CZ31953U1 - Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích - Google Patents
Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích Download PDFInfo
- Publication number
- CZ31953U1 CZ31953U1 CZ2018-35037U CZ201835037U CZ31953U1 CZ 31953 U1 CZ31953 U1 CZ 31953U1 CZ 201835037 U CZ201835037 U CZ 201835037U CZ 31953 U1 CZ31953 U1 CZ 31953U1
- Authority
- CZ
- Czechia
- Prior art keywords
- electromagnetically
- human body
- monitoring
- vital functions
- sensors
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims description 14
- 239000013307 optical fiber Substances 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical group C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 7
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 7
- 238000010146 3D printing Methods 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000241 respiratory effect Effects 0.000 description 3
- 230000036387 respiratory rate Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Description
Oblast techniky
Zařízení slouží k monitorování vybraných parametrů vitálních funkcí lidského těla zejména v elektromagneticky zarušených prostředích nebo například ve spánkových laboratořích.
Dosavadní stav techniky
Pro sledování vitálních funkcí lidského těla, respektive tepové a dechové frekvence jsou v současnosti využívány monitorovací zařízení zvaná „monitor životních funkcí“. Jedná se o elektronická zařízení, která se mohou skládat z jednoho nebo více senzorů, zpracování dat ze senzorů, případně zobrazovacího zařízení. Tato zařízení mohou obsahovat i komunikační rozhraní pro zaznamenávání, zpracování a zobrazování biometrických dat.
Monitor životních funkcí využívá k snímání stavu pacienta různé typy senzorů. Mezi základní lze uvést senzory pro měření EKG, srdečního frekvence, dechové frekvence. Dále pak senzory okysličení krve, senzor pro měření teploty či respiračních parametrů. Jedná se většinou o převodníky neelektrických veličin na elektrické (v případě EKG o elektrody snímající přímo napěťové potenciály). Součástí všech senzorů musí být přívodní kabely a konektory pro připojení k monitoru.
Ve všech oblastech elektrotechniky je důležitým faktorem pro vytvoření monitorovacího zařízení jeho velikost a způsob napájení. Ne všechny takto vyvinuté přístroje, však lze úspěšně aplikovat v případě monitorování vitálních funkcí, kde hraje svou roli i požadavek na pohodlí monitorovaného subjektu, případně prostředí, ve kterém je subjekt monitorován. Z hlediska využití senzorů v biomedicíně je lze rozdělit podle velikosti do tří skupin: na neinvazivní senzory (senzory, které přichází pouze do styku s pokožkou), částečně invazivní senzory (využívají k monitorování tělních dutin), invazivní senzory (využívány pro měření uvnitř orgánů nebo krevního řečiště).
V případě optovláknových senzorů se například využívá invazivní monitorování, kdy optické vlákno vkládané přímo do krevního řečiště (detekce plynů a elektrolytů v krvi).
Častá aplikace optických senzorů je pro monitorování kardiovaskulární parametrů sledovaného subjektu, tedy se týkají zejména srdce a cév, kdy je například optický senzor umístěn uvnitř polyuretanové trubice se světelným zdrojem na konci. Senzor je vytvořen tak, aby vlákno odráželo přenášené světlo a vytvořilo tlak nezávislý na zdroji světla nebo je měření prováděno na základě změny světla v dutině, kdy na základě změny optické interference uvnitř dutiny, je změněna intenzita odraženého světla, která pak může být detekována fotodetektorem na protilehlém konci vlákna.
Mezi senzory monitorující kardiovaskulární parametry patří například CN 201 389 015, KR 2009 0 027 270, CN 204 318 731 apod., kdy se tato zařízení liší zejména počtem použitých senzorů a počtem sledovaných parametrů. Dále se mezi sebou odlišují způsobem aplikace na sledovaný subjekt, velikostí a způsobem zapouzdření.
Pro miniaturizaci monitorovacích zařízení lze využít i techniku 3D tisku. Tento typ technologie je popsán v řadě článků například: „Fabrication of a tactile sensor array with fiber bragg gratings using a 3D printed mold“, autorů - K. Chethana, A. S. Guru Prasad, S. N. Omkarand, S. Asokan, nebo článek „Fabrication of a tactile sensor array with fiber bragg gratings using a 3D printed mold“, autorů: Pedroso, M.A.Email Author, Negři, L. H., Kamizi, M.A., Fabris, J. L., Muller, M.
- 1 CZ 31953 U1 nebo „Using three-dimensional printing technology to produce a novel optical fiber Bragg grating pressure sensor“ autorů: Lin, Y.-K., Hsieh, T.-S., Tsai, L., Wang, S.-H., Chiang, C.-C.; nebo „Novel optical fiber pressure sensor using embedded fiber Bragg grating in acrylonitrile butadiene styrene structure“ autorů: Chiang, C.-C., Wong, K.-L., Wang, S.-H. a konečně „Application of Embedded Fiber Bragg Grating (FBG) Sensors in Monitoring Health to 3D Printing Structures“, autorů: Fang, L., Chen T., Ryuiya L., Shihua L.
Ve všech těchto článcích jsou popsána zařízení využívající 3D tisk k zapouzdření optického vlákna s FBG mřížkou, ale liší se způsobem zapouzdření senzoru, užitým materiálem pro zapouzdření, velikostí výsledného zařízení, která bohužel není vhodná pro biomedicínské aplikace a proto nebyla prakticky v této oblasti testována.
Nevýhodami výše uvedených řešení je tedy zejména celková velikost daného zařízení, způsob aplikace daného zařízení a dále omezenými možnostmi pro monitorování. Výše uvedená zařízení nejsou odolná proti elektromagnetickému zarušení nebo díky své konstrukci nejsou vhodná pro biomedicínské aplikace. Výše uvedená zařízení nejsou konstruována tak, aby byla odolná proti pohybu sledovaného subjektu, který může znehodnotit jeho měřené vitální signály. Další nevýhodou je také velké množství kabeláže, například napájecí kabely, které tato zařízení využívají.
Podstata technického řešení
Výše uvedené nevýhody do značné míry odstraňuje zařízení dle tohoto vynálezu, kdy je využit optický senzor s FBG (Fibre Bragg Grating) mřížkou, který pro své zapouzdření využívá 3D tisk. Výsledkem tohoto řešení je tedy zařízení, které lze využít k monitorování vybraných parametrů vitálních funkcí lidského těla (dechové a tepové frekvence a zvukového záznamu srdce) zejména v elektromagneticky zarušených prostředích a v oblasti spánkové laboratoře. Zařízení je konstruováno jako neinvazivní.
Zařízení pracuje s jedno vidovými optickými vlákny a je založeno na principu měření deformací (pohybu) těla sledovaného subjektu. Zařízení má s výhodou obdélníkový tvar o rozměrech 8 x 15 mm a je vytvořeno uložením (zapouzdřením) Braggovy mřížky do dvou vrstev kopolymeru, kterým je akronitrilbutadienstyren (ABS), při tisku na 3D tiskárně. Tloušťka obou vrstev je 1,5 mm. Hmota použitá pro zapouzdření je inertní vůči lidské pokožce a odolná vůči elektromagnetickým interferencím.
Výše uvedeným postupem tak vznikne zařízení s malými rozměry i hmotností, které minimalizuje narušení komfortu pacienta během krátkodobých, ale i dlouhodobých vyšetřeních (např. spánková laboratoř). Kombinace vláknově optické technologie a výše zmíněného kopolymeru ABS pak zaručuje elektromagnetickou imunitu senzoru (senzor je imunní vůči rušení z napájecí sítě a elektromagnetickým polím, která mohou produkovat jiná zařízení). Tato charakteristická vlastnost (elektromagnetická imunita) umožňuje sledování vitálních funkcí subjektu např. při magnetické rezonanci, rentgenu a jiných vyšetření využívajících elektromagnetické pole.
Kromě výše uvedených vlastností je tento kopolymer (ABS) amorfní, termoplastický, odolný vůči mechanickému poškození. Dále je tuhý, houževnatý, dle typu odolný vůči nízkým i vysokým teplotám, málo nasákavý a zdravotně nezávadný. ABS odolává i kyselinám, hydroxidů, uhlovodíkům, olejům a tukům a je často využíván například pro výrobu kojeneckých lahví.
Další výhodu pak představuje pasivita z hlediska napájení senzoru elektrickou energií, stejně tak oddělení místa monitorování subjektu od místa zpracování dat v řádu stovek metrů (v rámci použitého typu přívodního optického vlákna). Zařízení má s výhodou pouze jeden přívodní vodič.
-2CZ 31953 U1
Díky své velikosti je zařízení možno komfortně aplikovat na sledovaný subjekt. Celé zařízení je lehce udržovatelné a tedy odpovídá medicínským standardům a je možné jej použít i opakovaně.
Při použití podložky, je možné zařízení aplikovat přímo na sledovaný subjekt. Použitá podložka může být buď jednorázová - například fixační páska, s výhodou pružná páska - například kineziologický tejp nebo může být podložka určena pro mnohočetné použití, což je například využití pružného kontaktního pásu, jež je možné umístit na sledovaný subjekt, například okolo hrudi, a zajistit pomocí upínacího mechanismu, který mohou představovat například přezky nebo suchý zip. Další možností aplikace je pak využití podkladu pro tzv. samolepící medicínské elektrody.
Pro praktickou aplikaci daného zařízení a získání uvedených parametrů měřeného subjektu včetně zvukového záznamu srdce je nutný komerčně dostupný přístroj pro vyhodnocení senzoru (např. FBGuard). Nutná je také adaptivní filtrace signálu pro oddělení superponované tepové frekvence na dechovou frekvenci pacienta a adaptivní filtr, který umožňuje získat zvukový záznam srdce.
Objasnění výkresů
Na obrázku 1 se nachází prototyp zařízení v řezu. Obrázek 2 pak představuje pohled na zařízení shora. Na obrázku 3 je uveden příklad záznamu 20 sekund srdeční činnosti naměřené zařízením křivky a) a b) ve srovnání se standardním EKG a PPG. Obrázek 4 představuje 500 sekund záznamu dechové činnosti naměřené pouze zařízením. Obrázek 5 znázorňuje aplikaci zařízení dle příkladu uskutečnění 1.
Příklady uskutečnění technického řešení
Příklad 1
Na 3D tiskárně je z kopolymeru Akronitrilbutadienstyrenu (ABS) vytvořena spodní část ochranného pouzdra 4 do které je vycentrováno a uloženo optické vlákno 2 s Braggovskou mřížkou 3 tak, aby jeden konec optického vlákna 2 zůstal volný pro zapojení vstupního rozhraní F Opačný konec optického vlákna 2 uloženého ve spodní části ochranného pouzdra 4 je pak zapouzdřen další vrstvou ABS. Pouzdro 4 má obdélníkový tvar, přičemž delší strana obdélníku má 15 mm, kratší strana 8 mm a celková tloušťka pouzdra 4 s umístěným optickým vláknem 2 je 1,5 mm. Celková hmotnost zařízení je 3 g.
Pro aplikaci v praxi je pak zařízení umístěno jako součást pružného kontaktního pásu 5 na sledovaný subjekt, přičemž tento pás je zajištěn upínacím mechanismem v podobě přezek nebo suchého zipu. Celek je pak připojen k vyhodnocovacímu zařízení.
Příklad 2
Příklad 2 se od příkladu 1 odlišuje tím, že je zařízení fixováno na subjekt jednorázově pomocí fixační pásky, kterou představuje například kineziologický tejp.
Příklad 3
Příklad 3 se od příkladu 1 odlišuje tím, že je zařízení upevněno k biokompatibilnímu podkladu, který je určen například pro tzv. nalepovací elektrody.
-3 CZ 31953 U1
Průmyslová využitelnost
Zařízení je určeno pro monitorování vitálních funkcí - zejména dechové a tepové frekvence, případně srdečních odezev zejména v elektromagneticky zarušených prostředích (elektromagnetická rezonance) nebo ve spánkové laboratoři.
NÁROKY NA OCHRANU
Claims (3)
1. Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích, vyznačující se tím, že sestává z ochranného pouzdra (4) ze dvou vrstev kopolymeru - akronitrilbutadienstyrenu, mezi kterými je centrálně umístěno optické vlákno (2) s Braggovskou mřížkou (3) a to tak, že jeden konec vlákna (2) je umístěn uprostřed pouzdra (4), druhý konec je zakončen vstupním rozhraním (1).
2. Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích podle nároku 1, vyznačující se tím, že ochranné pouzdro (4) je obdélníkového tvaru jehož rozměry jsou 15 x 8 x 1,5 mm.
3. Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích podle předchozích nároků, vyznačující se tím, že kopolymer pouzdra (4) pro vytištění na 3D tiskárně je elektromagneticky inertní.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CZ2018-35037U CZ31953U1 (cs) | 2018-06-04 | 2018-06-04 | Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CZ2018-35037U CZ31953U1 (cs) | 2018-06-04 | 2018-06-04 | Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CZ31953U1 true CZ31953U1 (cs) | 2018-08-07 |
Family
ID=63105676
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CZ2018-35037U CZ31953U1 (cs) | 2018-06-04 | 2018-06-04 | Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích |
Country Status (1)
| Country | Link |
|---|---|
| CZ (1) | CZ31953U1 (cs) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CZ308705B6 (cs) * | 2019-12-10 | 2021-03-10 | Vysoká Škola Báňská-Technická Univerzita Ostrava | Systém pro monitorování kardiorespiračních aktivit lidského těla nejen v magneticky rezonančních prostředích snižující nutnou délku vyšetření |
| CZ309549B6 (cs) * | 2021-03-15 | 2023-04-05 | Vysoká Škola Báňská-Technická Univerzita Ostrava | Optovláknový senzor dechové činnosti pro standardizovanou masku vhodný pro prostředí magnetické rezonance |
-
2018
- 2018-06-04 CZ CZ2018-35037U patent/CZ31953U1/cs active Protection Beyond IP Right Term
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CZ308705B6 (cs) * | 2019-12-10 | 2021-03-10 | Vysoká Škola Báňská-Technická Univerzita Ostrava | Systém pro monitorování kardiorespiračních aktivit lidského těla nejen v magneticky rezonančních prostředích snižující nutnou délku vyšetření |
| CZ309549B6 (cs) * | 2021-03-15 | 2023-04-05 | Vysoká Škola Báňská-Technická Univerzita Ostrava | Optovláknový senzor dechové činnosti pro standardizovanou masku vhodný pro prostředí magnetické rezonance |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Presti et al. | Wearable system based on flexible FBG for respiratory and cardiac monitoring | |
| Zhang et al. | Wearable optical fiber sensors in medical monitoring applications: A review | |
| Blachowicz et al. | Textile-based sensors for biosignal detection and monitoring | |
| De Tommasi et al. | Smart mattress based on multipoint fiber Bragg gratings for respiratory rate monitoring | |
| US6498652B1 (en) | Fiber optic monitor using interferometry for detecting vital signs of a patient | |
| US6723054B1 (en) | Apparatus and method for measuring pulse transit time | |
| Anwar Zawawi et al. | Intensity‐modulated fiber optic sensor for health monitoring applications: a comparative review | |
| Zhu et al. | Wearable sensor systems for infants | |
| US9357929B2 (en) | System and method for monitoring body temperature of a person | |
| US9420952B2 (en) | Temperature probe suitable for axillary reading | |
| Nedoma et al. | Vital sign monitoring and cardiac triggering at 1.5 tesla: A practical solution by an mr-ballistocardiography fiber-optic sensor | |
| AU756142B2 (en) | Apparatus and method for measuring pulse transit time | |
| Wang et al. | SleepSense: Smart pillow with pressure-sensitive FBG-embedded silicone buttons | |
| Shikida et al. | Advancements in MEMS technology for medical applications: Microneedles and miniaturized sensors | |
| WO2009074928A1 (en) | Measurement apparatus and method | |
| CN103271741A (zh) | 一种睡眠姿势监测仪 | |
| CN107022823A (zh) | 一种集成温敏纤维的机织结构柔性温度传感器 | |
| CZ31953U1 (cs) | Zařízení pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích | |
| Krizan et al. | Embedding FBG sensors for monitoring vital signs of the human body: Recent progress over the past decade | |
| De Tommasi et al. | Smart mattress based on fiber Bragg grating sensors for respiratory monitoring: A feasibility test | |
| CZ2018265A3 (cs) | Senzor pro monitorování vitálních funkcí lidského těla v elektromagneticky zarušených prostředích a způsob jeho výroby | |
| Samartkit et al. | Fiber optic sensor applications for vital signs monitoring: A review | |
| CZ32809U1 (cs) | Neinvazivní senzor pro monitorování tepové frekvence v magneticky zarušených prostředích | |
| CZ306857B6 (cs) | Optovláknový měřicí systém pro monitorování vitálních funkcí lidského těla | |
| CZ34010U1 (cs) | Kontaktní tělová sonda pro sledování vitálních funkcí lidského těla při fMRI |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG1K | Utility model registered |
Effective date: 20180807 |
|
| ND1K | First or second extension of term of utility model |
Effective date: 20220405 |
|
| ND1K | First or second extension of term of utility model |
Effective date: 20250404 |