CZ305540B6 - Heat treatment process of high-alloy steel - Google Patents

Heat treatment process of high-alloy steel Download PDF

Info

Publication number
CZ305540B6
CZ305540B6 CZ2014-348A CZ2014348A CZ305540B6 CZ 305540 B6 CZ305540 B6 CZ 305540B6 CZ 2014348 A CZ2014348 A CZ 2014348A CZ 305540 B6 CZ305540 B6 CZ 305540B6
Authority
CZ
Czechia
Prior art keywords
heat treatment
alloy steel
range
temperature
treatment process
Prior art date
Application number
CZ2014-348A
Other languages
Czech (cs)
Other versions
CZ2014348A3 (en
Inventor
Bohuslav Mašek
Hana Jirková
David Aišman
Filip VanÄŤura
Original Assignee
Západočeská Univerzita V Plzni
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Západočeská Univerzita V Plzni filed Critical Západočeská Univerzita V Plzni
Priority to CZ2014-348A priority Critical patent/CZ2014348A3/en
Priority to US14/716,618 priority patent/US9765418B2/en
Publication of CZ305540B6 publication Critical patent/CZ305540B6/en
Publication of CZ2014348A3 publication Critical patent/CZ2014348A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/004Thixotropic process, i.e. forging at semi-solid state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The present invention relates to a process for heat treatment of high-alloy steel having the resulting structure of undissolved metal carbides in the form of globulitic particles, austenitic and martensitic structure. The heat treatment process consists in heating a metal blank to a temperature in the range of 1270 to 1280 degC, at a heating rate within the range of 40 to 45 degC/s. Subsequently the metal blank is subjected to pressure in thixotropic process and then it is let to cool down to ambient temperature.

Description

Oblast technikyTechnical field

Vynález se týká způsobu tepelného zpracování vysokolegované oceli výsledně tvořené strukturou z nerozpuštěných karbidů kovu v podobě globulitických částic, s austenitickou a martenzitickou strukturou.The invention relates to a process for heat treatment of high-alloy steel resulting from a structure of undissolved metal carbides in the form of globulite particles, with an austenitic and martensitic structure.

Dosavadní stav technikyBACKGROUND OF THE INVENTION

Vysokolegované oceli jsou v literatuře označovány, jako oceli s obsahem legujících prvků je vyšší než 10 %. Kombinací legujících prvků se dosahuje potřebných mechanických, fyzikálních a chemických vlastností. Vlastnosti takových ocelí jsou závislé nejen na chemickém složení, ale především na struktuře - tj. na fázovém složení a na tvaru a uspořádání jednotlivých fází. Požadované struktury se dosahuje u ocelí vhodného chemického složení tepelným zpracováním. Tepelné zpracování zahrnuje všechny postupy, při nichž se vnitřní stavba kovu záměrně mění pomocí změn teploty.High-alloy steels are referred to in the literature as steels with an alloying element content greater than 10%. The combination of alloying elements achieves the necessary mechanical, physical and chemical properties. The properties of such steels depend not only on the chemical composition, but above all on the structure - ie the phase composition and the shape and arrangement of the individual phases. The required structure is achieved in steels of suitable chemical composition by heat treatment. Heat treatment includes all processes in which the internal structure of the metal is intentionally changed by temperature changes.

Při tepelném zpracování mohou probíhat změny struktury ve dvou směrech: je-li struktura v nerovnovážném stavu, lze použít postupů směřujících k dosažení termodynamické rovnováhy, kterou představuje diagram Fe-Fe3C. Tyto postupy se souhrnně označují jako žíhání. Při tomto druhu zpracování vzniká v závislosti na obsahu uhlíku feritická, feriticko-perlitická nebo ledeburitická struktura. Druhou skupinou procesů je vytváření nerovnovážných struktur, které vznikají rychlým ochlazením. Tím vznikají martenzitické a bainitické struktury s vysokou pevností, avšak malou houževnatostí. Tyto procesy se označují jako kalení. Dále je kupříkladu známé tepelné zpracování označované jako tixotropní tváření. Vhodnost ocelí pro tixotropní tváření je dána mnoha kritérii. Nej častěji jsou popisovány technologickými parametry, které dokumentují jejich chování při jejich zpracování v semi-solid stavu. Zpravidla nej sledovanější z nich je teplotní interval mezi solidem a likvidem, neboť dosavadní technika nebyla schopna řídit teplotu v objemu zpracovávaného materiálu s potřebnou přesností a dostatečně malými odchylkami teplot. Čím širší je interval mezi solidem a likvidem, tím rovnoměrnějších vlastností lze v objemu materiálu dosáhnout. Nejčastěji je udáváno, že tento interval závisí zejména na chemickém složení materiálu. Částečně ho lze ovlivnit způsobem ohřevu a jeho rychlostí, ev. i strukturou výchozího materiálu. Informace o korelacích s výchozí strukturou se v literatuře prakticky nevyskytují. Vhodnost ocelí pro zpracování v semi-solid stavu není však dána jen absolutním teplotním intervalem mezi solidem a likvidem, ale zejména křivkou popisující podíl solidu a likvidu v závislosti na teplotě při procesu natavování. Ta však může být značně závislá na struktuře a lokálním přerozdělení chemického složení. Co se týče strukturního stavu a zejména přípravy ocelového polotovaru pro tixotropní tváření jiným než klasickým způsobem, jsou informace v literatuře zatím uvedeny pouze v ojedinělých případech.Heat treatment can undergo structural changes in two directions: if the structure is in an unbalanced state, procedures to achieve the thermodynamic equilibrium represented by the Fe-Fe 3 C diagram can be used. These procedures are collectively referred to as annealing. Depending on the carbon content, this type of treatment produces a ferritic, ferritic-perlitic or ledeburitic structure. The second group of processes is the formation of non-equilibrium structures that are formed by rapid cooling. This creates martensitic and bainitic structures with high strength but low toughness. These processes are referred to as quenching. Furthermore, for example, heat treatment known as thixotropic forming is known. The suitability of steels for thixotropic forming is determined by many criteria. Most often they are described by technological parameters, which document their behavior during their processing in semi-solid state. As a rule, the most watched of them is the temperature interval between solid and liquid, since the prior art has not been able to control the temperature in the volume of the material to be processed with the necessary accuracy and sufficiently small temperature variations. The wider the interval between solid and liquid, the more uniform properties can be achieved in the material volume. Most often it is stated that this interval depends mainly on the chemical composition of the material. It can be partially influenced by the way of heating and its speed, ev. structure of the starting material. Information on correlations with the initial structure is virtually absent in the literature. However, the suitability of steels for semi-solid processing is not only determined by the absolute temperature interval between solid and liquid, but in particular by the curve describing the proportion of solid and liquidus as a function of temperature during the melting process. However, it can be highly dependent on the structure and local redistribution of the chemical composition. As far as the structural state and in particular the preparation of the steel semi-finished product for thixotropic forming in other than classical way, the information in the literature has so far been given only in isolated cases.

Podstata vynálezuSUMMARY OF THE INVENTION

Vynález se týká způsobu tepelného zpracování vysokolegované oceli. Při takovém zpracování vzniká speciální struktura, která je tvořena nerozpuštěnými karbidy kovu v podobě globulitických částic, s austenitickou a martenzitickou strukturou.The invention relates to a method of heat treatment of high-alloy steel. Such a treatment produces a special structure consisting of undissolved metal carbides in the form of globulitic particles with an austenitic and martensitic structure.

Způsob tepelného zpracování vysokolegované oceli je tvořen následujícím postupem: kovový polotovar se ohřeje se na teplotu v rozmezí od 1270 do 1280 °C, rychlostí ohřevu v rozmezí od 40 až 45 °C/s, poté se na kovový polotovar působí tlakem v tixotropním procesu a následně nechá se vychladnout na teplotu okolí.The method of heat treatment of high alloy steel comprises the following method: the metal blank is heated to a temperature in the range of 1270 to 1280 ° C, a heating rate in the range of 40 to 45 ° C / s, then the metal blank is pressurized in a thixotropic it is then allowed to cool to ambient temperature.

- 1 CZ 305540 B6- 1 GB 305540 B6

Objasnění výkresůClarification of drawings

Na obrázku č. 1 a obr. č. 2 je vyobrazena výsledná struktura za použití světelného mikroskopu, na obr. č. 3 je vyobrazena výsledná struktura za použití skenovacího mikroskopu.Figures 1 and 2 show the resulting structure using a light microscope, Figure 3 shows the resultant structure using a scanning microscope.

Příklady uskutečnění vynálezuDETAILED DESCRIPTION OF THE INVENTION

Pro experimentální příklad byla zvolena ocel, které by svým chemickým složením odpovídala a umožňuje navrženou koncepci zpracování. Na základě výpočtů byla vybrána ocel CPM 15 V vyrobená práškovou metalurgií. V základním stavu je tvořena karbidy vanadu a chrómu uloženými ve feritické matrici. Jedná se o ocel s vysokou odolností vůči opotřebení a vysokou tvrdostí. Její velkou nevýhodou je nízká tvařitelnost a obrobitelnost.For the experimental example, steel was chosen which would correspond to its chemical composition and allow the proposed processing concept. CPM 15 V steel made by powder metallurgy was selected on the basis of calculations. In its basic state it consists of vanadium and chromium carbides embedded in a ferritic matrix. It is a steel with high wear resistance and high hardness. Its great disadvantage is its low formability and machinability.

c C Cr Cr V IN Mo Mo Mn Mn Si Si 3,40 3.40 5,25 5.25 14,5 14.5 1,30 1.30 0,50 0.50 0,90 0.90

Tab. 1: Chemické složení oceli CPM 15V (% hmotn.)Tab. 1: Chemical composition of CPM 15V steel (wt.%)

Pro získání ucelenějšího obrazu o mechanických vlastnostech byla dále zvolena zkouška tlakem, díky které lze porovnávat deformační odezvu na zatěžování materiálu.In order to obtain a more complete picture of mechanical properties, a compression test was chosen, which allows comparing the deformation response to material loading.

Ve výchozím stavu byla naměřena průměrná hodnota tvrdosti 298 HV10. Ve stavu po tixotropním tváření byla tvrdost 728 HV10. Stejný trend byl pozorován při zkoušce tlakem, kde mez kluzu vzrostla z původní hodnoty 627 na 1990 MPa, což představuje trojnásobný nárůst. Toto výrazné zvýšení pevnosti v tlaku lze přisuzovat zejména vzniku martenzitu v matrici a vyloučení chrómu ve formě síťoví. Mikrostruktura materiálu byla po tixotropním tváření tvořena globulárními karbidy vanadu, uloženými v austenitické matrici, jak je vidět na obr. 1 a obr. 2. Na základě rentgenové difrakční fázové analýzy bylo zjištěno, že struktura oceli CPM 15V po tixotropním tváření ve středu produktu při teplotě 1270 °C byla tvořena směsí austenitu 50%, fází železa s kubickou prostorově centrovanou mřížkou 29% a karbidy vanadu V8C7 21%. V případě fáze železa alfa se jedná o martenzit. Při srovnání s výchozím stavem oceli CPM 15V bylo zjištěno, že karbidy V8C7 zůstaly ve struktuře zachovány a došlo k přeměně feritické matrice na austenit a martenzit. Výskyt těchto karbidů ve struktuře přináší produktům nové možnosti, jako je například vysoká otěruvzdomost. Produkt byl podroben měření tvrdosti dle Vickerse po celé své délce.In the initial state, an average hardness value of 298 HV10 was measured. In the thixotropic forming state, the hardness was 728 HV10. The same trend was observed in the compression test, where the yield strength increased from the original value of 627 to 1990 MPa, which is a threefold increase. This significant increase in compressive strength can be attributed mainly to the formation of martensite in the matrix and the exclusion of chromium in the form of mesh. The microstructure of the material after thixotropic forming was formed by globular vanadium carbides embedded in an austenitic matrix as shown in Fig. 1 and Fig. 2. 1270 ° C consisted of austenite mixture of 50%, iron phase with cubic spatially centered grid of 29% and vanadium carbide V8C7 21%. The iron alpha phase is martensite. In comparison with the initial state of CPM 15V steel, it was found that V8C7 carbides remained in the structure and the ferritic matrix was converted to austenite and martensite. The occurrence of these carbides in the structure brings new possibilities to the products, such as high abrasion resistance. The product was subjected to Vickers hardness measurements over its entire length.

Mez kluzu v tlaku [MPa] Compressive yield strength [MPa] HV10[-] HV10 Výchozí stav Initial status Po tixoformingu After thixoforming Výchozí stav Initial status Po tixoformingu After thixoforming CPM 15V CPM 15V 627 627 1990 1990 298 298 728 728

Tab. 2: Srovnání parametrů meze kluzu v tlaku a tvrdosti podle VickerseTab. 2: Comparison of parameters of compressive yield strength and hardness according to Vickers

-2CZ 305540 B6-2GB 305540 B6

Claims (2)

PATENTOVÉ NÁROKYPATENT CLAIMS 5 1. Způsob tepelného zpracování vysokolegované oceli tvořené nerozpuštěnými karbidy kovu v podobě globulitických částic v rozmezí 10 až 25 hmotn. %, 40 až 50 hmotn. % austenitickou a 10 až 25 hmotn. % martenzitickou strukturou, vyznačující se tím, že kovový polotovar se ohřeje na teplotu v rozmezí od 1270 do 1280 °C, rychlostí ohřevu v rozmezí od 40 až 45 °C/s, poté se na kovový polotovar působí tlakem v tixotropním procesu, a následně se nechá io vychladnout na teplotu okolí.1. A process for the heat treatment of high-alloy steel consisting of undissolved metal carbides in the form of globulite particles in the range of 10 to 25 wt. %, 40 to 50 wt. % austenitic and 10 to 25 wt. % martensitic structure, characterized in that the metal blank is heated to a temperature in the range of 1270 to 1280 ° C, a heating rate in the range of 40 to 45 ° C / s, then the metal blank is subjected to pressure in a thixotropic process, and Allow to cool to ambient temperature. 2. Způsob dosažení struktury vysokolegované oceli podle nároku 2, vyznačující se tím, že po ohřevu v rozmezí 1270 do 1280 °C následuje tixotropní tváření.Method for achieving a high-alloy steel structure according to claim 2, characterized in that the heating in the range of 1270 to 1280 ° C is followed by thixotropic forming.
CZ2014-348A 2014-05-21 2014-05-21 Heat treatment process of high-alloy steel CZ2014348A3 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CZ2014-348A CZ2014348A3 (en) 2014-05-21 2014-05-21 Heat treatment process of high-alloy steel
US14/716,618 US9765418B2 (en) 2014-05-21 2015-05-19 Microstructure of high-alloy steel and a heat treatment method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2014-348A CZ2014348A3 (en) 2014-05-21 2014-05-21 Heat treatment process of high-alloy steel

Publications (2)

Publication Number Publication Date
CZ305540B6 true CZ305540B6 (en) 2015-11-25
CZ2014348A3 CZ2014348A3 (en) 2015-11-25

Family

ID=54555616

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ2014-348A CZ2014348A3 (en) 2014-05-21 2014-05-21 Heat treatment process of high-alloy steel

Country Status (2)

Country Link
US (1) US9765418B2 (en)
CZ (1) CZ2014348A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306020B6 (en) * 2015-03-10 2016-06-22 Západočeská Univerzita V Plzni Process for producing ledeburitic high alloy steel by heat treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216268B (en) * 2019-06-21 2021-05-18 北京科技大学 High-carbon high-alloy steel semi-solid forming temperature-control cooling heat treatment process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758023A1 (en) * 1995-08-08 1997-02-12 The Timken Company Steel machine component having refined surface microstructure and process for forming the same
EP1031631A2 (en) * 1999-02-22 2000-08-30 Ovako Steel AB A method of spheroidizing annealing of hypo-eutectoid low alloy steel
WO2005103317A2 (en) * 2003-11-12 2005-11-03 Northwestern University Ultratough high-strength weldable plate steel
US20060137781A1 (en) * 2004-12-29 2006-06-29 Mmfx Technologies Corporation, A Corporation Of The State Of California High-strength four-phase steel alloys
WO2007024192A1 (en) * 2005-08-24 2007-03-01 Uddeholm Tooling Aktiebolag Steel alloy and tools or components manufactured out of the steel alloy
WO2010040333A1 (en) * 2008-10-08 2010-04-15 Peter Barth Biocompatible material made of stainless steel having a martensitic surface layer
CZ2010850A3 (en) * 2010-11-19 2012-05-30 Západoceská Univerzita V Plzni Method of thixotropic forming of small parts and apparatus for making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758023A1 (en) * 1995-08-08 1997-02-12 The Timken Company Steel machine component having refined surface microstructure and process for forming the same
EP1031631A2 (en) * 1999-02-22 2000-08-30 Ovako Steel AB A method of spheroidizing annealing of hypo-eutectoid low alloy steel
WO2005103317A2 (en) * 2003-11-12 2005-11-03 Northwestern University Ultratough high-strength weldable plate steel
US20060137781A1 (en) * 2004-12-29 2006-06-29 Mmfx Technologies Corporation, A Corporation Of The State Of California High-strength four-phase steel alloys
WO2007024192A1 (en) * 2005-08-24 2007-03-01 Uddeholm Tooling Aktiebolag Steel alloy and tools or components manufactured out of the steel alloy
WO2010040333A1 (en) * 2008-10-08 2010-04-15 Peter Barth Biocompatible material made of stainless steel having a martensitic surface layer
CZ2010850A3 (en) * 2010-11-19 2012-05-30 Západoceská Univerzita V Plzni Method of thixotropic forming of small parts and apparatus for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(Dagmar Jandová, Svetelná a elektronová mikroskopie svarového spoje oceli P91; konference Metal 2005, Hradec nad Moravicí; http://www.metal2014.com/files/proceedings/metal_05/papers/190.pdf) 24. az 26.5.2005 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306020B6 (en) * 2015-03-10 2016-06-22 Západočeská Univerzita V Plzni Process for producing ledeburitic high alloy steel by heat treatment

Also Published As

Publication number Publication date
US9765418B2 (en) 2017-09-19
US20150337417A1 (en) 2015-11-26
CZ2014348A3 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
Naghizadeh et al. Effects of grain size on mechanical properties and work‐hardening behavior of AISI 304 austenitic stainless steel
Wendler et al. Effect of manganese on microstructure and mechanical properties of cast high alloyed Cr M n N i‐N steels
Cardoso et al. Abrasive wear in Austempered Ductile Irons: A comparison with white cast irons
RU2009111860A (en) STEEL AND METHOD OF PROCESSING FOR MANUFACTURE OF HIGH-STRENGTH PARTS FOR MACHINES ARE ABLE TO SEPARATE BREAKING
US20170369976A1 (en) Ultra-high strength thermo-mechanically processed steel
Somani et al. Process design for tough ductile martensitic steels through direct quenching and partitioning
Maisuradze et al. Thermal stabilization of austenite during quenching and partitioning of austenite for automotive steels
MX2020009802A (en) Forged part of bainitic steel and a method of manufacturing thereof.
Guo et al. Effects of Heat‐Treatment on the Microstructure and Wear Resistance of a High‐Chromium Cast Iron for Rolls
JP2013510952A (en) Stainless steel mold steel with small amount of delta ferrite
CZ305540B6 (en) Heat treatment process of high-alloy steel
Davinci et al. Influence of processing parameters on hot workability and microstructural evolution in a carbon–manganese–silicon steel
US8377235B2 (en) Process for forming steel
CN106086772A (en) Nitrizing Treatment wear-resistant ball preparation method
CN104630649B (en) A kind of low-alloy heat-resistant high-strength steel and component thereof
Cha et al. CALPHAD-based alloy design for advanced automotive steels-Part I: Development of bearing steels with enhanced strength and optimized microstructure
Ahmed et al. Influence of partial replacement of nickel by nitrogen on microstructure and mechanical properties of austenitic stainless steel
JP2005187888A (en) Method for quenching hyper-eutectoid steel excellent in static strength used for rolling bearing
Skubisz et al. Effect of direct cooling conditions on characteristics of drop forged Ti+ V+ B microalloy steel
Evangelista et al. Hot working and multipass deformation of a 41Cr4 steel
Maisuradze et al. Improving the impact toughness of the HY-TUF steel by austempering
CN108350557A (en) The piston ring and its manufacturing process of casting tool steel
Mengaroni et al. Strengthening improvement on gear steels
Wahab et al. Effect of heat treatment on the fracture toughness of AISI 4140 Steel
Itman et al. Influence of niobium and molybdenum on mechanical strength and wear resistance of microalloyed steels

Legal Events

Date Code Title Description
MM4A Patent lapsed due to non-payment of fee

Effective date: 20220521