CZ310279B6 - Zařízení pro řízení deformace nosné konstrukce - Google Patents
Zařízení pro řízení deformace nosné konstrukce Download PDFInfo
- Publication number
- CZ310279B6 CZ310279B6 CZ2021-63A CZ202163A CZ310279B6 CZ 310279 B6 CZ310279 B6 CZ 310279B6 CZ 202163 A CZ202163 A CZ 202163A CZ 310279 B6 CZ310279 B6 CZ 310279B6
- Authority
- CZ
- Czechia
- Prior art keywords
- deformation
- supporting structure
- actuator
- basic supporting
- actuators
- Prior art date
Links
- 230000009471 action Effects 0.000 description 43
- 238000005452 bending Methods 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 230000008901 benefit Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/473—Constructional features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/54—Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
- B64C27/72—Means acting on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/061—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
- F03G7/0614—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/061—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
- F03G7/0614—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
- F03G7/06146—Torque tubes or torsion bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/064—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by its use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/32—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B5/00—Anti-hunting arrangements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/204—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/204—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
- H10N30/2041—Beam type
- H10N30/2042—Cantilevers, i.e. having one fixed end
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/206—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/44—Varying camber
- B64C2003/445—Varying camber by changing shape according to the speed, e.g. by morphing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/54—Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
- B64C27/72—Means acting on blades
- B64C2027/7205—Means acting on blades on each blade individually, e.g. individual blade control [IBC]
- B64C2027/7211—Means acting on blades on each blade individually, e.g. individual blade control [IBC] without flaps
- B64C2027/7216—Means acting on blades on each blade individually, e.g. individual blade control [IBC] without flaps using one actuator per blade
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/54—Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
- B64C27/72—Means acting on blades
- B64C2027/7205—Means acting on blades on each blade individually, e.g. individual blade control [IBC]
- B64C2027/7211—Means acting on blades on each blade individually, e.g. individual blade control [IBC] without flaps
- B64C2027/7222—Means acting on blades on each blade individually, e.g. individual blade control [IBC] without flaps using airfoil deformation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/31—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Robotics (AREA)
- Control Of Position Or Direction (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Zařízení pro řízení deformace nosné konstrukce opatřené souběžnou pomocnou konstrukcí (2) spojenou se základní nosnou konstrukcí (1) alespoň jedním aktuátorem (3) a nosnou konstrukcí opatřenou čidly (11) pro určení polohy nebo deformace a pomocnou konstrukcí opatřenou čidly (12) pro určení polohy nebo deformace podle tohoto vynálezu spočívá v tom, že souběžná pomocná konstrukce (2) je umístěna v uzavřené dutině základní nosné konstrukce (1) a je připojena k rámu tvořeném stojící nebo pohybující se částí nosné konstrukce nevystavené deformaci. Základní nosná konstrukce (1) je opatřena čidlem (19) stavu okol, přičemž aktuátor (3) je tvořen teplotním aktuátorem.
Description
Zařízení pro řízení deformace nosné konstrukce
Oblast techniky
Vynález se týká zařízení pro řízení deformací konstrukce opatřené souběžnou pomocnou konstrukcí spojenou se základní nosnou konstrukcí alespoň jedním aktuátorem a nosnou konstrukcí opatřenou čidly pro určení polohy nebo deformace a pomocnou konstrukcí opatřenou čidly pro určení polohy nebo deformace.
Dosavadní stav techniky
Jedny případy jsou teplotní deformace vznikající vývinem tepla z pohonů vřeten, pohonů mechanismů, tření v jeho kloubech tvořících kinematické dvojice a z vlastního technologického procesu např. obráběním značně měnícím rozměry mechanismu.
Důsledkem těchto změn je ztráta přesnosti polohování nástroje.
Zde je cílem teplotní deformace odstranit nebo kompenzovat, tedy působit na konstrukci mechanismu nějakým aktuátorem pro dosažení opačné deformace, než je teplotní deformace.
Je používána celá řada opatření pro potlačení a odstranění těchto teplotních deformací. Jsou konstrukční řešení spočívající v symetrii konstrukce, která se tak deformuje rovnoměrně a vzájemně kompenzuje, nebo naopak v asymetrii konstrukce, která se pak deformuje očekávaným směrem bez ovlivnění výrobního procesu.
Další opatření spočívají v intenzivním chlazení komponent, kde dochází k vývinu tepla.
Užívá se také aktuátorů pro potlačení teplotní deformace.
Konečně je stroj vybaven čidly měření teploty a na základě předchozích zkoušek je z hodnot těchto teplotních čidel předpovězena teplotní deformace polohy nástroje a ta je kompenzována v řídicím systému polohování nástroje.
Všechna tato opatření teplotní deformace buď jen částečně omezují nebo jejich hodnotu předpovídají z nepřímých měření, a tak nedosahují úplnou kompenzaci těchto deformací, nebo ke kompenzaci teplotních deformací potřebují řízený zásah.
Jinými případy jsou požadované deformace konstrukce v důsledku teploty okolí nebo vnitřku konstrukce. Příkladem jsou letecké motory, kde podle teploty je žádoucí otevírat nebo zavírat průchody, měnit vůle nebo tvar. Zde je cílem teplotní deformace vyvinout pro lepší funkci stroje nebo konstrukce.
Zde se používají teplotní roztažnosti konstrukce nebo řízené aktuátory. Řízené aktuátory jsou obvykle řízené počítačem a vyžadují vnější zdroj energie. Jsou ale užívány i aktuátory na bázi kovů s tvarovou pamětí (shape memory alloys - SMA). Výhodou SMA aktuátorů je, že zdrojem jejich energie je teplo vnějšího prostředí. Nevýhodou je, že dosud mají jen dva stavy.
Jinými případy jsou požadované časově proměnné deformace (kmitání) konstrukce v důsledku tlaku a silového působení okolí nebo vnitřku konstrukce. Příkladem jsou křídla letadel, kde podle stavu obtékání a buzení křídla je žádoucí tlumit nebo naopak indukovat pohyb, měnit tvar. Cílem tedy je uskutečňování dynamické změny deformace konstrukce pro dosažení její lepší funkce nebo lepší funkce stroje užívajícího takovou konstrukci.
Dalšími potřebnými deformacemi konstrukcí je jejich deformace prováděná v závislosti na jiných stavech konstrukce, než je její teplota. Může jít o otáčky, rychlost, rychlost a tlak proudění nebo stavy jiných částí stroje.
Aktuátory pro potlačení nebo realizaci deformace mají společný problém, že vyžadují použít násobně větší sílu, než by byla nezbytně nutná pro deformaci konstrukce.
Cílem tohoto vynálezu je uspořádání konstrukce, která se má obecným aktuátorem nebo aktuátorem podle teploty deformovat požadovaným způsobem tak, aby potřebná síla aktuátoru byla jen nezbytně nutnou pro ovlivnění konstrukce.
Podstata vynálezu
Podstata zařízení pro řízení deformace nosné konstrukce opatřené souběžnou pomocnou konstrukcí spojenou se základní nosnou konstrukcí alespoň jedním aktuátorem a nosnou konstrukcí opatřenou čidly pro určení polohy nebo deformace a pomocnou konstrukcí opatřenou čidly pro určení polohy nebo deformace podle vynálezu spočívá v tom, že souběžná pomocná konstrukce je umístěna v uzavřené dutině základní nosné konstrukce. Souběžná pomocná konstrukce je připojena k rámu tvořeném stojící nebo pohybující se částí nosné konstrukce nevystavené deformaci. Základní nosná konstrukce je opatřena čidlem stavu okolí, přičemž aktuátor je tvořen teplotním aktuátorem a je obepnut elektrickým odporovým drátem propojeným se zdrojem elektrického napětí řízeným počítačem propojeným s čidlem polohy základní nosné konstrukce a/nebo s čidlem polohy pomocné souběžné konstrukce a/nebo s čidlem stavu okolí.
Výhoda popisovaných řešení spočívá v tom, že aktuátory musejí vyvinout jen nezbytně nutnou sílu pro požadovanou deformaci tvaru základní nosné konstrukce, a to i pro různé a složité deformace tvaru. Použití táhel je výhodné pro vyvedení aktuátorů mimo konstrukce a poskytnutí většího prostoru pro konstrukci aktuátorů.
Objasnění výkresů
Na přiložených obrázcích je znázorněno schematicky uspořádání aktuátorů pro vytvoření deformace konstrukce, kde:
obr. 1 a 2 znázorňuje uspořádání pro vytvoření deformace tahem nebo tlakem podle dosavadního stavu techniky;
obr. 3 znázorňuje uspořádání pro vytvoření deformace tahem nebo tlakem podle tohoto vynálezu;
obr. 4 a 5 znázorňuje uspořádání pro vytvoření deformace ohybem podle dosavadního stavu techniky;
obr. 6 a 7 znázorňuje uspořádání pro vytvoření deformace ohybem podle tohoto vynálezu;
obr. 8 znázorňuje alternativní konstrukci pro deformaci ohybem;
obr. 9 znázorňuje alternativní uspořádání pro vytvoření deformace ohybem podle dosavadního stavu techniky;
obr. 10 a 11 znázorňuje uspořádání pro vytvoření deformace alternativní konstrukce ohybem podle tohoto vynálezu;
obr. 12 znázorňuje uspořádání pro vytvoření deformace konstrukce torzí;
obr. 13 znázorňuje alternativní uspořádání pro vytvoření deformace konstrukce torzí;
obr. 14 znázorňuje uspořádání pro vytvoření deformace tvaru tělesa;
obr. 15 znázorňuje příčný řez tělesy konstrukce podle obr. 14;
obr. 16 znázorňuje dvě alternativy nosné konstrukce;
obr. 17 znázorňuje uspořádání pro vytvoření deformace nosné konstrukce z obr. 16;
obr. 18 znázorňuje uspořádání pro vytvoření deformace křídla letadla;
obr. 19 znázorňuje uspořádání pro vytvoření obecného případu deformace tvaru tělesa;
obr. 20 znázorňuje uspořádání obdobné s uspořádáním podle obr. 19.
Příklady uskutečnění vynálezu
Na obr. 1 až 3 je znázorněno uspořádání aktuátorů pro vytvoření deformace konstrukce tahem nebo tlakem.
Na obr. 1 je znázorněno dosavadní nevýhodné řešení působení aktuátoru pro vytvoření tahové nebo tlakové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátorů 3, kterými v daném případě jsou piezoaktuátory. Nevýhoda spočívá v obtížném přenosu působení síly těchto aktuátorů 3 pro vytvoření deformace při plošném kontaktu na těleso základní nosné konstrukce 1.
Na obr. 2 je znázorněno jiné dosavadní nevýhodné řešení působení aktuátoru pro vytvoření tahové nebo tlakové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3, opět na bázi piezoaktuátorů. Nevýhoda spočívá ve skutečnosti, že aktuátor 3 nese základní nosnou konstrukci 1 a celou zátěž působící na těleso základní nosné konstrukce 1, v daném případě tíhu.
Na obr. 3 je znázorněno řešení působení aktuátorů pro vytvoření tahové nebo tlakové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátorů 3 podle tohoto vynálezu. Je také užito piezoaktuátorů. Souběžně se základní nosnou konstrukcí 1 je uspořádána pomocná souběžná konstrukce 2 upevněná k rámu 10 a mezi koncem pomocné souběžné konstrukce 2 a tělesem základní nosné konstrukce 1 jsou umístěny aktuátory 3. Dosažení požadované deformace (pohybu) je měřeno čidlem 11 polohy základní nosné konstrukce 1 vůči rámu 10. Čidlo 11 může být tvořeno laserovým interferometrem. Výhoda řešení je, že aktuátory 3 v daném případě nenesou základní zátěž, jen působí potřebnými deformačními sílami. Aktuátory 3 mohou být piezoaktuátory, hydraulické aktuátory, elektrodynamické aktuátory, jiné elektrické aktuátory nebo teplotní aktuátor (kovy s tvarovou pamětí působící podle dosažené teploty).
Na obr. 4 až 7 je znázorněno uspořádání aktuátorů pro vytvoření deformace konstrukce ohybem.
Na obr. 4 je znázorněno dosavadní nevýhodné řešení působení aktuátoru 3 pro vytvoření ohybové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3. Nevýhoda spočívá v nevýhodném poměru síly aktuátoru 3 a potřebné síly pro ohybovou deformaci tělesa základní nosné konstrukce 1. Tento poměr je dán rovností momentu síly aktuátoru 3 a momentu potřebné síly působící ve směru deformace 9. Síla aktuátoru 3 je zbytečně veliká a sice L/d krát větší než nezbytně nutná síla pro ohyb nosníku základní nosné konstrukce 1.
Na obr. 5 je znázorněno jiné dosavadní nevýhodné řešení působení aktuátoru 3 pro vytvoření ohybové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3 na bázi piezo nebo aktuátoru 3 s kovem s tvarovou pamětí. Nevýhoda spočívá opět v nevýhodném poměru síly aktuátoru 3 a potřebné síly pro ohybovou deformaci tělesa základní nosné konstrukce 1. Tento poměr je opět dán rovností momentu síly aktuátoru 3 a momentu potřebné síly působící ve směru deformace 9. Síla aktuátoru 3 je zbytečně veliká a sice L/d krát větší než nezbytně nutná síla pro ohyb nosníku základní nosné konstrukce 1.
Na obr. 6 je znázorněno řešení působení aktuátoru 3 pro vytvoření ohybové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3 na bázi piezo nebo aktuátoru 3 s kovem s tvarovou pamětí podle tohoto vynálezu. Souběžně se základní nosnou konstrukcí 1 je uspořádána pomocná souběžná konstrukce 2 upevněná k rámu 10 a mezi koncem pomocné souběžné konstrukce 2 a tělesem základní nosné konstrukce 1 je umístěn aktuátor 3. Dosažení požadované deformace (pohybu) je měřeno čidlem 11 polohy základní nosné konstrukce 1. Protože pomocná souběžná konstrukce 2 se působením síly aktuátoru 3 deformuje, je nutné pro řízení aktuátoru 3 měřit polohu pomocné souběžné konstrukce 2 a to je provedeno čidlem 12 polohy pomocné souběžné konstrukce 2, které měří relativní polohu pomocné souběžná konstrukce 2 vůči základní nosné konstrukci 1. Čidla 11 a 12 mohou být tvořena laserovým paprskem a CCD prvkem. Výhoda řešení je, že aktuátory 3 v daném případě působí jen potřebnou deformační sílou pro dosažení požadovaného ohybu 9 tělesa základní nosné konstrukce 1.
Na obr. 7 je znázorněno alternativní řešení působení aktuátoru 3 pro vytvoření ohybové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3 na bázi piezo nebo aktuátoru 3 s kovem s tvarovou pamětí podle tohoto vynálezu. Jistým problémem řešení na obr. 6 je, že pro vyvinutí nezbytně nutné síly pro ohyb nosníku základní nosné konstrukce 1 je třeba aktuátoru, který se svými rozměry do prostoru mezi základní nosnou konstrukci 1 a pomocnou souběžnou konstrukci 2 nevejde. Tento problém je odstraněn řešením na obr. 7. Aktuátor 3 působící mezi základní nosnou konstrukcí 1 a pomocnou souběžnou konstrukcí 2 na obr. 6 je nahrazen aktuátorem 3 působícím mezi rámem 10 a táhly 6 na obr. 7. Tento aktuátor 3 působí souběžně s konstrukcemi 1 a 2 a má tak dostatek prostoru pro své uspořádání. Dokonce by mohl být vyveden až na rám mimo konstrukce 1 a 2. Táhla 6 jsou k základní nosné konstrukci 1 a pomocné souběžné konstrukci 2 a k aktuátoru 3 připojena rotačními klouby 7. Pokud úhel mezi táhly 6 a konstrukcemi 1 a 2 je 45 stupňů, pak síla aktuátoru 3 je rovna síle působící na konstrukce 1 a 2 ve směru ohybové deformace 9.
Na obr. 8 až 11 je zkoumán jiný případ deformace konstrukce ohybem.
Na obr. 8 je znázorněna základní nosná konstrukce 1 připevněná k rámu 10, která se působením teploty deformuje ve směru deformace 9. Požadavkem je tuto deformaci kompenzovat působením síly nějakého aktuátoru.
Na obr. 9 je znázorněno dosavadní nevýhodné řešení působení aktuátorů pro vytvoření kompenzující ohybové deformace 9 tělesa základní nosné konstrukce 1 působením piezoaktuátorů 3 nebo aktuátorů typu hydraulických nebo kovů s tvarovou pamětí. Nevýhoda spočívá v nevýhodném poměru síly aktuátorů 3 a potřebné síly pro ohybovou deformaci tělesa základní nosné konstrukce 1 obdobně jako na obr. 4 a 5.
Na obr. 10 je znázorněno řešení působení aktuátoru 3 pro vytvoření ohybové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3, např. piezoaktuátorem, hydraulickým aktuátorem, elektrickým aktuátorem, kovem s tvarovou pamětí, podle tohoto vynálezu pro případ nedostatečné tuhosti rámu 10. Souběžně se základní nosnou konstrukcí 1 je uspořádána pomocná souběžná konstrukce 2 upevněná k rámu 10 a mezi konce pomocné souběžné konstrukce 2 a tělesem základní nosné konstrukce 1 jsou umístěny aktuátory 3. Dosažení požadované deformace (pohybu daného ohybem základní nosné konstrukce 1) je měřeno čidlem 11 polohy základní nosné konstrukce 1. Protože pomocná souběžná konstrukce 2 se působením síly aktuátoru 3 deformuje, je vhodné pro řízení aktuátoru 3 měřit polohu pomocné souběžné konstrukce 2 a to je provedeno čidlem 12 polohy pomocné souběžné konstrukce 2, které měří relativní polohu pomocné souběžné konstrukce 2 vůči základní nosné konstrukci 1. Čidla 11 a 12 mohou být tvořeny laserovým interferometrem. Výhoda řešení je, že aktuátory 3 v daném případě působí jen potřebnou deformační sílou pro dosažení požadovaného ohybu 9 tělesa základní nosné konstrukce 1.
Na obr. 11 je znázorněno řešení působení aktuátoru pro vytvoření ohybové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3 s kovem s tvarovou pamětí podle tohoto vynálezu. Pomocná souběžná konstrukce 2 je zde velmi jednoduchá a mezi ní a základní nosnou konstrukci 1 je umístěn aktuátor 3. Aktuátor 3 tvořený kovem s tvarovou pamětí má danou deformaci a silové působení v závislosti na teplotě, a tak není třeba provádět měření dosažení požadované deformace základní nosné konstrukce 1, jako je prováděno na obr. 10 čidlem 11 a 12. Podle teploty okolí se deformuje základní nosná konstrukce 1 a podle této teploty se také deformuje aktuátor 3 v podobě kovu s tvarovou pamětí a svým působením kompenzuje deformaci základní nosné konstrukce 1. Tím je dosaženo nedeformované základní nosné konstrukce 1 např. u obráběcího stroje.
Na obr. 12 až 13 je zkoumán jiný případ deformace konstrukce torzí (rotací).
Na obr. 12 je znázorněno řešení působení aktuátoru pro vytvoření torzní (rotační) deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3 s kovem s tvarovou pamětí podle tohoto vynálezu. Souběžně se základní nosnou konstrukcí 1 tvořenou válcem je uspořádána pomocná souběžná konstrukce 2 upevněná k rámu 10 tvořená souběžnými nosníky nebo souběžnou trubkou (na obr. 12 v řezu) a mezi konce pomocné souběžné konstrukce 2 a tělesem základní nosné konstrukce 1 je umístěn aktuátor 3 pevně spojený s konstrukcemi 1 a 2. Ten je tvořen spirálovou vinutou pružinou z kovu s tvarovou pamětí, který může být ovládán teplem z elektrického odporového drátu řízeného elektrickým proudem. Dosažení požadované deformace (pohybu) je měřeno čidlem 11 polohy základní nosné konstrukce 1. Přestože se pomocná souběžná konstrukce 2 působením síly aktuátoru 3 deformuje, není vždy nutné měřit polohu pomocné souběžné konstrukce 2. Stačí řídit působení aktuátoru 3 tak, aby byla dosažena požadovaná deformace 9. Čidlo 11 může být tvořeno laserovým paprskem a CCD prvkem. Výhoda řešení je, že aktuátor 3 v daném případě působí jen potřebnou deformační sílou pro dosažení požadovaného rotačního pohybu tělesa základní nosné konstrukce 1.
Na obr. 13 je znázorněno alternativní řešení působení aktuátoru 3 pro vytvoření torzní (rotační) deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3 podle tohoto vynálezu. Těleso základní nosné konstrukce 1 je tvořeno trubkou a uvnitř této trubky je umístěna pomocná souběžná konstrukce 2 tvořená válcem (nebo trubkou). Aktuátory 3 působící mezi základní nosnou konstrukcí 1 a pomocnou souběžnou konstrukcí 2 jsou tvořeny táhly, které vyvinou na těleso základní nosné konstrukce 1 torzní moment.
Na obr. 14 až 15 je zkoumán obecný případ deformace tvaru tělesa, tzv. morphing tvaru tělesa.
Na obr. 14 je znázorněno řešení působení aktuátoru 3 pro vytvoření požadované tvarové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3 podle tohoto vynálezu. Těleso základní nosné konstrukce 1 je duté a v jeho dutině je umístěna pomocná souběžná konstrukce 2. Obr. 14 znázorňuje podélný řez tělesy konstrukce 1 a 2. Mezi pomocnou souběžnou konstrukci 2 a základní nosnou konstrukci 1 jsou umístěny aktuátory 3. Aktuátory 3 se opřou o těleso pomocné souběžné konstrukce 2 a způsobí požadovanou deformaci 9 tvaru tělesa základní nosné konstrukce 1. Deformace obou konstrukcí 1 a 2 je měřena čidly polohy 11 a 12, z nichž je deformace stanovena. Čidla mohou být laserová nebo tenzometrická.
Na obr. 15 je znázorněno řešení z obr. 14, ale v příčném řezu tělesy konstrukce 1 a 2. Tělesa základní nosné konstrukce 1 na obr. 14 a 15 mohou například představovat lopatky rotačních strojů.
Na obr. 16 je znázorněn případ rotující lopatky tvořící základní nosnou konstrukci 1. Lopatka je umístěna na rotoru 13, který se otáčí kolem pevného rotoru tvořícího rám 10. Vlevo je lopatka plná, vpravo je lopatka dutá. Požadováno je měnit tvar rotující lopatky, resp. upravovat její tvar po její deformaci.
Na obr. 17 je znázorněno řešení působení aktuátoru 3 pro vytvoření požadované tvarové deformace 9 tělesa základní nosné konstrukce 1 působením aktuátoru 3 podle tohoto vynálezu. Těleso základní nosné konstrukce 1 tvořící lopatku je duté a v jeho dutině je umístěna pomocná souběžná konstrukce 2. Cílem je řízeně měnit tvar rotující lopatky. Obr. 17 znázorňuje podélný řez tělesy konstrukce 1 a 2. Mezi pomocnou souběžnou konstrukci 2 a základní nosnou konstrukci 1 jsou umístěny aktuátory 3. Aktuátory 3 se opřou o těleso pomocné souběžné konstrukce 2 a způsobí požadovanou deformaci 9 tvaru tělesa základní nosné konstrukce 1. Deformace obou konstrukcí 1 a 2 je měřena čidly polohy 11 a 12, z nichž je deformace stanovena. Čidla mohou být laserová nebo tenzometrická. V daném případě je lopatka představující základní nosnou konstrukcí 1 upevněna na rotoru 13, který není zatížen deformacemi. Pak rotor 13 lopatky 1 nahrazuje rám 10, ke kterému je připevněna i pomocná souběžná konstrukce 2. Požadovaná tvarová deformace 9 základní nosné konstrukce 1 tvořící lopatku je stanovena ze stavu okolí, např. otáčky rotoru 13, proudění kolem lopatek, tlaku a teploty na vstupu do rotačního stroje užívající základní nosnou konstrukci 1 tvořící lopatku, aj. Řídicí počítač 18 a čidlo 19 stavu okolí nejsou na obr. 17 znázorněny.
Na obr. 18 je znázorněno řešení působení aktuátorů 3 pro řízení deformace křídla 15 letadla 14 podle tohoto vynálezu. Křídlo 15 letadla 14 je znázorněno se třemi řezy. Těleso základní nosné konstrukce 1 tvořící křídlo 15 je duté a v jeho dutině je umístěna pomocná souběžná konstrukce 2 představovaná nosníkem. Cílů řízení pro působení aktuátorů 3 může být více. Jeden cíl může být změna tvaru profilu křídla 15 podélně nebo příčně v řezech obdobně jako pro lopatky na obr. 17. Dalším cílem může být tlumení kmitání a/nebo změna vlastních frekvencí a tvarů kmitání křídla 15 pro potlačení flutteru křídla 15. Jiným cílem může být indukování vibrací povrchu křídla 15, které ovlivní chování mezní vrstvy obtékání profilu křídla. Tyto cíle působení aktuátorů 3 mohou být užity i v jiných případech, např. pro lopatky na obr. 17. Mezi pomocnou souběžnou konstrukci 2 a základní nosnou konstrukci 1 jsou umístěny aktuátory 3. Aktuátory 3 se opřou o těleso pomocné souběžné konstrukce 2 a způsobí požadovanou časově proměnnou deformaci tvaru tělesa základní nosné konstrukce 1. Na obr. 18 není znázorněn směr deformace 9 křídla 15, protože může být ve mnoha různých směrech. Také měření polohy a deformace a kmitání obou konstrukcí 1 a 2 pomocí čidel polohy 11 a 12 není na obr. 18 pro přehlednost znázorněno. Měření může být provedeno tenzometry, akcelerometry, tlakovými nebo laserovými čidly aj. Na základě těchto měření jsou řízeny aktuátory 3 silově působící na základní nosnou konstrukci 1 křídla 15 za účelem časově proměnného řízení její deformace. Požadovaná deformace 9 základní nosné konstrukce 1 tvořící křídlo 15 je stanovena ze stavu okolí, např. rychlosti a výšce letu letadla 14, proudění kolem křídla 15, kmitání křídla 15, aj. Řídicí počítač 18 a čidlo 19 stavu okolí nejsou na obr. 18 znázorněny.
V daném případě je křídlo 15 představující základní nosnou konstrukcí 1 upevněno na trupu letadla 14, které není zatíženo deformacemi. Pak trup letadla 14 nahrazuje rám 10, ke kterému je připevněna i pomocná souběžná konstrukce 2 uvnitř profilu křídla 15.
Na obr. 19 je naprosto obecný případ deformace tvaru tělesa, tzv. morphing tvaru tělesa. Vedle tělesa základní nosné konstrukce 1 je uspořádáno těleso pomocné souběžné konstrukce 2. Obě konstrukce 1 a 2 jsou spojeny potřebným počtem aktuátorů 3 pro dosažení požadované deformace tvaru tělesa základní nosné konstrukce 1. Aktuátory mohou být piezo, hydraulické, elektrické, kovy s tvarovou pamětí a jiné. Deformace (poloha) obou konstrukcí 1 a 2 je měřena čidly polohy 11 a 12. Čidla mohou být laserová, optická nebo tenzometrická aj. Zde je zřejmé, že pomocná souběžná konstrukce 2 vznikla zopakováním základní nosné konstrukce 1v ekvidistantní vzdálenosti.
Na obr. 19 je také ukázáno, že deformaci základní nosné konstrukce 1 je možné stanovit z měření čidlem 12 polohy pomocné souběžné konstrukce 2 měřením polohy připojovacích bodů aktuátorů 3 k pomocné souběžné konstrukci 2 vůči rámu 10 a z měření dalším čidlem 11 polohy základní nosné konstrukce 1 měřením vzájemné polohy připojovacích bodů aktuátoru 3 k základní nosné konstrukci 1 a k pomocné souběžné konstrukci 2.
Na obr. 20 je znázorněno provedení podle obr. 19, kde aktuátor 3 je zde představován teplotním aktuátorem tvořeným kovy s tvarovou pamětí (shape memory alloys - SMA). Teplotní aktuátor 3 je buď ovládán teplotou okolí bez propojení s čidlem a počítačem nebo je obepnut elektrickým odporovým drátem 16 propojeným se zdrojem elektrického napětí 17 řízeným počítačem 18. Počítač 18 se řídí informací z čidla 19 stavu okolí, např. čidla teploty okolí nebo čidla proudění kolem konstrukce nebo čidla otáček aj. Jde o čidlo, které zaznamenává takové parametry v okolí, které mají vliv na řízení deformace základní nosné konstrukce 1 nebo pomocné souběžné konstrukce 2. Pro řízení počítačem 18 lze však užít i čidla polohy 11 základní nosné konstrukce a/nebo polohy 12 pomocné souběžné konstrukce. Toto však není na obr. 18 znázorněno.
Pomocná souběžná konstrukce 2 je obvykle vytvářena tak, že vedle základní nosné konstrukce 1 je základní nosná konstrukce ještě jednou zopakována paralelně (souběžně) v ekvidistantní vzdálenosti k základní nosné konstrukci 1. Tato nová nezávislá konstrukce je podle potřeby zjednodušena nebo dále upravena a po této úpravě z ní vznikne pomocná souběžná konstrukce 2. Jedinou podmínkou je, aby směr, ve kterém musí působit silové působení aktuátoru 3 pro požadovanou deformaci základní nosné konstrukce 1, byl z pomocné souběžné konstrukce 2 dosažitelný tak, že nedojde působením aktuátoru 3 k nepřijatelné deformaci této pomocné souběžné konstrukce 2. Požadavkem je, aby směr, ve kterém posléze působí aktuátor 3, byl takový, že velikost silového působení v tomto směru je jen nezbytně nutné pro dosažení požadované deformace základní nosné konstrukce 1. Pak jsou mezi základní nosnou konstrukcí 1 a pomocnou souběžnou konstrukcí 2 umístěny aktuátory 3, které svým působením provedou požadovanou deformaci základní nosné konstrukce 1. Působení aktuátorů 3 je řízeno měřením deformace základní nosné konstrukce 1 čidly 11 polohy základní nosné konstrukce 1. Pokud aktuátory 3 vyžadují zpětnovazební řízení podle své deformace určené ze vzájemné (relativní) polohy základní nosné konstrukce 1 a pomocné souběžné konstrukce 2, pak jsou doplněny čidly polohy 11 a 12. Požadovaná deformace 9 základní nosné konstrukce 1 bývá stanovena na základě měření čidlem 19 stavu okolí.
Deformaci základní nosné konstrukce 1 je možné také stanovit z měření polohy připojovacích bodů aktuátoru k pomocné souběžné konstrukci 2 vůči rámu 10 a z měření vzájemné polohy připojovacích bodů aktuátoru k základní nosné konstrukci 1 a k pomocné souběžné konstrukci 2.
Všechny popsané varianty se mohou různě kombinovat.
Rám 10, ke kterému je připevněna základní nosná konstrukce 1 a pomocná souběžná konstrukce 2, představuje takovou část zařízení, která není vystavena deformacím a může i zastoupit funkci pomocné souběžné konstrukce. A obráceně část stojících ale třeba i pohybujících se konstrukcí, které nejsou vystaveny deformacím, mohou plnit funkci rámu 10, ze které je vedena pomocná souběžná konstrukce 2.
Použití čidel 11 polohy (deformace) základní nosné konstrukce 1 je obvykle nutné. Použití čidel 12 polohy (deformace) pomocné souběžné konstrukce 2 je vhodné, zvláště pro dynamické (rychlé) změny deformace (tvaru) konstrukcí pro vyloučení nebo potlačení jejich kmitání.
Aktuátory svým silovým působením způsobují statickou nebo časově proměnnou deformaci základní nosné konstrukce. Časová proměnnost silového působení umožňuje měnit deformací řadu dynamických vlastností základní nosné konstrukce, např. tlumení, vlastní frekvence a vlastní tvary nebo interakci s proudícím médiem (vnější nebo vnitřní obtékání).
Aktuátory 3 mohou být řízeny počítačem. Počítač pro své řízení může ve všech případech užít informace z čidel 11 polohy základní nosné konstrukce 1 a/nebo čidel 12 polohy pomocné souběžné konstrukce 2 a/nebo čidel 19 stavu okolí.
Výhoda popisovaných řešení spočívá v tom, že aktuátory 3 musejí vyvinout jen nezbytně nutnou sílu pro požadovanou statickou nebo časově proměnnou deformaci tvaru (morphing) základní nosné konstrukce 1 a to i pro různé a složité deformace tvaru. Použití táhel 6 je výhodné pro vyvedení aktuátorů 3 mimo konstrukce 1 a 2 a poskytnutí většího prostoru pro konstrukci aktuátorů 3.
Claims (5)
1. Zařízení pro řízení deformace nosné konstrukce opatřené souběžnou pomocnou konstrukcí spojenou se základní nosnou konstrukcí alespoň jedním aktuátorem a nosnou konstrukcí opatřenou čidly pro určení polohy nebo deformace a pomocnou konstrukcí opatřenou čidly pro určení polohy nebo deformace, vyznačené tím, že souběžná pomocná konstrukce (2) je umístěna v uzavřené dutině základní nosné konstrukce (1).
2. Zařízení podle nároku 1, vyznačené tím, že souběžná pomocná konstrukce (2) je připojena k rámu (10) tvořeném stojící nebo pohybující se částí nosné konstrukce nevystavené deformaci.
3. Zařízení pro řízení deformace nosné konstrukce podle předchozích nároků, vyznačené tím, že základní nosná konstrukce (1) je opatřena čidlem (19) stavu okolí.
4. Zařízení pro řízení deformace nosné konstrukce podle předchozích nároků, vyznačené tím, že aktuátor (3) je tvořen teplotním aktuátorem.
5. Zařízení pro řízení deformace nosné konstrukce předchozích nároků, vyznačené tím, že aktuátor (3) je obepnut elektrickým odporovým drátem (16) propojeným se zdrojem (17) elektrického napětí řízeným počítačem (18) propojeným s čidlem (11) polohy základní nosné konstrukce (1) a/nebo s čidlem (12) polohy pomocné souběžné konstrukce (2) a/nebo s čidlem (19) stavu okolí.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2021-63A CZ310279B6 (cs) | 2021-02-11 | 2021-02-11 | Zařízení pro řízení deformace nosné konstrukce |
PCT/CZ2021/000051 WO2022171215A1 (en) | 2021-02-11 | 2021-11-08 | A method and a device for carrying structure deformation control |
EP21823175.1A EP4304933A1 (en) | 2021-02-11 | 2021-11-08 | A method and a device for carrying structure deformation control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2021-63A CZ310279B6 (cs) | 2021-02-11 | 2021-02-11 | Zařízení pro řízení deformace nosné konstrukce |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ202163A3 CZ202163A3 (cs) | 2022-08-24 |
CZ310279B6 true CZ310279B6 (cs) | 2025-01-22 |
Family
ID=78828151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2021-63A CZ310279B6 (cs) | 2021-02-11 | 2021-02-11 | Zařízení pro řízení deformace nosné konstrukce |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4304933A1 (cs) |
CZ (1) | CZ310279B6 (cs) |
WO (1) | WO2022171215A1 (cs) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11946460B1 (en) | 2022-12-23 | 2024-04-02 | Raytheon Company | Thermal-mechanical linear actuator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004088130A1 (en) * | 2003-03-31 | 2004-10-14 | Forskningscenter Risø | Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control |
CZ2012621A3 (cs) * | 2012-09-10 | 2014-08-27 | ÄŚVUT v Praze, Fakulta strojnĂ | Způsob a zařízení pro změnu tuhosti sériového nebo paralelního základního pohyblivého mechanismu, zvláště průmyslových robotů a obráběcích strojů |
CZ304667B6 (cs) * | 2006-02-27 | 2014-08-27 | ÄŚVUT v Praze - Fakulta strojnĂ | Způsob a zařízení pro změnu tuhosti mechanických konstrukcí |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2672836B1 (fr) * | 1991-02-15 | 1995-06-02 | Onera (Off Nat Aerospatiale) | Dispositif d'articulation a structure parallele et appareils de transmission de mouvement a distance en faisant application. |
CZ306324B6 (cs) * | 2015-10-05 | 2016-11-30 | ÄŚVUT v Praze, Fakulta strojnĂ | Zařízení pro změnu tuhosti mechanických konstrukcí |
-
2021
- 2021-02-11 CZ CZ2021-63A patent/CZ310279B6/cs unknown
- 2021-11-08 WO PCT/CZ2021/000051 patent/WO2022171215A1/en active Application Filing
- 2021-11-08 EP EP21823175.1A patent/EP4304933A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004088130A1 (en) * | 2003-03-31 | 2004-10-14 | Forskningscenter Risø | Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control |
CZ304667B6 (cs) * | 2006-02-27 | 2014-08-27 | ÄŚVUT v Praze - Fakulta strojnĂ | Způsob a zařízení pro změnu tuhosti mechanických konstrukcí |
CZ2012621A3 (cs) * | 2012-09-10 | 2014-08-27 | ÄŚVUT v Praze, Fakulta strojnĂ | Způsob a zařízení pro změnu tuhosti sériového nebo paralelního základního pohyblivého mechanismu, zvláště průmyslových robotů a obráběcích strojů |
Also Published As
Publication number | Publication date |
---|---|
CZ202163A3 (cs) | 2022-08-24 |
EP4304933A1 (en) | 2024-01-17 |
WO2022171215A1 (en) | 2022-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tian et al. | Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation | |
Guo et al. | Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning | |
Ling et al. | Theoretical modeling of attenuated displacement amplification for multistage compliant mechanism and its application | |
Lee et al. | Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier | |
Arvin et al. | Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise | |
Ling et al. | Design and modeling of an improved bridge-type compliant mechanism with its application for hydraulic piezo-valves | |
Al-Solihat et al. | Force transmissibility and frequency response of a flexible shaft–disk rotor supported by a nonlinear suspension system | |
KR102387317B1 (ko) | 포지셔닝 유닛 | |
CZ310279B6 (cs) | Zařízení pro řízení deformace nosné konstrukce | |
EP3382363B1 (en) | Remotely controlled methods and systems for actuating boundary layer transition devices in a wind tunnel model | |
Liu et al. | A dynamic pressure calibration device based on the low speed servomotor and pistonphone technique | |
CZ35102U1 (cs) | Zařízení pro řízení deformace nosné konstrukce | |
Chen et al. | Design of low parasitic motion microgripper based on symmetrical parallelogram mechanism | |
Hudramovych | Features of nonlinear deformation and critical states of shell systems with geometrical imperfections | |
Forte et al. | A novel test rig for the dynamic characterization of large size tilting pad journal bearings | |
Kim et al. | Theory of thin-walled functionally graded sandwich beams with single and double-cell sections | |
Kim et al. | Thermoelastic dissipation of rotating imperfect micro-ring model | |
Lee et al. | Lateral vibration of a composite stepped beam consisted of SMA helical spring based on equivalent Euler–Bernoulli beam theory | |
Bellouard et al. | Shape memory alloy flexures | |
Hufnagel et al. | Force and moment measurement | |
Spanoudakis et al. | Design and production of the METOP satellite IASI corner cube mechanisms | |
Leconte et al. | Experimental assessment of an active flap device | |
Drossel et al. | Evaluation of shape memory alloy bulk actuators for wear compensation in ball screw drives | |
Hufnagel et al. | The 2nd Generation balance calibration machine of Darmstadt university of technology (TUD) | |
CN113942666A (zh) | 一种用于零重力环境模拟的近零刚度支承装置 |