gewaschen.
Kontrollperlen wurden auf gleiche Art und Weise hergestellt, mit der Ausnahme, daß die gereinigten Anti-NANB^.i-Antikorper durch Gesamt-Human-Immunoglobulin ersetzt wurden.
Das Einfangen des HCV aus mit NANBH infiziertem Schimpansenplasma mittels der an die Perlen gebundenen Anti-NANBs.,.,-Antikörper erfolgte so: Das aus einem Schimpansen mit NANBH verwendete Plasma wird in Abschnitt IV.A.1. beschrieben. Eine aliquote Menge (1 ml) des mit NANBV infizierten Schimpansenplasmas wurde 3 Stunden lang bei 37°C mit je 5 Perlen, die entweder mit Anti-NANB5.,.,-Antikörpern oder mit Kontrollimmunoglobulinen beschichtet waren, inkubiert. Die Perlen wurden dreimal mit TBST gewaschen.
IV.F.2. Hybridisierung der Nuclelnsäure in den eingefangenen Partikeln an NANBV-cDNA Die aus den mit AnH-NANB5.,.,-Antikörpern eingefangenen Partikeln freigesetzte Nucleinsäurekomponente wurde auf Hybridisierung an HCV-cDNA, die aus Clon 81 abgeleitet worden war, analysiert.
HCV-Partikel wurden aus mit NANBH infiziertem Schimpansenplasma wie in Abschnitt IV.F.1. beschrieben eingefangen. Zur Freisetzung der Nucleinsäuren aus den Partikeln wurden die gewaschenen Perlen 60 Minuten bei 37°C mit 0,2ml Lösung pro Perle inkubiert, wobei die Lösung Proteinase k (1 mg/ml), 1OmM Tris HCI, pH 7,5,1OmM EDTA, C.,25% (M/V) SDS, 10 Mikrogramm/ml lösliche Hefe-RNA enthielt, die überstehende Lösung wurde entfernt. Das Überstehende wurde mit Phenol und Chloroform extrahiert, und die Nucleinsäuren wurden über Nacht bei -20°C präzipitiert. Das Nucleinsäurepräzipitat wurde durch Zentrifugieren gesammelt, getrocknet und in 5OmM Hepes, pH 7,5, gelöst. Genau gleiche Mengen der löslichen Nucleinsäuren aus den Proben, die von den mit Anti-NANB^.i-Antikorpern beschichteten Perlen und von den Gesamt-Human-Immunoglobulin enthaltenden Kontrollperlen stammten, wurden auf die Nitrocellulosefilter filtriert. Die Filter wurden mit einer 32P-markierten, „nick"-translatierten Sonde, die aus dem gereinigten HCV-cDNA-Fragment in Clon 81 hergestellt worden war, hybridisiert. Die Verfahren zur Herstellung der Sonde und zur Hybridisierung sind in Abschnitt IV.C.1. beschrieben. Autoradiogramme eines sondierten Filters, der die Nucleinsäuren aus Partikeln enthielt, die durch die Perlen, die AnU-NANB5.,.,-Antikörper enthielten, eingefangen wurden, werden in Figur 34 gezeigt. Das mit Hilfe de.· Anti-NANB^n-Antikörpers (A,, A2) gewonnene Extrakt ergab im Verhältnis zu dem Kontroll-Antikörperextrakt (A3, A4) und zur Kontroll-Hefe-RNA (B1, B2) klare Hybridisiersignale. Die aus 1 pg, 5pg und 10 pg des gereinigten cUNA-Fragmentes von Clon 81 bestehenden Standards werden in C1-3 gezeigt.
Diese Ergebnisse zeigen, daß die aus NANBH-Plasma durch AmJ-NANB5.,.,-Antikörper eingefangener. ."'artikel Nucleinsäuren enthalten, die mit HCV-cDNA in Clon 81 hybridisieren und liefern somit einen weiteren Beweis, daß die cDNAs in diesen Clonen aus dem ätiologischen Erreger von NANBH abgeleitet wurden.
IV.G. Immunologische Reaktivität von C100-3 mit gereinigten AnU-NANB6.,.,-Antikörpern Die immunologische Reaktivität des C 100-3-Fusionspolypeptids mit Anti-NANB5.,.,-Antikörpern wurde durch ein Radioirnmunoassay bestimmt, wobei die an eine feste Phase gebundenen Antigene mit gereinigten Anti-NANB5.,.,-Antikörpern geprüft wurden und der Antigen-Antikörper-Komplex mit '"!-markierten Schaf-Anti-Human-Antikörpem nachgewiesen wurde.
Die immunolog sehe Reaktivität von C 100-3-Polypeptid wurde mit der von SOD-NANB5., ,-Antigen verglichen.
Das Fusionspolypeptid C100-3 wurde synthetisiert und gereinigt wie in Abschnitt IV.B.5. bzw. in Abschnitt IV.B.6. beschrieben.
Das Fusionspolypeptid SOD-NANB5.!., wurde wie in Abschnitt IV.B.1. bzw. in Abschnitt IV.D.1. beschrieben synthetisiert und gereinigt. Die gereinigten Anti-NANB^i.,-Antikörper wurden wie in Abschnitt IV.E. beschrieben gewonnen. Aliquote Mengen von 100 Mikrolitern, die unterschiedliche Mengen gereinigtes C 100-3-Antigen in 0,125 M Na Boratpuffer, pH 8,3,0,075M NaCI (BBS) enthielten, wurden in jede Vertiefung einer Mikrotiterplatte gegeben (Dynatech Immolon 2 Removawell Strips). Die Platte wurde über Nacht in einer Feuchtekammer bei 4°C inkubiert, danach wurde die Proteinlösung entfernt und die Vertiefungen wurden dreimal mit BBS, die 0,02% Triton X-100 (BBST) enthielt, gewaschen. Zur Vermeidung von unspezifischen Windungen wurden die Vertiefungen mit BSA beschichtet, indem 100 Mikroliter einer 5-mg/ml-Lösung BSA in BBS zugegeben wurden und anschließend 1 Stunde bei Raumtemperatur inkubiert wurde, wonach die überschüssige BSA-Lösung entfernt wrude. Die Polypeptide in den beschichteten Vertiefungen wurden mit gereinigten Anti-NANB^,.,-Antikörpern zur Reaktion gebracht, indem 1 Mikrogramm Antikörper/Vertiefung zugefügt wurde, und die Poren 1 Stunde bei 370C inkubiert wurden. Nach der Inkubation wurde die überschüssige Lösung durch Ansaugen entfernt und die Vertiefungen wurden fünfmal mit BBST gewaschen. An die Fusionspoiypeptide gebundener AnU-NANB6.,., wurde durch die Bindung von '"!-markiertem F'(ab)2 Schaf-Anti-Human-lgG an die beschichteten Vertiefungen nachgewiesen. Aliquote Mengen von 100 Mikrolitern markierter Sonde (spezifische Aktivität 5-20 Mikrocuries/Mikrogramm) wurden in jede Vertiefung gegeben, die Platten wurden 1 Stundfe bei 370C inkubiert, und danach wurde die überschüssige Sonde durch Ansaugen entfernt und es wurde fünfmal mit BBST gewaschen. Die in jeder Vertiefung gebundene Radioaktivität wurde durch Zählen in einem Gammastrahlenzähler bestimmt.
In Tabelle 3 werden die Ergebnisse der immunologischen Reaktivität von C100 mit gereinigtem AnU-NANB5.,., im Vergleich zu derjenigen von NANB6.).) mit den gereHiqten Antikörpern gezeigt.
Tabelle 3
Immunologische Reaktivität von C100-3 im Vergleich zu NANB6.,., durch Radioimmunassay (R/A) festgestellt
AG (ng) RIA (Zählung pro Minute/Assay) 400 320 240 6732 6985 4954 5920 160 60 0
NANB5.,., C100-3 7332 7450 4050 5 593 3051 4096 57 67
Die Ergebnisse in Tabelle 3 zeigen, daß AmI-NANB5.,., ein Epitop (bzw. Epitope) in der C100-Komponente des C 100-3-Polypeptids erkennt. Somit teilen sich NANB5.,., und C100 ein gemeinsames Epitop (Epitope). Die Ergebnisse deuten darauf hin, daß die cDNA-Sequenz, die für diese(s) NANBV-Epitop(e) codiert, sowohl in Clon 5-1 -1 als auch in Clon 81 vorhanden
IV.H. Charakterisierung des HCV
IV.H.1. Charakterisierung der Stranglpkeit des HCV-Genoms
Das HCV-Genom wurde in bezug auf seine Strängigkeit charakterisiert, indem die Nucleinsäurefraktion aus den Partikeln, die an den mit Anti-NANB6.,.,-Antikörporn beschichteten Polystyrenperlen eingefangen wurden, isoliert wurde, und festgestellt wurde, ob die isolierte Nucleinsäure mit Plus- und/oder Minus-Strängen der HCV-cDNA hybridisierte.
Wie in Abschnitt IV.F.1. beschrieben, wurden Partikel aus dem mit HCV infizierten Schimpansenplasma unter Verwendung von mit immungereinigtem Anti-NANB^M-Antikörper beschichteten Polysiyrenporlen eingefangen. Die Nucleinsäurekomponente der Partikel wurde mittels des in Abschnitt IV.F.2. beschriebenen Verfahrens freigesetzt. Aliquote Mengen der isolierten genomischen Nucleinsäure, die 3ml des Hochtiterplasmas entsprachen, wurden auf Nitrocellulosefllter übertragen. Als Kontrollen wurden aliquote Mengen von denaturierter HCV-cDNA aus Clon 81 (2 Picogramm) ebenfalls auf die gleichen Filter übertragen. Die Filter wurden mit einem 32P-markierten Gemisch von Plus- oder einem Gemisch von Minus-Strängen von einzelsträngiger DNA, die aus HCV-cDNAs cloniert wurde, sondiert; die cDNAs wurden aus den Clonen 40b, 81 und 25c ausgeschnitten.
Die einzelsträngigen Sonden wurden gewonnen, indam die HCV-cDNAs durch EcoRi aus den Clonen 81,40b und 25c ausgeschnitten wurden, und die cDNA-Fragmente in M 13-Vektoren, rnp 18 und mp 19 cloniert wurden (Messing [1983]). Die M 13-Clone wurden sequenziert, um zu bestimmen, ob sie die Plus- oder Minus-Stränge der DNA, die aus den HCV-cDNAs abgeleitet waren, enthielten. Die Sequenzierung erfolgte mit dem Didesoxy-Kettenabbruch-Verfahren nach Sanger und Mitarbeitern (1977).
Aus einem Satz von Duplikatfiltern, die aliquote Mengen des HCV-Genoms enthielten, das aus den eingefangenen Partikeln isoliert worden war, wurde jeder Filter entweder mit Plus- oder mit Minus-Strang-Sonden, die aus den HCV-cDNAs abgeleitet worden waren, hybridisiert. Figur 41 zeigt die beim Sondieren dos NANBV-Genoms gewonnenen Autoradiogramme, wobei das Sondengemisch aus den Clonen 81,40b und 25c abgeleitet war. Dieses Gemisch wurde zur Erhöhung der Sensitivität des Hybridisierungsassays benutzt. Die Proben in Liste I wurden mit dem Plus-Strang-Sonden-Gemisch hybridisiert. Die Proben in Liste Il wurden durch Hybridisierung mit dem Minus-Strang-Sonden-Gemisch hybridisiert. Die Zusammensetzung der Proben in den Listen des Immunoblots wird in Tabelle 4 dargestellt.
Tabelle 4
Spur A B
1 HCV-Genom ·
2 *
3 * CDNA81
4 CDNA81
• ist eine nicht beschriebene Probe.
Wie aus den Ergebnissen der Figur 41 ersichtlich wird, hybridisiert nur die Minus-Strang-DNA-Sonde mit dem isolierten HCV-Genom. Dieses Ergebnis läßt in Verbindung mit dem Ergebnis, daß das Genom gegenüber RNase und nicht gegenüber DNase (siehe Abschnitt IV.C.2.) sensitiv ist, darauf schließen, daß das Genom von NANBV eine positiv-strängige RNA ist. Diese Daten sowie die Daten aus den anderen Labors in bezug auf die physikalisch-chemischen Eigenschaften eines vermutlichen NANBV stimmen mit der Möglichkeit überein, daß das HCV zu den Flaviviridae gehört. Die Möglichkeit, daß das HCV eine neue Klasse eines Viruserregers darstellt, ist jedoch noch nicht ausgeschaltet.
IV.H.2. Nachwels von Sequenzen In eingefangenen Partikeln, die bei Ampliflkatlon durch PCR an aus Clon 81 abgeleiteter HCV-cDNA hybridisieren
Die RNA in eingefangenen Partikeln wurde wie in Abschnitt IV.H.1. beschrieben gewonnen. Die Analyse nach Sequenzen, dit> in der aus Clon 81 abgeleiteten HCV-cDNA hybridisieren, erfolgte unter Anwendung des PCR-Amplifikationsverfahrens, wie es in Abschnitt IV.C.3. beschrieben ist, mit der Ausnahme, daß die Hybridisiersonde ein Kinase-Oligonucleotid, das aus der cDNA-SequenzvonClon81 abgeleitet worden war, war. Die Ergebnissezeigten, daß die amplifizierten Sequenzen mit der von Clon 81 abgeleiteten HCV-cDNA-Sonde hybridisieren.
IV.H.3 Homologie zwischen dem Nicht-Struktur-Protein des Dengue-Flavivirus (MNWVD 1) und den HCV-Polypeptiden, die furch den kombinierten ORF der Clone 141 bis 39c codiert sind
Wie in Fiyur 26gezeigt enthaltun die kombinierten HCV-cDNAs der Clone 14i bis 39c einen kontinuierlichen ORF. Das darin codierte Polypeptid wurde auf Sequenzhomologie mit der Region des Nicht-Struktur-Polypeptids bzw. der Nicht-Struktur-Peptide im Dengue-Flavivirus (MNWVD 1) analysiert. Für die auf dem Computer durchgeführte Analyse wurde die Dayhoffsche Protein-Datenbank verwendet. Die Ergebnisse werden in Figur 47 gezeigt, in der das Symbol (:) eine exakte Homologie und das Symbol (,) einen konservativen Ersatz in der Sequenz angibt; die Striche zeigen Räume an, die in die Sequenz inseriert wurden, um die größte Homologie zu erreichen. Wie aus der Figur ersichtlich wird, gibt es zwischen der in der HCV-cDNA codierten Sequenz und dem (den) Nicht-Struktur-Polypeptid(en) des Dengue-Virus eine signifikante Homologie. Zusätzlich zu der in Figur 42 gezeigten Homologie enthielt die Analyse des Polypeptidsegmentes, das in einer Region in Richtung des 3'-Endes der cDNA codiert ist, ebenfalls Sequenzen, die zu Sequenzen in der Dengue-Polymerase homolog sind. Von Folgen ist auch die Entdeckung, daß die vorschriftsmäßige Gly-Asp-Asp- (GDD)-Sequenz, von der man glaubte, daß sie RNA-abhängige RNA-Polymerasen wichtig sei. in dem in HCV-cDNA codierten Polypeptid enthalten ist, und zwar an einem Ort, der mit dem im Dengue-2-Virus übereinstimmt. (Diese Daten werden nicht gezeigt).
IV.H.4. HCV-DNA Ist In mit NANBH infiziertem Gewebe nicht feststellbar
Zwei Arten von Untersuchungen liefern Ergebnisse, die darauf hindeuten, daß HCV-DNA in Gewebe aus einem Individuum mit NANBH nicht nachweisbar ist. Diese Ergebnisse liefern zusammen mit denen in den Abschnitten IV. C. und IV. H. 2. den Beweis, daß das HCV kein DNA-enthaltendes Virus ist, und daß seine Replikation ohne Einbeziehung von cDNA abläuft.
IV.H.4.a. Southem-blottlng-Verfahren
Zur Feststellung, ob NANBH-infizierte Schimpansenleber nachweisbare HCV-DNA (oder HCV-cDNA) enthält, wurden Restriktonsenzymtragmente von DNA mittels Southern „blotting" aus dieser Quelle isoliert und die „blots" wurden mit "p-markierter HCV-cDNA sondiert. Die Ergebnisse zeigten, daß die markierte HCV-cDNA nicht an der aus der infizierten Schmimpansenleber übertragenen DNA hybridisierte. Sie hybridisierte auch nicht an der zur Kontrolle aus normaler Schimpansenleber übertragenen DNA. Im Gegenteil, in einer positiven Kontrolle hybridisierte eine markierte Sonde des Beta-Interferon-Gens stark an Southern „blots" von restriktionsenzymdigerierter Human-Plazenta-DNA. Diese Systeme waren dazu gedacht, eine Einzelkopie des Gens nachzuweisen, das mit der markierten Sonde nachgewiesen werden sollte. Aus der Leber von zwei Schimpansen mit NANBH wurden DNAs isoliert. Aus nicht infizierter Schimpansenleber und aus Humanplazentas wurden Kontroll-DNAs isoliert. Das Verfahren zur Extraktion von DNA wurde im wesentlichen nach Maniatis und Mitarbeitern (1988) durchgeführt, und die Proben wurden während des Isolierungsprozesses mit RNase behandelt. Beide DNA-Proben wurden entweder mit EcoRI, Mbol oder Hincll (12 Mikrogramm) nach der Vorschi ift des Herstellers behandelt. Die digerierten DNAs wurden dann weiter durch Elektrophorese auf 1%igen neutralen Agarosegelen, durch Southern „blotting" auf Nitrocellulose behandelt, und das übertragene Material hybridisierte mit der entsprechenden „nick"-translatierten Sonden-cDNA (3x 106 Zählungen pro Minute/ml Hybridisiergemisch). Die DNA aus infizierter Schimpansenleber und normaler Leber wurde mit 3'p-markierter HCV-cDNA aus den Clonen 36 und 81 hybridisiert; die DNA aus Humanplazenta wurde mit 32p-markierter DNA aus dem Beta-Interferon-Gen hybridisiert. Nach der Hybridisierung wurden die „blots" unter strengen Bedingungen gewaschen, d. h. mit einer Lösung, die 0,1 χ SSC, 0,1 % SDS enthielt und bei einer Temperatur von 690C. Die Beta-Interferon-Gen-DNA wurde wie von Houghton und Mitarbeitern (1981) beschrieben hergestellt.
IV. H.4. b. Amplifikation durch die PCR-Technik
Um festzustellen, ob die HCV-DNA in Leber aus Schimpansen mit NANBH nachzuweisen sei, wurde DNA aus dem Gewebe isoliert und dem PCR-Ampüfikations-Nachweisverfahren unter Verwendung von Frimern und Sondenpolynucleotiden, die aus HCV-cDNA aus Clon 81 abgeleitet worden waren, unterzogen. Als negative Kontrollen wurden DNA-Proben, die aus nicht infizierten HepG2-Gewebekulturzellen und aus voraussichtlich nicht infizierter Humanplazenta isoliert worden war, verwendet.
Als positive Kontrollen erwiesen sich Proben der negativen Kontroll-DNAs, denen eine bekannte relativ kleine Menge (250 Moleküle) des HCV-cDNA-lnserts aus Clon 81 zugefügt worden war. Um zusätzlich zu bestätigen, daß RNA-Fraktionen, die aus der gleichen Leber von Schimpansen mit NANBH isoliert worden waren, Sequenzen enthielten, die zur HCV-cDNA-Sonde komplementär sind, wurde das PCR-Amplifikations-Nachweissystem auch an den isolierten RNA-Proben angewandt.
Bei diesen Untersuchungen wurden die DNAs durch das in Abschnitt IV.H.4.a. beschriebene Vertahron isoliert und die RNAs wurden im wesentlichen nach der Beschreibung von Chirgwin und Mitarbeitern (1981) extrahiert.
DNA-Proben wurden aus 2 infizierten Schimpansenlebern, aus nicht infizierten HepG2-Zellen und aus Humanplazenta isoliert.
Ein Mikrogramm jeder DNA wurde mit Hind Hl nach den Anweisungen des Herstellers digeriert. Die digerierten Proben wurden durch PCR amplifiziert und der Nachweis der amplifizierten HCV-cDNA erfolgte im wesentlichen nach der Beschreibung in Abschnitt IV. C. 3., mit der Ausnahme, daß die Reverse Transkriptasestufe weggelassen wurde. Die PCR-Primer und die Sunde wurden aus HCV-cDNA-Clon-81 gewonnen und sind in Abschnitt IV. C. 3. beschrieben. Vor der Amplifikation wurde für positive
Kontrollen eine 1-Mikrogramm-Piobe jeder DNA durch den Zusatz von 250 Molekülen von aus Clon 81 isoliertem HCV-cDNA-Insert „spiked". Zur Feststellung, ob HCV-C equenzen in RNA, die aus den Lebern von Schimpansen mit NANBH isoliert worden waren, vorhanden waren, wurden Proben mit einem Gehalt von 0,4 Mikrogramm Gesamt-RNA einem im wesentlichen wie in Abschnitt IV. C.3. beschriebenen Amplifikationsprozeß unterzogen, wobei jedoch bei einigen Proben als eine negative Kontrolle die Reverse Transkriptase weggelassen wurde. Die PCR-Primer und die Sonde wurden aus HCV-cDNA-Clon 81 wie im vorangegangenen beschrieben, gewonnen.
Die Ergebnisse zeigten, daß die amplifizierten Sequenzen, dio zu der HCV-cDNA-Sonde komplementär sind, weder in den DNAs aus infizierter Schimpansenleber noch in den negativen Kontrollen nachweisbar waren. Im Gegenteil, wenn die Proben, einschließlich der DNA aus infizierter Schimpansenleber vor der Amplifikation mit der HCV-cDNA „spiked" wurde, wurden die Sequenzen aus Clon 81 in allen positiven Kontrollproben nachgewiesen. Außerdem wurden in den RNA-Untersuchungen amplifizierte HCV-cDNA-Sequenzen aus Clon 81 nur nachgewiesen, wenn Reverse Transkriptase verwendet wurde, was stark darauf hindeutet, daß die Ergebnisse nicht durch eine DNA-Kontamination herbeigeführt wurden.
Diese Ergebnisse zeigen, daß Hepatozyten aus Schimpansen mit NANBH keine oder nicht nachweisbare Mnteile von HCV-DNA enthalten. Auf der Grundlage der „Spiking"-Untersuchung kann man sagen, falls HCV-DNA vorhanden ist, dann zu einem Anteil von weit unter 0,06 Kopien pro Hepatozyte. Im Gegenteil, die HCV-Sequenzen in der Gesamt-RNA aus den gleichen Leberproben ließen sich mit der PCR-Techik leicht nachweisen.
IV. I. ELISA-Tests bei HCV-lnfektlon mit HCV-c 100-3 als Testantigen
Alle Proben wurden mit Hilfe von HCV-c 100-3 mit ELISA getestet. Dieser Assay benutzt das HCV-c 100-3-Antigen (das wie im Abschnitt IV. B. 5. beschrieben synthetisiert und gereinigt wurde) und ein Meerrettich-Peroxidase-(HRP)-Konjugat von Mausmonoclonalem-Anti-Human-lgG.
Die mit dem HCV-c 100-3-Antigen beschichteten Platten wurden folgendermaßen vorbereitet. Eine Lösung aus Beschichtungspuffer (5OmM Na Borat, pH 9,0), 21 ml/Platte, BSA (25 Mikrogiamm/ml),c 100-3 (2,50 Mikrogramm/ml) wurde unmittelbar vorZugabe auf die Removeall-Immulon-I-Platten (Dynatech Corp.) zubereitet. Nach fünfminütigem Mischen wurden 0,2 ml/Vertiefung der Lösung auf die Platten gegeben, sie wurden abgedeckt und 2 Stunden bei 37°C inkubiert, wonach die Lösung durch Absaugen enfernt wurde. Die Vertiefungen wurden einmal mit 400 Mikrolitern Waschpuffer (10OmM Natriumphosphat, pH 7,4,14OmM Natriumnchlorid, 0,1 % [M/V] Casein, 1 % (M/V) Triton X-100,0,01 % [M/Vl Thimerosal) gewaschen. Nach Entfernung der Waschlösung wurden 200 Mikroliter/Vertiefung Postcoat-Lösung (1OmM Natriumphosphat, pH 7,2,15OmM Natriumchlorid, 0,1 % [M/V] Casein und mM Phenylmethylsulfonylfluorid [PMSF] zugegeben, die Platten wurden lose abgedeckt, um eine Verdunstung zu vermeiden, und wurden 30 Minuten bei Raumtemperatur so stehen gelassen. Anschließend wurden die Vertiefungen zur Entfernung der Lösung abgelaugt und trocken über Nacht ohne Erhitzen lyophilisiert. Die vorbereiteten Platten können bei 2-8°C in verschlossenen Aluminiumbuliältern aufbewart werden. Zur Durchführung des ELISA-Tests wurden 20 Mikroliter Serumprobe oder Kontrollprobe in eine Vertiefung gegeben, die 200 Mikroliter Probenverdünnungsmittel (10OmM Natriumphosphat, pH 7,4,50OmM Natriumchlorid, 1 mM EDTA, 0,1 % [M/V] Casein, 0,015% [M/V] Therosal, 1 % [M/V] Triton X-100,100 Mikrogramm/ml Hefeextrakt) enthielt. Die Platten wurden verschlossen und zwei Stunden bei 370C inkubiert, wonach die Lösung durch Absaugen entfernt wurde. Die Vertiefungen wurden mit 400 Mikrolitern Waschpuffer (Phosphat-gepufferte Salzlösung [PBS], die 0,05% Tween 20 enthielt) gewaschen. Die gewaschenen Vertiefungen wurden mit 200 Mikrolitern Maus-Anti-Human-lgG-HRP-Konjugat, das in einer Lösung aus Ortho-Konjugat-Verdünnungsmittel (1OmM Natriumphosphat, pH7,2,15OmM Natriumchlorid, 50% [V/V] pötalrinderserum, 1% [V/V] wärmebehandeltes Pferdeserum, 1 mM K3Fe(CN)6,0,05% [M/V] Tween 20,0,02% [M/V] Thimerosai) enthalten war, behandelt. Die Behandlung dauert 1 Stunde bei 370C, danach wurde die Lösung durch Absaugen entfernt und die Vertiefungen wurden mit Waschpuffer gewaschen, der ebenfalls wieder durch Absaugen entfernt wurde. Zur Bestimmung der Menge des gebundenen Enzymkonjugats wurden 200 Mikroliter der Substratlösung (10mg O-Phenylendiamindihydrochlorid pro 5ml Developer-Lösung) zugegeben. Die Developer-Lösung enthält 5OmM Natriumeitrat, das mit Phosphorsäure auf pH 5,1 eingestellt war, und 0,6 Mikroliter/ml 30%iges H2O2. Die Platten mit der Substratlösung wurden im Dunkeln 30 Minunten bei Raumtemperatur inkubiert, die Reaktionen wurden durch Zugabe von 50 Mikrolitern ml 4 N Schwefelsäure gestoppt und die Extinktionswerte (OD) wurden bestimmt.
Die im folgenden vorgestellten Beispiele zeigen, daß der Screening-ELISA mit Mikroliterplatte unter Verwendung von HCV-C100-Antigen einen hohen Spezifitätsgrad aufweist, wie durch die Anfangsrato der Reaktivität von etwa 1 % mit einer Wiederholungsreaktivitätsrate von etwa 0,5% an Zufallsspendern bewiesen wird. Der Assay ist in der Lage, die Immunreaktion sowohl in der postakuten Phase der Infektion als auch während der chronischen Krankheitsphase nachzuweisen. Außerdem kann dieser Test zum Nachweis bei einigen Proben angewandt werden, die in den Surrogattests für NANBH negativ bewertet wurden. Diese Proben stammen von Individuen mit einer NANBH-Vorgeschichte oder von Spendern, die von einer NANBH-Übertragung betroffen sind (engl. donors implicated in NANBH transmission). In den im folgenden beschriebenen Beispielen werden die folgenden Abkürzungen verwendet:
ALT Alanin-Amino-Transferase
Anti-HBc Antikörper gegen HBc
Anti-HBsAg Antigkörper gegen HBsAg
HBc Hepatitis-B-Kernaniigen
ABsAg Hepatitis-B-Oberflächenantigen
IgG Immunoglobulin G
IgM ImmunoglobulinM
IU/L Internationale Einheiten/Liter
NA steht nicht zur Verfugung
NT wurde nichtgetestet
N Probengröße
Neg negativ
OD Extinktion
Pos positiv
S/CO Signal/Abschneidewert (engl. signal/cutoff)
SD
WNL
Standardabweichung Durchschnitt oder Mittel innerhalb normaler Grenzen
IV.1.1. HCV-lnfektion In einer Population von Zufallsblutspendern
Eine Gruppe von 1056 Proben (Frischseren) von stichprobenmäßig ausgewählten Blutspendern wurde von der Irwin Memorial Blood Bank, San Francisco, Kalifornien, erhalten. Die Testergebnisse aus diesen Proben werden in einem Histogramm zusammengefaßt, das die Verteilung der Extintionswerte (Figur 37) zeigt. Wie aus Figur 37 ersichtlich wird, liegen 4 Proben bei >3, eine Probe zwischen 1 und 3,5 Proben zwischen 0,4 und 1 und die restlichen 1046 Proben liegen bei <0,4, wobei über 90% dieser Proben <0,1 anzeigen.
Die Ergebnisse der reaktiven Stichproben werden in Tabelle 5 aufgeführt. Wendet man einen Abschneidewert an, der den Standardabweichungen Mittelwert plus 5 entspricht, dann waren 10 Proben von 1056 (0,95%) anfangs reaktiv. Davon erwiesen sich fünf Proben (0,47%) wiederholt als reaktiv, als sie ein zweites Mal mit ELISA getestet wurden. Tabelle 5 zeigt auch den ALT- und den Anti-HBd-Status für jede der wiederholt reaktiven Proben. Von besonderem Interesse ist die Tatsache, daß alle fünf wiederholt reaktiven Proben in den beiden Surrogattests für NANBH negativ, im HCV-ELISA jedoch positiv waren.
Tabelle 5
Ergebnisse an reaktiven Stichproben
N = 1051 = 0,419 (0,400 + negative Kontrolle) ALT" Anti-Hbc»*»
X = 0,049* ODderwiedorholt (IU/L) IOD)
SD = ±0,074 reaktiven Proben NA NA
Abschneidewert: χ + 5SD 0,084 NA NA
Proben 0,294 NA NA
0,326 NA NA
4 227 0,187 NA NA
6292 0,152 30,14 1,433
6188 1,392 46,48 1,057
6157 > 3,000 48,53 1,343
6277 > 3,000 60,53 1,165
6397 > 3,000 WNL"·· Negativ
6019 3,000
6651
6669
4003
OD der anfangs
reaktiven Proben
0,462
0,569
0,699
0,735
0,883
1,567
> 3,000
> 3,000
> 3,000
> 3,000
10/1056 = 0,95% 5/1056 = 0,47%
* Probenanzeigen > 1,5 wurden nicht in die Berechnung des Mittelwertes und der statistischen Abweichung einbezogen. ** ALT <68 IU/L liegen über den normalen Grenzen
*** AnIi-HBc s0,535 (Konkurrenz-Assay) wird als positiv angesehen
**·· WNL: innerhalb normaler Grenzen.
IV.1.2. Schimpansen-Serumproben
Mittels HCV-dOC-3-ELISA wurden Serumproben aus 11 Schimpansen getestet. 4 dieser Schimpansen waren nach einem eingeführten Verfahren in Zusammenarbeit mit Dr. Daniel Bradley von Centers of Disease Control mit NANBH aus einer kontaminierten Charge Faktor VIII (wahrscheinlich Hutchinson-Stamm) infiziert. Als Kontrollen wurden 4 andere Schimpansen mit HAV und 3 mit HBV infiziert. Die Serumproben wurden zu verschiedenen Zeiten nach der Infektion genommen. Die in Tabelle 6 zusammengefaßten Ergebnisse zeigen dokumentierte Antikörporserokonversion in allen mit dem Hutchinson-Stamm von NANBH infizierten Schimpansen. Nach der akuten Phase der Infektion (wie durch den signifikanten Anstieg und die anschließende Rückkehr zu normalen ALT-Werten bewiesen wurde) ließen sich die Antikörper gegen HCV-c100-3 in den Seren der 4/4 NANBH-infizierten Schimpansen nachweisen. Diese Proben haben sich kürzlich wie in Abschnitt IV.B.3. diskutiert wurde, durch die Western-Analyse und ein Radioimmunassay als positiv erwiesen. Im Gegensatz dazu zeigte keiner der Kontrollschimpansen, die mit HAV oder HBV infiziert waren, bei ELISA ein Zeichen von Reaktivität.
Tabelle 6 Schimpansen-Serumproben
OD
S/CO
Inokulation Datum
Blut Datum
ALT (IU/L)
Transfusion
Positive 1,504 0,00 24.05.84 24.05.84 9 5 -
Kontrolle 0,401 0,01 07.08.84 71 52 15 _ 9
Abschaltung 7,48 18.09.84 19 13 130
Negative 0,001 7Ί8 24.10.84 - - 8 57 126
Kontrolle 0,007 - 07.06.84 - - 8 4,5 9
Schimpanse 1 0,003 0,00 31.05.84 205 9
3,000 0,00 28.06.84 14 6 13
3,000 2,36 20.08.84 6
- 7,48 24.10.84 11
Schimpanse 2 0,003 0,01 14.03.85 14.03.85 132
0,005 0,04 26.04.85 -
0,945 0,01 06.05.85 -
3,000 2,52 20.08.85 4
0,005 0,00 11.03.85 11.03.85 147
Schimpanse 3 0,017 0,01 09.05.85 18
0,006 1,31 06.06.85 5
1,010 3,93 01.08.85
0,006 0,00 21.11.70 21.11.80
Schimpanse4 0,003 0,00 16.12.80 _
0,523 0,01 30.12.80 106
1,574 0,01 29.07.— 10
0,006 21.08.81
Schimpanse 5 0,001 - 25.05.82 _ 7
0,003 0,00 17.05.82 83
0,006 0,00 10.06.82 5
0,00 06.07.82
- 0,72 01.10.82
Schimpanse 6 0,005 0,00 25.05.82 25.05.82
0,001 0,00 17.06.82
0,004 0,00 16.09.82
0,290 0,01 09.10.82
0,008 0,00 21.11.80 21.11.80
Schimpanse 7 0,004 0,00 16.12.80
0,006 0,01 03.02.81
0,005 0,00 03.06.—
0,007 10.06.81
Schimpanse 8 0,000 _ 24.07.80 _
0,004 0,05 22.08.—
0,000 10.10.79
- 11.03.81
- 0,04 01.07.—
Schimpanse 9 0,019 05.08.81
0,02 01.10.81
- 12.05.82
0,015 0,03 21.04.—
12.05.82
0,008 0,04 01.09.—
_ 08.09.82
Schimpanse 10 0,011 0,02 02.12.82
0,02 06.01.83
0,015
0,008
0,010
NANB
NANB
NANB
NANB
HAV
HAV
HAV
HAV
HBV
HBV
Fortsetzung Tabelle 6
OD S/CO
Blut ALT 9 -42- 298 524
Inokulation Datum (lU/L) 10 Trans
Datum _ _ fusion
12.05.82 06.01.— 11 HBV
12.05.82
23.06.82 100
09.06.— _
07.07.82
28.10.82
20.12.82
Schimpansen - -
0,000 0,00
0,003 0,00
0,003 0,00
0,003 0,00
IV.1.3. Liste 1: Nachgewiesen infektiöse Seren von menschlichen Trägern chronischer NANBH Eine verschlüsselte Liste bestand aus 22 einmaligen Proben, jede als Duplikat, d. h. insgesamt 44 Proben. Die Proben stammten von nachgewiesen infektiösen Seren aus chronischen NANBH-Trägern, infektiösen Seren von betroffenen Spendern und infektiösen Seren von NANBH-Patienten in der akuten Phase. Zusätzlich stammten die Proben von lange zurückverfolgten negativen Kontrollen und anderen Krankheitskontrollen. Diese Liste wurde von Dr. H. Alter von Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland, zur Verfügung gestellt. Die Liste wurde von Dr. Alter vor mehreren Jahren aufgestellt und wurde seither von ihm als qualifizierende Liste für Tests auf vermutliche NANBH benutzt. (Siehe zitierte Bezuyiu.' ·"· TifDr. Alters Artikel.)
Die gesamte Lisiu . /urde zweimal durch das ELISA-Verfahren getestet, und die Ergebnisse wurden zur Auswertung an Dr. Alter gesandt. Die Ergebnisse dieser Auswertung sind in Tabelle 7 gezeigt. Obwohl die Tabelle die Ergebnisse von nur einem Duplikatsatz enthält, wurden die gleichen Werte bei jeder der Duplikatproben erreicht.
Wie in Tabelle 7 gezeigt wird, waren 6 Seren, die in einem Schimpansenmodell erwiesen infektiös waren, stark positiv. Das siebente infektiöse Serum entsprach einer Probe in einem akuten NANBH-FaII und war bei dieser ELISA-Untersuchung nicht reaktiv. Eine Probe aus einem betroffenen Spender mit normalen ALT-Werten und zweideutigen Ergebnissen in den Schimpansenuntersuchungen war bei diesem Test nicht reaktiv. Drei andere Serienproben aus einem Individuum mit akuter NANBH waren ebenfalls nicht reaktiv. Alle Proben, die aus den lange zurückverfolgten negativen Kontrollen stammten, wurden von Spendern erhalten, die mindestens 10mal ohne Hepatitisimplikation Blut gespendet hatten, und waren in der ELISA-Untersuchung nicht reaktiv. Schließlich wurden 4 der getesteten Proben zuvor in von anderen Wissenschaftlern entwickelten Tests auf vermutliche NANBH als positiv bewertet, diese Tests wurden aber nicht bestätigt.
Tabelle 7
Liste 1 von H.Alter
Liste I.Ergebnis 2, Ergebnis
1) Durch Schimpansen-Übertragung nachgewiesenermaßen infektiös
a. Chronische NANB; Post-Tx
JF + +
EB + +
PG + +
b. Betroffene Spender mit erhöhter ALT
BC + +
JJ + +
BB + +
c. Akute NANB; Post-tx
WII
2) Durch Schimpansenübertragung nicht eindeutig infektiös
a. Betroffene Spender mit normaler ALT
CC - -
3) Akute NANB; Post-TX
JL I.Woche JL 2. Woche JL 3. Woche
4) Krankheitskontrollen Primary biliäre Leberzir-hose
EK -
b. Alkoholhepatitis in Rekonvaleszenz
HB -
5) Negative Kontrollen mit Vorgeschichte
DH
OC - -
LV -
HL - -
All
Fortsetzung Tabelle 7
I.Ergebnis
2.Ergebnis
6) Potentielle NANB-„Antigene" JS-80-01T-O (ISHIDA) Asterix (TREPO) Zurtz (ARNOLD) Becassdine (TREPO)
IV.1.4. Liste 2: Spender/Empfänger-NANBH
Die verschlüsselte Liste bestand aus 10 unzweideutigen, mit Transfusionen im Zusammenhang stehenden Spender/Empfänger-NANBH-Fällen mit insgesamt 188 Proben. Jeder dieser Fälle bestand aus Proben von einigen oder allen Spendern an den Empfänger und aus Serienproben (die 3,6 und 12 Monate nach der Transfusion genommen wurden) aus dem Empfänger. Auch eine voi der Transfusion aus dem Empfänger entnommene Blutprobe gehörte dazu. Die verschlüsselte Liste wurde von Dr. H. Alter von NIH aufgestellt, und die Ergebnisse wurde ihm zur Auswertung zugesandt.
Die in Tabelle 8 zusammengefaßten Ergebnisse zeigen, daß das ELISA-Verfahren Antikörper-Serokonversion in 9 von 10 Fällen von mit Transfusion in Zusammenhang stehender NANBH nachwies. Proben aus Fall 4 (wo keine Serokonversion nachgewiesen wurde) reagierten im ELISA beständig schlecht. 2 von den 10 Empfängerproben waren 3 Monate nach der Transfusion reaktiv.
Nach 6 Monaten waren 8 Empfängerproben reaktiv und nach 12 Monaten waren mit Ausnahme von Fall 4 alle Proben reaktiv.
Außerdem wurde mindestens 1 Antikörper-positiver Spender in 7 von 10 Fällen gefunden, wobei mit Fall 10 2 positive Spender vorliegen. In Fall 10 war die Vortransfusions-Blutprobe des Empfängers ebenfalls positiv für HCV-Antikörper. Die Blutprobe dieses Empfängers nach einem Monat fiel unter die Grenzlinie der reaktiven Werte, während die Blutproben nach 4 und
10 Monaten auf positive Werte stiegen.
Im allgemeinen wird ein S/CO von 0,4 als positiv angesehen. Dieser Fall kann somit eine frühere Infektion des Individuums mit
HCV sein.
Der ALT- und HBc-Status für alle reaktiven, d. h. positiven. Proben ist in Tabelle 9 zusammengefaßt. Wie in der Tabelle ersichtlich ist, waren die 1/8 Spenderproben für die Surrogatmarker negativ und im HCV-Antikörper-ELISA-Verfahren reaktiv. Andererseits wiesen die Empfängerproben (12 Monate nach der Transfusion) entweder erhöhte ALT-Werte oder positive Anti-HBc-Werte
oder beides auf.
Tabelle 8
Liste von Spender/Empfänger-NANB nach H.Alter
Fall Spender - S/CO Empfänger 0,07 3 Monate S/CO Post-TX S/CO 12 Monate S/CO
- - Blutprobe vor 0,14 0,26 6 Monate 6,96 >6,96
0,403 - Transfusion 0,11 0,12 3,90 >6,96
OD - 0,94 0,15 OD 0,13 OD 6,96 OD >6,96
1. > 3,000 - 0,08 0,112 0,17 > 3,000 0,16 > 3,000 0,50
2. > 3,000 >6,96 0,13 0,050 0,22 1,681 6,96 > 3,000 >6,96
3. > 3,000 >6,96 OD S/CO 0,08 0,057 3,44 > 3,000 6,96 > 3,000 >6,96
4. > 3,000 >6,96 0,032 0,14 0,073 0,13 0,067 6,96 > 0,217 >6,96
5. > 3,000 >6,96 0,059 0,19 0,096 0,18 > 3,000 5,28 > 3,000 >6,96
6. > 3,000 >G,96 0,049 6,96 1,475 0,30 > 3,000 0,13 > 3,000 >6,96
7. > 3,000 >6,96 0,065 0,056 0,74 > 3,000 6,96 > 3,000 >6,96
8. 1 Monat: " - 4 >6,96 0,034 0,078 2,262 > 3,000
9. Monate: »·· - 0,056 0,127 0,055 > 3,000
10. 0,034 0,317* > 3,000»» > 3,000***
0,061
• _ 0,080
> 3,000 >
10 Monate.
Tabelle 9
Alt-und HBc-Status für reaktive Proben in Liste 1 nach H.Alter
Proben
Anti-ALT»
HBC«
Spender Fall Fall Fall Fall Fall 8 Fall 9 Fall 10 Fall 10
normal negativ
erhöht positiv
erhöht positiv
nicht verfügbar negativ
normal positiv
erhöht nichtverfügbar
normal positiv
normal positiv
Fortsetzung Tabelle 9
Alt- und HBc-Status für reaktive Proben in Liste 1 nach H.Alter
Proben 1 12Mon. 6Mon. Anti-ALT" HBC"
Empfänger erhöht
Fall 2 12Mon. 6Mon. erhöht positiv
erhöht nicht getestet
Fall 3 12Mon. 6Mon. erhöht negativ
erhöht nicht getestet
Fall 5 12Mon. 6Mon. normal nichtgetestet·*11
erhöht nichtgetestet*"
Fall 6 6Mon. 3Mon. erhöht nichi getestet
12Mon. erhöht nichtgetestet
Fall erhöht erhöht negativ
7 12Mon. 6Mon. negativ
erhöht nichtgetestet
Fall 8 12Mon. 6Mon. erhöht negativ
erhöht negativ
Fall 9 12Mon. normal positiv
10 10Mon. 4Mon. nichtgetestet
Fall erhöht erhöht nichtgetestet
Fall erhöht nichtgetestet
nichtgetestet
* ALT > 45IU/L liegt über dem normalen Grenzwert
** Anti-HBc >50% (Konkurrenz-Assay) wird als positiv angesehen
"* Blutprobe vor der Transfusion und 3 Monate danach waren llßc-negaliv.
IV.1.5. Bestimmung von HCV-lnfektion In Proben von risikoreichen Gruppen Proben von risikoreichen Gruppen wurden mittels ELISA überwacht, um die Reaktivität gegenüber HCV-c100-3-Antigen zu bestimmen. Diese Proben wurden von D.GaryTegtmeier, Community Blood Bank, Kansas City, bereitgestellt. Die Ergebnisse sind in Tabelle 10 zusammengefaßt.
Wie aus der Tabelle ersichtlich wird, wurden die Proben mit der höchsten Reaktivität von Hämophilen erhalten (76%).
Weiter erwiesen sich Proben von Individuen mit erhöhter ALT und Anti-HBc-positiv zu 51 % als reaktiv, ein Wert, der mit dem von klinischen Daten und NANBH-Prävalenz in dieser Gruppe erwarteten Wert übereinstimmt. Das Vorkommen von Antikörpern gegen HCV war auch höher bei Blutspendern mit erhöhter ALTallein, bei Blutspendern, die nur für Antikörper gegen Hepatitis-B-Kern positiv waren und bei Blutspendern, die aus anderen Gründen als hohen ALT-Werten oder Anti-Kern-Antikörpern im Vergleich zu zufälligen freiwilligen Blutspendern abgelehnt wurden.
Tabelle 10
Proben von gegenüber NANBH risikoreichen Gruppen
Gruppe N 35 Verteilung OD % reaktiv
I 0,728 N 3,000 11,4%
ErhöhteALT 24 3
33 5 3,000 20,8%
Anti-HBc I 2,768 5 3,000 51,5%
ErhöhteALT,Anti-HBc 2,324 12
2,939
0,951
0,906
25
150 3,000 20,0%
Zurückgewiesene Spender I 0,837 5 3,000 14,7%
Spendermit Hepatitis- I 0,714 19
Vorgeschichte I 0,469
50
I 2,568 3,000 76,0%
Hämophile I 2,483 31
I 2,000
I 1,979
I 1,495
I 1,209
0,809
IV.1.6. Vergleichende Untersuchungen mittels Antl-lgG- oder Antl-lgM-monoclonaler Antikörper oder polyclonaler Antikörper als zweitem Antikörper fm HCV-ciOO-3-ELISA
Die Sensivität der ELISA-Messung, bei der Anti-lgG-monoclonales-Konjugat verwendet wurde, wurde mit derjenigen verglichen, die erreicht wurde, wenn entweder ein Anti-lgM-monoclonales-Konjugat verwendet wird, oder wenn beide durch ein polyclonales Antiserum ersetzt werden, welches sowohl Schwer- als auch Leichtketten-spezifisch sein soll. Es wurden die folgenden Untersuchungen durchgeführt.
IV.I.6.8. Serienproben aus Serokonvertern
Serienproben aus drei Fällen NANB-Serokonvertern wurden im HCV-c1 OO-ELISA-Test untersucht, indem im Enzymkonjugat entweder das Anti-lgG-monoclonale-Antiserum allein oder in Kombination mit einem Anti-IGM-monoclonalen-Antiserum verwendet wurde, oder ein polyclonales Antiserum eingesetzt wurde. Die Proben wurden von Dr. Cladd Stevens, N. Y. Blood Center, N. Y. C, N. Y. bereitgestellt. Die Probenvorgeschichten sind in Tabelle 11 aufgeführt.
Die mit einem Anti-lgG-monoclonalen Antikörper/Enzymkonjugat erhaltenen Ergebnisse sind in Tabelle 12 enthalten. Die Daten zeigen, daß eine starke Reaktivität zu Anfang in den Proben 1-4,2-8 und 3-5 der Fälle 1,2 bzw. 3 nachgewiesen wurde.
Die Ergebnisse, die mittels einer Kombination eines Anti-lgG-monoclonalen Konjugats und eines Anti-lgM-Konjugats erhalten wurden, sind in Tabelle 13 aufgeführt. Es wurden 3 verschiedene Verhältnisse von Anti-lgG zu Anti-lgM getestet. Die Verdünnung 1:10000 von Anti-lgG war während der gesamten Tests konstant. Die bei dem Anti-lgM monoclonalen Konjugat getesteten Verdünnungen betrugen 1:30000,1:60000 und 1:120000. Die Daten zeigen, daß in Übereinstimmung mit den Untersuchungen mit Anti-lgG allein die anfängliche starke Reaktivität in den Proben 1-4,2-8 und 3-5 nachgewiesen wurde.
Die Ergebnisse, die mit dem ELISA-Test mit Anti-lgG-monoclonalem-Konjugat (Verdünnung 1:100000), oder mit Tagopolyclonalem-Konjugat (Verdünnung 1:80000) oder mit Jackson-polyclonalem-Konjugat (Verdünnung 1:80000) gewonnen wurden, sind in Tabelle 14 aufgeführt. Die Daten zeigen, daß die anfängliche starke Reaktivität in den Proben 1-4,2-8 und 3-5 bei allen drei Konfigurationen nachgewiesen wurde. Die Tago-polyclonalen-Antikörper lieferten die niedrigsten Signale.
Die oben vorgelegten Ergebnisse zeigen, daß alle drei Konfigurationen reaktive Proben zur gleichen Zeit nach der akuten Krankheitsphase nachweisen (wie durch die Erhöhung der ALT-Werte angezeigt wird). Darüber hinaus zeigen die Ergebnisse, daß die Sensivität des HCV-ciOO-3-ELISA-Tests mittels Anti-lgG-monoclonalem Enzymkonjugat gleich oder besser ist, als diejenigen, die bei den anderen getesteten Konfigurationen des Enzymkonjugats erhalten wurde.
Tabellen
Beschreibung der Proben nach der Liste von Cladd Stevens
Datum
HBsAG
Anti-HBs
Anti-HBc
ALT
Bilirubin
FaIM 05.08.81 1.0 91,7 12,9 40,0 -1,0
1-1 02.09.81 1,0 121,0 15,1 274,0 1,4
1-2 07.10.81 1,0 64,0 23,8 261,0 0,9
1-3 19.11.81 1,0 67,3 33,8 75,0 0,9
1-4 15.12.81 1,0 50,5 27,6 71,0 1,0
1-5
Fall 2 19.10.81 1,0 1,0 116,2 17,0 -1,0
2-1 17.11.81 1,0 0,8 89,5 46,0 1,1
2-2 02.12.81 1,0 1,2 78,3 63,0 1,4
2-3 14.12.81 1,0 0,9 90,6 152,0 1,4
2-4 23.12.81 1,0 0,8 93,6 624,0 1,7
2-5 20.01.82 1,0 0,8 92,9 66,0 1,5
2-6 15.02.82 1,0 0,8 86,7 70,0 1,3
2-7 17.03.82 1,0 0,9 69,8 24,0 -1,0
2-8 21.04.82 1,C 0,9 67,1 53,0 1,5
2-9 19.05.82 1,0 0,5 74,8 95,0 1,6
2-10 14.06.82 1-0 0,8 82,9 37,0 -1,0
2-11
Fall 3 07.04.81 1,0 1,2 88,4 13,0 -1,0
3-1 12.05.81 1,0 1,1 162,2 236,0 0,4
3-2 30.05.81 1,0 0,7 99,9 471,0 0,2
3-3 09.06.81 1,0 1,2 110,8 315,0 0,4
3-4 06.07.81 1,0 1,1 89,9 273,0 0,4
3-5 10.08.81 1,0 1,0 118,2 158,0 0,4
3-6 08.09.81 1,0 1,0 112,3 84,0 0,3
3-7 14.10.81 1,0 0,9 102,5 180,0 0,5
3-8 11.11.81 1,0 1,0 84,6 154,0 0,3
3-9
Tabelle 12
ELISA-Testergebnisse, die bei Verwendung von Anti-If G-monoclonalem-Konjugat erhalten wurden
Datum
ALT
OD
S/CO
Neg. Kontrolle 05.08.81 40,0 0,076 0,37
Abschneidewert 02.09.81 274,0 0,476 0,32
PC (1:128) 07.10.81 261,0 1,390 0,27
FaIH 19.11.81 75,0 1,97
1-1 15.12.81 71,0 0,178 6,30
1-2 0,154
1-3 19.10.81 17,0 0,129 0,12
1-4 17.11.81 46,0 0,937 0,11
1-5 02.12.81 63,0 3,000 0,10
Fall 2 14.12.81 152,0 0,12
2-1 23.12.81 624,0 0,058 0,15
2-2 20.01.82 66,0 0,050 0,11
2-3 15.02.82 70,0 0,047 0,29
2-4 17.03.82 24,0 0,059 3,92
2-5 21.04.82 53,0 0,070 6,30
2-6 19.05.82 95,0 0,051 6,30
2-7 14.06.82 37,0 0,139 6,30
.2-8 1,867
2-9 07.04.81 13,0 3,000 0,19
2-10 12.05.81 236,0 3,000 0,13
2-11 30.05.81 471,0 3,000 0,17
Fall 3 09.05.81 315,0 0,44
3-1 06.07.81 273,0 0,090 3,59
3-2 10.08.81 158,0 0,064 6,30
3-3 08.09.81 84,0 0,079 6,30
3-4 14.10.81 180,0 0,211 6,30
3-5 11.11.81 154,0 1,707 6,30
3-6 3,000
3-7 3,000
3-8 3,000
3-9 3,000
Tabelle 13
ELISA-Testergebnisse, die bei Verwendung von Anti-lgG- und Anti-lgM-monoconalem-Konjugat erhalten wurden
ELISA-TestsanNANB
Datum ALT Monoclo- Monoclo- Monoclo-
nales nales nales
lgG1:10K lgG1:10K lgG1:10K
lgM1:30K lgM1:60K lgM1:120K
Probe OD S/CO OD S/CO OD S/CO
Neg. Kontrolle 05.08.81 40 0,100 0,080 0,079
Abschneidewert 02.09.81 274
PC (1:128) 07.10.81 261 1,083 1,328 1,197
FaIH 19.11.81 75
1-1 15.12.81 71 0,173 0,162 0,070
1-2 0,194 0,141 0,079
1-3 19.10.81 17 0,162 0,129 0,063
1-4 17.11.81 46 0,812 0,85 0,709
1-5 02.12.81 63 >3,00 >3,00 >3,00
Fall 2 14.12.81 152
2-1 23.12.81 624 0,442 0,045 0,085
2-2 20.01.82 66 0,102 0,029 0,030
2-3 0,059 0,036 0,027
2-4 0,065 0,041 0,025
2-5 0,082 0,033 0,032
2-6 0,102 0,042 0,027
Fortsetzung Tabelle
ELISA-TestsanNANB
ALT Monoclo- Monoclo- Monoclo-
70 nales nales nales
24 lgG1:10K lgG1:10K lgG1:10K
53 lgM1:30K lgM1:60K lgM1:120K
Datum 95 OD S/CO OD S/CO OD S/CO
15.02.82 37 0,188 0,068 0,096
17.03.82 13 1,728 1,668 1,541
21.04.82 236 >3,00 2,443 >3,00
19.05.82 471 >3,00 >3,00 >3,00
14.06.82 315 >3,00 >3,00 >3,00
07.04.81 273 0,193 0,076 0,049
12.05.81 158 0,201 0,051 0,038
30.05.81 84 0,132 0,067 0,052
09.06.81 180 0,175 0,155 0,140
06.07.81 154 1,335 1,238 1,260
10.08.81 >3,00 >3,00 >3,00
08.09.81 >3,00 >3,00 >3,00
14.10.81 >3,00 >3,00 >3,00
11.11.81 >3,00 >3,00 >3,00
Fall 3
Tabelle
ELISA-Testergebnisese, die bei Verwendung von polyclonalen Konjugaten erhalten wurden
Datum ALT ELISA-TestsanNANB S/CO TAGO S/CO OD Jackson
Monoclonal 1:80 K 0,154 1:80K
1:10K OD 0,654 S/CO
Probe OD 0,045 2,154
Neg. Kontrolle 0,076 0,545
Abschneidewert 05.08.81 40 0,476 0,37 0,727 0,12 0,153
PC (1:128) 02.09.81 274 1,390 0,32 0,18 0,225
FaIM 07.10.81 261 0,27 0,067 0,05 0,167 0,23
1-1 19.11.81 75 0,178 1,97 0,097 0,60 0,793 0,34
1-2 15.12.81 71 0,154 6,30 0,026 3,27 >3,00 0,26
1-3 0,129 0,324 1,21
1-4 19.10.81 17 0,937 0,12 1,778 0,04 0,052 4,59
1-5 17.11.81 46 >3,00 0,11 0,03 0,058
Fall 2 02.12.81 63 0,10 0,023 0,04 0,060 0,08
2-1 14.12.81 152 0,058 0,12 0,018 0,05 0,054 0,09
2-2 23.12.81 624 0,050 0,15 0,020 0,05 0,074 0,09
2-3 20.01.82 66 0,047 0,11 0,025 0,03 0,058 0,08
2-4 15.02.82 70 0,059 0,29 0,026 0,07 0,146 0,11
2-5 17.03.82 24 0,070 3,92 0,018 0,65 1,429 0,09
2-6 21.04.82 53 0,051 >6,30 0,037 1,37 >3,00 0,22
2-7 19.05.82 95 0,139 >6,30 0,355 1,88 >3,00 2,19
2-8 14.06.82 37 1,867 >6,30 0,748 1,68 >3,00 >4,59
2-9 >3,00 1,025 >4,59
2-10 07.04.81 13 >3,00 0,19 0,917 0,09 0,138 >4,59
2-11 12.05.81 236 >3,00 0,13 0,07 0,094
Fall 3 30.05.81 471 0,17 0,049 0,08 0,144 0,21
3-1 09.06.81 315 0,090 0,44 0,040 0,16 0,275 0,14
3-2 06.07.81 273 0,064 0,59 0,045 0,50 1,773 0,22
3-3 10.08.81 158 0,079 >6,30 0,085 2,47 >3,00 0,42
3-4 08.09.81 84 0,211 >6,30 0,272 4,21 >3,00 2,71
3-5 14.10.81 180 1,707 >6,30 1,347 >5,50 >3,00 >4,59
3-6 11.11.81 154 >3,00 >6,30 2,294 >5,50 >3,00 >4,59
3-7 >3,00 >3,00 >4,59
3-8 >3,00 >3,00 >4,59
3-9 >3,00
IV.I.e.b. Prcben von Zufallsblutspendern
Proben von Zufallsblutspendern (siehe Abschnitt IV.1.1.) wurden mittels HCV-c100-3-ELISA auf HCV-lnfektion gescreent, wobei das Antikörper/En'.ymkonjuyat entweder ein Anti-lgG-monoclonales-Konjugat oder ein polyclonales Konjugat war. Die Gesamtanzahl der gescnn- v.= ioben betrug 1077 bei polyclonalem Konjugat bzw. 1056 bei monoclonalem Konjugat. Eine Zusammenfassung ΛΊί ό irtwni.n^-iiobnisse erfolgt in Tabelle 15 und die Probenverteilungen werden im Histogramm in Fig.44 gezeigt.
Die Berechnung der durchschnittlichen und der Standarrtabweichungerfolgte unter Ausschluß der Proben, die ein Signal über 1,5 ergaben, d. h., es wurden 1073 OD-Werte für die Berechnungen bei polyclonalem Konjugat und 1051 bei Anti-lgG-monoclqnalem-Konjugat verwendet. Wie in Tabelle 15 7.u erkennen ist, verschob sich der Durchschnittswert von 0,0493 auf 0,0931, und die Standardabweichung stieg von 0,074 auf 0,0933, wenn das polyclonale Konjugat verwendet wurde. Darüber hinaus zeigen die Ergebnisse auch, daß, wenn die Kriterien von χ + 5SD angewandt worden, um den Assay-Abschneidewert zu definieren, die polyclonal/Enzymkonjugat-Konfiguratbn im ELISA-Test einen höheren Abschneidewert gefordert. Dies zeigt eine geringere Assay-Spezifität im Vergleich zum monoclonalen System an. Außerdem tritt, wie aus dem Histogramm in Fig.44 zu entnehmen ist, eine größere Trennung der Ergebnisse zwischen negativer und positiver Verteilung ein, wenn Zufallsblutspender in einem ELISA-Test unter Verwendung des Anti-lgG-monoclonalen-Konjugats im Vergleich zu einem Assay mittels einer herkömmlichen polyclonalen Markierung gescreent werden.
Tabelle 15
Vergleich von zwei ELISA-Konfigurationen in Testproben von Zufallsblutspendern
Konjugat Polyclonal Arti-lgG-monoclonal
(Jackson)
Anzahl der Proben 1073 1 051
Durchschnitt (x) 0,0931 0.04926
Standardabweichung (SD) 0,0933 0,07427
5SD 0,4666 0,3714
Abschneidewert
(5SO+ x) 0,5596 0,4206
IV.J. Nachwels der HCV-Serokonversion in NANBH-Patlenten aus vielen geographischen Gegenden
Seren von Patienten, bei denen aufgrund erhöhter ALT-Werte NANBH vermutet wurde, bei denen HAV- und HBV-Tests negativ gewesen waren, wurden mittels Radioimmunassay im wesentlichen nach dem im Abschnitt IV.D. beschriebenen Verfahren gescreent, wobei jedoch das HCV-C100-3-Antigen als Screening-Antigen auf den Mikrotiterplatten verwendet wurde. Wie aus den in Tabelle 16 dargestellten Ergebnissen ersichtlich wird, wies dts Radioimmunassay in einem hohen Prozentsatz der Fälle positive Proben nach.
Tabelle 16
Häufigkeit der Serokonversion bei Anti-c100-3 unter NANBH-Patienten aus verschiedenen Ländern
i.and Niederliinde Italien Japs
Anzahl der untersuchten
Fälle 5 36 26
Positive Anzahl 3 29 19
% positiv 60 80 73
IV.K. Nachwels der HCV-Serokonve rslon in Patienten mit „In der Gemeinschaft erworbener" NANBH Von Dr. H. Alter vom Center of Disease Control und von Dr. J. Dienstag von der Harvard University wurden Seren zur Verfugung gestellt, die von 100 Patienten mit NANBH stammten, bei denen kein offensichtlicher Übertragungsweg zu erkennen war (d.ii. keine Transfusionen, kein Benutzer inliavenöser Drogen, keine Promiskuität usw. wurden als Risikofaktoren festgestellt). Diese Proben wurden mittels Radicimmunassay im wesentlichen nach dem im Abschnitt IV.D. beschriebenen Verfahren gescreent, mit der Ausnahme, daß das HCV-c100-3-Antigen als Screeningantigen auf den Mikrotiterplatten verwendet wurde. Die Ergebnisse zeigten, daß von den 100 Serumproben 55 Antikörper enthielten, die mit dem HCV-c100-3-Antigen immunologisch reagierten. Dio oben beschriebenen Ergebnisse deuten darauf in, daß die „in der Gemeinschaft erworbene" NANBH ebenfalls durch das HCV verursacht wird.
Da hier außerdem gezeigt wurde, daß das HCV mit den Flaviviren verwandt ist, von denen die meisten durch Arthropoden übertragen worden, läßt dies darauf schließen, daß die HCV-Übertragung der „in der Gemeinschaft erworbenen" Fälle ebenfalls durch Arthropoden erfolgte.
IV.L. Vergleich des Auftretens von HCV-Antikörpern und Surrogatmarkern bei Spendern, die von einer NANBH-Übertragung betroffen sind
Es wurde eine prognostische Untersuchung durchgeführt, um festzustellen, ob bei Empfängern von Blut von vermutlich NANBH-positiven Spendern, bei denen sich eine NANBH entwickelt hatte, eine Serokonversion zu Anti-HCV-Antikörper-positiv stattgefunden hat. Die Blutspender wurden auf abnorme Surrogatmarker getestet, die jetzt als Marker bei NANBH-Infektion eingesetzt werden, d. h. erhöhte ALT-Werte und das Vorhandensein von Anti-Kern-Antikörpern. Außerdem wurden die Spender auch auf das Vorhandensein von Anti-HCV-Antikörpern getestet. Die Feststellung, ob Anti-HCV-Antikörper vorhanden sind, erfolgte mit Hilfe eines in Abschnitt IV.K. beschriebenen Radioimmunsssays. Die Untcisuchiingsergebnisse sind in Tabelle 17 aufgeführt, die folgendes zeigt: die Patientennummer (Spalte 1); das Vorhandensein von Anti-HCV-Antikörpern im Patientenserum (Spalte 2); die Anzahl von Blutspenden, die der Patient erhalten hatte, wobei jede Spende von einem anderen
Spender stammte (Spalte 3); das Vorhandensein von Anti-HCV-Antikörpern im Spenderserum (Spalte 4) und die Surrogatabnormaütät des Spenders (Spalte 5). (NT oder— behütet nicht getestet). (ALT bedeutet erhöhte Transaminase und Anti-HBc bedeutet Anti-Kern-Antikörper).
Die Ergebnisse in Tabelle 17 zeigen, daß der HCV-Antikörpertest beim Auffinden von infizierten Blutspendern genauer ist als die Surrogatmarkertests. Neun von 10 Patienten, bei denen sich NANBH-Symptome entwickelten, waren im Test auf Anti-HCV-Antikörper-Serokonversion positiv. Von den 11 vermutlich infizierten Individuen (Patient 6 erhielt Spenden von zwei verschiedenen Spendern, die vermutlich NANBH-Träger sind) waren 9 bei Anti-HCV-Antikörpern positiv und 1 war knapp über der Grenzlinie positiv und deshalb nicht eindeutig (Spender von Patient 1). Nutzt man dagegen den Test auf erhöhte ALT-Werte, so sind 6 von den 10 getesteten Spendern negativ, und nutzt man den Antikern-Antikörpei-Test, so sind 5 von den getesteten 10 Spendern negativ. Von größeren Auswirkungen ist jedoch die Tatsache, daß der ALT-Test und der Anti-HBc-Test in 3 Fällen (Spender für dio Patienten 8,9 und 10* keine übereinstimmenden Ergebnisse brachte.
Tabelle 17
Entwicklung von Anti-HCV-Antikörpern in Patienten, die Blut von Spendern erhielten, die vermutlich NANBH-Träger sind
Patient Anti-HCV-Serokonversion Anzahl der Anti-HCV-positiver Surrogatabnormalität Anti-HB
im Patienten Spenden/Spender Spender ALT nein
1 ja 18 zweideutig nein ja
2 ja 18 ja NT nein
3 ja 13 ja nein -
4 nein 18 nein - ja
5 ja 16 ja ja nein
6 ja 11 ja (2) nein ja
ja nein
7 ja 15 ja NT ja
8 ja 20 ja nein nein
9 ja 5 ja ja ja
10 ja 15 ja nein
* Derselbe Spender wie bei Anti-NANBH-positiv.
IV.M. Ampllfikatlon zum Clonleren von HCV-cDNA-Sequenzon mittels PCR und Prlmern, die aus konservierten Regionen von Flavlvirus-Genom-Sequenzen abgeleitet wurden
Die im vorangegangenen dargestellten Ergebnisse, die daraufschließen lassen, daß das HCV ein Flavivirus oder ein flaviartiges Virus ist, erlauben eine Strategie zum Cionieren von uncharakteristischen HCV-cDNA-Sequenzen mittels der PCR-Technik und mit Primern, die aus den Regionen abgeleitet wurden, die für konservierte Aminosäuresequenzen in den Flaviviren codieren. Im allgemeinen wird einer der Primer aus einer definierten HCV-Genomsequenz abgeleitet, und der andere Primer, der eine Region von nicht sequenziertem HCV-Polynucleotid flankiert, wird aus einer konservierten Region des Flavivirusgenoms abgeleitet. Die Flavivirusgenome enthalten bekannterweise konservierte Sequenzen innerhalb der NS1 - und E-Polypeptide, die in der 5'-Region des Flavivirusgenoms codiert sind. Die für diese Regionen codierenden entsprechenden Sequenzen liegen „upstream" der HCV-cDNA-Sequenz, wie in Fig. 26 gezeigt wird. Um somit die aus dieser Region des HCV-Genoms abgeleiteten cDNA-Sequenzen zu isolieren, werden „Upstream"-Primer entworfen, die von den konservierten Sequenzen innerhalb dieser Flaviviruspolypeptide abgeleitet werden. Die „Dowi stream"-Primer werden aus einem „Upstream"-Ende des bekannten Teils der HCV-cDNA abgeleitet.
Wegen der Degeneration des Codes ist es möglich, daß es zwischen den Flavivirusscnden und dar entsprechenden HCV-Genomsequenz zu Fehlanpassungen kommen wird. Deshalb wird eine Strategie angewandt, die ähnlich der von Lee (1988) beschrieben ist. Das Leesche Vorfahren nutzt gemischte Oligonucleotidprimer aus, die zu den Produkten der Reversen Translation einer Aminosäuresequenz komplementär sind, die Sequenzen in den gemischten Primern tragen jeder Codondegeneration der konservierten Aminosäuresequenz Rechnung. Es wurden drei Sätze von Primergemischen geschaffen, die auf den Aminosäurehomologien beruhen, die in mehl <uen Flaviviren, einschließlich Dengue-2,4 (D-2,4), Japan-Enzephalitis-Virus (JEV), Gelbfieber (YF) und West-Nile-Virus (WN), gefunden wurden. Die aus der am meisten „upstream" konservierten Sequenzen (5'-1) abgeleitete Primermischung beruht auf der Aminosäuresequenz Gly-Trp-Gly, die ein Teil der konservierten Sequenz Asp-Arg-Gly-Trp-Gly-AspN ist, die sich im Ε-Protein von D-2, JEV, YF und WN befindet. Die nächste Primermischung (5'-2) beruht auf einer „downstream" konservierten Sequenz im Ε-Protein, Phe-Asp-Giy-Asp-Ser-Tyr-Ileu-Phe-Gly-Asp-Ser-Tyr-Ileu und ist abgeleitet von Phe-Gly-Asp; die konservierte Sequenz ist in D-2, JEV, YF und WN vorhanden. Die dritte Primermischung (5'-3)oeruht auf der Aminosäuresequenz Arg-Ser-Cys, die Teil der konservierten Sequenz Cys-Cys-Arg-Ser-Cys im NS 1-Protein von D-2, D-4, JEV, YF und WN ist. Die einzelnen Primer, die das Gemisch in 5'-3 bilden, sind in Fig.45 dargestellt. Zusätzlich zu den unterschiedlichen Sequenzen, die von der konservierten Region abgeleitet werden, enthält jeder Primer in jeder Mischung auch eine konstante Region am 5'-Ende, die eine Sequenz enthält, die für Stellen für die Restriktionsenzyme Hindlll, Mbol und EcoRI, codieren.
Der „downstream"-Primer, ssc5h20A, wird von einer Nucleotidsequenz in Clon 5h abgeleitet, die HCV-cDNA mit Sequenzen enthält, die sich mit Sequenzen in den Clonan 14i und 11b überlappen. Die Sequenz von ssc5h20A ist
5' GTA ATA TGG TGA CAG AGT CA 3'.
Es kann auch ein alternativer Primer, ssc5h34A, benutzt werden. Dieser Primer wird von einer Sequenz in Clon 5h abgeleitet und enthält zusätzlich Nucleotide am 5'-Ende, die eine Restriktionsenzymstelle bilden, so daß das Cionieren ermöglicht wird. Die Sequenz von ssc5h34A lautet
5' GAT CTC TAG AGA AAT CAA TAT GGT GAC AGA GTC A 3'.
Die PCR-Reaktion, die erstmals vor Saiki und Mitarbeitern (1986) beschrieben wurde, wird im wesentlichen wie von Lee und Mitarbeitern (1988) beschrieben durchgeführt, mit der Ausnahme, daß die Matrize für die cDNA RNA ist, die aus* HCV-infizierter Schimpansenleber isoliert wurde, wie in Abschnitt IV.C.2. beschrieben wurde, oder aus viralen Partikeln stammt, die aus HCV-infiziertem Schimpansenserum isoliert wurde, wie in Abschnitt IV.A. 1 beschrieben wurde. Außerdem sind die „Annealing"-Bedingungen in der ersten Runde der Amplikation weniger streng (0,6 M NaCI und 25 "C), da der Teil des Primers, der an die HCV-Sequenz hybridisiert (anneal) nur 9 Nucleotide beträgt und es zu Fehlanpassungen kommen könnte. Darüber hinaus, wenn ssc5h34A verwendet wird, neigen die zusätzlichen Sequenzen, die nicht vom HCV-Genom abgeleitet sind, dazu, das Primer-Matrizen-Hybrid zu destabilisieren. Nach der ersten Runde der Amplifikation können die „Annealing"-Bedingungen strenger sein (0,066M NaCI und 32°C bis 370C), da amplifizierte Sequenzen jetzt Regionen enthalten, die komplementär ?u den Primern oder deren Duplikate sind. Außerdem werden die srsten 10 Zyklen der Amplifikation mit dem Klenow-Enzym I unter den für dieses Enzym geeigneten PCR-Bedingungen durchgeführt. Nach Beendigung dieser Zyklen werden die Proben extrahiert und entsprechend den Kit-Anweisungen wie von Cetus/Perkin-Elmer vorgesehen mit Tag-Polymerase behandelt. Nach der Amplifikation werden die amplifizierten HCV-cDNA-Sequenzen durch Hybridisierung mittels einer aus Clon 5 h abgeleiteten Sonde nachgewiesen. Diese Sonde wird aus Sequenzen abgeleitet, die „upstream" von denen liegen, von denen der Primer abgeleitet wurde, und überlappt nicht die Sequenzen der von Clon 5h abgeleiteten Primer. Die Sequenz der Sonde lautet
5' CCC AGC GGC GTA CGC GCT GGA CAC GGA GGT GGC CGC GTC GTG TGG CGG TGT TGT TCT CGT CGG GTT GAT GGC GC 3'.
IV.N.1. Schaffung einer HCV-cDNA-Blbliothek aus der Leber eines Schimpansen mit infektiöser NANBH Es wurde eine HCV-cDNA-Bibliothek aus der Leber des Schimpansen, von dem die HCV-cDNA-Bibliothek in Abschnitt IV.A.1. geschaffen worden war, erzeugt. Die Technik zur Schaffung der Bibliothek war ähnlich der von Abschnitt IV.A.24., mit der Ausnahme, daß eine andere RNA-Quelle und daß ein Primer, der auf der Sequenz von HCV-cDNA in Clon 11b beruhte, benutzt wurde. Die Sequenz des Primers lautet
5' CTG GCT TGA AGA ATC 3'.
IV.N.2. Isolierung und Nucleotidsequenz der Dberlappenden HCV-cDNA in Clon K9-1 bis cDNA In Clon 11b Clon K9-1 wurde aus der HCV-cDNA-Bibliothek isoliert, die aus der Leber eines NANBH-infizierten Schimpansen geschaffen worden war, wie in Abschnitt IV.A.25. beschrieben wurde. Die Bibliothek wurde nach Clonen gescreent, die die Sequenz in Clon 11b überlappen, indem ein Clon verwendet wurde, der Clon 11 b am 5'-Terminus überlappt, Clon 11 e. '">ie Sequenz von Clon 11b wird in Fig. 23 gezeigt. Positive Clone wurden mit einer Häufigkeit von 1 in 500000 isoliert. Ein isolierter Clon, K9-1, wurde weiteren Untersuchungen unterzogen. Die überlappende Art der HCV-cDNA in Clon k9-1 bis zum 5'-Ende der HCV-cDNA-Sequenz in Fig. 26 wurde durch Sondieren des Clons mit Clon Alex46 bestätigt, dieser letztere Clon enthält eine HCV-cDNA-Sequenz von 30 Basenpaaren, die den Basenpaaren am 5'-Terminus der HCV-cDNA in Clon 14i entsprechen, wie im vorangegangenen beschrieben wurde.
Die Nucleotidsequenz der HCV-cDNA, die aus Clon k9-1 isoliert wurde, wurde mit den im vorangegangenen beschriebenen Techniken bestimmt. Die Sequenzen der HCV-cDNA in Clon k9-1, die Überlappung mit der HCV-cDNA in Fig. 26 und die darin codierten Aminosäuren worden in Fig.46 gezeigt.
Die HCV-cDNA-Sequenz in 2lon k9-1 wurde mit denen der im Abschnitt IV.A.19. beschriebenen Clone ausgerichtet (aligned), um eine zusammengesetzte HCV-cDNA-Sequenz zu schaffen, wobei die k9-1-Sequenz „upstream" von der in Fig. 32 gezeigten Sequenz plaziert wurde. Die zusammengesetzte HCV-cDNA, die die k9-1 -Sequenz enthält, sowie die darin codierten Aminosäuren, wird in Fig.47 gezeigt.
Die Sequenz der Aminosäuren, die in der 5'-Region der in Fig. 47 gezeigten HCV-cDNA codiert sind, wurde mit der entsprechenden Region in einem der Stämme des Dengue-Virus, oben beschrieben, in bezug auf das Profil der Regionen für Hydrophobie und Hydrophilie verglichen. Dieser Vergleich zeigte, daß die in dieser Region codierten Polypeptide aus HCV und Dengue-Virus, wobei diese Region der Region entspricht, die für NS1 (oder einem Teil davon) codiert, ein ähnliches hydrophobes/hydrophiles Profil haben.
Die im folgenden zur Verfügung gestellte Information erlaubt die Identifikation von HCV-Stämmen. Die Isolierung und Charakterisierung anderer HCV-Stämme kann durch Isolierung der Nucleinsäuren aus Körperkomponenten, die virale Partikel enthalten, durch Schaffung vun cDNA-Bibliotheken mittels Polynucleotidsonden, die auf der Grundlage der im folgender, beschriebenen HCV-cDNA-Sonden beruhen, durch Screenen der Bibliotheken nach Clonen, die die unten beschriebenen HCV-cDNA-Sequenzen enthalten, und durch Vergleichen der HCV-cDNAs aus den neuen Isolaten mit den im folgenden beschriebenen cDNAs, erfolgen. Die darin oder im Virusgenom codierten Polypeptide können durch Ausnutzung der im vorangegangenen beschriebenen Polypeptide und Antikörper auf immunolog'sche Kreuz-Reaktivität überwacht werden. Stämme, die den im Abschnitt Definitionen im vorangegangenen beschriebenen Parametern des HCV entsprechen, sind leicht identifizierbar. Weitere Verfahren zur Identifizierung von HCV-Stämmen worden den Fachleuten auf diesem Gebiet auf der Grundlage der hier bereitgestellten Informationen klar sein.
Fortsetzung der Beschreibung der Figuren
Fig. 36 zeigt die HCV-cDNA-Sequenz in Clon k9-1, das Segment, das die cDNA in Fig. 26 überlappt sowie die darin codierten Aminosäuren. Fig. 47 zeigt die Sequenz in einer zusammengesetzten cDNA, die durch Ausrichten der Clone k9-1 bis 15e in der 5'-bis 3'-Richtung abgeleitet wurde; sie zeigt auch die im kontinuierlichen ORF codierten Aminosäuren.
-51- 298 524 Industrielle Anwendbarkeit
Die hier in vielfältigen Offenbarungen vorgelegte Erfindung hat viele industrielle Anwendungen, von denen einige im folgenden vorgestellt werden. Die HCV-cDNAs können für den Entwurf von Sonden zum Nachweis von HCV-Nucleinsäuren in Proben verwendet werden. Die aus den cDNAs abgeleiteten Sonden können zum Nachweis von HCV-Nucleinsäuren z. B. in chemischen Synthesereaktionen eingesetzt werden. Sie können auch in Screening-Programmen nach Anti-Virus-Agenzien, zur Bestimmung der Wirkung von Mitteln zur Hemmung viraler Replikation in Zellkultursystemen und in Tiermodellsystemen verwendet werden. Die HCV-Polynucleotidsonden sind auch beim Nachweis von Virus-Nucloinsäuren im Menschen nützlich und können somit als eine Grundlage bei der Diagnose von HCV-lnfektionen im Menschen dienen.
Zusätzlich zu dem oben Gesagton liefern die hier zur Verfugung gestellten cDNAs Informationen und stellen ein Mittel dar zur Synthetisierung von Polypeptiden, die Epitope des HCV enthalten. Diese Polypeptide sind beim Nachweis von Antikörpern gegen HCV-Antigene nützlich. Es wird hier eine Serie von Immunoassays bei HCV-lnfektion auf der Grundlage von rekombinanten Polypeptiden, die HCV-Epitope enthalten, beschrieben, die kommerzielle Anwendung bei der Diagnose von HCV-induzierter NANBH, beim Screenen von Blutspendern nach HCV-verursachter infektiöser Hepatitis und auch beim Nachweis von kontaminiertem Blut von infektiösen Blutspendern finden werden. Die viralen Antigene werden auch in der Überwachung der Wirksamkeit von Anti-Virusagenzien in Tiermodellen nützlich sein. Außerdem werden die von den hier offenbarten HCV-cDNAs abgeleiteten Polypeptide als Vakzine für die Behandlung von HCV-lnfektionen nützlich sein. Die von den HCV-cDNAs abgeleiteten Polypeptide sind außer den oben genannten Verwendungszwecken auch zum Entwickeln von Anti-HCV-Antikörpern nützlich. Sie können deshalb in Anti-HCV-Vakzinen verwendet werden. Die infolge der Immunisierung mit den HCV-Polypeptiden erzeugten Antikörper sind auch beim Nachweis auf Vorhandensein von viralem Antigen in Proben nützlich. Sie können somit dazu verwendet werden, die Produktion von HCV-Polypeptiden in chemischen Systemen zu testen. Die Anti-HCV-Antikörper können auch zur Überwachung der Wirksamkeit antiviraler Agenzien in Screening-Programmen, in denen diese Agenzien in Gewebekultursystemen getestet werden, dienen. Weiterhin können sie auch zur passiven Immuntherapie und zur Diagnose von HCV-verursachter NANBH genutzt werden, indem das (die) Virus-Antigen(&) sowohl im Blutspender als auch im -empfänger nachgewiesen werden kann. Eine weitere wichtige Verwendung von Anti-HCV-Antikörpern liegt in der Affinitätschromatographie für die Reinigung von Virus- und viralen Polypeptiden. Die gereinigten Virus- und viralen Polypeptidpräparate können in Vakzinen verwendet werden. Außerdem kann aas gereinigte Virus auch bei der Entwicklung von Zellkultursystemen, in denen das HCV repliziert, nützlich sein.
Zellkultursysteme, die HCV-infizierte Zellen enthalten, können vielfältig verwendet werden. Sie können für eine Produktion von HCV, das in der Regel ein Niedrig-Titer-Virus ist, in relativ großem Maßstab verwendet werden. Diese Systeme werden auch bei der Aufhellung der Molekularbiologie des Virus nützlich sein und zur Entwicklung von antiviralen Agenzien führen. Die Zellkultursysteme werden auch beim Screenen nach der Wirksamkeit der antiviralen Agenzien nützlich sein. Außerdem sind HCV-permissive Zellkultursysteme bei der Produktion von abgeschwächten HCV-Stämmen nützlich.
Praktischerweise können die Anti-HCV-Antikörper und die HCV-Polypeptide, ob natürliche oder rekomblnante, in Kits verpackt werden.
Das Verfahren, das zur Isolierung von HCV-cDNA genutzt wird und aus der Herstellung einer cDNA-Bibliothek, die aus dem infizierten Gewebe eines Individuums abgeleitet wird, in einem Expressic.isvektor, und in der Selektionierung von Clonen, die die Expressionsprodukte erzeugen, die immunologisch mit Antikörpern in Antikörper enthaltenden Körperkomponenten aus anderen infizierten Individuen, nicht aber mit denen von nicht infizierten Individuen reagieren, besteht, kann auch angewandt werden bei der Isolierung von cDNAs, die abgeleitet wurden aus anderen, hier im vorangegangenen nicht charakterisierten krankheitsbegleiteten Agenzien, die aus einer genomischen Komponente bestehen.
Dies wiederum könnte zur Isolierung und Charakterisierung dieser Agenzien sowie zu diagnostischen Reagenzien und Vakzinen für diese anderen krankheitsbegleiteten Agenzien führen.

Claims (8)

1. Analysek't zur Analyse von Proben auf die Anwesenheit von P'olynucleotiden, die aus dem HCV abgeleitet wurden, gekennzeichnet durch eine Polynucleotidsonde, die eine Nucleotidsequenz aus dem HCV von <Hwa 8 oder mehr Nucleotiden enthält, in einem geeigneten Behälter.
2. Analysakit zur Analyse von Proben auf die Anwesenheit eines HCV-Antigens, gekennzeichnet durch einen Antikörper, der gegen das nachzuweisende HCV-Antigen gerichtet ist, in einem geeigneten Behälter.
3. Analysekit zur Analyse von Proben auf die Anwesenheit von Antikörpern, die gegen ein HCV-Antigen gerichtet sind, gekennzeichnet durch ein Polypeptid, das ein im HCV-Antigen vorhandenes HCV-Epitop enthält, in einem geeigneten Behälter.
4. Analysekit nach Anspruch 3, dadurch gekennzeichnet, daß das Polypeptid an ein festes Substrat geknüpft ist.
5. Analysekit nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das Polypeptid ein HCV-Epitop umfaßt, da in der HCV-cDNA-Sequenz gemäß Fig. 47 kodiert ist.
6. Analysekit nach Anspruch 3, dadurch gekennzeichnet, daß das Polypeptid ein HCV-Epitop umfaßt, das in einer HCV-cDNA-Sequenz in ATCC-Nr. 40394, ATCC-Nr. 40388, ATCC-Nr. 40389, ATCC-Nr. 40390, ATCC-Nr. 40391, ATCC-Nr. 40514, ATCC-Nr. 40511, ATCC-Nr. 40512 oder ATCC-Nr. 40513 kodiert ist.
7. Analysekit nach Anspruch 3, dadurch gekennzeichnet, daß das Polypeptid ein Epitop von C100-3 umfaßt.
8. Analysekit nach Anspruch 3, dadurch gekennzeichnet, daß das Polypeptid C100-3 umfaßt.
DD34440188A 1987-11-18 1988-11-18 Analysekit fuer hcv-polynucleotide, hcv-antigene und gegen hcv-antigene gerichtete antikoerper DD298524A5 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12271487A 1987-11-18 1987-11-18

Publications (1)

Publication Number Publication Date
DD298524A5 true DD298524A5 (de) 1992-02-27

Family

ID=22404317

Family Applications (5)

Application Number Title Priority Date Filing Date
DD88321971A DD287104A5 (de) 1987-11-18 1988-11-18 Immunoassey zum nachweis eines hcu-antigens und von antikoerpern, die gegen ein hcu-antigen gerichtet sind
DD34440188A DD298524A5 (de) 1987-11-18 1988-11-18 Analysekit fuer hcv-polynucleotide, hcv-antigene und gegen hcv-antigene gerichtete antikoerper
DD34440388A DD298526A5 (de) 1987-11-18 1988-11-18 Verfahren zum nachweis von hcv-nucleinsaeuren
DD34440488A DD298527A5 (de) 1987-11-18 1988-11-18 Verfahren zur herstellung hcv-epitope enthaltender polypeptide und hcv-freier blutzubereiungen
DD34440288A DD298525A5 (de) 1987-11-18 1988-11-18 Verfahren zur herstellung eines hcv-impfstoffes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DD88321971A DD287104A5 (de) 1987-11-18 1988-11-18 Immunoassey zum nachweis eines hcu-antigens und von antikoerpern, die gegen ein hcu-antigen gerichtet sind

Family Applications After (3)

Application Number Title Priority Date Filing Date
DD34440388A DD298526A5 (de) 1987-11-18 1988-11-18 Verfahren zum nachweis von hcv-nucleinsaeuren
DD34440488A DD298527A5 (de) 1987-11-18 1988-11-18 Verfahren zur herstellung hcv-epitope enthaltender polypeptide und hcv-freier blutzubereiungen
DD34440288A DD298525A5 (de) 1987-11-18 1988-11-18 Verfahren zur herstellung eines hcv-impfstoffes

Country Status (2)

Country Link
DD (5) DD287104A5 (de)
ZA (1) ZA888669B (de)

Also Published As

Publication number Publication date
DD298526A5 (de) 1992-02-27
ZA888669B (en) 1989-08-30
DD298525A5 (de) 1992-02-27
DD298527A5 (de) 1992-02-27
DD287104A5 (de) 1991-02-14

Similar Documents

Publication Publication Date Title
DE3886363T3 (de) NANBV-Diagnostika
US5698390A (en) Hepatitis C immunoassays
US5350671A (en) HCV immunoassays employing C domain antigens
DE69034182T2 (de) NANBV-Diagnostika und Vakzine
US6027729A (en) NANBV Diagnostics and vaccines
GB2212511A (en) Hepatitis C virus
DD298524A5 (de) Analysekit fuer hcv-polynucleotide, hcv-antigene und gegen hcv-antigene gerichtete antikoerper
AU624105C (en) NANBV diagnostics and vaccines
AU640920C (en) Nanbv diagnostics and vaccines
DD297446A5 (de) Nanbv diagnostik und vakzine
IL143675A (en) Polynucleotide capable of hybridizing to a complement of a genomic sequence of hepatitis c virus, polynucleotide probe comprising said polynucleotide and methods using said probe

Legal Events

Date Code Title Description
UP Ineffectiveness of examination requests
IF04 In force in the year 2004

Expiry date: 20081119