DD258827A5 - Method for direct introduction of DNA into the plastids and mitochondria of plant protoplasts - Google Patents

Method for direct introduction of DNA into the plastids and mitochondria of plant protoplasts

Info

Publication number
DD258827A5
DD258827A5 DD258827A5 DD 258827 A5 DD258827 A5 DD 258827A5 DD 258827 A5 DD258827 A5 DD 258827A5
Authority
DD
German Democratic Republic
Prior art keywords
dna
protoplasts
gene
plastids
mitochondria
Prior art date
Application number
Other languages
German (de)
Publication date

Links

Abstract

Die Erfindung betrifft ein Verfahren zur direkten Einschleusung von DNA in die Plastide und Mitochondrien von pflanzlichen Photoplasten, das sich im wesentlichen dadurch kennzeichnet, dass man in Abwesenheit eines Pathogens diese besagte DNA in einem Medium, in dem die DNA in die Protoplasten und die in diesen befindlichen Plastide und Mitochondrien einzudringen vermag, mit den Protoplasten so lange in Kontakt bringt, dass diese Penetration gewaehrleistet ist, so dass letztlich Pflanzen mit verbesserten Eigenschaften resultieren.The invention relates to a method for the direct introduction of DNA into the plastids and mitochondria of plant photoplasts, which is characterized essentially by the fact that in the absence of a pathogen, said DNA in a medium in which the DNA in the protoplasts and in these Plastoplast and mitochondria are able to penetrate, with the protoplasts so long in contact, that this penetration is guaranteed, so that ultimately result in plants with improved properties.

Description

Hierzu 3 Seiten Zeichnungen 'For this 3 pages drawings'

Anwendungsgebiet der ErfindungField of application of the invention

Die vorliegende Erfindung betrifft ein Verfahren für den direkten Gentransfer in die Plastide und die Mitochondrien, vorzugsweise in die Chloroplasten von pflanzlichen Protoplasten.The present invention relates to a method for direct gene transfer into the plastids and the mitochondria, preferably into the chloroplasts of plant protoplasts.

Im Rahmen der vorliegenden Erfindung sind unter dem Oberbegriff Pflanzen alle ein- oder vielzelligen Organismen zu verstehen, die befähigt sind Photosynthesen durchzuführen.In the context of the present invention, the generic term plants is to be understood as meaning all monocellular or multicellular organisms which are capable of carrying out photosyntheses.

Charakteristik des bekannten Standes der TechnikCharacteristic of the known state of the art

Als pflanzliche Protoplasten werden Pflanzen-Zellen bezeichnet, deren Zellwände durch Behandlung mit cellulolytischen Enzymen ganz oder teilweise entfernt worden sind.Plant protoplasts are plant cells whose cell walls have been completely or partially removed by treatment with cellulolytic enzymes.

Die ChNoroplasten bilden einen Angriffspunkt für Vertreter aus verschiedenen Herbizid-Klassen, so z. B. für die Triazin-Herbizide. Erst kürzlich wurde entdeckt, daß das Atrazin, ein Vertreter derTriazin-Herbizide, mit einem 32 kd Polypeptid in Wechselwirkung tritt, das von einem Chloroplasten-Gen, dem sogenannten psbA-Gen, codiert wird (Hirschberg et al., 1984). Die Substitution eines einzigen Nucleotids innerhalb der kodierten Region des psbA-Gens, die den Austausch einer einzigen Aminosäure im 32 kd Polypeptid zur Folge hat, führt zu einer Resistenz gegenüber Atrazin. Solche Mutationen findet man bei Unkräutern, so z. B. bei Amaranthus hybridus und Solanum nigrum.The ChNoroplasts form a target for representatives of different herbicide classes, such. B. for the triazine herbicides. It has recently been discovered that the atrazine, a member of the triazine herbicides, interacts with a 32 kd polypeptide encoded by a chloroplast gene, the so-called psbA gene (Hirschberg et al., 1984). Substitution of a single nucleotide within the encoded region of the psbA gene, resulting in the replacement of a single amino acid in the 32 kd polypeptide, results in atrazine resistance. Such mutations are found in weeds, such. In Amaranthus hybridus and Solanum nigrum.

Es wäre nun wünschenswert, wenn es gelänge Gene direkt in die Plastide- und Mitochondriengenome von Pflanzen, insbesondere von Kulturpflanzen, einzubauen. Dies würde es ermöglichen, solchen Pflanzen neue, wünschenswerte Eigenschaften zu verleihen. Um Herbizid-resistente Pflanzen.zu erzeugen werden beispielsweise Gene, die eine Herbizid-Resistenz vermitteln, in Herbizid-sensitiven Chloroplasten benötigt.It would now be desirable to be able to incorporate genes directly into the plastid and mitochondrial genomes of plants, especially crops. This would make it possible to give such plants new, desirable properties. For example, to produce herbicide-resistant plants, genes that confer herbicide resistance are needed in herbicide-sensitive chloroplasts.

Die bisherigen Anstrengungen galten im allgemeinen einer genetischen Manipulation des nuclearen Genoms der pflanzlichen Zelle, um eine Resistenz oder eine Toleranz gegenüber Herbiziden zu erzielen, die in Chloroplasten aktiv sind. Diese Vorgehensweise führt jedoch lediglich zu marginalen Toleranzerscheinungen gegenüber diesen Herbiziden, nicht aber zu wirklichen Resistenzen.Efforts to date have generally involved genetic manipulation of the plant cell nuclear genome to provide resistance or tolerance to chloroplast-active herbicides. However, this approach leads only to marginal tolerance to these herbicides, but not to actual resistance.

Bisher wurde es für unmöglich gehalten, eine echte Resistenz gegenüber Herbiziden, die in Chloroplasten wirksam sind, mit Hilfe des direkten Gentransfers auf Kultur-Pflanzen zu übertragen, da man bisher davon ausging, daß eine Transformation von Piastiden, wie z. B. den Chloroplasten, mit dieser Methode nicht möglich ist.Heretofore, it has been considered impossible to confer real resistance to herbicides which are active in chloroplasts to culture plants by means of direct gene transfer, since it has previously been assumed that transformation of plastids, such as, e.g. As the chloroplast, with this method is not possible.

Ein weiterer Nachteil bei der Einschleusung von Genen, die eine wünschenswerte Eigenschaft, wie z.B. eine Herbizid-resistenz, vermitteln, ins nucleare Genom einer Pflanze liegt in der Fähigkeit einiger Pflanzen zur Fremdbestäubung von Unkräutern begründet. Solche Kreuzungen eröffnen eine Möglichkeit, diese bei Kulturpflanzen erwünschten Eigenschaften in Unkräuter zu übertragen.Another disadvantage with the introduction of genes which have a desirable property, e.g. a herbicide resistance mediate into the nuclear genome of a plant is due to the ability of some plants to cross-pollinate weeds. Such crossings open up a possibility of transferring these desirable properties to crops in weeds.

Eine der am häufigsten verwendeten Methoden zur Einschleusung von Genen ins nucleare Genom von Pflanzen besteht in der Infektion von Zellen mit Pathogenen, wie z. B. einem Agrobacterium, dasTi-Plasmid Vektor-Systeme enthält. (Barton et al., 1983; Chilton et al., 1985). Diese Verfahren haben aber deutliche Nachteile, die im Zusammenhang mit dem Infektionsvorgang stehen.One of the most commonly used methods for introducing genes into the nuclear genome of plants is by infecting cells with pathogens, such as. An Agrobacterium containing Ti plasmid vector systems. (Barton et al., 1983; Chilton et al., 1985). However, these methods have clear disadvantages that are associated with the infection process.

Diese Nachteile bestehen zum einen in einer begrenzten Wirtspezifität zum anderen in der Notwendigkeit, die transformierten Pflanzenzellen von dem für die Transformation verwendeten Pathogen wieder zu befreien.On the one hand, these disadvantages consist of a limited host specificity and, on the other hand, the necessity of freeing the transformed plant cells from the pathogen used for the transformation.

Es wurden darüber hinaus Bedenken gegen eine Entlassung solcher Pathogene in die Umwelt laut. (Roberts, 1985).There were also concerns about the release of such pathogens into the environment. (Roberts, 1985).

De Block et al. (1985) berichten über die Verwendung eines Agrobakterium Ti-Plasmid Vektor-Systems für die Einschleusung eines für eine Antibiotika-Resistenz kodierenden Gens, ins Chloroplasten-Genom von Tabak-Protoplasten, aus denen vollständige Zellen und schließlich komplette, fertile Pflanzen regeneriert werden konnten. Die Autoren fanden jedoch, daß das Gen in Abwesenheit der entsprechenden Antibiotika instabil war und nach kurzer Zeit wieder verloren ging. Die Erhaltung von Pflanzen unter Antibiotika-Selektionsdruck stellt aber keine praktische Anwendung dar.De Block et al. (1985) report the use of an Agrobacterium Ti plasmid vector system for the introduction of an antibiotic resistance-encoding gene into the chloroplast genome of tobacco protoplasts from which whole cells and finally complete, fertile plants could be regenerated. However, the authors found that the gene was unstable in the absence of the corresponding antibiotics and was lost again after a short time. The conservation of plants under antibiotic selection pressure is not a practical application.

Verfahren für die direkte Transformation von pflanzlichen Protoplasten mit nackter linearer DNA oder zirkulärer Plasmid-DNA sind ebenfalls bekannt (Paszkowski et al., 1984; sowie Schilperoort et al.,1983). Bei diesen Verfahren wird kein Pathogen für den Infektionsvorgang benötigt, feis zum jetzigen Zeitpunkt blieben diese Methoden jedoch auf die nucleare Transformation beschränkt.Methods for the direct transformation of plant protoplasts with naked linear DNA or circular plasmid DNA are also known (Paszkowski et al., 1984, and Schilperoort et al., 1983). These methods do not require a pathogen for the infection process, but at the present time these methods have remained limited to nuclear transformation.

Ziel der ErfindungObject of the invention

Ziel der Erfindung ist die Bereitstellung von Verfahren, die den direkten Transfer von nützlichen Genen in das Genom von Piastiden und Mitochondrien erlauben, so daß vorteilhafte, neue Eigenschaften auf pflanzliche Zellen übertragen werden können, ohne daß eine vorherige Infektion der Zellen mit einem Pathogen notwendig ist und wobei gleichzeitig verhindert wird, daß diese Eigenschaften auf Unkräuter übertragen werden.The aim of the invention is to provide methods which allow the direct transfer of useful genes into the genome of plastids and mitochondria so that beneficial new properties can be transferred to plant cells without requiring prior infection of the cells with a pathogen and at the same time preventing these properties from being transmitted to weeds.

Darlegung des Wesens der ErfindungExplanation of the essence of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu entwickeln, das den stabilen Transfer von Genen in Plastide und Mitochondrien von Pflanzen-Zellen und ganzen Pflanzen gewährleistet, so daß die Expression besagter Gene nicht während derThe invention has for its object to provide a method that ensures the stable transfer of genes into plastids and mitochondria of plant cells and whole plants, so that the expression of said genes not during the

Entwicklung der Kultur-Pflanzen auf dem Feld verloren geht. .Development of crops in the field is lost. ,

Ein wesentlicher Bestandteil der vorliegenden Erfindung besteht somit in der Bereitstellung eines Verfahrens für die direkte Einführung von Genen in das Genom von Piastiden und Mitochondrien, vorzugsweise von Chloroplasten, ohne Infektion der Zellen mit einem Pathogen und Erhaltung der Gene in besagtem Genom. Ein weiterer Gegenstand der vorliegenden Erfindung besteht in der Herstellung ganzer Pflanzen, die genetisch manipulierte Plastide und Mitochondrien enthalten, und zwar unter Bedingungen, unter denen die mittels rekombinanter Gentechnologie massgeschneiderten Eigenschaft(en) stabil erhaltenAn essential part of the present invention is thus to provide a method for the direct introduction of genes into the genome of plastids and mitochondria, preferably chloroplasts, without infection of the cells with a pathogen and maintenance of the genes in said genome. Another object of the present invention is to produce whole plants containing genetically manipulated plastids and mitochondria under conditions in which the properties tailored by recombinant gene technology are stably obtained

bleiben und zur Expression gelangen. <»stay and get to expression. ' "

Wie aus der nachfolgenden Beschreibung hervorgeht, werden diese und noch weitere Ziele durch die Bereitstellung des erfindungsgemäßen Verfahrens zur direkten Einschleusung von DNA in die Plastide und Mitochondrien von pflanzlichen Protoplasten erreicht, wobei besagte DNA aus einem oder mehreren Genen und in Piastiden und Mitochondrien aktiven Promotoren besteht und das Verfahren sich dadurch kennzeichnet, daß man in Abwesenheit eines Pathogens diese besagte DNA mit Protoplasten in einem Medium so lange in Kontakt bringt, daß die Penetration des Gens in die Protoplasten und die darin befindlichen Plastide und Mitochondrien gewährleistetest.As will be apparent from the description below, these and other objects are achieved by providing the method of the invention for direct introduction of DNA into the plastids and mitochondria of plant protoplasts, said DNA consisting of one or more genes and promoters active in plastids and mitochondria and characterized in that, in the absence of a pathogen, bringing said DNA into contact with protoplasts in a medium for so long as to assure penetration of the gene into the protoplasts and the plastids and mitochondria therein.

Abbildungenpictures

Abb. 1 zeigt ein Fließdiagramm der Einzelschritte für die Konstruktion der Plasmide pCAT und p32CAT.FIG. 1 shows a flow chart of the individual steps for the construction of the plasmids pCAT and p32CAT.

Abb. 2 zeigt ein Fließdiagramm der Einzelschritte für die Konstruktion des Plasmids pUCHI.FIG. 2 shows a flow chart of the individual steps for the construction of the plasmid pUCHI.

Abb. 3 zeigt ein Fließdiagramm der Einzelschritte für die Konstruktion des Plasmids pBRCAT.FIG. 3 shows a flow chart of the individual steps for the construction of the plasmid pBRCAT.

In den beiliegenden Abbildungen werden folgende Kurzsymbole verwendet:In the attached figures the following short symbols are used:

X = XholX = Xhol

S = Smal . . 'S = smal. , '

H = HindlllH = HindIII

B = BamHIB = BamHI

Rl = EcoRiR1 = EcoRI

LIG. = Ligierung mittels einerT4 DNA LigaseLIG. = Ligation using a T4 DNA ligase

X/Sl bezeichnet eine Stelle, an der durch das Verbinden einer Xhol-Sequenz mit einer Sall-Sequenz eine hybrideX / Sl denotes a location at which joining a Xhol sequence to a Sall sequence results in a hybrid

Restriktionsschnittstelle geschaffen wird, die von keinem der Enzyme geschnitten werden kann. CAT bezeichnet die kodierende Region der Chloramphenicol-Acetyl-Trarisferase. CAT bezeichnet die promotorfreie Form des CAT-Gens.Restriction interface is created, which can be cut by any of the enzymes. CAT refers to the coding region of chloramphenicol acetyl trarisferase. CAT refers to the promoterless form of the CAT gene.

In den Abbildungen 1 bis 3 wird das psbA-Gen durch einen schwarzen Balken, der zugehörige Promotor durch einen schwarzen Kasten charakterisiert.In Figures 1 to 3, the psbA gene is characterized by a black bar, the associated promoter by a black box.

lh den Abbildungen 1 bis 3 ist die für CAT kodierende Region punktiert gezeichnet. In der vorliegenden Erfindungs-Beschreibung und den Patentansprüchen gelten folgende Definitionen: Ein „Gen" ist eine DNA-Sequenz, gekennzeichnet durch einen Promotor und eine transkribierbare DNA-Sequenz. Der Promotor, der in den meisten Fällen nicht transkribiert wird, veranlaßt die Transkription der nachfolgenden, in einigen Fällen auch den ihn umgebenden Gen-Sequenzen in die entsprechende RNA. Die RNA kann oder auch nicht in ein Polypeptid übersetzt werden. Falls die RNA übersetzt wird bezeichnet man sie als mRNA. DieDNA-Sequenz, die der mRNA entspricht sowie auch dieIn Figures 1 to 3, the CAT coding region is dotted. In the present invention description and claims the following definitions apply: A "gene" is a DNA sequence characterized by a promoter and a transcribable DNA sequence The promoter, which in most cases is not transcribed, causes the transcription of the The RNA may or may not be translated into a polypeptide, if the RNA is translated, it is referred to as mRNA, the DNA sequence that corresponds to the mRNA, as well as the

mRNA selbst sind aus einer 5' Region, die nicht übersetzt wird, einer kodierenden Region, sowie einer 3' Region zusammengesetzt, die ebenfalls nicht übersetzt wird. Nur die kodierende Region wird in das entsprechende PolypeptidmRNA itself is composed of a 5 'region that is not translated, a coding region, as well as a 3' region, which is also not translated. Only the coding region becomes the corresponding polypeptide

übersetzt. .translated. ,

Die „aktiven" Teile einer DNA-Sequenz bilden diejenigen Abschnitte, die für die Funktion der DNA-Sequenz verantwortlich sind.The "active" parts of a DNA sequence make up those parts that are responsible for the function of the DNA sequence.

Einige Beispiele von aktiven Bereichen von DNA-Sequenzen umfassen die RNA-Polymerase-Bindungsstelle, das Initiationssignal (TATA-Box) des Promotors, die Ribosomenbindungsstelle sowie das Translationsinitiationssignal der nicht übersetzten 5'-Region, die kodierende Sequenz, das Transkriptions-Stop-Signal sowie das Polyadenylations-Signal der nicht übersetzten 3'-Region. Die verschiedenen Spacer-Abschnitte, in denen die DNA-Sequenz keine Bedeutung hat, werden nicht als aktive DNA-Sequenzen betrachtet.Some examples of active regions of DNA sequences include the RNA polymerase binding site, the initiation signal (TATA box) of the promoter, the ribosome binding site as well as the translation initiation signal of the untranslated 5 'region, the coding sequence, the transcriptional stop signal and the polyadenylation signal of the untranslated 3 'region. The various spacer sections in which the DNA sequence is meaningless are not considered active DNA sequences.

Eine „Variante" einer natürlichen DNA-Sequenz bildet eine modifizierte Form der natürlichen Sequenz, die die gleiche Funktion erfüllt. Dabei kann es sich um eine Mutante oder eine synthetische DNA-Sequenz handeln, die im wesentlichen zu der entsprechenden natürlichen Sequenz homolog ist.A "variant" of a natural DNA sequence forms a modified form of the natural sequence that performs the same function, which may be a mutant or a synthetic DNA sequence that is substantially homologous to the corresponding natural sequence.

Als im wesentlichen homolog zu einer zweiten DNA-Sequenz betrachtet man eine DNA-Sequenz dann, wenn mindestens 70%, vorzugsweise mindestens 80%, insbesondere mindestens 90% der aktiven Anteile der DNA-Sequenz homolog sind. Zur Feststellung der substantiellen Homologie werden zwei verschiedene Nucleotide innerhalb einer DNA-Sequenz einer kodierenden Region immer noch als homolog angesehen, wenn der gegenseitige Austausch dieser Nucleotide zu einer stillen Mutation führt.A DNA sequence is considered to be substantially homologous to a second DNA sequence if at least 70%, preferably at least 80%, in particular at least 90% of the active portions of the DNA sequence are homologous. To determine substantial homology, two different nucleotides within a DNA sequence of a coding region are still considered to be homologous if the mutual exchange of these nucleotides results in a silent mutation.

Eine DNA-Sequenz „stammt ab von" einer Quelle, wiez. B. den Piastiden oder Mitochondrien, wenn diese DNA-Sequenz in dieser Quelle vorkommt. Die vorliegende Erfindung umfaßt auch Varianten einer solchen DNA-Sequenz.A DNA sequence "is derived from" a source, such as the plastids or mitochondria, when that DNA sequence is present in this source The present invention also encompasses variants of such a DNA sequence.

Eine DNA-Sequenz ist „funktionell" in Piastiden oder Mitochondrien, wenn sie ihre erwartete Funktion erfüllt und in den Nachkommen der Plastide und Mitochondrien erhalten bleibt.A DNA sequence is "functional" in plastids or mitochondria when it performs its expected function and remains in the progeny of the plastids and mitochondria.

Unter „transformierbaren, pflanzlichen Protoplasten", versteht man Protoplasten, die nach einem direkten Gen-Transfer ein Plastid-odereinMitochondriengenom enthalten, das kovalent-verknüpfte DNA aufweist, die normalerweise in diesen Piastiden oder Mitochondrien nicht vorkommt.By "transformable plant protoplasts" is meant protoplasts containing, after direct gene transfer, a plastid or mitochondrial genome having covalently-linked DNA not normally present in these plastids or mitochondria.

Pflanzliche Protoplasten die mit Hilfe des erfindungsgemäßen Verfahrens transformierbar sind, können von kultivierten Zellen, sowie von Zellen die in Pflanzenteilen oder vielzelligen Pflanzen eingebaut vorliegen, abstammen. Die transformierbaren pflanzlichen Protoplasten können aber ebenso von einzelligen Pflanzen, wie z. B. Algen abstammen. Einige Beispiele einzelliger Pflanzen umfassen die Cyanobacterien (e.g. Synechococcus spp.) sowie Chlamydomonas und Euglena. Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind jedoch pflanzliche Protoplasten, die von vielzelligen Pflanzen abstammen. Nach der erfolgten Transformation können die Protoplasten gegebenenfalls zu ganzen Pflanzen regeneriert werden.Plant protoplasts which can be transformed by means of the method according to the invention can be derived from cultured cells, as well as from cells which are present in plant parts or multicellular plants. The transformable plant protoplasts can also be of unicellular plants such. B. algae derived. Some examples of unicellular plants include the cyanobacteria (e.g. Synechococcus spp.) As well as Chlamydomonas and Euglena. However, particularly preferred within the scope of the present invention are plant protoplasts derived from multicellular plants. After the transformation has taken place, the protoplasts may be regenerated to whole plants.

Mit Hilfe der vorliegenden Erfindung ist es nunmehr möglich die Plastide und Mitochondrien jeglicher pflanzlicher Protoplasten gezielt genetisch zu modifizieren.With the aid of the present invention, it is now possible to selectively genetically modify the plastids and mitochondria of any plant protoplasts.

Einige Beispiele derartiger pflanzlicher Protoplasten sind:Some examples of such plant protoplasts are:

Solanum spp. (Kartoffel), Gossypium spp. (B aumwolle), Glycine spp. (Sojabohne), Petunia spp. (Petunie), Daucus spp. (Karotte), Citrus spp. (Orange, Zitrone), Lycopersicon spp. (Tomate), Brassica spp. (Rübe, Kohl, Blumenkohl etc.), Beta spp. (Rübe), Phaseolus spp. (Bohne), Helianthus spp. (Sonnenblume), Arachis spp. (Erdnuss), Amaranthus spp. (Fuchsschwanz), Medicago spp. (Alfalfa), Trifolium spp. (Klee), Atropy spp. (Nachtschatten), Hyoscyamus spp. (Bilsenkraut), Digitalis spp. (Fingerhut), Catharanthus spp. (Immergrün), Pisum spp. (Erbse),'und Pinus spp. (Kiefer).Solanum spp. (Potato), Gossypium spp. (Wool), Glycine spp. (Soybean), Petunia spp. (Petunia), Daucus spp. (Carrot), Citrus spp. (Orange, lemon), Lycopersicon spp. (Tomato), Brassica spp. (Turnip, cabbage, cauliflower etc.), Beta spp. (Turnip), Phaseolus spp. (Bean), Helianthus spp. (Sunflower), Arachis spp. (Peanut), Amaranthus spp. (Foxtail), Medicago spp. (Alfalfa), Trifolium spp. (Clover), Atropy spp. (Nightshade), Hyoscyamus spp. (Henbane), Digitalis spp. (Thimble), Catharanthus spp. (Evergreen), Pisum spp. (Pea), and Pinus spp. (Pine).

Transformierbare Plastide sind z. B. Chromoplasten, Amyloplasten, Leucoplasten, Etioplasten, Proplastide und Chloroplasten.Transformable plastids are z. Chromoplasts, amyloplasts, leucoplasts, etioplasts, proplastides and chloroplasts.

Besonders be'vorzugt für die Transformation sind die Chloroplasten.Particularly preferred for the transformation are the chloroplasts.

Die vorliegende Erfindung betrifft ferner Gene, die in den Piastiden und Mitochondrien funktionsfähig sind. Die Gene der vorliegenden Erfindung übertragen durch ihre Einschließung auf die Plastide und Mitochondrien eine gewünschte, nützliche Eigenschaft. Einige Beispiele für solche nützlichen Eigenschaften sind: die Phytotoxin-Resistenz, wie z. B. Herbizid-oder Antibiotika-Resistenz, verbesserte photosynthetische Effizienz sowie Enzymaktivität in Fällen, in denen ein chromogenes Substrat für das Enzym bekannt ist.The present invention further relates to genes that are functional in the plastids and mitochondria. The genes of the present invention confer a desired useful property by their confinement to the plastids and mitochondria. Some examples of such useful properties are: phytotoxin resistance, such as As herbicide or antibiotic resistance, improved photosynthetic efficiency and enzyme activity in cases where a chromogenic substrate for the enzyme is known.

Unter Herbizid-Resistenz versteht man im vorliegenden Fall eine Resistenz gegenüber allen Herbiziden, die in den Piastiden oder Mitochondrien aktiv sind. So sind beispielsweise zahlreiche Herbizide in Chloroplasten aktiv. Zu diesen Herbizidklassen gehörenIn the present case, herbicide resistance is understood to be a resistance to all herbicides which are active in the plastids or mitochondria. For example, many herbicides are active in chloroplasts. These herbicide classes include

z. B. die Triazin-, Harnstoff-, Sulfonylhamstoff- sowie die Uracilderivate, ebenso wie das Glyphosate (N-Phosphomethylglycin). *z. As the triazine, urea, sulfonylurea and uracil derivatives, as well as the glyphosate (N-phosphomethylglycine). *

Einige Beispiele für Triazin-Herbizide umfassen das Atrazin, Ametryn, Metribuzin sowie das Simazin. Einige Beispiele für Harnstoff-Herbizide schließen die Phenyl harnstoffe, wie z. B. Diuron, Chloroxuron und Fluormeturon sowie das DCMU (Dichlormethylharnstoff) ein. Beispiele für Sulfonylharnstoffe sind Oust and Glean, sowie für Uracil-Herbizide das Bromacfl und Terbacil. Diese und andere Herbicide sind in LeBaron und Gressel (1982) beschrieben.Some examples of triazine herbicides include atrazine, ametryn, metribuzin and simazine. Some examples of urea herbicides include the phenyl ureas, such as. As diuron, chloroxuron and fluorometuron and the DCMU (dichloromethylurea). Examples of sulfonylureas are Oust and Glean, as well as uracil herbicides Bromacfl and Terbacil. These and other herbicides are described in LeBaron and Gressel (1982).

Um eine Zelle gegenüber Herbiziden resistent zu machen, ist es nicht nötig, daß man mittels direktem Gentransfer in jeden der 50 bis 100 Chloropasten dieser Zelle ein für die Herbizid-Resistenz kodierendes Gen einschleust. Ein direkter Gentransfer in einen kleinen Teil der vorhandenen Chloroplasten ist völlig ausreichend um die Zellen vor Herbiziden zu schützen.In order to make a cell resistant to herbicides, it is not necessary to introduce a gene coding for herbicide resistance into each of the 50 to 100 chloroposes of this cell by direct gene transfer. Direct gene transfer into a small fraction of the available chloroplasts is quite sufficient to protect the cells from herbicides.

Die Möglichkeit eine Herbizid-Resistenz z. B. gegen Atrazin, auf Pflanzen zu übertragen ist aus verschiedenen Gründen wünschenswert. Sie erlaubt beispielsweise die Anwendung dieses Herbizids in höheren Dosen auf Pflanzen, die dann tolerant sind gegenüber besagtem Herbizid. Mit den höheren Herbizid-Dosen erzielt man dann gleichzeitig eine bessere Effizienz in der Unkrautbekämpfung.The possibility of herbicide resistance z. B. against atrazine to transfer to plants is desirable for various reasons. It allows, for example, the application of this herbicide in higher doses to plants which are then tolerant of said herbicide. At the same time, the higher herbicide doses will result in better efficiency in weed control.

Darüber hinaus kann die Herbizid-Resistenz aber auch als selektiver Marker verwendet werden, der genetisch mit einer physiologischen Eigenschaft gekoppelt wird, die an sich schwierig zu selektieren ist. Um diese Möglichkeit nutzen zu können, wird ein Donor-Plasmid konstruiert, das ein Gen enthält, das eine Herbizid-Resistenz bewirkt sowie ein zweites Gen, das die andere wünschenswerte Eigenschaft vermittelt. Dabei kann es sich beispielsweise um eine erhöhte photosynthetische Effizienz handeln. Diese Donor-DNAwird in pflanzliche Protoplasten eingeschleust, die zu einer pflanzlichen Zellkultur oder zu ganzen Pflanzen regeneriert werden können. Die resultierenden Pflanzen besitzen dann sowohl die Eigenschaften der Herbizid-Resistenz aus auch die besagte zweite Eigenschaft. Läßt man diese Pflanzen in Gegenwart des entsprechenden Herbizids wachsen, so ist es möglich, Pflanzen zu selektionieren, die diese besagte zweite Eigenschaft besitzen.In addition, however, herbicide resistance can also be used as a selective marker that is genetically coupled to a physiological property that is difficult to select per se. To exploit this possibility, a donor plasmid is constructed that contains a gene that provides herbicidal resistance and a second gene that mediates the other desirable trait. This may, for example, be an increased photosynthetic efficiency. This donor DNA is introduced into plant protoplasts, which can be regenerated into a plant cell culture or whole plants. The resulting plants then have both the properties of herbicide resistance and the said second property. If these plants are allowed to grow in the presence of the corresponding herbicide, it is possible to select plants having said second property.

Darüber hinaus gestattet die Einführung einer Donor-DNA, die sowohl eine Herbizid-Resistenz, als auch eine zweite aus agronomischer Sicht nützliche Eigenschaft auf pflanzliche Chloroplasten überträgt, diese zweite Eigenschaft in den Chloroplasten stabil zu erhalten, wenn man die Pflanzen in Gegenwart des Herbizids anbaut.In addition, the introduction of a donor DNA conferring both herbicide resistance and a second agronomically useful property on plant chloroplasts allows this second property to be stably maintained in the chloroplasts when grown in the presence of the herbicide ,

Auf die Instabilität fremder Gene in Chloroplasten hat bereits De Blocketal. (1985) hingewiesen (siehe oben). Besonders bevorzugt ist eine Herbizid-Resistenz gegenüber Atrazin (2-Chlor-4-ethylamino-6-isopropylamino-1,3,5-triazin). Für die in vitro-ldentifizierung von Zellen mit transformierten Plastiden oder Mitochondrien, kann eine Antibiotika-Resistenz verwendet werden.De Blocketal already has the instability of foreign genes in chloroplasts. (1985) (see above). Particularly preferred is a herbicide resistance to atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine). For in vitro identification of cells with transformed plastids or mitochondria, antibiotic resistance may be used.

Eine Antibiotika-Resistenz ist eine Eigenschaft, die für die in vitro-ldentifizierung von Zellen, die transformierte Plastide oder Mitochondrien enthalten, verwendet werden kann. Gene, die diesen selektierbaren Markertragen, sind außerordentlich nützlich, wenn sie auf genetischem Weg mit agronomisch nützlichen Eigenschaften verknüpft werden. Hierfür eignen sich beispielsweise Resistenzen gegen Chloramphenicol, Kanamycin oder aber im Prinzip auch Resistenzen gegenüber beliebigen anderen Antibiotika.Antibiotic resistance is a property that can be used for the in vitro identification of cells containing transformed plastids or mitochondria. Genes that carry these selectable markers are extremely useful when genetically linked to agronomically beneficial properties. For example, resistance to chloramphenicol, kanamycin or, in principle, resistance to any other antibiotics are suitable for this purpose.

Eine nützliche Eigenschaft, die in erster Linie als Marker für eine Auslese (Screening) zur Identifizierung von Pflanzen-Zellen von Gewebe-Kulturen geeignet ist, die genetisch manipulierte Plastide oder Mitochondrien enthalten, erreicht man z. B. durch Einschleusung eines Gens, das für ein Enzym kodiert, welches ein farbgebendes Substrat besitzt. Handelt es sich bei besagtem Enzym beispielsweise um beta-Galaktosidase, so werden die Pflanzen-Zellen auf einem Gewebekultur-Medium ausplatiert, das das farbgebende Substrat Xgal (5-Chlor-4-brom-3-indolyl-ß-D-galactosid) enthält. Pflanzenzellen, die genetisch manipulierte Plastide oder Mitochondrien enthalten, werden dabei durch den Farbstoff Indigoblau angefärbt, da dieser aufgrund der Spaltung von Xgal durch ß-Galaktosidase freigesetzt wird.A useful trait, which is primarily useful as a marker for screening plant cells from tissue cultures containing genetically engineered plastids or mitochondria, is obtained, for example, in U.S. Pat. By introducing a gene encoding an enzyme having a coloring substrate. For example, when said enzyme is beta-galactosidase, the plant cells are plated on a tissue culture medium containing the coloring substrate Xgal (5-chloro-4-bromo-3-indolyl-β-D-galactoside) , Plant cells containing genetically manipulated plastids or mitochondria are stained by the dye indigo blue, as this is released due to the cleavage of Xgal by ß-galactosidase.

Die Gene, die für die vorliegende Erfindung geeignet sind, können nach an sich bekannten Methoden gewonnen werden. Bei diesen Methoden handelt es sich z. B. um die Isolierung natürlicher, normalerweise nur außerhalb der Plastide oder Mitochondrien vorkommender Gene oder deren Varianten, die eingeschleust werden sollen.The genes which are suitable for the present invention can be obtained by methods known per se. These methods are, for. As the isolation of natural, usually occurring only outside of the plastids or mitochondria genes or variants that are to be introduced.

Besagtes Gen kann jedes natürlich vorkommende Gen oder eine seiner in den Plastiden oder Mitochondrien funktionsfähigen Varianten sein. Bevorzugt sind natürlich vorkommende Platid-, Mitochondrien- oder Bakterien-Gene. Besonders bevorzugt sind Chloroplast-Gene.Said gene may be any naturally occurring gene or one of its variants operable in the plastids or mitochondria. Preferred are naturally occurring platinum, mitochondrial or bacterial genes. Particularly preferred are chloroplast genes.

Um sicher zu sein, daß sich besagtes Gen tatsächlich in den Plastiden oder Mitochondrien befindet und nicht etwa im Zellkern, kann man vorteilhafterweise, aber nicht zwingend notwendig, ein im Zellkern nicht oder aber zumindest deutlich weniger als in den Plastiden oder Mitochondrien funktionsfähiges Gen einsetzen.To be sure that said gene is actually in the plastids or mitochondria and not in the cell nucleus, one can advantageously, but not necessarily, not use a nucleus in the nucleus or at least significantly less than in the plastids or mitochondria functional gene.

Einige Beispiele natürlich vorkommender Bakterien-Gene sind z. B. solche, die für eine Antibiotika-Resistenz oder für Enzyme mit einem farbgebenden Substrat kodieren. Ein bakterielles Gen, das in der Lage ist eine Antibiotika-Resistenz auf Plastide oder Mitochondrien zu übertragen, ist z. B. das Chloramphenicol-Acetyl-Transferase-Gen. Ein bakterielles Gen, das für ein Enzym mit chromogenem Substrat codiert, ist z. B. lacZ, das für die ß-Galaktosidase kodiert. Einige Beispiele von Plastid- oder Mitochondrien-Genen sind Gene, die für eine Herbizid-Resistenz oder für eine verbesserte photosynthetische Effizienz kodieren. Ein Chlorplasten-Gen, das in der Lage ist eine Herbizid-Resistenz zu übertragen, ist z. B. das mutierte psbA Gen, welches von Hirschberg et al. (1983) beschrieben wird oder eine Mutante des psbD-Gens (Rochaix et al., 1984). Ein Chloroplasten-Gen, das in der Lage ist eine verbesserte photosynthetische Effizienz zu übertragen, wird z. B. durch eine modifizierte Form von rbcL repräsentiert, das für eine modifizierte große Untereinheit der Ribulose-1,5-bisphosphat-carboxylase/oxygenase (Rubisco) kodiert. Ein Gen, das die große Untereinheit der Rubisco exprimiert, ist bereits in den Chloroplasten enthalten und bei der Photosynthese beteiligt. Es ist aber auch möglich, eine modifizierte (mutierte, manipulierte oder heterologe) Form diese Gens mit verbesserter photosynthetischer Effizienz [Jordan et al., (1981)] einzuschleusen. Eine weitere Möglichkeit ein Gen zu erhalten, das in den Plastiden oder Mitochondrien funktionsfähig ist, besteht in der Konstruktion eines Chimären Gens. Ein chimäres Gen ist ein Gen oder zumindest ein Teil eines Gens, vorzugsweise ein aktiver Teil eines Gens, der natürlicherweise nicht kovalent an die übrigen Teile gebunden ist. Das Chimäre Gen kann entweder ein RNA-Transkript spezifizieren oder für ein Polypeptid kodieren.Some examples of naturally occurring bacterial genes are e.g. For example, those that code for antibiotic resistance or for enzymes with a coloring substrate. A bacterial gene capable of conferring antibiotic resistance on plastids or mitochondria is e.g. B. the chloramphenicol acetyl transferase gene. A bacterial gene encoding a chromogenic substrate enzyme is known e.g. B. lacZ, which encodes the β-galactosidase. Some examples of plastid or mitochondrial genes are genes that encode herbicide resistance or improved photosynthetic efficiency. A chloroplast gene capable of conferring herbicide resistance is e.g. For example, the mutated psbA gene described by Hirschberg et al. (1983) or a mutant of the psbD gene (Rochaix et al., 1984). A chloroplast gene capable of conferring improved photosynthetic efficiency is e.g. Represented by a modified form of rbcL coding for a modified large subunit of ribulose-1,5-bisphosphate carboxylase / oxygenase (Rubisco). A gene that expresses the large subunit of Rubisco is already contained in the chloroplasts and involved in photosynthesis. However, it is also possible to introduce a modified (mutant, manipulated or heterologous) form of this gene with improved photosynthetic efficiency [Jordan et al., (1981)]. Another way to obtain a gene that is functional in the plastids or mitochondria is to construct a chimeric gene. A chimeric gene is a gene or at least part of a gene, preferably an active part of a gene that is not naturally covalently bound to the other parts. The chimeric gene can either specify an RNA transcript or encode a polypeptide.

Als Promotoren des Chimären Gens kommen im Rahmen der vorliegenden Erfindung alle Promotoren in Frage, die in Plastiden oder Mitochondrien funktionsfähig sind. Promotoren für chimäre Gene können von einem natürlich vorkommenden Plastid- oder Mitochondrien-Gen oder von einem Gen stammen, das nicht in den Plastiden oder Mitochondrien vorkommt. Unter den natürlich vorkommenden Promotoren aus Plastiden oder Mitochondrien-Genen sind insbesondere solche bevorzugt, die aus psbA, psbD und rbcL-Genen stammen. Bei besagten Promotoren kann es sich ebenso um Varianten natürlicher Promotoren handeln. Bei einem heterologen Promotor des Chimären Gens kann es sich erfindungsgemäß um einen natürlichen Promotor handeln, der.normalerweise nicht in Plastiden oder Mitochondrien vorkommt.Suitable promoters of the chimeric gene in the context of the present invention are all promoters which are functional in plastids or mitochondria. Promoters for chimeric genes can be from a naturally occurring plastid or mitochondrial gene or from a gene that does not occur in the plastids or mitochondria. Among the naturally occurring promoters from plastids or mitochondrial genes, particular preference is given to those derived from psbA, psbD and rbcL genes. Said promoters may also be variants of natural promoters. According to the invention, a heterologous promoter of the chimeric gene may be a natural promoter which does not normally occur in plastids or mitochondria.

Da die Funktionen von Plastid- oder Mitochondrien-Genen oft ähnlich oder mit den Funktionen von bakteriellen Genen identisch sind, können auch bakterielle Promotoren in Plastiden oder Mitochondrien funktionsfähig sein. Jeder bakterielle Promotor, der in Plastiden oder Mitochondrien funktionsfähig ist, kann daher auch erfindungsgemäß als Promotor des Chimären Gens eingesetzt werden. Einige brauchbare bakterielle Promotoren sind z. B. solche desNeomycin-Phosphotransferase-ll-Gens und der T-DNA-Gene, wie z. B. das Nopalin-Synthase-Gen des Ti-Plasmids.Since the functions of plastid or mitochondrial genes are often similar or identical to the functions of bacterial genes, bacterial promoters in plastids or mitochondria may also be functional. Any bacterial promoter which is functional in plastids or mitochondria can therefore also be used according to the invention as a promoter of the chimeric gene. Some useful bacterial promoters are e.g. Such as the neomycin phosphotransferase II gene and the T-DNA genes, such as. For example, the nopaline synthase gene of the Ti plasmid.

Als heterologer Promoter kommt auch jeder teilweise oder vollständig synthetisch hergestellte Promotor in Frage, der in Plastiden oder Mitochondrien funktionsfähig ist.Also suitable as a heterologous promoter is any partially or completely synthetically produced promoter which is functional in plastids or mitochondria.

Teilweise oder vollständig synthetisch hergestellte Promotoren, die ihren natürlichen Vorbildern dadurch ähneln, daß sie 10 Nucleotide unterhalb des Transkriptions-Starks eine TATAAT-ähnliche Sequenz aufweisen, sind ebenfalls Bestandteil vorliegender Erfindung.Partially or fully synthetically produced promoters which resemble their natural counterparts by having a TATAAT-like sequence 10 nucleotides below the transcriptional stem are also part of the present invention.

Bei der nicht übersetzten 5'-Region des Chimären Gens der vorliegenden Erfindung kann es sich um jede beliebige nicht übersetzte 5'-Region handeln, die in den Plastiden oder Mitochondrien funktionsfähig ist. Die nicht übersetzte 5'-Region kann beispielsweise von Plastid- oder Mitochondrien-Genen oder von Genen anderen Ursprungs stammen. Eine bevorzugte homologe nicht übersetzte 5'-Region stammt von den psbA, psbD oder rbcL-Genen. Eine bevorzugte heterologe nicht übersetzte 5'-Region stammt von bakteriellen Genen. Synthetische nicht übersetzte 5'-Regionen, die aufgrund einer effektiven Ribosomenbindungsstelle ihren natürlichen Vorbildern ähneln, sind ebenfalls Bestandteil vorliegender Erfindung. Im Prinzip eignet sich jede beliebige kodierende Region, die in der Lage ist eine wünschenswerte Eigenschaft auf eine Pflanzen-Zelle zu übertragen, für die erfindungsgemäße Verwendung als kodierende Region. Sowohl die kodierenden Regionenderoben erwähnten natürlicherweise vorkommenden Gene als auch kodierende Regionen aus anderen Quellen können im Rahmen der vorliegenden Erfindung für die Herstellung eines Chimären Gens verwendet werden. ,The untranslated 5 'region of the chimeric gene of the present invention may be any untranslated 5' region that is functional in the plastids or mitochondria. The untranslated 5 'region may be derived, for example, from plastid or mitochondrial genes or from genes of other origins. A preferred homologous untranslated 5 'region is from the psbA, psbD or rbcL genes. A preferred heterologous untranslated 5 'region is derived from bacterial genes. Synthetic untranslated 5 'regions that resemble their natural counterparts due to an effective ribosome binding site are also part of the present invention. In principle, any coding region capable of conferring a desirable trait on a plant cell is suitable for use as the coding region of the invention. Both the coding regions of the above-mentioned naturally occurring genes and coding regions from other sources can be used in the context of the present invention for the production of a chimeric gene. .

Folglich können die kodierenden Regionen im Rahmen der vorliegenden Erfindung von natürlicherweise vorkommenden Plastid- oder Mitochondrien-Genen oder von einer anderen Quelle stammen; sie können auch vollständig oder teilweiseThus, in the context of the present invention, the coding regions may be derived from naturally occurring plastid or mitochondrial genes or from another source; They can also be complete or partial

synthetisch oder durch Fusion zweier oder mehrerer solcher kodierender Regionen unter Beibehaltung des Leserahmens hergestellt sein.be produced synthetically or by fusion of two or more such coding regions while maintaining the reading frame.

Jede dieser kodierenden Abschnitte kodiert für ein Polypeptid, das eine oder mehrere neue Eigenschaften auf die Zellen und Pflanzen überträgt.Each of these coding regions encodes a polypeptide that transfers one or more new properties to the cells and plants.

Ein Beispiel für ein Polypeptid, das durch ein natürlicherweise in den Chloroplasten bestimmter Pflanzen vorkommendes Gen bestimmt wird, ist die mutierte Form des 32 kd Polypeptids, das von Hirschberg et al. (1983) beschrieben wird. Es konnte gezeigt werden, daß dieses Polypeptid eine Atrazin-Resistenz auf bestimmte Unkräuter überträgt. Das psbA-Gen, welches für besagtes Polypeptid kodiert, kann aber auch.auf netzliche Pflanzen, wie z. B. Kulturpflanzen unter Verwendung des erfindungsgemäßen Verfahrens übertragen werden.An example of a polypeptide determined by a gene naturally occurring in the chloroplast of certain plants is the mutated form of the 32 kd polypeptide described by Hirschberg et al. (1983). It has been shown that this polypeptide transfers atrazine resistance to certain weeds. However, the psbA gene which encodes said polypeptide may also be restricted to natinal plants, such as. B. crops are transferred using the method according to the invention.

Ein Beispiel für eine kodierte Region, die nicht aus Piastiden oder Mitochondrien stammt, ist die kodierende Region der pflanzlichen, tierischen oder bakteriellen gshA und gshB-Gene oder die des Glutathion-Reduktgase-Gens (gor), wobei alle ihre nützlichen Eigenschaften übertragen können, wenn sie in pflanzliche Piastiden oder Mitochondrien eingeschleust werden. gshA und gshB kodieren Enzyme, die die Synthese des Tripeptids Glutathion katalysieren, welches seinerseits für die konjugative Detoxifikation zahlreicher Herbizide verantwortlich ist (Meister et al., 1983; sowie Rennenberg; 1982). Ein weiteres Beispiel für eine kodierende Region, die nicht aus Piastiden oder Mitochondrien stammt, ist der kodierende Abschnitt eines Glutathion-S-Transferase-Gens aus Pflanzen, Tieren, Insekten oder Bakterien. In manchen Pflanzen {Shimabukuroy et al., [1971]), die bekanntermaßen gegenüber dem Herbizid Atrazin tolerant sind, bildet die Anwesenheit der Glutathion-S-Transferase detoxifiziert das Phytotoxin, indem es die Bildung eines Atrazin-Glutathion-Konjugates katalysiert. Eine andere kodierende Region, die für das Chimäre Gen der vorliegenden Erfindung brauchbar ist, kodiert eine effizientere Form von Rubisco. Solche kodierenden Abschnitte können gegebenenfalls von natürlicherweise vorkommenden Genen stammen. Die kodierende Region der vorliegenden Erfindung kann gegebenenfalls auch aus zwei oder mehreren verschieden kodierenden Abschnitten herrühren. Polypeptide, die durch solche kodierenden Regionen spezifiziert werden bezeichnet man als Fusions-Polypeptide.An example of a non-plastid or mitochondrially encoded region is the coding region of the plant, animal or bacterial gshA and gshB genes, or the glutathione reductase gene (gor), all of which can confer useful properties thereto, when introduced into plant plastids or mitochondria. gshA and gshB encode enzymes that catalyze the synthesis of the tripeptide glutathione, which in turn is responsible for the conjugative detoxification of many herbicides (Meister et al., 1983, and Rennenberg, 1982). Another example of a non-plastid or mitochondrial coding region is the coding portion of a glutathione S-transferase gene from plants, animals, insects or bacteria. In some plants {Shimabukuroy et al., [1971]) known to be tolerant of the herbicide atrazine, the presence of glutathione S-transferase detoxifies the phytotoxin by catalyzing the formation of an atrazine-glutathione conjugate. Another coding region useful for the chimeric gene of the present invention encodes a more efficient form of Rubisco. Such coding portions may optionally be derived from naturally occurring genes. Optionally, the coding region of the present invention may also be derived from two or more differently coding portions. Polypeptides specified by such coding regions are referred to as fusion polypeptides.

Ein Beispiel für eine Fusions-Polypeptid stellt eine effizientere Form von Rubisco dar. Rubisco hat zwei Funktionen, zum einen als Carboxylase zum anderen als Oxygenase. Die Carboxylase-Funktion ist im Verlauf der Photosynthese wirksam, die Oxygenase-Funktion dagegen ist unerwünscht. Ein brauchbares Fusions-Polypeptid besitzt dementsprechend einen Anteil der die : An example of a fusion polypeptide is a more efficient form of Rubisco. Rubisco has two functions, one being carboxylase and the other being oxygenase. The carboxylase function is effective in the course of photosynthesis, but the oxygenase function is undesirable. A useful fusion polypeptide accordingly has a proportion of the :

Carboxylase-Funktion maximiert und einen zweiten Teil, der die Oxygenase-Funktion minimiert.Carboxylase function maximizes and a second part that minimizes oxygenase function.

Die nicht translatierte3'-Region des Chimären Gens kann entweder natürlicherweise in einem Plastid-oder Mitochondrien-Gen vorliegen, oder sie kann heterologen Ursprungs sein. Bevorzugt ist eine nichttranslatierte 3'-Region, die aus einem Plastid- oder Mitochondrien-Gen stammt. Die bevorzugten nicht translatierten 3'-Abschnitte sind diejenigen der psbA, psbD oder rbcL-Gene.The untranslated 3 'region of the chimeric gene may either be naturally present in a plastid or mitochondrial gene, or it may be of heterologous origin. Preferred is a 3'-untranslated region derived from a plastid or mitochondrial gene. The preferred untranslated 3 'portions are those of the psbA, psbD or rbcL genes.

Die transkribierten Regionen der Gene der vorliegenden Erfindung können RNA-Transkripte spezifieren und sind in einigen Fällen schon als solche verwendbar.The transcribed regions of the genes of the present invention may specify RNA transcripts and in some cases are useful as such.

Bei diesen Transkripten kann es sich um tRNA oder rRNA handeln. Das Transkript kann ebenso eine RNA sein, die eine Sequenz besitzt, die zumindest einem Teil einer Sequenz eines anderen RNA-Transkripts komplementär ist. Solche komplementären Sequenzen, die unter der Bezeichnung Anti-sense-Sequenzen bekannt sind, können, falls sie nur lang genug sind, die Funktion von RNA-Sequenzen, zu denen sie komplementär sind, stören, oder sie können die Transkription dieser RNA von dem entsprechenden Gen blockieren; (Vgl. Pestka et al., [1984]; Melton [1985]; Izant et al., [1984]; Simons et al., [1984] und Colemann, [1984]). . These transcripts may be tRNA or rRNA. The transcript may also be an RNA having a sequence that is complementary to at least a portion of a sequence of another RNA transcript. Such complementary sequences, known as anti-sense sequences, if long enough, may interfere with the function of RNA sequences to which they are complementary, or they may transcribe that RNA from the corresponding one Block gene; (See Pestka et al., [1984]; Melton [1985]; Izant et al., [1984]; Simons et al., [1984] and Colemann, [1984]). ,

Transkribierte Regionen, die im Rahmen der vorliegenden Erfindung brauchbar sind, können gegebenenfalls von natürlicherweise transkribierten Abschnitten stammen, oder aber sie können ganz oder teilweise synthetisch hergestellt sein. Anti-sense-Sequenzen können ebenso von zumindest einem Teil eines natürlicherweise vorkommenden Gens stammen, indem man die Orientierung besagten Teils des natürlicherweise vorkommenden Gens in Bezug auf seinen Promotor umkehrt. Die Gene, die für eine Verwendung im Rahmen der vorliegenden Erfindung geeignet sind, werden nach an sich bekannten Methoden in ein Plasmid-Klonierungs-Vektor eingebaut bzw. eingeführt (Maniatis et al., [1982]).Transcribed regions useful in the present invention may optionally be derived from naturally transcribed portions, or they may be wholly or partially synthetically produced. Anti-sense sequences can also be derived from at least part of a naturally occurring gene by reversing the orientation of said part of the naturally occurring gene with respect to its promoter. The genes suitable for use in the present invention are incorporated into a plasmid cloning vector by methods known per se (Maniatis et al., [1982]).

Für die Integration von Fremdgenen in die genomische DNA von Pflanzen-Zellen ist es vorteilhaft, wenn die Gene von neutralen DNA-Sequenzen, sogenannter Carrier-DNA, flankiert werden. Die Carrier-DNA kann aus zwei linearen DNA-Strängen bestehen, so daß die gesamte Konstruktion, die in die, Pflanzenzelle eingeschleust werden soll, ein lineares DNA-Molekül darstellt. Besagtes Gebilde kann für die Gen-Transformation aber ebenso eine zirkuläre Struktur—Plasmid-Struktur—aufweisen. Die Carrier-DNA kann sowohl synthetischen Ursprungs sein als auch von natürlicherweise vorkommenden DNA-Sequenzen abstammen, die mit geeigneten Restriktionsendonukleasen behandelt wurden. Daher sind beispielsweise auch natürlich vorkommende Plasmide, die mit ein oder mehreren Restriktionsendonukleasen geöffnet wurden, für die Verwendung als Carrier-DNA geeignet. Als Beispiel für ein solches Plasmid ist das leicht zugängliche Plasmid pUC8 (beschrieben bei Messing et al., [1982]) zu nennen. Fragmente von natürlicherweise vorkommenden Plasmiden können ebenso als Carrier-DNA erfindungsgemäß verwendet werden. Die für die Transformation vorgesehene Konstruktion kann gegebenenfalls von einem Ti-Plasmid oder von einem modifizierten Ti-Plasmid stammende DNA enthalten. Ein Plasmid wird als modifiziertes Ti-Plasmid angesehen, wenn es zumindest eine T-DNA-Grenzregion besitzt. Eine T-DNA-Grenzregion ist eine DNA-Sequenz innerhalb eines Agrobakterium-Genoms, welche den Einbau einer anderen Sequenz innerhalb des Genoms (T-DNA) in die Pflanzenzellen, mit denen das Agrobacterium in Kontakt gerät, verursacht. Bei der T-DNA Grenzregion kann es sich beispielsweise um eine Sequenz eines Vektors handeln, wie z. B. eines Ti- oder Ri-Plasmids oder eines modifizierten Ti- oder Ri-Plasmids. Bei der T-DNA kann es sich auch um eine Sequenz handeln, die auf dem selben Vektor liegt wie die Grenz-Region oder aber auf einem anderen Vektor. Die Wahrscheinlichkeit der genetischen Transformation (Transformationsrate) einer Pflanzenzelle kann durch verschiedene Faktoren gesteigert werden. Wie aus Experimenten mit Hefe bekannt ist, steigt dementsprechend die Anzahl geglückter stabiler Gen-Transformationen:For the integration of foreign genes into the genomic DNA of plant cells, it is advantageous if the genes are flanked by neutral DNA sequences, so-called carrier DNA. The carrier DNA can consist of two linear DNA strands so that the entire construct to be introduced into the plant cell is a linear DNA molecule. However, said structure may also have a circular structure-plasmid structure for the gene transformation. The carrier DNA may be of synthetic origin as well as derived from naturally occurring DNA sequences treated with appropriate restriction endonucleases. Thus, for example, naturally occurring plasmids opened with one or more restriction endonucleases are also suitable for use as carrier DNA. An example of such a plasmid is the readily available plasmid pUC8 (described in Messing et al., [1982]). Fragments of naturally occurring plasmids can also be used as carrier DNA according to the invention. The construction intended for transformation may optionally contain DNA derived from a Ti plasmid or from a modified Ti plasmid. A plasmid is considered to be a modified Ti plasmid if it has at least one T-DNA border region. A T-DNA border region is a DNA sequence within an Agrobacterium genome that causes the incorporation of another sequence within the genome (T-DNA) into the plant cells that the Agrobacterium contacts. For example, the T-DNA border region may be a sequence of a vector, such as a vector. A Ti or Ri plasmid or a modified Ti or Ri plasmid. The T-DNA may also be a sequence located on the same vector as the border region or on another vector. The likelihood of genetic transformation (transformation rate) of a plant cell can be increased by several factors. As we know from experiments with yeast, the number of successful stable gene transformations increases accordingly:

1) mit der Zunahme der Zahl der Kopien von neuen Genen pro Zelle,1) with the increase in the number of copies of new genes per cell,

2) wenn ein Replikationssignal mit einem neuen Gen kombiniert wird und2) when a replication signal is combined with a new gene and

3) wenn ein Integrationssignal mit einem neuen Gen kombiniert wird, wobei unter einem Integrationssignal ein Signal zu verstehen ist, das die Integration eines DNA-Stranges in einen anderen DNA-Strang fördert.3) when an integration signal is combined with a new gene, an integration signal being a signal that promotes the integration of one strand of DNA into another strand of DNA.

Das erfindungsgemäße Verfahren findet daher dann eine besonders vorteilhafte Anwendung, wenn das übertragene Gen mit einem Replikationssignal gekoppelt ist, das in pflanzlichen Zellen wirksam ist oder mit einem Integrationssignal, das in pflanzlichen Zellen wirksam ist oder mit einer Kombination beider Signale.The method according to the invention therefore finds a particularly advantageous application when the gene transferred is coupled with a replication signal which is effective in plant cells or with an integration signal which is effective in plant cells or with a combination of both signals.

Protoplasten, Zellkultur-Zellen, Zellen in Pflanzengeweben, Pollen, Pollenschläuchen, Eizellen, Embryonalsäcke oder Zygoten sowie Embryonen in unterschiedlichen Entwicklungsstadien sind repräsentative Beispiele für Pflanzenzellen, die als Ausgangsmaterial für eine Transformation geeignet sind. Bevorzugt sind Protoplasten, da diese direkt ohne weitere Vorbehandlung verwendet werden können. Isolierte pflanzliche Protoplasten, Zellen oder Gewebe können mit Hilfe an sich bekannter Methoden oder mit Hilfe von Methoden, die analog zu bekannten Methoden sind, gewonnen werden. Isolierte pflanzliche Protoplasten, die sich als Ausgangsmaterial für die Gewinnung von isolierten Zellen und Geweben eignen, lassen sich aus allen Teilen der Pflanze, z. B. den Blättern, Embryonen, Stielen, Blüten, Wurzeln oder Pollen isolieren. Bevorzugt werden Protoplasten aus Blättern. Isolierte Protoplasten können aber auch aus Zellkulturen erhalten werden. Methoden zur Isolierung von Protoplasten werden beispielsweise in Gamborg et al. (1975) beschrieben. Der Transfer des neuen Gens in die Pflanzenzelle erfolgt auf direktem Wege, d.h. ohne vorherige Infektion der Zelle mit einem Pathogen wie beispielsweise einem pflanzenpathogenen Bakterium, Virus oder Pilz und ohne Übertragung von DNA durch Insekten oder Pilze, die in der Lage sind, Pflanzen mit DNA-übertragenden Pathogenen zu infizieren. Dieser direkte Gentransfer wird dadurch erreicht, daß die das Gen enthaltende DNA mit den pflanzlichen Protoplasten und den darin enthaltenen Piastiden und Mitochondrien in einem Medium für eine solche Zeitspanne in Kontakt bringt, welche für die Penetration des Gens in die Protoplasten und in die darin befindlichen Plastide und Mitochondrien ausreicht. DieTransformationsfrequenz1<ann dadurch erhöht werden, daß man diesen Schritt mit verschiedenen Gentransfer-Techniken kombiniert. Beispiele solcher Techniken umfassen die Behandlung mit Poly-L-Ornithin oder Poly-L-Lysin, die Liposomenfusion, DNA-Protein-Komplexierung, Veränderung der Ladungsverhältnisse an der Protoplastenmembran, Fusion mit mikrowellen Protoplasten oder Kalziumphosphat-Präzipitation sowie insbesondere durch Behandlung mit bestimmten polyhydrierten Alkoholen wie z. B. Polyethylenglykol, ferner durch Hitzeschockbehandlung und Elektroporation sowie durch eine Kombination dieser zuletzt genannten drei Techniken.Protoplasts, cell culture cells, cells in plant tissues, pollen, pollen tubes, oocytes, embryonic sacs or zygotes, as well as embryos at different stages of development are representative examples of plant cells suitable as starting material for transformation. Preference is given to protoplasts, since they can be used directly without further pretreatment. Isolated plant protoplasts, cells or tissues can be obtained by methods known per se or by methods analogous to known methods. Isolated plant protoplasts, which are suitable as starting material for the isolation of isolated cells and tissues, can be obtained from all parts of the plant, eg. As the leaves, embryos, stems, flowers, roots or pollen isolate. Preference is given to protoplasts from leaves. However, isolated protoplasts can also be obtained from cell cultures. Methods for the isolation of protoplasts are described, for example, in Gamborg et al. (1975). The transfer of the new gene into the plant cell takes place directly, i. without prior infection of the cell with a pathogen such as a plant pathogenic bacterium, virus or fungus and without transfer of DNA by insects or fungi capable of infecting plants with DNA-transmitting pathogens. This direct gene transfer is achieved by contacting the DNA containing the gene with the plant protoplasts and the plastids and mitochondria contained therein in a medium for a period of time sufficient to allow the gene to penetrate into the protoplasts and into the plastids therein and mitochondria is sufficient. The transformation frequency 1 <ann can be increased by combining this step with various gene transfer techniques. Examples of such techniques include treatment with poly-L-ornithine or poly-L-lysine, liposome fusion, DNA-protein complexation, alteration of charge ratios on the protoplast membrane, fusion with microwave protoplasts or calcium phosphate precipitation, and especially treatment with certain polyhydric Alcohols such. For example, polyethylene glycol, further by heat shock treatment and electroporation and by a combination of these last three techniques.

Als erfindungsgemäß verwendbare Medien kommen alle Medien in Frage; die der DNA, die das Gen trägt, die Penetration in die Protoplasten sowie in die Plastide oder Mitochondrien innerhalb dieser Protoplasten erlauben. Geeignete Medien für die gemeinsame Inkubation des Fremdgehens mit den Rezeptor-Protoplasten sind vorzugsweise osmotisch stabilisierte Kulturmedien, wie sie für Protoplasten-Kulturen entwickelt wurden.Suitable media for use in the invention are all media; which allows the DNA carrying the gene to penetrate into the protoplasts as well as into the plastids or mitochondria within these protoplasts. Suitable media for the co-incubation of alienation with the receptor protoplasts are preferably osmotically stabilized culture media, as have been developed for protoplast cultures.

Zahlreiche, inzwischen erhältliche Kultur-Medien unterscheiden sich in einzelnen Komponenten oder Gruppen von Komponenten. Die Zusammensetzung all dieser Medien steht jedoch in Einklang mit dem Prinzip, daß sie alle eine Gruppe anorganischer Ionen in einem Konzentrationsbereich von ca. 10mg/Liter bis zu einigen hundert mg/Liter (sogenannte Makroelemente wie Nitrate, Phosphate, Sulfate, Kalzium, Magnesium, Eisen etc.) besitzen; eine weitere Gruppe' anorganischer Ionen mit einer maximalen Konzentration von einigen mg/Liter (sogenannte Spurenelemente wie Kobalt, Zink, Kupfer, Mangan etc.); eine Anzahl von Vitaminen (z. B. Inositol, Folsäure, Thiamin); eine Energie- und Kohlenstoffquelle, beispielsweise Sucrose oder Glucose und Wuchsregulatoren in Form natürlicher oder synthetischer Phytohormone der Auxin- und Cytokinin-Klasse in einem Konzentrationsbereich von 0,01 bis 10mg/Liter.Many cultural media now available differ in individual components or groups of components. However, the composition of all these media is in accordance with the principle that they all have a group of inorganic ions in a concentration range of about 10mg / liter to several hundred mg / liter (so-called macroelements such as nitrates, phosphates, sulfates, calcium, magnesium, Iron, etc.); another group of inorganic ions with a maximum concentration of several mg / liter (so-called trace elements such as cobalt, zinc, copper, manganese, etc.); a number of vitamins (eg, inositol, folic acid, thiamine); an energy and carbon source, for example, sucrose or glucose, and growth regulators in the form of natural or synthetic phytohormones of the auxin and cytokinin class in a concentration range of 0.01 to 10 mg / liter.

Diese Kulturmedien sind zusätzlich noch osmotisch stabilisiert durch Zusatz von Zuckeralkoholen (z. B. Mannitol), Zucker (z. B. Glucose) oder Salz-Ionen (z. B. CaCI2) sowie auf einen pH-Wert im Bereich von 5,6 bis 6,5 eingestellt. Eine ausführlichere Beschreibung konventioneller Kulturmedien findet man beispielsweise bei Kobliz et al. (1974). Ein besonders geeignetes Medium für die direkte Transformation von Protoplasten enthält einen mehrwertigen Alkohol, der in der Lage ist, die Protoplastenmembran zu verändern und der sich bei der Vermittlung der Zellfusion als nützlich erweist. Der bevorzugte mehrwertige Alkohol ist Polyethylenglykol. Mehrwertige Alkohole mit längeren Ketten, beispielsweise Polypropylenglykol (425 bis 4000g/mol), Polyvinylalkohol öder mehrwertige Alkohole, deren Hydroxylgruppen teilweise oder komplett alkyliert sind, können auch verwendet werden. Die polyhydroxylierten Detergentien, die gewöhnlich in der Landwirtschaft Verwendung finden und von den Pflanzen toleriert werden, stellen ebenfalls geeignete mehrwertige Alkohole dar: Solche Detergentien sind z.B. in der folgenden Publikation beschrieben:These culture media are additionally stabilized osmotically by the addition of sugar alcohols (eg mannitol), sugars (eg glucose) or salt ions (eg CaCl 2 ) and to a pH in the range of 5, 6 to 6.5 set. A more detailed description of conventional culture media can be found, for example, in Kobliz et al. (1974). A particularly suitable medium for the direct transformation of protoplasts contains a polyhydric alcohol which is capable of altering the protoplast membrane and which proves to be useful in mediating cell fusion. The preferred polyhydric alcohol is polyethylene glycol. Polyhydric alcohols with longer chains, for example polypropylene glycol (425 to 4000 g / mol), polyvinyl alcohol or polyhydric alcohols whose hydroxyl groups are partially or completely alkylated, can also be used. The polyhydroxylated detergents commonly used in agriculture and tolerated by the plants are also suitable polyhydric alcohols. Such detergents are described, for example, in the following publication:

„McCutcheons's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood, New Jersey, (1981); Stäche, H., „Tensid-Taschenbuch", Carl Hanser Verlag, München/Wien, (1981)."McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood, New Jersey, (1981); Stäche, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich / Vienna, (1981).

Die hier bevorzugten mehrwertigen Alkohole sind Polyethylenglykole mit einem Molekulargewicht zwischen .1 000 und 10000 g/ mol, vorzugsweise zwischen 3000 und 8000g/mol.The polyhydric alcohols preferred herein are polyethylene glycols having a molecular weight between .1,000 and 10,000 g / mol, preferably between 3,000 and 8,000 g / mol.

Die Transformationsfrequenz des direkten Gentransfers kann durch die nachfolgend im Detail beschriebenen Verfahren wesentlich erhöht werden.The transformation frequency of direct gene transfer can be significantly increased by the methods described in detail below.

Bei der Polyethylenglykol-Behandlung wird zunächst eine Protoplasten-Suspension dem Kultur-Medium zugegeben. Die DNA, die das Gen enthält, und als lineare DNA oder in Form eines zirkulären Plasmids vorliegen kann, wird anschließend zur vorgelegten Mischung aus Polyethylenglykol und Kultur-Medium gegeben. Alternativ zu dieser Vorgehensweise können auch zuerst die Protoplasten sowie die das Gen enthaltende DNA im Kultur-Medium vorgelegt und dann erst das Polyethylenglykol hinzugefügt werden.In the polyethylene glycol treatment, a protoplast suspension is first added to the culture medium. The DNA containing the gene, which may be present as linear DNA or in the form of a circular plasmid, is then added to the initially introduced mixture of polyethylene glycol and culture medium. As an alternative to this procedure, the protoplasts and the DNA containing the gene may also be initially introduced in the culture medium and then the polyethylene glycol first added.

Im Rahmen der vorliegenden Erfindung erwiesen sich die Elektroporation sowie die Hitzeschockbehandlung ebenfalls als besonders vorteilhafte Verfahrensmaßnahmen.In the context of the present invention, the electroporation and the heat shock treatment also proved to be particularly advantageous method measures.

Neumann et al. (1982) berichten, daß bei der Elektroporation Protoplasten zunächst in ein Osmotikum überführt werden,z.B. in eine Mannitol/Magnesium-Suspension und diese Protoplastensuspension anschließend in eine Elektroporator-Kammer zwischen zwei Elektroden eingebracht wird. Durch Entladung eines Kondensators über der Suspension werden die Protoplasten für einen kurzen Moment mit einem elektrischen Impuls von hoher Spannung beaufschlagt, was zu einer Polarisation der Protoplastmembran und einer Öffnung von Poren in der Membran führt.Neumann et al. (1982) report that in electroporation, protoplasts are first converted to an osmoticum, e.g. in a mannitol / magnesium suspension and this protoplast suspension is then introduced into an electroporator chamber between two electrodes. By discharging a capacitor over the suspension, the protoplasts are momentarily energized with an electrical pulse of high voltage, resulting in polarization of the protoplast membrane and opening of pores in the membrane.

Bei der Hitzebehandlung werden die Protoplasten in einem Osmotikum suspendiert, z. B. einer Lösung von Mannitol/ Calciumchlorid. Anschließend wird die Suspension in kleinen Behältern z. B. in Zentrifugenröhrchen, vorzugsweise im Wasserbad, erhitzt. Die Dauer des Erhitzungsvorgangs hängt von der vorgewählten Temperatur ab. Im allgemeinen bewegen sich die Temperaturen im Bereich von 40°C bis 800C und werden für die Dauer von 1 Sekunde bis zu einer Stunde aufrechterhalten. Die besten Ergebnisse erzielt man bei einer Temperatur im Bereich von 4O0C bis 500C bis 4 bis 6 Minuten, insbesondere bei 450C und 5 Minuten. Die Suspension wird anschließend auf Raumtemperatur oder weniger abgekühlt. Es kann ebenso gezeigt werden, daß die Transformations-Frequenz durch Inaktivierung extrazellulärer Nukleasen gesteigert wird. Die Inaktivierung kann durch Verwendung divalenter Kationen, die von Pflanzen toleriert werden, wie beispielsweise Magnesium oder Kalzium, erreicht werden. Die Inaktivierung ist effektiver, wenn die Transformation bei hohen pH-Werten durchgeführt wird, wobei der optimale pH-Bereich zwischen 9 und 10,5 liegt.In the heat treatment, the protoplasts are suspended in an osmoticum, e.g. B. a solution of mannitol / calcium chloride. Subsequently, the suspension in small containers z. B. in centrifuge tubes, preferably in a water bath heated. The duration of the heating process depends on the preselected temperature. In general, the temperatures range from 40 ° C to 80 0 C and maintained for a period of 1 second up to one hour. The best results are obtained at a temperature in the range of 4O 0 C to 50 0 C to 4 to 6 minutes, in particular at 45 0 C and 5 minutes. The suspension is then cooled to room temperature or less. It can also be shown that the transformation frequency is increased by inactivating extracellular nucleases. Inactivation can be achieved by using divalent cations tolerated by plants, such as magnesium or calcium. Inactivation is more effective when the transformation is performed at high pH, with the optimum pH range between 9 and 10.5.

Überraschenderweise führt die selektive Nutzung dieser verschiedenen Methoden zu einer deutlichen Erhöhung der Transformations-Frequenz, was ein bereits seit langem angestrebtes Ziel auf dem Gebiet des Genetic Engineering darstellt. Je geringer die Transformations-Frequenz bei den Gen-Transformationsexperimenten ist, um so schwieriger und zeitaufwendiger ist es, die wenigen klonierten Zellen, die von transformierten Zellen abstammen, unter der großen Zahl von nicht transformierten Klonen-herauszufinden. Bei einer nur geringen Transformations-Frequenz ist es praktisch unmöglich, die konventionellen Screening-Methoden anzuwenden, es sei denn, das verwendete Gen besitzt einen selektiven Marker (z. B. Resistenz gegenüber einer bestimmten Substanz). Geringe Transformations-Frequenzen erfordern daher einen sehr beträchtlichen Arbeits- und Zeitaufwand, wenn man Gene ohne Marker-Funktionen verwendet.Surprisingly, the selective use of these different methods leads to a significant increase in the transformation frequency, which represents a long-sought goal in the field of genetic engineering. The lower the transformation frequency in the gene transformation experiments, the more difficult and time consuming it is to find out the few cloned cells derived from transformed cells among the large number of untransformed clones. With only a low transformation frequency, it is virtually impossible to use conventional screening methods unless the gene used has a selective marker (eg, resistance to a particular substance). Low transformation frequencies therefore require a considerable amount of work and time when using genes without marker functions.

Durch das Zusammenbringen von Fremdgen und Rezeptor-Protoplasten vor der Anwendung anderer Maßnahmen, wie z.B. der Polyethylenglykol-Behandlung, der Elektroporation und der Hitzeschockbehandlung, läßt sich, im Vergleich zu einer Vorgehensweise, bei der die einzelnen Verfahrensschritte in einer anderen Reihenfolge durchgeführt werden, eine signifikante Verbesserung in der Transformations-Frequenz erreichen.By bringing foreign genes and receptor protoplasts together prior to the application of other means, e.g. polyethylene glycol treatment, electroporation, and heat shock treatment, can achieve a significant improvement in transformation frequency as compared to a procedure in which the individual process steps are performed in a different order.

Eine Kombination von zwei oder drei der im folgenden aufgezählten Techniken hat sich als vorteilhaft erwiesen: Polyethylenglykolbehandlung, Hitzeschockbehandlung und Elektroporation, wobei besonders gute Ergebnisse erzielt werden, wenn diese Techniken nach dem Einbringen des Fremdgens und der Protoplasten in einer Flüssigkeit angewendet werden. Die bevorzugte Verfahrensweise besteht in einer Hitzeschockbehandlung vor der Polyethylenglykol-Behandlung und einer gegebenenfalls nachfolgenden Elektroporation. Im allgemeinen führt die zusätzliche Elektroporation zu einer weiteren Zunahme der Transformations-Frequenz; in manchen Fällen können die Ergebnisse, die durch Hitzeschockbehändlung und Polyethylenglykolbehandlung erzielt wurden, jedoch auch durch eine zusätzliche Elektroporation nicht wesentlich verbessert werden.A combination of two or three of the techniques enumerated below has been found to be advantageous: polyethylene glycol treatment, heat shock treatment and electroporation, with particularly good results being obtained when these techniques are applied after introduction of the foreign gene and protoplasts in a liquid. The preferred procedure is a heat shock treatment prior to the polyethylene glycol treatment and optionally subsequent electroporation. In general, the additional electroporation leads to a further increase in the transformation frequency; However, in some cases, the results achieved by heat shock treatment and polyethylene glycol treatment can not be significantly improved by additional electroporation.

Man kann ferner auch divalente Kationen einsetzen, die von Pflanzen toleriert werden und/oder eine Transformation bei pH-Werten zwischen pH 9 und 10,5 mit den einzelnen, die Transformationsfrequenz verändernden, oben bereits beschriebenen Maßnahmen kombinieren, nämlich mit der Polyethylenglykol-Behandlung, der Hitzeschockbehandlung und der Elektroporation. It is also possible to use divalent cations which are tolerated by plants and / or combine a transformation at pH values between pH 9 and 10.5 with the individual transformation frequency-changing measures already described above, namely with the polyethylene glycol treatment. heat shock treatment and electroporation.

Das erfindungsgemäße Verfahren macht es somit möglich, hohe Transformations-Frequenzen zu erreichen ohne Pathogene wie z. B. Viren und Agrobakterium oder natürliche oder modifizierte Ti-Plasmide für die Transformation verwenden zu müssen. Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens 'ist beispielsweise dadurch charakterisiert, daß die Protoplasten in eine Mannitol-Lösung überführt werden und anschließend die so erhaltene Protoplasten-Suspension mit einer wäßrigen DNA-Lösung, die das Gen enthält, vermischt wird. Die Protoplästen werden dann in diesem Gemisch 5 Minuten bei 45°C inkubiert und anschließend 10 Sekunden auf 0°C abgekühlt. Im Anschluß an die Inkubation wird diesem Gemisch soviel Polyethylenglykol (MG3000 bis 8000) zugesetzt, daß eine PEG-Konzentration von 1 bis 25%, vorzugsweise um 8%, erreicht ist. Nach vorsichtigem und sorgfältigem Vermischen erfolgt dann die Behandlung in dem Elektroporator. Die Protoplastensuspension wird sodann mit Kulturmedium verdünnt und kann schließlich zur Regeneration ihrer Zellwände im Kulturmedium verbleiben.The inventive method thus makes it possible to achieve high transformation frequencies without pathogens such. As viruses and Agrobacterium or natural or modified Ti plasmids must be used for the transformation. An advantageous embodiment of the process according to the invention is characterized, for example, by the fact that the protoplasts are converted into a mannitol solution and then the resulting protoplast suspension is mixed with an aqueous DNA solution which contains the gene. The protoplasts are then incubated in this mixture for 5 minutes at 45 ° C and then cooled to 0 ° C for 10 seconds. Following the incubation, this mixture is added as much polyethylene glycol (MG3000 to 8000) that a PEG concentration of 1 to 25%, preferably by 8%, is reached. After careful and thorough mixing, the treatment then takes place in the electroporator. The protoplast suspension is then diluted with culture medium and may eventually remain in the culture medium to regenerate its cell walls.

Das erfindungsgemäße Verfahren ist für die Transformation aller pflanzlichen Zellen geeignet, insbesondere für Zellen aus den systematischen Gruppen der Angiospermae und Gymnospermae.The method according to the invention is suitable for the transformation of all plant cells, in particular for cells from the systematic groups of angiosperms and gymnosperms.

Unter den Gymnospermae sind in erster Linie Pflanzen aus der Klasse Coniferae von Interesse.Among the Gymnospermae are primarily plants from the class Coniferae of interest.

Unter den Angiospermae sind neben Laubbäumen und Sträuchern, Pflanzen aus den folgenden Familien von besonderem Interesse: Solanaceae, Cruciferae Compositae, Liliaceae, Vitaceae, Chenopodiaceae, Rutaceae, Bromeliaceae, Rubiaceae, Theaceae, Musaceae oder Gramineae und innerhalb der Ordnung Leguminosae die Familie der Papilionaceae. Besonders bevorzugt sind Vertreter aus den Familien der Solanaceae, Cruciferae und Gramineae.Among the angiospermae, in addition to deciduous trees and shrubs, plants of the following families of particular interest: Solanaceae, Cruciferae Compositae, Liliaceae, Vitaceae, Chenopodiaceae, Rutaceae, Bromeliaceae, Rubiaceae, Theaceae, Musaceae or Gramineae and within the order Leguminosae the family of Papilionaceae. Particularly preferred are members of the families of Solanaceae, Cruciferae and Gramineae.

Von besonderem Interesse sind Pflanzen aus der Gattung Nicotiana, Petunia, Hyoscyamus, Brassica und Lolium, so zum Beispiel Nicotiana tabacum, Nicotiana plumbaginifolia, Petunia hybrida, Hyoscyamus muticus, Brassica napus, Brassica rapa und Lolium multiflorum;Of particular interest are plants of the genus Nicotiana, Petunia, Hyoscyamus, Brassica and Lolium, for example Nicotiana tabacum, Nicotiana plumbaginifolia, Petunia hybrida, Hyoscyamus muticus, Brassica napus, Brassica rapa and Lolium multiflorum;

Plastide und Mitochondrien all jener Pflanzen, die aus Protoplästen regenerierbar sind, können ebenfalls erfolgreich mit Hilfe des erfindungsgemäßen Verfahrens transformiert werden. Bis zum heutigen Zeitpunkt war es nicht möglich, Plastide und Mitochondrien von Vertretern aus der Familie der Graminäe (Gräser) die ebenso Getreidearten, wie z.B. Mais, Weizen, Reis, Gerste, Hafer, Hirse, Roggen und Sorghum umfassen, genetisch zu manipulieren. Die vorliegende Erfindung erlaubt nunmehr die genetische Transformation von Piastiden und Mitochondrien von Gramineen-Zellen, einschließlich der Getreide-Zellen, unter Anwendung der direkten Gentransformation. In gleicherweise ist es möglich, die Transformation von Piastiden und Mitochondrien jeder beliebigen anderen Kulturpflanze durchzuführen, wie z. B. Pflanzen der Gattung Solanum, Nicotiana, Brassica, Beta, Pisum, Phaseolus, Glycine, Helianthus, Allium,Triticum, Hordeum, Avena, Setaria, Oryza, Cydonia, Pyrus, Malus, Rubus, Fragaria, Prunus, Arachis, Seeale, Panicum Saccharum, Coffea, Camellia, Musa, Ananas, Vitis, Sorghum, Helianthus oder Citrus.Plastids and mitochondria of all those plants which can be regenerated from protoplasts can also be successfully transformed by means of the method according to the invention. To date, it has not been possible to isolate plastids and mitochondria from members of the Gramineae family (grasses), as well as crops such as cereals. Corn, wheat, rice, barley, oats, millet, rye and sorghum include genetically manipulating. The present invention now permits the genetic transformation of plastids and mitochondria of Gramineae cells, including the cereal cells, using direct gene transformation. In the same way, it is possible to carry out the transformation of plastids and mitochondria of any other crop, such. B. plants of the genus Solanum, Nicotiana, Brassica, Beta, Pisum, Phaseolus, Glycine, Helianthus, Allium, Triticum, Hordeum, Avena, Setaria, Oryza, Cydonia, Pyrus, Malus, Rubus, Fragaria, Prunus, Arachis, Seeale, Panicum Saccharum, Coffea, Camellia, Musa, Pineapple, Vitis, Sorghum, Helianthus or Citrus.

Der Einbau transformierter Gene in Plastide oder Mitochondrien läßt sich mit Hilfe üblicher Methoden nachweisen, z. B. durch genetische Kreuzungsexperimente oder mit molekularbiologischen Nachweisverfahren, insbesondere dem Nachweisverfahren nach Southern für Plastide- und Mitochondrien-DNA sowie dem Enzymaktivitäts-Test.The incorporation of transformed genes into plastids or mitochondria can be detected by conventional methods, eg. As by genetic crossing experiments or molecular biological detection methods, in particular the detection method according to Southern for plastid and mitochondrial DNA and the enzyme activity test.

Das Nachweisverfahren nach Southern kann beispielsweise folgendermaßen durchgeführt werden: Die DNA, die aus Piastiden oder Mitochondrien transformierter Zellen oder Protoplasten isoliert wurde, wird nach Behandlung mit Restriktionsenzymen in einem 1%igen Agarose-Gel einer Elektrophorese unterworfen, anschließend auf eine Nitrocellulose-Membran überführt (Southern et al., [1975]) und mit einer in vitro markierten DNA, deren Existenz festgestellt werden soll, hybridisiert. Die DNA kann in vitro mit einer spezifischen Aktivität zwischen 5 χ 10aund10 χ 108c. p.m./Mikrogramm mit Hilfe der „nicktranslation" (Rigby et al., [1977]) markiert werden. Die Filter werden anschließend dreimal für eine Stunde mit einer wäßrigen Lösung einer 0,03 M-Natriumcitrat-Lösung und einer 0,3 M-Natriumchlorid-Lösung bei einer Temperatur von 65°C gewaschen. Die hybridisierte DNA wird durch eine ein- bis mehrtägige Autoradiographie auf einem Röntgen-Film sichtbar gemacht.The detection method according to Southern can be carried out, for example, as follows: the DNA isolated from plastids or mitochondria of transformed cells or protoplasts is subjected to electrophoresis after treatment with restriction enzymes in a 1% agarose gel, and then transferred to a nitrocellulose membrane ( Southern et al., [1975]) and hybridized with an in vitro labeled DNA whose existence is to be determined. The DNA can be labeled in vitro at a specific activity between 5χ 10 a and 10χ 10 8 cpm / microgram by nick translation (Rigby et al., 1977) .The filters are then washed three times for one hour with a aqueous solution of a 0.03 M sodium citrate solution and a 0.3 M sodium chloride solution at a temperature of 65 ° C. The hybridized DNA is visualized by one to several days of autoradiography on an X-ray film.

Die Zellen, die mit dem gewünschten Gen transformiert sind, werden mit Hilfe von an sich bekannten Methoden isoliert. Diese Methoden beinhalten Selektion und Screening. Die Selektion nuklearer Gene wird bei Fraley et al., (1983); Herrera-Estrella et al., (1983); und Bevan et al., (1983) beschrieben. Ein Screening kann auf ß-Galaktosidase (Helmer et al., [1984]), auf Nopalin-Synthase oderOctopin-Synthase (Wostemeyer et al., [1984]; DeGreveetal., [1982]) oder auf Atrazin-Resistenz erfolgen. Vor dieser Erfindung wußte man nicht, daß Plastide oder Mitochondrien durch direkten Gentransfer transformiert werden können. Dementsprechend war es vorher nicht möglich, brauchbare Gene in Form isolierter DNA funktionsfähig in diese Organellen einzuführen. Gene werden als funktionsfähig in das Genom von Piastiden oder Mitochondrien eingebaut betrachtet, wenn sie eingebaut zur Replikation und Expression fähig sind. Plasmide und Mitochondrien all jener Pflanzen, die aus Protoplasten regenerierbar sind, können ebenfalls erfolgreich mit Hilfe des erfindungsgemäßen Verfahrens transformiert werden. Bis zum heutigen Zeitpunkt war es bisher nicht möglich, Plastide und Mitochondrien von Vertretern aus der Familie der Gramineae (Gräser), die ebenso Getreidearten, wie z.B. Mais, Weizen, Reis, Gerste, Hafer, Hirse, Roggen und Sorghum umfassen, genetisch zu manipulieren. Die vorliegende Erfindung erlaubt nunmehr die genetische Transformation von Piastiden und Mitochondrien von Gramineen-Zellen, einschließlich der genannten Getreide-Zellen, unter Anwendung der direkten Gentransformation. In gleicher Weise ist es möglich, die Transformation von Piastiden und Mitochondrien jeder beliebigen anderen Kulturpflanze durchzuführen, wie z. B. Pflanzen der Gattung Solanum, Nicotiana, Brassica, Beta, Pisum, Phaseolus, Glycine, Helianthus, Allium, Triticum, Hordeum, Avena, Setaria, Oryza, Cydonia, Pyrus, Malus, Rubus, Fragaria, Prunus, Arachis, Secaie, Panicum, Saccharum, Coffea, Camellia, Musa, Ananas, Vitis, Sorghum, Helianthus oder Citrus. Der Einbau transformierter Gene in Plastide oder Mitochondrien läßt sich mit Hilfe üblicher Methoden nachweisen, z. B. durch genetische Kreuzungsexperimente oder mit molekularbiologischen Nachweisverfahren, insbesondere dem Nachweisverfahren nach Southern für Plastid-und Mitochondrien-DNA sowie dem Enzymaktivitäts-Test.The cells transformed with the desired gene are isolated by methods known per se. These methods include selection and screening. The selection of nuclear genes is described in Fraley et al., (1983); Herrera-Estrella et al., (1983); and Bevan et al., (1983). Screening may be for β-galactosidase (Helmer et al., [1984]), nopaline synthase or octopine synthase (Wostemeyer et al., [1984]; DeGreve et al., 1982) or for atrazine resistance. Prior to this invention, it was not known that plastids or mitochondria could be transformed by direct gene transfer. Accordingly, it has previously not been possible to operably introduce useful genes in the form of isolated DNA into these organelles. Genes are considered to be operably incorporated into the genome of plastids or mitochondria when incorporated into replication and expression. Plasmids and mitochondria of all those plants that are regenerable from protoplasts can also be successfully transformed by the method of the invention. To date, it has not been possible to date to detect plastids and mitochondria from members of the Gramineae family (grasses), which also have cereals, such as, e.g. Corn, wheat, rice, barley, oats, millet, rye and sorghum include genetically manipulating. The present invention now permits the genetic transformation of plastids and mitochondria of Gramineae cells, including the said cereal cells, using direct gene transformation. In the same way it is possible to carry out the transformation of plastids and mitochondria of any other crop, such. B. plants of the genus Solanum, Nicotiana, Brassica, Beta, Pisum, Phaseolus, Glycine, Helianthus, Allium, Triticum, Hordeum, Avena, Setaria, Oryza, Cydonia, Pyrus, Malus, Rubus, Fragaria, Prunus, Arachis, Secaie, Panicum , Saccharum, Coffea, Camellia, Musa, Pineapple, Vitis, Sorghum, Helianthus or Citrus. The incorporation of transformed genes into plastids or mitochondria can be detected by conventional methods, eg. As by genetic crossing experiments or molecular biological detection methods, in particular the detection method according to Southern for plastid and mitochondrial DNA and the enzyme activity test.

Ein Vorteil bei der Einführung von Genen in Plastide oder Mitochondrien durch direkten Gentransfer liegt in der Möglichkeit der gleichzeitigen Inaktivierung unerwünschter Gene begründet, die bereits im Plastid- oder Mitochondriengenom vorhanden sind. Dies ist deshalb möglich, weil der Einbau fremder Gene ins Plastid- oder Mitochondriengenom bei Anwendung des direkten Gentransfers nicht notwendigerweise über eine homologe Rekombination verläuft. So wird beispielsweise ein Donor-DNA-Molekül, das eine Atrazin-resistente Form von psbA trägt nicht notwendigerweise an der Stelle, wo sich das entsprechende Atrazin-sensitive Gen befindet, integriert. Da aber auf der anderen Seite die Plastid- und Mitochondriengenome relativ klein sind, ist es durchaus möglich, die transformierten Pflanzenzellen zu selektieren und diejenigen herauszufinden, bei denen die Donor-DNA zufälligerweise in irgendeine gewünschte Funktion des Empfänger-Genoms eingebaut wurde. Der direkte Gentransfer in Plastid- und Mitochondriengenome eröffnet daher auch einen Weg zu Inaktivierung von Genen, der bisher nicht durchführbar war. Mit Hilfe eines entsprechenden Screenings ist es somit beispielsweise möglich, transformierte Pflanzenzellen zu finden, in denen das Atrazin-sensitive psbA-Gen durch den Einbau einer Donor-DNA, die ein Atrazin-Resistenzgen trägt, inaktiviert ist. Ein weiterer Vorteil des direkten Gentransfers in die Genome von Piastiden und Mitochondrien liegt darin, daß diese Genome, im Gegensatz zu nuklearen Genomen, maternal durch das Cytoplasma vererbt werden und daher gewöhnlich nicht durch Pollen auf ihre sexuellen Nachkommen übertragen werden. Daher wird die Möglichkeit einer Übertragung von Genen, die für Kulturpflanzen wünschenswerte Merkmale vermitteln, von Kultur-Pflanzen auf Unkräuter stark herabgesetzt. Pflanzenzellen in Zellkulturen, die mit Hilfe des erfindungsgemäßen Verfahrens transformiert werden, können gegebenenfalls für die Produktion von Polypeptiden verwendet werden, die von den inserierten Genen kodiert werden. Solche Synthese-Produkte schließen beispielsweise das 32-kd-Polypeptid ein, das von psbA exprimiert wird, weiterhin die Chloramphenicol-Acetyltransferase, die Glutathion-S-Transferase und die große Untereinheit der Rubisco.An advantage of introducing genes into plastids or mitochondria by direct gene transfer is the possibility of simultaneous inactivation of unwanted genes already present in the plastid or mitochondrial genome. This is possible because the incorporation of foreign genes into the plastid or mitochondrial genome does not necessarily proceed via homologous recombination when direct gene transfer is used. For example, a donor DNA molecule carrying an atrazine-resistant form of psbA will not necessarily be integrated at the site where the corresponding atrazine-sensitive gene is located. On the other hand, since the plastid and mitochondrial genomes are relatively small, it is quite possible to select the transformed plant cells and find out those in which the donor DNA was accidentally incorporated into any desired function of the recipient genome. Direct gene transfer into plastid and mitochondrial genomes also opens the way to inactivation of genes, which was previously not feasible. With the aid of appropriate screening, it is thus possible, for example, to find transformed plant cells in which the atrazine-sensitive psbA gene is inactivated by the incorporation of a donor DNA carrying an atrazine resistance gene. Another advantage of direct gene transfer into the genomes of plastids and mitochondria lies in the fact that, unlike nuclear genomes, these genomes are inherited maternally by the cytoplasm and are therefore usually not transmitted by pollen to their sexual offspring. Therefore, the possibility of transferring genes that confer desirable traits on crops is greatly reduced by crop plants on weeds. Plant cells in cell cultures transformed by the method of the invention may optionally be used for the production of polypeptides encoded by the inserted genes. Such synthesis products include, for example, the 32 kd polypeptide expressed by psbA, chloramphenicol acetyltransferase, glutathione S-transferase, and the large Rubisco subunit.

Die Pflanzenzellen, die die eingebauten Gene enthalten, können in manchen Fällen auch zu multizellulären Pflanzen regeneriert werden, die das Gen exprimieren und daher die gewünschte neue Eigenschaft besitzen. Jede beliebige Pflanze, die aus Pflanzenzellen, die sich ihrerseits wieder aus Protoplasten ableiten, regenerierbar ist, kann mit Hilfe des erfindungsgemäßen Verfahrens hergestellt werden. . ·The plant cells containing the incorporated genes can in some cases also be regenerated into multicellular plants which express the gene and therefore possess the desired new property. Any plant which can be regenerated from plant cells, which in turn are derived from protoplasts, can be produced by means of the method according to the invention. , ·

Beispiele derartiger, ganzer Pflanzen sind: Solanum spp. (Kartoffel), Petunia spp. (Petunie), Daucus spp. (Karotte), Lycopersicon spp. (Tomate), Brassica spp. (Rübe, Kohl, Blumenkohl etc.), Medicago spp. (Alfalfa), Trifolium spp. (Klee), Zitruns, Atropa, Hyosxyamus, Salpiglossis, Arabidopsis, Digitalis, Cichorium, Gossipium, Glycine, Geranium, Anthirrhinum und Asparagus ein. Die Pflanzen nach an sich bekannten Methoden regeneriert werden; siehe Evans und Bravo, (1983); Dale, (1983); Pflanzen können beispielsweise aus irgendeinem geeigneten Ableger regeneriert werden, wie Zellen, KaIIi, Gewebe, Organe, Knospen, Stecklinge, Schösslinge, Wurzelfasern, Pflänzchen, somatischen Embryonen und andere.Examples of such whole plants are: Solanum spp. (Potato), Petunia spp. (Petunia), Daucus spp. (Carrot), Lycopersicon spp. (Tomato), Brassica spp. (Turnip, cabbage, cauliflower etc.), Medicago spp. (Alfalfa), Trifolium spp. (Clover), Citrus, Atropa, Hyosxyamus, Salpiglossis, Arabidopsis, Digitalis, Cichorium, Gossipium, Glycine, Geranium, Anthirrhinum and Asparagus. The plants are regenerated by methods known per se; see Evans and Bravo, (1983); Dale, (1983); For example, plants may be regenerated from any suitable offshoot, such as cells, cilia, tissues, organs, buds, cuttings, shoots, rootlets, plantlets, somatic embryos, and others.

Die vorliegende Erfindung betrifft ferner Protoplasten, Pflanzenzellen, Zellaggregate, Pflanzen und insbesondere die Samen von Pflanzen, die mit Hilfe des erfindungsgemäßen Verfahrens hergestellt wurden, und zwar so lange, wie die gebildeten Samen das eingebaute Gen und damit die daraus resultierende gewünschte Eigenschaft enthalten. Sie betrifft auch alle Nachkommen von Pflanzen, die mit Hilfe des erfindungsgemäßen Verfahrens hergestellt wurden, sowohl sexuelle als auch vegetative Nachkommen.The present invention further relates to protoplasts, plant cells, cell aggregates, plants, and more particularly to the seeds of plants produced by the method of the invention, as long as the seeds formed contain the incorporated gene and thus the desired property resulting therefrom. It also relates to all progeny of plants produced by the method of the invention, both sexual and vegetative progeny.

Sexuelle Nachkommen können durch Selbst- oder Fremdbestäubung erhalten werden, wobei Nachkommen auch alle Kreuzungs- und Fusionsprodukte mit dem im vorangehenden Paragraphen definierten, transformierten pflanzlichen Material einschließen, sofern diese Nachkommen die durch die Transformation eingeführte Eigenschaft aufweisen. Samen und Nachkommen herbizid resistenter oder toleranter Eltern, die eine instabile Herbizid-Resistenz oder Toleranz besitzen, können ihre Herbizid-Resistenz oder Toleranz so lange aufrecht erhalten, solange sie in Gegenwart der Herbizide wachsen. Ein bevorzugtes Herbizid ist das Atrazin. Die vorliegende Erfindung erlaubt somit die Herstellung genetisch manipulierter Pflanzen, die in der Lage sind, eine Behandlung mit Herbiziden, wie z. B. mit Atrazin, in Kozentrationen, die lethal sind für sensitive Pflanzen, zu überleben.Sexual progeny can be obtained by self or cross pollination, with progeny also including all cross and fusion products with the transformed plant material defined in the preceding paragraph, provided that these progeny have the property introduced by the transformation. Seeds and progeny of herbicidally resistant or tolerant parents having unstable herbicide resistance or tolerance may maintain their herbicide resistance or tolerance as long as they grow in the presence of the herbicides. A preferred herbicide is the atrazine. The present invention thus allows the production of genetically engineered plants that are capable of treatment with herbicides such. With atrazine, in concentrations which are lethal to sensitive plants.

Ausführungsbeispielembodiment

Die Erfindung wird nachstehend an einigen Beispielen näher erläutert.The invention is explained in more detail below with reference to some examples.

Beispiele:Examples:

Einzelne Verfahrensmaßnahmen der nun folgenden Beispiele können in allgemeiner Form bei Maniatis et al., (1983) nachgelesen werden. Die Enzyme können von New England Biolabs bezogen werden und sind mit Ausnahme der im Text speziell genannten Abweichungen gemäß den Richtlinien des Herstellers zu verwenden.Individual procedures of the following examples can be found in general terms in Maniatis et al., (1983). The enzymes may be obtained from New England Biolabs and, except as specifically stated in the text, should be used in accordance with the manufacturer's guidelines.

Beispiel 1: Konstruktion von pCAT (vgl. Abb. 1)Example 1: Construction of pCAT (see Fig. 1)

1) Das Vektor Plasmid pMON 187, dasein Kmr Gen von Tn 903 trägt, wird mit Hindlll und BamHI verdaut.1) The vector plasmid pMON 187 carrying a Km r gene of Tn 903 is digested with HindIII and BamHI.

2) Ein promotor-freies CAT Gen wird als Gel-gereinigtes Hindlll/BamHI Fragment des Plasmids pSOV (Gorman et al., [1982]) isoliert.2) A promoter-free CAT gene is isolated as a gel-purified HindIII / BamHI fragment of the plasmid pSOV (Gorman et al., [1982]).

3) Das Zusammenfügen des Fragments von Schritt 2) mit dem Fragment von Schritt 1) liefert ein Plasmid, das in E. coli HB101 ' transformiert wird. Die Selektionierung erfolgtauf Apr. EineKms Kolonie besitzt das Plasmid mit der in Abbildung 1 angegebenen Struktur für pCAT".3) The assembly of the fragment of step 2) with the fragment of step 1) yields a plasmid which is transformed into E. coli HB101 '. The selection is made on Ap r . One Km s colony has the plasmid with the structure for pCAT "given in FIG.

Beispiel 2: Alternative Konstruktion von pCATExample 2: Alternative Construction of pCAT

Beispiel 2 kann mit einem anderen Plasmid als pMON 187 wiederholt werden. Ein geeignetes Plasmid, welches das KmrGen von Tn 903 besitzt, kann folgendermaßen konstruiert werden:Example 2 can be repeated with a plasmid other than pMON 187. A suitable plasmid having the Km r gene of Tn 903 can be constructed as follows:

Ein 1,2kbAvall Fragment, welches das Kmr-Gen von Tn 903 enthält, wird von dem Plasmid pA02 (Oca et al., [1982]) isoliert. Die Enden des Avail Fragmentes werden mit Hilfe der Klenow-Polymerase aufgefüllt und es werden BamHI Linker mit den glatten Enden der Fragmente verknüpft. Die DNA wird anschließend mit den Restriktionsenzymen Tagl und BamHI behandelt und in das Plasmid pBR327 eingespleißt, welches zuvor mit CIaI und BamHI verdaut wurde. Recombinanten, die das Tn903 Fragment besitzen, übertragen Kmr auf E. coli.A 1.2kbAvall fragment containing the Km r gene of Tn 903 is isolated from the plasmid pA02 (Oca et al., [1982]). The ends of the Avail fragment are filled in using Klenow polymerase and BamHI linkers are linked to the blunt ends of the fragments. The DNA is then treated with the restriction enzymes Tagl and BamHI and spliced into the plasmid pBR327, which was previously digested with CIaI and BamHI. Recombinants possessing the Tn903 fragment confer Km r on E. coli.

Beispiel 3: Konstruktion von p32CAT (vgl. Abb. 1)Example 3: Construction of p32CAT (see Fig. 1)

Diefolgenden Arbeitsschritte werden durchgeführt um den psbA Promotor mit dem promotorfreien CAT° Gen zu verknüpfen.The following procedures are performed to link the psbA promoter to the promoterless CAT ° gene.

4) pCAT0 wird mit Smal und Hindlll verdaut4) pCAT 0 is digested with SmaI and HindIII

5) Ein Gel-gereinigtes 161 bp Smal/Hindlll Fragment, das den psbA Promotor enthält wird aus dem Plasmid pAH484 isoliert. Das rekombinante Plasmid pAH484 enthält das 3,68 kb EcoRI Fragment einer Chlorplasten DNA aus (Atrazin-) Herbizid-resistenten Amaranthus hybridus, die in pBR322 kloniert wurde. (Hirschberg und Mclntosch, [1983]).5) A gel-purified 161 bp SmaI / HindIII fragment containing the psbA promoter is isolated from the plasmid pAH484. The recombinant plasmid pAH484 contains the 3.68 kb EcoRI fragment of chloroplast DNA from (atrazine) herbicide-resistant Amaranthus hybridus cloned into pBR322. (Hirschberg and McIntosch, [1983]).

6) Das in Schritt 5 isolierte Fragment wird mit dem größeren Fragment, das aus Schritt 4 hervorgeht, verbunden. Die Verknüpfung führt zu p32CAT, das Cm' auf transformierte E. coli-Zellen überträgt.6) The fragment isolated in step 5 is linked to the larger fragment resulting from step 4. The linkage leads to p32CAT, which transmits Cm 'to transformed E. coli cells.

Beispiel 4: Konstruktion von Plasmid puCHI, ein Vektor mit einem psbA Gen und einer Chimären psbA/CAT Gen-Konstruktion (vgl. Abb. 2)Example 4: Construction of plasmid puCHI, a vector with a psbA gene and a chimeric psbA / CAT gene construction (see Fig. 2)

Das Plasmid pUCHI wird in 5 Schritten indem pUC8-Vector konstruiert. (Schritte 7 bis 11):The plasmid pUCHI is constructed in 5 steps in the pUC8 vector. (Steps 7 to 11):

7) (Abb. 1) Ein 3,6kb EcoRI Fragment (Gel-gereinigt), welches das komplette psbA Gen enthält, wird von dem oben beschriebenen Plasmid pAH484 isoliert.7) (Figure 1) A 3.6kb EcoRI fragment (gel-purified) containing the complete psbA gene is isolated from plasmid pAH484 described above.

8) pUC8(Abb.2) wird an seiner einzigen EcoRI-Stelle linearisiert.8) pUC8 (Fig. 2) is linearized at its unique EcoRI site.

9) Das linearisierte pUC8 Fragment aus Schritt 8) wird mit dem in Schritt 7) beschriebenen Fragment verknüpft. Die Transformation von E.coli ergibt Apr-Kolonien, die das gewünschte, eingebaute Fragment besitzen, wobei eine dieser Kolonien mit pUC8-32 bezeichnet wird.9) The linearized pUC8 fragment from step 8) is linked to the fragment described in step 7). The transformation of E. coli gives Ap r colonies possessing the desired, incorporated fragment, one of these colonies being designated pUC8-32.

10) Ein Gel-gereinigtes 1,8kbXhol/BamHI Fragment wurde von p32CAT isoliert.10) A gel-purified 1.8 kb Xhol / BamHI fragment was isolated from p32CAT.

11) Das aus Schritt 9) resultierende Plasmid, pUC8-32 wird teilweise mit Sail und vollständig mit BamHI verdaut. Die Verknüpfung mit dem aus Schritt 10) resultierenden Fragment und Selektionierung für Cmr nach erfolgter Transformation von E.coli, führt zu einer E.coli Kolonie, die pUCHI enthält.11) The resulting plasmid from step 9), pUC8-32, is partially digested with Sail and completely digested with BamHI. The linkage with the fragment resulting from step 10) and selection for Cm r after transformation of E. coli leads to an E. coli colony containing pUCHI.

Beispiel 5: Konstruktion von pBRCAT, dasein chimäres psbA/CAT Gen enthältExample 5: Construction of pBRCAT containing a chimeric psbA / CAT gene

Die Konstruktion von pBRCATwird durch Verknüpfung der folgenden drei DNA-Fragmente erreicht:The construction of pBRCAT is achieved by linking the following three DNA fragments:

a) dem EcoRI/Hindlll (Promoter) Fragment (ca. 660 bp) aus dem psbA Gen im Plasmid pAH484 (Schritt 12);a) the EcoRI / HindIII (promoter) fragment (about 660 bp) from the psbA gene in plasmid pAH484 (step 12);

b) dem Hindlll/BamHI Fragment von pSVO mit einem promoterfreien CAT Gen (Schritt 2;) undb) the HindIII / BamHI fragment of pSVO with a promoter-free CAT gene (step 2;) and

c) dem durch EcoRi/BamHI verdauten pBR322 als Vektor (Schritt 13).c) EcoRi / BamHI digested pBR322 as a vector (step 13).

14) Die Verknüpfung führt zu einem Plasmid, pBRCAT, das Cmr auf E.coli Wirtszellen überträgt, in welches dieses Plasmid durch Transformation eingeschleust wird.14) The linkage leads to a plasmid, pBRCAT, which transmits Cm r to E.coli host cells, into which this plasmid is introduced by transformation.

Beispiel 6: Einschleusung von Donor-DNA in pflanzliche ProtoplastenExample 6: Introduction of donor DNA into plant protoplasts

Tabak-Protoplasten mit einer Populationsdichte von 2 · 106 pro ml werden in 1 ml eines ^-Mediums (vgl. Z. Pflanzenphysiologie 78, 453-45 [1976]; Mutation Research 81,165-175 [1981]) das 0,1 mg/Liter 2,4 Dichlorphenoxyessigsäure, 1,0 mg/Liter 1-Naphthy!essigsäure und 0,2 mg/Liter 6-Benzylaminopurin enthält suspendiert. Protoplasten werden aus einer Enzymsuspension durch Flotation auf 0,6M Sucorose bei einem pH5,8 und anschließender Sedimentation 5 Minuten bei 100g in 0,17 M Calciumchlorid bei pH 5,8 erhalten. Zu dieser Suspension werden nacheinander 0,5ml 40%iges Polyethylenglykol (PEG) mit einem Molekulargewicht von 6000 in modifiziertem (nach'dem Autoklavieren wieder auf einen pH-Wert von 5,8 eingestellt) F-Medium (Nature 296, 72-74 [1982]), sowie 65 Mikroliter einer wäßrigen Lösung mit 15 Mikrogramm Donor-DNA (p32CAT, pUCHI, oder pBRCAT) und 50 Mikrogramm Kalbsthymus-DNA hinzugefügt. Dieses Gemisch wird 30 Minuten bei 26°C kultiviert, wobei die Lösung gelegentlich bewegt und anschließend schrittweise mit F-Medium verdünnt wird. Die Protoplasten werden durch Zentrifugieren (5 Minuten bei 100g) isoliert und anschließend in 30ml frischem K3-Medium resuspendiert. Die weitere Inkubation erfolgt bei 24°C im Dunkeln in 10 ml Portionen in Petri-Schalen mit einem Querschnitt von 10cm. Nach drei Tagen wird das Kulturmedium in jeder Petri-Schale mit 0,3 Volumenteilen eines frischen K3-Mediums verdünnt und für weitere 4Tage bei 24°C und 3000 lux inkubiert. Nach insgesamt 7 Tagen werden die Klone, die sich aus den ProtoplastenTobacco protoplasts with a population density of 2 × 10 6 per ml are dissolved in 1 ml of a medium (compare Z. Pflanzenphysiologie 78, 453-45 [1976]; Mutation Research 81, 165-175 [1981]) containing 0.1 mg / Liter of 2,4-dichlorophenoxyacetic acid containing 1.0 mg / liter of 1-naphthylacetic acid and 0.2 mg / liter of 6-benzylaminopurine. Protoplasts are obtained from an enzyme suspension by flotation to 0.6 M sucrose at pH 5.8 and subsequent sedimentation for 5 minutes at 100 g in 0.17 M calcium chloride at pH 5.8. 0.5 ml of 40% strength polyethylene glycol (PEG) having a molecular weight of 6000 in modified (after autoclaving back to a pH of 5.8) are added to this suspension in succession. F-Medium (Nature 296, 72-74) 1982]) and 65 microliters of aqueous solution containing 15 micrograms of donor DNA (p32CAT, pUCHI, or pBRCAT) and 50 micrograms of calf thymus DNA. This mixture is cultured for 30 minutes at 26 ° C, with the solution occasionally agitated and then gradually diluted with F medium. The protoplasts are isolated by centrifugation (5 minutes at 100g) and then resuspended in 30ml fresh K 3 medium. Further incubation is carried out at 24 ° C. in the dark in 10 ml portions in Petri dishes with a cross section of 10 cm. After three days, the culture medium in each Petri dish is diluted with 0.3 volume of fresh K 3 medium and incubated for a further 4 days at 24 ° C and 3000 lux. After a total of 7 days, the clones arising from the protoplasts

entwickelt haben, in ein mit 1%iger Ägarose verfestigtes Kulturmedium eingebettet, das 10mg/Lite'r Chloramphenicol enthält und bei 240C in Dunkelheit nach der „bead type culture method" (Plant Cell Reports, 2, 244-247 [1983]) kultiviert. Das Kulturmedium wird alle 5 Tage durch ein frisches Medium der selben Art ersetzt. Nach 3 bis 4 Wochen ununterbrochener Kultivierung inChloramphenicol-haltigem Kultur-Medium, werden die resistenten KaIIi von 2 bis 3 mm Durchmesser auf ein mit Agar verfestigtes LS Kultur-Medium (Physiol. Plant. 18,100-127 [1965]), das O,05mg/Liter2,4-Dichlorphenoxyessigsäure, 2 mg/Liter 1-Naphthylessigsäure, 0,1 mg/Liter 6-Benzylaminopurin, 0,1 mg/Liter Kinetin und 10 mg/Liter Chloramphenicol enthält, übertragen. Chloramphenicol resistente Nicotiana tabacum Petit Havana SRI Pflanzen erhält man durch Sprossinduktion auf LS-Medium mit 10 ml/Liter Chloramphenicol und 0,2 mg/Liter 6-Benzylaminopurin undanschließenderWurzelindUntionauf T-Medium (Science 163,85-87, [1969]).have developed, embedded in a solidified culture medium with 1% Ägarose containing 10mg / Lite'r chloramphenicol and at 24 0 C in darkness after the "bead type culture method" (Plant Cell Reports, 2, 244-247 [1983] The culture medium is replaced every 5 days by a fresh medium of the same species After 3 to 4 weeks of continuous culture in chloramphenicol-containing culture medium, the resistant cells of 2 to 3 mm in diameter are placed on agar-solidified LS culture medium. Medium (Physiol Plant, 18, 100-127 [1965]) containing O, 05 mg / liter 2,4-dichlorophenoxyacetic acid, 2 mg / liter of 1-naphthylacetic acid, 0.1 mg / liter of 6-benzylaminopurine, 0.1 mg / liter of kinetin chloramphenicol-resistant Nicotiana tabacum Petit Havana SRI plants are obtained by sprout induction on LS medium with 10 ml / liter chloramphenicol and 0.2 mg / liter 6-benzylaminopurine and subsequent rooting on T-medium (Science 163, 85-8 7, [1969]).

Die Selektion Chloramphenicol resistenter KaIIi und Pflanzen erfolgt im wesentlichen entsprechend den bei De Blocketal., (1984) gemachten Angaben.The selection of chloramphenicol-resistant cells and plants is essentially in accordance with the information provided by De Blocketal, (1984).

Beispiel 7: Screening auf Atrazin-resistente Chioroplasten-TransformantenExample 7: Screening for atrazine-resistant chloroplast transformants

a) KaIIia) KaIIi

Eine Atrazin Toxizitäts-Kurve wird für nicht-transformierte KaIIi in einem Konzentrationsbereich von 1 bis lOMikromol Atrazin und verschiedenen Lichtintensitäten erstellt. Mutmaßlich von Chioroplasten-Transformanten stammender KaIIi und Kontroll-KaIIi werden auf Nähragar-Platten aufgetragen, mit Atrazin-Konzentrationen und Lichtintensitäten, die das Chlorophyll vollständig aus den Kontrollgeweben herausbleichen, behandelt. Die Resistenz gegenüber Atrazin wird visuell, aufgrund der anhaltenden Ergrünung resistenter Gewebe, geprüft.An atrazine toxicity curve is generated for untransformed kaIIi in a concentration range of 1 to lomicromole atrazine and various light intensities. Chimeric transformant-derived kaIIi and control kaIIi are applied to nutrient agar plates, treated with atrazine concentrations and light intensities that completely bleach the chlorophyll out of the control tissues. Resistance to atrazine is visually examined due to the persistent greening of resistant tissues.

b) Ganze Pflanzenb) Whole plants

Pflanzen, die von Chioroplasten-Transformanten erhalten wurden, werden nach den folgenden Methoden auf Atrazin-Resistenz geprüft:Plants obtained from chloroplast transformants are tested for atrazine resistance by the following methods:

Chlorophyll-Fluoreszenz-Induktion in Blättern. Wird der Elektronentransport auf der reduzierenden Seite von Photosystem Il gehemmt, wie beispielsweise durch Atrazin, dann wird die Chlorophyll absorbierte Strahlungs-Energie als Fluoreszenz reemittiert. Diese Fluoreszenz kann auf der Blattoberfläche gemessen werden. Die Fluoreszenzmessung wird an Blattscheibchen, die horizontal über ein transparentes, Lucite-Fenster gespannt sind, wie bei Nalkin et al., (1981) beschrieben, vorgenommen. (Lucite steht für polymerisiertes Harz aus Methylmethacrylat.) Das Erreger-Licht stammt von einem de getriebenen Projektor, das, nach Passage eines Filters, in einem Band von aktinischem Licht von 500 bis600nm mit Intensitäten um 1OnE χ cm~2xs~1 resultiert. Die Dauer des Erreger-Lichtes beträgt 3 ms. Das Erreger-Licht ist senkrecht zur Blattoberfläche ausgerichtet und die Fluoreszenz von derselben Oberfläche wird mit Hilfe eines flexiblen Lichtführungssystems gesammelt und anschließend nach Passage eines Cut-off Filters (600 nm) auf einen rotempfindlichen Photomultiplier übertragen. Die Fluoreszenzdurchgänge werden auf einem Oszilloskop aufgezeichnet und direkt verfilmt.Chlorophyll fluorescence induction in leaves. If the electron transport on the reducing side of Photosystem II inhibited, such as by atrazine, then the chlorophyll absorbed radiation energy is re-emitted as fluorescence. This fluorescence can be measured on the leaf surface. Fluorescence measurement is made on leaf discs stretched horizontally across a transparent lucite window as described by Nalkin et al. (1981). (Lucite stands for polymerized resin of methyl methacrylate.) The excitation light comes from a de-driven projector, which, after passage of a filter, in a band of actinic light of 500 to 600nm with intensities around 1OnE χ cm ~ 2 xs ~ 1 results. The duration of the excitation light is 3 ms. The excitation light is oriented perpendicular to the sheet surface and the fluorescence from the same surface is collected by means of a flexible light guide system and then transferred to a red-sensitive photomultiplier after passage of a cut-off filter (600 nm). The fluorescence passages are recorded on an oscilloscope and directly filmed.

c) Licht modulierte Flotationc) light-modulated flotation

Läßt man ausgeschnittene Blattstückchen auf einem Phosphat-Puffer haltigen Detergenz aufschwimmen, bleiben sie an der Oberfläche, solange die Photosynthese anhält, die für ein hohes O2ZCO2 Verhältnis in den Interzellularräumen sorgt. Läßt man die Blattstückchen dagegen im Dunkeln aufschwimmen oder fügt man dem Medium Photosynthese hemmende Herbizide bei, dann verlieren sie sehr schnell ihren Auftrieb und gehen unter. Eine Assay-Methode für Atrazin-Resistenz ist bei Hensley (1981) beschrieben. Blattstückchen werden in Röhrchen mit atrazinhaltiger Lösung gegeben und unter Vakuum gesetzt. Die Blattstückchen werden schnell von der Lösung durchdrungen und sinken auf den Grund der Lösung. Das Vakuum wird anschließend aufgehoben, eine Bicarbonat Lösung wird zugegeben und die Röhrchen dem Licht ausgesetzt. Wird die Photosynthese nicht durch Atrazin gehemmt, dann stellt der photosynthetisch erzeugte Sauerstoff innerhalb des Gewebes die Schwimmfähigkeit wieder her und die Blattstückchen schwimmen zur Oberfläche. Atrazinsensitive Stückchen verbleiben dagegen am Boden.Letting cut-out pieces of leaf float on a phosphate-buffered detergent, they remain on the surface as long as the photosynthesis stops, which ensures a high O 2 ZCO 2 ratio in the intercellular spaces. On the other hand, if the leaf pieces are allowed to float in the dark or if the medium containing photosynthesis inhibits herbicides, they quickly lose their buoyancy and go under. An assay method for atrazine resistance is described in Hensley (1981). Leaf pieces are placed in tubes containing atrazine-containing solution and placed under vacuum. The leaf pieces are quickly penetrated by the solution and sink to the bottom of the solution. The vacuum is then released, a bicarbonate solution is added and the tubes exposed to light. If photosynthesis is not inhibited by atrazine, the photosynthetically produced oxygen within the tissue restores buoyancy and the leaf fragments swim to the surface. Atrazine sensitive pieces, however, remain on the ground.

Beispiel 8: Transformation von Zellen von Brassica rapa (vgl. Just Right)Example 8: Transformation of Brassica rapa cells (see Just Right)

Brassica rapa Protoplasten werden mit einem geeigneten Osmotikum gewaschen und in einer Populationsdichte von 5 · 106pro ml in einem Kultur-Medium suspendiert, das entsprechend den Anweisungen in (Protoplast 83, Proceedings Experientia Supplementum, Birkhäuser Verlag, Basel, Vol. 45 [1983], 44-45) hergestellt wird. 40%igesPolyethylenglykol (PEG) mit einem Molekulargewicht von 6000, gelöst in modifiziertem F-Medium (pH 5,8) (vgl. Beispiel 1 b), wird mit der Protoplastensuspension bis zu einer Endkonzentration von 13 % PEG vermischt. Zu diesem Gemisch wird anschließend sofort eine Lösung bestehend aus 50 Mikrogramm des mit Endonuklease Sal I verdauten Plasmids pBRCAToder p32CAT und 60 Mikrogramm Wasser hinzugefügt. Unter gelegentlichem Rühren wird diese Mixtur 30 Minuten bei 2O0C bis 250C inkubiert. Dann werden dreimal 2 ml modifiziertes F-Medium (insgesamt 6ml) und zweimal 2ml Kultur-Medium (insgesamt 4ml) in 5 Minuten-Intervallen hinzugegeben. Die Protoplastensuspension wird auf Petri-Schalen mit 10cm Querschnitt übertragen und mit zusätzlichem Kultur-Medium auf ein Gesamtvolumen von 20ml ergänzt. Diese Protoplastensuspensionen werden 45 Minuten bei 260C im Dunkeln inkubiert. Die Protoplasten werden durch 5minütige Sedimentation bei 100g isolierten einem zunächst flüssigen, später durch Agarose Gel verfestigten Kultur-Medium aufgenommen und nach der „bead type culture method" (Plant Cell Reports, 2,244-247 [1983]) kultiviert. Nach vier Tagen, im Entwicklungsstadium der ersten Zellteilung, wird Chloramphenicol in einer Konzentration von 10mg/Literzu den Kulturen hinzugegeben. Das flüssige Kultur-Medium, das die Agarose-Segmente umgibt, wird alle vier Tage durch frische, chloramphenicolhaltige Nährlösung ersetzt. Nach vier Wochen werden die chloramphenicolresistenten Klone isoliert und anschließend weiter kultiviert, indem sie wöchentlich mit chloramphenicolhaltiger Nährlösung versorgt werden dOmg/Liter).Brassica rapa protoplasts are washed with a suitable osmoticum and suspended at a population density of 5 x 10 6 per ml in a culture medium prepared according to the instructions in (Protoplast 83, Proceedings Experientia Supplementum, Birkhäuser Verlag, Basel, Vol. 45 [1983 ], 44-45). 40% polyethylene glycol (PEG) having a molecular weight of 6000 and dissolved in modified F medium (pH 5.8) (see Example 1b) is mixed with the protoplast suspension to a final concentration of 13% PEG. To this mixture is then immediately added a solution consisting of 50 micrograms of the endonuclease Sal I digested plasmid pBRCAT or p32CAT and 60 micrograms of water. With occasional stirring, this mixture is incubated at 2O 0 C to 25 0 C for 30 minutes. Then, 3 ml of 2 ml of modified F medium (total 6 ml) and 2 ml of 2 ml culture medium (4 ml total) are added at 5 minute intervals. The protoplast suspension is transferred to Petri dishes with a cross section of 10 cm and supplemented with additional culture medium to a total volume of 20 ml. These protoplast suspensions are incubated for 45 minutes at 26 ° C. in the dark. The protoplasts are taken up by sedimentation for 5 minutes with 100 g of an initially liquid culture medium, which is later solidified by agarose gel, and cultured by the "bead type culture method" (Plant Cell Reports, 2,244-247 [1983]) Chloramphenicol at a concentration of 10mg / liter is added to the cultures The liquid culture medium surrounding the agarose segments is replaced every four days with fresh chloramphenicol containing broth and after four weeks the chloramphenicol resistant clones are isolated and then further cultivated by weekly feeding with chloramphenicol-containing nutrient solution dOmg / liter).

Beispiel 9: Transformation von ProtoplastenExample 9: Transformation of protoplasts

Man geht aus von Lolium multiflorum-Protoplasten mit einer Konzentration von 2 · 106pro ml in einer 0,4molaren Mannitol-Lösung von pH 5,8. Zu dieser Suspension werden nacheinander 0,5 ml 40% Polyethylenglycol (PEG) mit einem Molekulargewicht von 6000 in modifiziertem (pH 5,8) F-Medium (Nature 296,72-74, [1982]) und 65 Mikroliter einer wäßrigen Lösung mit 50 Mikrogramm des Plasmids p32CAT oder pBRCAT hinzugefügt. Dieses Gemisch wird 30 Minuten bei 26°C und gelegentlichem Umrühren inkubiert und anschließend mit F-Medium verdünnt. Dies geschieht gemäß Beschreibung in (Nature 296, [1982]). Die Protoplasten werden durch Zentrifugation (5 Minuten bei 100g) isoliert und 4ml CC-Kultur-Medium (Potrykus, Harms und Lörz,It is based on Lolium multiflorum protoplasts with a concentration of 2 · 10 6 per ml in a 0.4 molar Mannitol solution of pH 5.8. To this suspension are successively added 0.5 ml of 40% polyethylene glycol (PEG) having a molecular weight of 6000 in modified (pH 5.8) F medium (Nature 296, 72-74, [1982]) and 65 microliters of an aqueous solution 50 micrograms of the plasmid p32CAT or pBRCAT added. This mixture is incubated for 30 minutes at 26 ° C with occasional stirring and then diluted with F medium. This is done as described in (Nature 296, [1982]). The protoplasts are isolated by centrifugation (5 minutes at 100g) and 4ml CC culture medium (Potrykus, Harms and Lörz,

Callus Formation from Cell Culture Protoplasts of Corn [Zea Mays L.],Theor. Appl. Genet. 54,209-214 [1979]) aufgenommen und bei 24°C im Dunkeln inkubiert. Nach 14Tagen werden die sich entwickelnden Zellkulturen in das gleiche Medium überführt, das aber nunmehr Chloramphenicol (10 mg/Liter) enthält. Resistente Kolonien werden auf ein Agar-Medium — das gleiche Medium wie oben 10 mg/Liter Chloramphenicol ohneOsmotikum—, übertragen und anschließend, nachdem sie eine Größe von mehreren Gramm Frischgewicht pro Kolonie erreicht haben, im Hinblick auf die Gegenwart des bakteriellen Gens und die biologische Aktivität des Gens analysiert.Callus Formation from Cell Culture Protoplasts of Corn [Zea Mays L.], Theor. Appl. Genet. 54, 209-214 [1979]) and incubated at 24 ° C in the dark. After 14 days, the developing cell cultures are transferred to the same medium but now containing chloramphenicol (10 mg / liter). Resistant colonies are transferred to an agar medium - the same medium as above 10 mg / liter chloramphenicol without osmoticum - and subsequently, having reached a size of several grams fresh weight per colony, in view of the presence of the bacterial gene and the biological Activity of the gene analyzed.

Beispiel 10: Transformation von kultivierten Zellen von Nicotiana tabacum durch Übertragung von p32CAT, pBRCAT oder pUCHI mit Hilfe der ElektroporationExample 10: Transformation of cultured cells of Nicotiana tabacum by transfer of p32CAT, pBRCAT or pUCHI by means of electroporation

Protoplasten werden erhalten durch Sedimentation von 50 ml einer 10 g-Phasen Suspensionskultur einer Nitrat Reduktase defekten Variante von Nicotiana tabacum, Zeil-Stamm nia-115 (Müller, A. J. und R. Grafe, Mol.Gen. Genet. 161,67-76 [1978]) und Resuspension in 20ml einer Enzym-Lösung (2%CellulaseOnozuka R-10,1% MacerozymeR019 und 0,5%Driselase [erhältlich von der Chemischen Fabrik Schweizerhalle, Basel] in einer Wasch-Lösung [0,3 M Mannitol, 0,04 M Calciumchlorid und 0,5% 2-(N-morpholin)ethansulfonsäure] eingestellt auf pH 5,6 mit KOH) und Inkubation für 3 Stunden auf einer Rundschüttelmaschine bei 240C. Die Protoplasten werden anschließend durch Filtration durch ein Sieb mit einer Maschenweite von 100 Mikrometern von unverdautem Gewebe abgetrennt. Das gleiche Volumen einer 0,6M Sucrose-Lösung wird zugegeben und die erhaltene Suspension 10 Minuten bei 100g zentrifugiert. Die Protoplasten, die an der Oberfläche aufschwimmen werden gesammelt und dreimal durch Sedimentation in der Wasch-Lösung gewaschen.Protoplasts are obtained by sedimentation of 50 ml of a 10 g-phase suspension culture of a nitrate reductase defective variant of Nicotiana tabacum, Zeil strain nia-115 (Müller, AJ and R. Grafe, Mol. Gen. Gen. 161, 67-76. 1978]) and resuspension in 20 ml of an enzyme solution (2% CellulaseOnozuka R-10.1% Macerozyme R019 and 0.5% Driselase [available from Chemische Fabrik Schweizerhalle, Basel] in a washing solution [0.3 M mannitol, 0.04 M calcium chloride and 0.5% 2- (N-morpholino) ethanesulfonic acid] adjusted to pH 5.6 with KOH) and incubation for 3 hours on a rotary shaking machine at 24 0 C. The protoplasts are then removed by filtration through a sieve separated from undigested tissue with a mesh size of 100 microns. The same volume of a 0.6M sucrose solution is added and the resulting suspension centrifuged at 100g for 10 minutes. The protoplasts floating on the surface are collected and washed three times by sedimentation in the washing solution.

Die Transformation wird mit Hilfe der Elektroporation durchgeführt. Die Kammer eines Dialog® „Porators" (erhältlich von Dialog GmbH, Harffstr.34,4000 Düsseldorf, Bundesrepublik Deutschland) wird durch Waschen mit 79%igem Alkohol und anschließend mit 100%igem Alkohol sterilisiert und durch einen Strom steriler Luft aus einem Gebläse mit laminarer Luftströmung getrocknet. Die Protoplasten werden in einer Konzentration von 1 · 106 /ml in einer 0,4M Mannitol-Lösung suspendiert und mit Magnesiumchlorid auf einen Widerstand von 1,4kOhm eingestellt. Anschließend wird pBRCAT, pUCHI oder p32CAT in einer Konzentration von 10 Mikrogramm/ml zugegeben. 0,38 ml Proben dieser Protoplasten-Suspension werden dreimal in Intervallen von 10 Sekunden mit einer Spannung von 1000 oder 2000 Volt beaufschlagt. Die Protoplasten werden anschließend in einer Konzentration von 1 · 106 /ml in 3 ml eines AA-CH Mediums (AA Medium of Climelius, K. et al., Physiol. Plant. 44,273-277 [1978]), kultiviert, welches sowohl durch Erhöhung der Inositolkonzentration auf 100 mg/Liter und derSucrose-Konzentration auf 34g/Liter, als auch durch Zusatz von 0,05 ml/Liter 2-(3-Methyl-2-butenyl)adenin modifiziert wurde und das aufgrund seines, Gehalts von 0,6% Agarose (Sea Plaque, FMC Corp., Marine Colloids Division, P. O. Box 308, Rockland, Maine 04841, USA) verfestigt ist. Nach einer Woche wird die Agarose-Schicht, die die Protoplasten enthält, in 30 ml eines flüssigen AA-CH Mediums überführt, das 10mg/Liter Chloramphenicol enthält. Nach drei Wochen, in deren Verlauf jeweils die Hälfte des Mediums wöchentlich durch frisches Medium der gleichen Zusammensetzung ersetzt wird, können die transformierten Zellkolonien visuell wahrgenommen werden. Vier Wochen nach der Überführung in das chloramphenicolhaltige Medium werden diese Kolonien auf ein AA-Medium (Climelius, K. et al., Physiol. Plant. 44,273-277 [1978]); mit 0,8% Agar übertragen, das 10 mg/Liter Chloramphenicol enthält, für die weitere Kultivierung und Untersuchung.The transformation is carried out with the help of electroporation. The chamber of a Dialog® "Porator" (available from Dialog GmbH, Harffstr. 34, 4000 Dusseldorf, Federal Republic of Germany) is sterilized by washing with 79% alcohol followed by 100% alcohol and by a stream of sterile air from a blower The protoplasts are suspended in a concentration of 1 × 10 6 / ml in a 0.4M mannitol solution and adjusted to a resistance of 1.4 kOhm with magnesium chloride, followed by pBRCAT, pUCHI or p32CAT in a concentration of 10 0.38 ml samples of this protoplast suspension are applied three times at intervals of 10 seconds with a voltage of 1000 or 2000 V. The protoplasts are then in a concentration of 1 × 10 6 / ml in 3 ml of an AA -CH medium (AA Medium of Climelius, K. et al., Physiol. Plant. 44, 273-277 [1978]) cultured by both increasing the inositol concentration to 100 mg / And the sucrose concentration to 34 g / liter, as well as by the addition of 0.05 ml / liter of 2- (3-methyl-2-butenyl) adenine was modified and that due to its, content of 0.6% agarose (Sea Plaque , FMC Corp., Marine Colloids Division, PO Box 308, Rockland, Maine 04841, USA). After one week, the agarose layer containing the protoplasts is transferred to 30 ml of a liquid AA-CH medium containing 10 mg / liter chloramphenicol. After three weeks, during which half of the medium is replaced weekly with fresh medium of the same composition, the transformed cell colonies can be visually perceived. Four weeks after transfer to the chloramphenicol-containing medium, these colonies are seeded on an AA medium (Climelius, K. et al., Physiol. Plant., 44, 273-277 [1978]); with 0.8% agar containing 10 mg / liter chloramphenicol for further cultivation and study.

Analoge Untersuchungen mit Protoplasten von Brassica rapa und Lolium multiflorum führen ebenfalls zu erfolgreichen Transformationen.Analogous studies with protoplasts of Brassica rapa and Lolium multiflorum also lead to successful transformations.

Beispiel 11: Transformation von Chloroplasten von Nicotiana tabacum Zellen durch Transfer der Donor-DNA mit Hilfe der ElektroporationExample 11: Transformation of chloroplasts of Nicotiana tabacum cells by transfer of the donor DNA by means of electroporation

Die Präparation des Elektroporators und der Protoplasten erfolgt gemäß Beispiel 10, bzw. Beispiel 6.The preparation of the electroporator and the protoplasts takes place according to Example 10 or Example 6.

Für die Transformation werden Protoplasten von Nicotiana tabacum in einer Konzentration von 1,6 · 106VmI in einer Mannitol-Lösung resuspendiert (0,4 M, gepuffert mit 0,5% w/v2-(N-Morpholin)-ethansulfonsäure; pH 5,6). Der Widerstand der Protoplasten-Suspension wird in der Porator-Kammer (0,38ml) gemessen und mit einer Magnesiumchlorid-Lösung auf einen Wert zwischen 1 und 1,2 kOh meingestellt. 0,5 ml Proben werden entnommen und kommen in mit einem Deckel verschließbares Plastik-Röhrchen (5ml Volumen), in die zuvor 40 Mikroliter Wasser mit8Mikrogramm Donor-DNA und 20 Mikrogramm Kalbthymus-DNA gegeben wurden, sowie 0,25ml einer Polyethylenglykol-Lösung (24% w/v in 0,4M Mannitol). 9 Minuten nach der Zugabe der DNA werden 0,38 ml Proben in die Elektroporator-Kammer gegeben. 10 Minuten nach Zugabe der DNA wird die Protoplastensuspension in der Kammer mit drei Impulsen (1 000-2 000 Volt) in einem Abstand von 10 Sekunden beaufschlagt. Die behandelten Proben werden in Petrischalen mit 6cm Durchmesser gegeben und 10 Minuten bei 20°C gehalten. Anschließend werden 3 ml K3-Medium mit 0,7% w/v „Sea Plaque Agarose" zu jeder Petrischale zugegeben und der Inhalt der Schale sorgfältig gemischt. Nach der Verfestigung des Inhalts jeder Schale werden die Kulturen einen Tag bei 240C im Dunkeln und 6Tage im Hellen gehalten. Die protoplastenhaltige Agarose wird dann in vier Teile zerschnitten und in ein flüssiges Medium eingebracht. Die Protoplasten werden anschließend nach der „bead type culturing method" kultiviert. Kalli-Gewebe, das durch Selektion des transformierten Materials mit Chloramphenicol erhalten wird und Pflanzen, die daraus regeneriert werden enthalten das CAT-Enzym (Chloramphenicol-Acetyl-Transferase) als Produkt des CAT-Gens.-Die Elektroporation führt zu einer 5 bis 10fachen Erhöhung der Transformations-Frequenz verglichen mit einer Methode ohne Elektroporation. Analoge Untersuchungen mit Brassica rapa c. v. Just Right und Lolium multiflorum ergaben ebenfalls einen Anstieg der Transformations-Frequenz in dergleichen Größenordnung. -For transformation, protoplasts of Nicotiana tabacum are resuspended in a concentration of 1.6 x 10 6 VmI in a mannitol solution (0.4 M buffered with 0.5% w / v 2 - (N-morpholine) -ethanesulfonic acid; 5.6). The resistance of the protoplast suspension is measured in the Porator chamber (0.38 ml) and adjusted to a value between 1 and 1.2 kOh with a magnesium chloride solution. 0.5 ml samples are withdrawn and placed in a capped plastic tube (5 ml volume) into which previously 40 microliters of water containing 8 micrograms of donor DNA and 20 micrograms of calf thymus DNA were added, and 0.25 ml of a polyethylene glycol solution ( 24% w / v in 0.4M mannitol). 9 minutes after the addition of DNA, 0.38 ml samples are added to the electroporator chamber. Ten minutes after addition of the DNA, the protoplast suspension in the chamber is charged with three pulses (1000-2000 volts) at a 10 second interval. The treated samples are placed in 6cm diameter petri dishes and held at 20 ° C for 10 minutes. Then, 3 ml of K 3 medium with 0.7% w / v "Sea Plaque Agarose" is added to each Petri dish and mixed thoroughly the contents of the bowl. After solidification, the content of each dish, the cultures for one day at 24 0 C in The protoplasts containing agarose are then cut into four parts and placed in a liquid medium.The protoplasts are then cultured by the "bead type culturing method". Calli tissue obtained by selecting the transformed material with chloramphenicol and plants regenerated therefrom contain the CAT enzyme (chloramphenicol acetyl transferase) as a product of the CAT gene. Electroporation results in a 5 to 10-fold increase the transformation frequency compared to a method without electroporation. Similar studies with Brassica rapa cv Just Right and Lolium multiflorum also showed an increase in the transformation frequency of the same order of magnitude. -

Beispiel 12: Transformation von Zeilen von Nicotiana tabacum durch die Übertragung des CAT-Gens mit Hilfe der Hitze-Schock-BehandlungExample 12: Transformation of lines of Nicotiana tabacum by transfer of the CAT gene using the heat-shock treatment

Protoplasten, die aus Blättern oder von Nicotiana tabacum Zellkulturen isoliert wurden, werden, wie in den Beispielen 6 und 10 beschrieben, gewonnen und analog den vorhergehenden Beispielen in ein osmotisch stabilisiertes Medium überführt. Die Protoplasten-Suspensionen werden 5 Minuten bei 45°C gehalten, und dann 10 Sekunden mit Eis auf O0C abgekühlt; anschließend wird das Plasmid pBRCAT, pUCHI oder pBRCAT, wie in den Beispielen 6 und 10 beschrieben, hinzugefügt. Die Hitze-Schock-Behandlung erhöht die Transformations-Frequenz um den Faktor 10 oder mehr, verglichen mit einer Transformation, die ohne diese Behandlung durchgeführt wird.Protoplasts isolated from leaves or Nicotiana tabacum cell cultures are obtained as described in Examples 6 and 10, and converted into an osmotically stabilized medium analogously to the preceding examples. The protoplast suspensions are held at 45 ° C for 5 minutes and then cooled to 0 ° C with ice for 10 seconds; then the plasmid pBRCAT, pUCHI or pBRCAT as described in Examples 6 and 10 is added. The heat-shock treatment increases the transformation frequency by a factor of 10 or more compared to a transformation performed without this treatment.

Beispiel 13: Transformation von Pflanzenzellen verschiedener Herkunft durch Übertragung des CAT-Gens, indem man in einem ersten Schritt Protoplasten und Gene zusammenbringt und anschließend eine kombinierte Behandlung durchführtExample 13: Transformation of Plant Cells of Various Origin by Transfer of the CAT Gene by first bringing together protoplasts and genes and then performing a combined treatment

Pflanzen-Protoplasten: Nicotianatabacumc.v. Petit Havana SRI (A); Brassicarapac.v. Just Right (B) und Lolium multiflorum (C) werden isoliert und gemäß Beispiel 11 auf ein osmotisch stabilisiertes Medium übertragen. Die Protoplasten-Suspensionen werden mit dem Plasmid pUCHI, p32CAT oder pBRCAT entsprechend den Beispielen 6 bis 9 vermischt aber ohne gleichzeitige Behandlung mit Polyethylenglykol. Die Protoplastensuspensionen werden dann gemäß Beispiel 12 einer Hitzeschockbehandlung ausgesetzt und anschließend einer Polyeihylenglykol-Behandlung entsprechenden Beispielen 6 bis und zuletzt einer Elektroporation gemäß Beispiel 11 unterworfen. Die Transformafionsfrequenz bei dieser Vorgehensweise liegt zwischen 10~3 und 1CT2, kann je nach den gewählten Bedingungen aber auf 1 % bis 2% gesteigert werden.Plant Protoplasts: Nicotianatabacumc.v. Petit Havana SRI (A); Brassicarapac.v. Just Right (B) and Lolium multiflorum (C) are isolated and transferred according to Example 11 to an osmotically stabilized medium. The protoplast suspensions are mixed with the plasmid pUCHI, p32CAT or pBRCAT according to Examples 6 to 9 but without simultaneous treatment with polyethylene glycol. The protoplast suspensions are then subjected to a heat shock treatment according to Example 12 and then subjected to a polyethylene glycol treatment according to Examples 6 bis and finally an electroporation according to Example 11. The transformafion frequency for this procedure is between 10 ~ 3 and 1CT 2 , but can be increased to 1% to 2% depending on the selected conditions.

Literaturverzeichnisbibliography

Barton, et al, Cell. 32,1033 (1983).Barton, et al, Cell. 32,1033 (1983).

Barton and Chilton, Methods in Enzymology, 101,527 (1984).Barton and Chilton, Methods in Enzymology, 101, 527 (1984).

Bevan, et al. Nature, 304,184 (1983).Bevan, et al. Nature, 304, 184 (1983).

Bevan, et al, Nucleic Acid Res., 12, 8711 (1984).Bevan, et al, Nucleic Acid Res., 12, 8711 (1984).

Bolivar, et al. Gene 2,75 (1977).Bolivar, et al. Gene 2:75 (1977).

Chilton, et al, Genetics, 83, 609 (1976).Chilton, et al, Genetics, 83, 609 (1976).

Chilton, „Plant Gene Vectors", in „The Role of Plant Biotechnology in Plant Breeding", Report des 1984 Plant Breeding Research Forums, 21. bis 23.August (1984), Seiten 177 bis 192 (1985).Chilton, "Plant Gene Vectors," Report of the 1984 Plant Breeding Research Forum, August 21-23, 1984, pages 177-192 (1985).

Coleman, et al, Cell, 37,429 (1984).Coleman, et al, Cell, 37,429 (1984).

Comai, et al, Plasmid, 10, 21 (1983).Comai, et al, Plasmid, 10, 21 (1983).

Dale, „Protoplast Culture and Plant Regeneration of Cereals and Other Recalcitrants Crops" in Protoplasts 1983 Lecture Proceedings, Potrykus et al, (eds), Experientia Supplement, Band 46, Birkhaeuser, Basel, (1983).Dale, "Protoplast Culture and Plant Regeneration of Cereals and Other Recalcitrant Crops" in Protoplasts 1983 Lecture Proceedings, Potrykus et al, (eds), Experientia Supplement, Vol. 46, Birkhaeuser, Basel, (1983).

De Block, et al, EMBO J., 4,1367(1985).De Block, et al, EMBO J., 4,1367 (1985).

De Block, et al, EMBO J., 3,1681 (1984).De Block, et al, EMBO J., 3,1681 (1984).

De Greve, et al, Nature, 300,752 (1982).De Greve, et al, Nature, 300, 752 (1982).

de Framond, et al, Biotechnology, 1,266 (1983).de Framond, et al, Biotechnology, 1,266 (1983).

Ditta, et al, Proc. Natl. Acad. Sei USA 77,7347 (1980).Ditta, et al, Proc. Natl. Acad. See USA 77,7347 (1980).

Evans and Bravo, „Protoplast Isolation and Culture" im Handbook of Plant Cell Culture, Band 1, Evans et al (Eds), McMillian Publishing Co., New York, (1983).Evans and Bravo, "Protoplast Isolation and Culture" in the Handbook of Plant Cell Culture, Vol. 1, Evans et al (Eds), McMillian Publishing Co., New York, (1983).

Fraley, et al, Proc. Natl. Acad. Sei., 80,4803 (1983).Fraley, et al, Proc. Natl. Acad. Sci., 80, 48080 (1983).

Fraley, et al, Biotechnology, 3,629 (1985).Fraley, et al, Biotechnology, 3,629 (1985).

Fraley, et al. Plant Molecular Biology, 3,371 (1984).Fraley, et al. Plant Molecular Biology, 3,371 (1984).

Gamborg, Plant Physiol., 45,372 (1970).Gamborg, Plant Physiol., 45, 372 (1970).

Gamborg,etal, Plant Tissue Culture Methods, 11 (1975).Gamborg, et al, Plant Tissue Culture Methods, 11 (1975).

Garfinkel et al, Cell, 27,143 (1981).Garfinkel et al, Cell, 27, 143 (1981).

Gorman, et al, Molecular and Cellular Biology, 2,1044 (1982).Gorman, et al, Molecular and Cellular Biology, 2, 1044 (1982).

Helmer, et al, Biotechnology, 2, 520 (1984).Helmer, et al, Biotechnology, 2, 520 (1984).

Hensley, Weed Sei., 29 70 (1981).Hensley, Weed Sci., 29 70 (1981).

Hepburn, et al, J. Mol Appl. Genet., 2, 211, (1983).Hepburn, et al, J. Mol. Appl. Genet., 2, 211, (1983).

Hernalsteens, et al, Nature, 287, 654 (1980).Hernalsteens, et al, Nature, 287, 654 (1980).

Herrera-Estrella, et al, Nature, 303, 209 (1983).Herrera-Estrella, et al, Nature, 303, 209 (1983).

Hirschberg and Mclntosch, Science, 222,1346(1983).Hirschberg and McNtosch, Science, 222, 1346 (1983).

Hirschberg, et al, Z. Naturforsch., 396,412 (1984.Hirschberg, et al., Z. Naturforsch., 396, 422 (1984.

Hoekema, et al, Nature, 303,179 (1983).Hoekema, et al, Nature, 303, 179 (1983).

Holsters et al, Mol. Genet, 163,181 (1978).Holsters et al., Mol. Genet. 163, 181 (1978).

Horsch, et al, Science, 227,1229 (1985).Horsch, et al, Science, 227, 1229 (1985).

Izart, et al, Cell, 36,1007 (1984).Izart, et al, Cell, 36, 1007 (1984).

Jordan and Ogren, Nature, 291, 513 (1981).Jordan and Ogren, Nature, 291, 513 (1981).

Jorgensen, et al, Mol Gen. Genet, 177,65 (1979).Jorgensen, et al, Mol. Gen. Genet. 177, 65 (1979).

Klee, et al, Biotechnology, 3,637 (1985).Klee, et al, Biotechnology, 3,637 (1985).

Koblitz, Kulturpflanze, XXII, 93 (1974).Koblitz, cultivated plant, XXII, 93 (1974).

Le Baron and Cressel, Herbicide Resistance in Plants, John Wiley and Sons, (1982).Le Baron and Cressel, Herbicide Resistance in Plants, John Wiley and Sons, (1982).

Maliga, Z., Pflanzenphysiol., 78,453 (1976).Maliga, Z., Pflanzenphysiol., 78, 453 (1976).

Malkin, et al, Plant Physiol., 67, 570 (1981).Malkin, et al, Plant Physiol., 67, 570 (1981).

Maniatis, et al, Molecular Cloning, Cold Springs Harbor Laboratory, (1982).Maniatis, et al, Molecular Cloning, Cold Springs Harbor Laboratory, (1982).

Matzke and Chilton, J. MoI Appl. Genet, 1,39 (1981).Matzke and Chilton, J. MoI Appl. Genet, 1.39 (1981).

Messing, et al, Gene, 19,269 (1982).Messing, et al, Gene, 19,269 (1982).

Meister, et al, Ann Rev. Biochem., 52,711, (1983).Meister, et al, Ann Rev. Biochem., 52, 711, (1983).

Melton, Proc. Natl. Acad. Sei., 82,144 (1985).Melton, Proc. Natl. Acad. Sci., 82, 144 (1985).

Murashige, et al, Physiol. Plant, 15,473 (1962).Murashige, et al, Physiol. Plant, 15,473 (1962).

Neumann, et al, EMBO J., 7, 841 (1982).Neumann, et al., EMBO J., 7, 841 (1982).

Norrander, et al, Gene 26,101 (1983).Norrander, et al, Gene 26, 101 (1983).

Oka, et al. Nature, 276, 845 (1978).Oka, et al. Nature, 276, 845 (1978).

Oka, et al, J. MoI. Biol., 147, 217 (1981).Oka, et al, J. MoI. Biol., 147, 217 (1981).

Paszkowski, et al, EMBO J., 3, 2717 (1984).Paszkowski, et al, EMBO J., 3, 2717 (1984).

Pestka, et al, Proc. Natl. Acad. Sei., 81,7525 (1984).Pestka, et al, Proc. Natl. Acad. Sci., 81, 7525 (1984).

Rennenberg, Phytochemistry 21, 2771 (1982).Rennberg, Phytochemistry 21, 2771 (1982).

RigbyetaU.Mol. Biol., 113,237(1977).RigbyetaU.Mol. Biol., 113, 237 (1977).

Roberts, Plant Molecular Biology Reporter, 3,107 (1985).Roberts, Plant Molecular Biology Reporter, 3, 107 (1985).

Rochaix, et al, Plant MoI. Biol., 3, 363 (1984).Rochaix, et al, Plant MoI. Biol., 3, 363 (1984).

Schilperoort et al, Europäische Patentanmeldung Nr.86,537 (1983).Schilperoort et al, European Patent Application No. 86,537 (1983).

Shimabukuro, et al. Plant Physiol., 47,10 (T971).Shimabukuro, et al. Plant Physiol., 47, 10 (T971).

Simons, et al, Cell, 34,683 (1983).Simons, et al, Cell, 34, 683 (1983).

Southern, et al, J. Mol. Biol., 98, 503 (1975).Southern, et al, J. Mol. Biol., 98, 503 (1975).

Wang, et al. Cell, 38,455 (1984).Wang, et al. Cell, 38, 455 (1984).

Wostemeyer, et al, Mol. Gen., 194, 520 (1984).Wostemeyer, et al, Mol. Gen., 194, 520 (1984).

Yadav, et al, Proc. Natl. Acad. Sei. USA, 79,6322 (1982).Yadav, et al, Proc. Natl. Acad. Be. USA, 79, 62322 (1982).

Zambryski, et al, EMBO J., 2,2143, (1983).Zambryski, et al., EMBO J., 2,2143, (1983).

Claims (36)

Patentansprüche: 'Claims: ' 1. Verfahren zur direkten Einschleusung von DNA in die Plastide und Mitochondrien von pflanzlichen Protoplasten, wobei besagte DNA aus einem oder mehreren Genen und in Piastiden und Mitochondrien aktiven Promotoren besteht, dadurch gekennzeichnet, daß man in Abwesenheit eines Pathogens diese besagte DNA in einem Medium, in dem die DNA in die Protoplasten und die darin befindlichen Plastide und Mitochondrien einzudringen vermag, so lange mit den Protoplasten in Kontakt bringt, daß diese Penetration gewährleistet ist.A method of directly introducing DNA into the plastids and mitochondria of plant protoplasts, said DNA consisting of one or more genes and promoters active in plastids and mitochondria, characterized in that, in the absence of a pathogen, said DNA in a medium, in which the DNA is able to penetrate into the protoplasts and the plastids and mitochondria therein, as long as it comes into contact with the protoplasts, that this penetration is ensured. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man es bis zur Regeneration von transformierten Pflanzenzellen aus den transformierten Protoplasten weiterlaufen läßt.2. The method according to claim 1, characterized in that it can continue to run until the regeneration of transformed plant cells from the transformed protoplasts. 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man das Verfahren bis zur Regeneration von transformierten Pflanzen weiterlaufen läßt.3. The method according to any one of claims 1 or 2, characterized in that it is allowed to continue the process until the regeneration of transformed plants. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei der einzuschleusenden DNA um lineare DNA handelt.4. The method according to claim 1, characterized in that it is the DNA to be injected is linear DNA. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei der einzuschleusenden DNA um zirkuläre DNA handelt.5. The method according to claim 1, characterized in that it is the DNA to be injected is circular DNA. 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die zirkuläre DNA keine oder eine noch mehrere T-DNA-Grenzregionen enthält.6. The method according to claim 5, characterized in that the circular DNA contains no or one more T-DNA border regions. 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei der einzuschleusenden DNA um eine DNA handelt, die in den Piastiden oder Mitoehondrien eine Herbizidresistenz überträgt.7. The method according to claim 1, characterized in that the DNA to be injected is a DNA which transmits a herbicide resistance in the plastids or mitoehondria. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß es sich bei besagtem Herbizid um Atrazin handelt.8. The method according to claim 7, characterized in that said herbicide is atrazine. 9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die einzuschleusende DNA neben der Herbizidresistenz eine zweite für die Landwirtschaft brauchbare Eigenschaft überträgt.9. The method according to claim 7, characterized in that the DNA to be injected in addition to the herbicide resistance transmits a second useful for agriculture property. 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die einzuschleusende DNA einen selektierbaren Marker und ein Gen enthält, welches eine landwirtschaftlich bedeutungsvolle Eigenschaft überträgt.10. The method according to claim 1, characterized in that the DNA to be injected contains a selectable marker and a gene which transmits an agriculturally significant property. 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Markergen eine Antibiotika-Resistenz erzeugt.11. The method according to claim 10, characterized in that the marker gene generates an antibiotic resistance. 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß es sich bei der Antibiotika-Resistenz um Chloramphenicol- oder Kanamycin-Resistenz handelt.12. The method according to claim 11, characterized in that it is the antibiotic resistance to chloramphenicol or kanamycin resistance. 13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß es sich bei der landwirtschaftlich bedeutungsvollen Eigenschaft um eine Herbizid-Resistenz handelt.13. The method according to claim 10, characterized in that it is the agriculturally significant property is a herbicide resistance. 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß es sich bei der Herbizid-Resistenz um Atrazin-Resistenz handelt.14. The method according to claim 13, characterized in that it is atrazine resistance in the herbicide resistance. 15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei dem einzuschleusenden Gen um ein chimäres Gen handelt.15. The method according to claim 1, characterized in that it is the gene to be inserted is a chimeric gene. 16. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die einzuschleusende DNA ein Replikationssignal enthält.16. The method according to claim 1, characterized in that the DNA to be injected contains a replication signal. 17. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die einzuschleusende DNA ein Integrationssignal enthält.17. The method according to claim 1, characterized in that the DNA to be injected contains an integration signal. 18. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Verfahren mit aus Blättern stammenden Protoplasten durchführt.18. The method according to claim 1, characterized in that one carries out the method with leaf-derived protoplasts. 19. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man ein osmotisch stabilisiertes für Protoplasten geeignetes Kulturmedium einsetzt.19. The method according to claim 1, characterized in that one uses an osmotically stabilized suitable for protoplasts culture medium. 20. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man ein Medium verwendet, das pflanzenverträgiiche divalente Kationen enthält.20. The method according to claim 1, characterized in that one uses a medium containing plant tolerant divalent cations. 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß es sich bei den Kationen um Magnesium- oder Calzium-Kationen handelt.21. The method according to claim 20, characterized in that it is the cations to magnesium or calcium cations. 22. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Medium einen mehrwertigen Alkohol enthält, der die Zellmembran verändert und die Zellfusion begünstigt.22. The method according to claim 1, characterized in that the medium contains a polyhydric alcohol, which alters the cell membrane and favors the cell fusion. 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß es sich bei dem mehrwertigen Alkohol um Polyethylenglykol, Polypropylenglykol oder Polyvinylglykol handelt.23. The method according to claim 22, characterized in that it is the polyhydric alcohol is polyethylene glycol, polypropylene glycol or polyvinyl glycol. 24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß es sich bei dem mehrwertigen Alkohol um Polyethylenglykol (PEG) handelt.24. The method according to claim 23, characterized in that it is the polyhydric alcohol is polyethylene glycol (PEG). 25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß das Polyethylenglykol ein Molekulargewicht zwischen 1 000 und 10000 aufweist.25. The method according to claim 24, characterized in that the polyethylene glycol has a molecular weight between 1,000 and 10,000. 26. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die DNA und die Protoplasten einer Hitzeschockbehandlung unterworfen werden.26. The method according to claim 1, characterized in that the DNA and the protoplasts are subjected to a heat shock treatment. 27. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die DNA und die Protoplasten einer Elektroporation unterworfen werden.27. The method according to claim 1, characterized in that the DNA and the protoplasts are subjected to electroporation. 28. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Einführung der DNA in die Protoplasten durch Kombination zweier Maßnahmen ausgewählt aus einer Polyethylenglykolbehandlung, Hitzeschockbehandlung und Elektroporation erfolgt.28. The method according to claim 1, characterized in that the introduction of the DNA into the protoplasts by combining two measures selected from a polyethylene glycol treatment, heat shock treatment and electroporation takes place. 29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß der Gentransfer derart durchgeführt wird, daß man zur Einschleusung des Fremdgens das besagte Gen und die Protoplasten in eine Lösung gibt und die resultierende Suspension zuerst einer Hitzeschockbehandlung und anschließend einer Polyethylenglykolbehandlung unterwirft.29. The method according to claim 28, characterized in that the gene transfer is carried out such that for the introduction of the foreign gene said gene and the protoplasts are in a solution and subjecting the resulting suspension first a heat shock treatment and then a polyethylene glycol treatment. 30. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Gentransfer derart durchgeführt wird, daß man zur Einschleusung des Fremdgens das besagte Gen und die Protoplasten in eine Lösung gibt und die resultierende Suspension zuerst einer Hitzeschockbehandlung dann einer Polyethylenglykolbehandlung, und zuletzt einer Elektroporation unterwirft.30. The method according to claim 1, characterized in that the gene transfer is carried out such that for the introduction of the foreign gene said gene and the protoplasts are in a solution and the resulting suspension first subjected to a heat shock treatment then a polyethylene glycol treatment, and finally an electroporation. 31. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das verwendete Medium einen mehrwertigen Alkohol enthält, der die Protoplastenmembran verändert und die Zellfusion fördert und man die in diesem Medium suspendierte DNA zusammen mit den Protoplasten einer Elektroporation und/oder einer Hitzeschockbehandlung unterwirft.31. The method according to claim 1, characterized in that the medium used contains a polyhydric alcohol which alters the protoplast membrane and promotes cell fusion and subjecting the DNA suspended in this medium together with the protoplasts of an electroporation and / or a heat shock treatment. 32. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man zusätzlich die extracellulären Nukleasen inaktiviert.32. The method according to claim 1, characterized in that additionally inactivates the extracellular nucleases. 33. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Protoplasten aus Pflanzenzellen der Pflanzen der Familien der Gramineae, Solanaceae oder der Cruciferae einsetzt.33. The method according to claim 1, characterized in that one uses protoplasts from plant cells of plants of the families of Gramineae, Solanaceae or Cruciferae. 34. Verfahren nach Anspruch 33, dadurch gekennzeichnet, daß man Protoplasten aus Pflanzenzellen der Pflanzen der Familie der Gramineae.einsetzt.34. The method according to claim 33, characterized in that one uses protoplasts from plant cells of the plants of the family Gramineaeeinseins. 35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß es sich bei den Gramineae um Getreide handelt.35. Method according to claim 34, characterized in that the Gramineae are cereals. 36. Verfahren nach Anspruch 35, dadurch gekennzeichnet, daß es sich bei dem Getreide um Mais, Weizen, Reis, Gerste, Hafer, Hirse, Roggen oder Sorghum handelt.36. The method according to claim 35, characterized in that it is the grain to corn, wheat, rice, barley, oats, millet, rye or sorghum.

Family

ID=

Similar Documents

Publication Publication Date Title
EP0223247A2 (en) Direct gene transfer into plastids and mitochondria
EP0164575B1 (en) Transformation of plant genotype
EP0270496B1 (en) Method for the transformation of plant protoplasts
DE69632576T2 (en) BINARY BAC VECTOR
EP0298918B1 (en) Inducible virus resistance in plants
US6201169B1 (en) Transformation of hereditary material of Brassica plants and cells
DE69636225T2 (en) STIMULATION OF HOMOLOGOUS RECOMBINATION IN VEGETABLE ORGANISMS BY RECOMBINATION OF PROMOTING ENZYMES
EP0267159A2 (en) Process for the genetic modification of monocotyledonous plants
EP0331083A2 (en) Method for the production of transgenic plants
EP0309862A1 (en) Stilbene synthase gene
EP0808370A1 (en) Stress-tolerant plants and methods of producing the same
EP0462065B1 (en) New signal sequences
DE60027570T2 (en) METHOD FOR PRODUCING ARTIFICIAL PLANT CHROMOSOMES
DE69333476T2 (en) Process for the production of proteins in vegetable fluids
EP0412381B1 (en) Use of lysozyme gene constructions in plants for enhanced resistance
DE69824832T2 (en) METHOD FOR IMPROVING TRANSFORMATION EFFICIENCY.
DD274234A5 (en) Method for gene transfer into plants
DE69838983T2 (en) TRANSGENE LEMNACEEN
EP0317511A2 (en) Insecticidal cotton plant cells
EP0418695A1 (en) Regulatory DNA sequence
EP0317509A2 (en) Targetted incorporation of genes into a plant genome
EP0400553A1 (en) Method for the production of transgenic plants
DD258827A5 (en) Method for direct introduction of DNA into the plastids and mitochondria of plant protoplasts
EP0362244B1 (en) Embryos of useful plants as uptake system for exogeneous genetic information
DE19525034A1 (en) DNA sequences and their use