CZ2011362A3 - Celovláknový laser s pasivním Q-spínáním - Google Patents

Celovláknový laser s pasivním Q-spínáním Download PDF

Info

Publication number
CZ2011362A3
CZ2011362A3 CZ20110362A CZ2011362A CZ2011362A3 CZ 2011362 A3 CZ2011362 A3 CZ 2011362A3 CZ 20110362 A CZ20110362 A CZ 20110362A CZ 2011362 A CZ2011362 A CZ 2011362A CZ 2011362 A3 CZ2011362 A3 CZ 2011362A3
Authority
CZ
Czechia
Prior art keywords
fiber
laser
optical
ytterbium
lpfg
Prior art date
Application number
CZ20110362A
Other languages
English (en)
Other versions
CZ303333B6 (cs
Inventor
Peterka@Pavel
Honzátko@Pavel
Slavík@Radan
Original Assignee
Ústav fotoniky a elektroniky AV CR, v.v.i.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ústav fotoniky a elektroniky AV CR, v.v.i. filed Critical Ústav fotoniky a elektroniky AV CR, v.v.i.
Priority to CZ20110362A priority Critical patent/CZ303333B6/cs
Publication of CZ2011362A3 publication Critical patent/CZ2011362A3/cs
Publication of CZ303333B6 publication Critical patent/CZ303333B6/cs

Links

Landscapes

  • Lasers (AREA)

Abstract

Predmet vynálezu je pasivne Q-spínaný pevnolátkový laser, který zahrnuje zdroj (1) optického cerpání, který je opticky propojen s vláknovou braggovskou mrížkou (2). Výstup vláknové braggovské mrížky (2) je opticky propojen s optickým vláknem (4), do kterého jsou zapsány dve vláknové mrížky (3) s dlouhou periodou. Optické vlákno (4) je dopováno ytterbiem a za druhou vláknovou mrížkou (3) s dlouhou priodou je optické vlákno (4) bud kolmo zalomeno nebo opticky propojeno se slucovacem (10) optického zárení laserového signálu a optického cerpání, na který jsou opticky napojeny cerpací zdroj (11) a další vláknová braggovská mrížka (2). Navrhované rešení impulzních vláknových laseru muže být s výhodou využito v ruzných oblastech techniky, napr. v laserových systémech pro zpracování materiálu nebo pro medicínské laserové systémy.

Description

Celovláknový laser s pasivním Q-spínáním
Oblast techniky
Vynález se týká Q-spínaných ytterbiem dopovaných vláknových laseru. Jedná se o zařízení z oblasti laserové techniky.
Dosavadní stav techniky
Vláknové lasery jsou skupina laserů, které jako aktivní médium využívají skleněná optická vlákna, zejména vlákna dopovaná prvky vzácných zemin. Pro svou variabilitu jsou vláknové lasery využitelné ve značně rozdílných aplikacích. Využívají se v aplikacích náročných na výkon jako řezání a sváření v průmyslu a lze je nalézt i v delikátních zařízeních vyvíjených pro dosud nej přesnější měření frekvence a času. Rostoucí zájem je o vysokovýkonné vláknové lasery, neboť v řadě aplikací mohou potenciálně nahradit konvenční pevnolátkové lasery na bázi objemových prvků, např. krystalů dopovaných prvky vzácných zemin. Geometrické uspořádání vláknových laserů poskytuje několik výhod oproti konvenčním pevnolátkovým laserům jako je inherentně vynikající kvalita výstupního svazku a dobrý odvod ztrátového tepla. Při sestavování vláknových laserů lze také s výhodou těžit z rozsáhlé součástkové základny vyvinuté v minulosti pro optické komunikace. Protože z jedné preformy optického vlákna lze připravit kilometry aktivního vlákna, vláknové lasery mají velký potenciál pro masovou a levnou výrobu. Vláknové lasery s metodou čerpání přes plášť se osvědčily jako pozoruhodně efektivní konvertory velmi výkonného záření laserových diod, které ale vykazují malý jas, do velmi výkonného záření s vysokým jasem.
Metoda Q-spínání je účinný způsob jak získat velmi intenzivní (gigantické) a krátké pulzy z laseru. Teorie režimu Q-spínání laserových systémů je detailně vysvětlena v knize W.
a/
Koechner, „Solid-state laser engineering“, 6th edition, Springer, USA, 2006, str. 488x533. Při Qspínaném režimu laseru jsou udržovány vysoké ztráty laserové dutiny, dokud se v čerpaném aktivním médiu nenashromáždí určité množství energie. Ztráty dutiny jsou pak rychle sníženy na malou hodnotu, což umožní, aby se v dutině rychle ustavilo intenzivní laserové záření. Krátký optický pulz je pak uvolněn výstupním vazebním členem a jeho energie může být až řádu milijoulů. Spínání jakosti, resp. ztrát rezonátorové dutiny může být realizováno jak aktivně?tak pasivně. Aktivní spínání vyžaduje externě řízený prvek, např. akustooptický modulátor, elektrooptický modulátor, nebo mechanický prvek jakým je třeba rotující zrcátko. Výhodou aktivního Q-spínání je snadné řízení opakovači frekvence a délky pulzů, nevýhodou pak požadavek aktivního modulátoru a jeho řízení. V metodě pasivního Q-spínání (passive Qswitching, PQS), je jako spínací prvek používán saturovatelný absorbér (SA). Pulzní lasery pracující v režimu PQS jsou často atraktivnější než aktivně modulované lasery, a to především díky své spolehlivosti, robustnosti, jednoduchosti a nižším výrobním a provozním nákladům. Tyto výhody jsou platné i pro vláknové lasery, které začínají nacházet uplatnění v mnoha aplikacích, od telekomunikací, metrologii až po lékařství a zpracování materiálu, jak bylo uvedeno výše v prvním odstavci. Z tohoto pohledu je významný výzkum vedoucí k celovláknovým laserů pracujících v impulzním režimu. Doposud byly demonstrovány PQS vláknové lasery využívající jako saturovatelné absorbéry křehké a drahé objemové prvky jako např. polovodičové saturovatelné absorbéry (semiconductor saturable absorbér mirrors, S ESAM), případně krystaly dopované Cr4+, Co2’. Avšak tyto techniky vyžadují složité optické nastavování a zvláštní pozornost je třeba věnovat dopadající intenzitě záření kvůli jejich nízkému prahu optického poškození. Pro ustavení PQS režimu ve vláknových laserech bylo rovněž studováno použití Kerrova jevu, avšak vzhledem k tomu, že nelineární koeficient křemenných optických vláken lze zvýšit jen v omezené míře, je obtížné Kerrovy nelinearity využít v krátkých rezonátorech. Dalším typem SA jsou materiály dopované ionty vzácných zemin (erbium, samarium). Např. v laserech s optickým vláknem vysoce dopovaným erbiem (>1000 mol. ppm) mohou vykazovat funkci SA iontové páry erbia (D. Marcuse, Pulsing behaviour of a three-level a 7 laser with saturable absorbér, J. Quantum Electronics, 29(8):2390xŽ396, 1993.). Nicméně dosažitelné provozní režimy PQS laseru s takovýmto SA, co se týká výstupního výkonu, délky trvání pulzu a opakovači frekvence, jsou z hlediska aplikací příliš omezující. Rovněž nedávno demonstrovaný PQS vláknový laser se samariem dopovaným vláknem jako SA vykazuje málo stabilní pulzní režim a jeho výstupem jsou pulzy s nízkým špičkovým výkonem (I. Razdobreev, A. Fotiadi, and A. Kůrko v, „Passively Q-switched ytterbium-doped solid-state laser with samarium-doped fíbre as saturable absorbér“, European patent EP 1662624, 2009). Režimu pasivního Q-spínaní se podařilo dosáhnout také díky kombinaci jevů zpětného Rayileghova rozptylu a stimulovaného Brillouinova rozptylu v recirkulační vláknové smyčce vřazené do rezonátoru vláknového laseru (D. A, Grukh, A.S. Kurkov, I. M. Razdobreev, A. A. Fotiadi, Self-Q-switched ytterbium-doped cladding-pumped tíbre laser, Quantum Electronics 32 (11), ať pp. 1017*1019, 2002). Spínací parametry vláknového SA jsou kromě spektroskopických parametrů použitého dopantu (samaria, erbia apod.) určeny rovněž vlnovodnými parametry hostitelského vlákna. Jak ukázali Nilsson a Paschotta (L. J. A. Nilsson, R. E. Paschotta, Optical amplifier and light source, USnpatent 6445(194 B, 14. 3. 2002), je možné měnit úroveň
X
přepínacího výkonu SA v rozsahu až několik řádů vhodným tvarem oblasti dopování, která může rnít kruhový tvar v ose vlákna nebo prstenec v okolí jádra vlákna.
V literatuře bylo popsáno použití hřebenového spektrálního filtru na bázi dvou vláknových mřížek s dlouhou periodou (LPFG, Long-Period Fiber Grating) ve vláknových laserech pro generaci laserového signálu na několika vlnových délkách (M. Yan, S. Luo, L. Zhan, Z. Zhang, and Y. Xia, Triple-wavelength switchable erbium doped fiber laser with cascaded asymmetric az* exposure long-period fiber gratings, Opt. Express 15, 3685x3691, 2007.). Toto řešení se však principiálně liší od navrhovaného řešení, protože se jednalo o kontinuální, nikoliv impulzní signál a obě LPFG byly zapsány v optickém vlákně nedopovaném prvky vzácných zemin.
Dále byl podobný filtr použit pro přepínání optického signálu v optických komunikacích (Yune Hyoun Kim, Un-Chul Paek, and Won-Taek Han, All-optical 2*2 switching with two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair, Appl. ať
Opt. 44, 3051x3057, 2005.). Toto řešení se principiálně liší od navrhovaného řešení, protože se jednalo o zcela jinou oblast aplikaci^ a to oblast telekomunikační techniky a služeb, zcela jinou spektrální oblast signálů (v okolí vlnové délky 1550 nm), LPFG byly zapsány v pasivních, nedopovaných vláknech, a funkce optického spínání byla řízena pouze čerpacím zářením na vlnové délce v okolí 980 nm, nikoliv také signálem.
LPFG lze s výhodou využít ve výkonových vláknových laserech pro generaci radiálně polarizovaného záření, jak bylo popsáno v evropské patentové přihlášce (K. Shuma, Laser oscillator and fíltering method, EP 233(^96 A2, 8. 6. 2011). Předmětem této evropské přihlášky je však kontinuální, nikoliv pulzní režim laseru a LPFG v laseru působí jako módový filtr, který potlačuje všechny ostatní příčné módy kromě radiálně polarizovaného módu.
LPFG lze dále s výhodou použít v širokopásmových zdrojích záření pro optické vláknové senzory, např. vláknové gyroskopy. V patentu (G. A. Pavlath, Long period Bragg grating .____, v v optical signál attenuation, US: patent 7233724 B, 26. 5. 2005) byly použity LPFG jako optický atenuátor pro potlačení zpětných odrazů širokopásmového záření generovaného v optickém vlákně dopovaném prvky vzácných zemin. Předmětem patentu G. A, Pavlatha je však kontinuální, širokopásmový zdroj záření (zejména pro gyroskopy), ve kterých LPFG slouží jako atenuátor zabraňující vzniku nežádoucích laserových oscilací.
Z dosud popsaných celovláknových Q-spínaných laserů se jako nejbližší jeví dvě technická řešení: první podle (D. Sáez-Rodríguez, J. L. Cruz, Yu.O. Barmenkov, A. Díez, Μ. V. Andrés, Fiber laser switched by a long period grating interferometer as an intra-cavity loss modulátor, Optics Communications 283(14):2892»2895, 2010) a druhé podle (W. T. Han, S. M. Ju, P. R. Watekar, An all-fíber pulsed fiber laser module, WO 2009/084755 Al, 9. 7. 2009).
?
Laser podle D. Sáeze-Rodrígueze a kol. zahrnuje zdroj optického čerpání, výstupní zrcadlo a součástí modulátoru Q-faktoru rezonátoru je vláknová braggovská mřížka v kombinaci s hřebenovým spektrálním filtrem vytvořeným dvěma zapsanými vláknovými mřížkami s dlouhou periodou avšak v erbiem dopovaném optickém vlákně a s odlišným uspořádáním jednotlivých komponent, je tedy založený na odlišném principu narozdíl od navrhovaného řešení. Změna spektrální transmise hřebenového filtru se pak děje napínáním jedné z LPFG mřížek pomocí piezoelektrického měniče. Negativní vlastnost tohoto řešení však spočívá v nutnosti použití další komponenty, a to externího modulátoru, který zvyšuje složitost a cenu zařízení. Další nevýhodou je použití mechanických pohyblivých součástí, které snižují provozní spolehlivost zařízení.
Laserový modul podle W. T. Hana a kol. zahrnuje zdroj optického čerpání a dvě vláknová zrcadla mezi nimiž je umístěno aktivní, ytterbiem dopované vlákno (modulátor Q-faktoru rezonátoru (proměnný optický atenuátor)). Modulátor je tedy tvořen nelineárním vláknem, např. vláknem dopovaným prvky vzácných zemin, k němuž jez obou stran svárem napojena mřížka LPFG, přičemž obě mřížky LPFG mají stejné parametry. Nelineární vlákno opatřené na obou stranách LPFG tvoří hřebenový spektrální filtr. Modulátor dále obsahuje dva vlnové multiplexery, napojené svárem za mřížky LPFG a pulzní zdroj záření. Prostřednictvím vlnového multiplexeru je záření pulzního zdroje navázáno do nelineárního vlákna a toto záření může měnit spektrální transmisi hřebenového filtru, podobně jako napínání vlákna v případě laseru D. SáezeRodrígueze a koL I když řešení podle W. T. Hana a kol. neobsahuje mechanické komponenty jako laser Rodrígueze a kol., negativní vlastností tohoto řešení je nutnost použití další komponenty, a to externího modulátoru, který zvyšuje složitost a cenu zařízení. Složitost řešení podle W. T. Hana a kol. zvyšují dva vlnové multiplexery a také fakt, že LPFG jsou napojena svárem na nelineární vlákno a nejsou zapsána přímo do nelineárního vlákna.
Podstata vynálezu
Nevýhody odstraňuje celovláknový laser s pasivním Q-spínáním podle předmětu vynálezu, takový, že zahrnuje zdroj optického čerpání, který je opticky propojen s vláknovou braggovskou mřížkou (FBG), výstup vláknové braggovské mřížky (FBG) je opticky propojen s optickým vláknem, do kterého jsou zapsány dvě vláknové mřížky s dlouhou periodou (LPFG), přičemž optické vlákno je dopováno ytterbiem a za druhou vláknovou mřížkou s dlouhou periodou je optické vlákno buď kolmo zalomeno^nebo opticky propojeno se slučovačem optického záření laserového signálu a optického čerpání, na který jsou opticky napojeny čerpací zdroj a další vláknová braggovská mřížka.
X ·**··« · · · · ·· • · ··· ···· _<*··· · · · · · · •v — · · ··· ·«···« · · «·····* · ♦ a · a· ·· · ·······
Předmětné optické zařízení (pasivně Q-spínaný pevnolátkový laser) tedy zahrnuje zdroj «optického čerpání, plně optický spínací prvek (modulátor) pro spínání jakosti Q laserového rezonátoru a úsek ytterbiem dopovaného optického vlákna jako laserový zesilovač. Modulátor pro spínání jakosti Q rezonátoru laseru obsahuje vláknovou braggovskou mřížku v kombinaci s hřebenovým spektrálním filtrem na bázi dvou vláknových mřížek s dlouhou periodou (LPFG, Long-Period Fiber Grating) zapsaných do ytterbiem dopovaného optického vlákna, přičemž spektrální přenosová funkce tohoto filtruje závislá na inverzi populace iontů ytterbia.
Dvojice LPFG je zapsána do optického vlákna dopovaného ytterbiem tak, aby každá mřížka vyvázala část optického záření šířícího se v jádře jednomódového vlákna do plášťového vidu a αι' po definované délce šíření v plášti (3*30 cm) se příslušnou další mřížkou z páru LPFG toto záření navázalo zpět do jádra, kde bude interferovat se zářením šířícím se jádrem. Dojde tak k vytvoření Machova-Zehnderova interferometru (MZI) s periodickou spektrální přenosovou funkcí. MZI je vytvořen tak, aby vlnová délka vláknové braggovské mřížky (FBG, Fiber Bragg Grating), která je součástí modulátoru jakosti Q rezonátoru a současně definuje výstupní vlnovou délku laseru, se při nízké inverzi populace iontů ytterbia nacházela v minimu spektrální přenosové funkce MZI. Při růstu inverze populace díky optickému čerpání dochází k růstu indexu lomu jádra a tedy k fázovému posuvu signálu šířícímu se jádrem. Dochází i ke spektrálnímu posouvání přenosové funkce MZI až dojde k výraznému snížení ztrát, resp. zvýšení transmise rezonátoru pro signál laseru definovaný FBG. Nízké ztráty rezonátoru umožňují vznik laserových oscilací a generaci laserového záření, které tak rychle uvolní nahromaděnou energii excitovaných ytterbiových iontů v rezonátoru. Tímto uvolněním energie dochází k opětnému snížení inverze populace a zvýšení ztrát rezonátoru pro laserový signál.
Předmět vynálezu tedy zahrnuje zdroj optického čerpání, který má vlnovou délku 970 az 980 nm a výkonovou úroveň 50 až 600 mW, je opticky propojen s vláknovou braggovskou mřížkou (FBG) s centrální vlnovou délkou v oblasti 1060 až 1090 nm a šířkou pásma propustnosti 0,05 až 0,3 nm, výstup vláknové braggovské mřížky (FBG) je opticky propojen s ytterbiovým vláknem, které má jednomódové jádro pro vlnové délky od 1000 nm, a je dopované ytterbiem o molámí koncentraci v rozsahu 500 až 2000 ppm, průměr jádra vlákna je 3 až 10 pm a vnější průměr skleněného vlákna je 100 až 250 pm, ve vzdálenosti 2 až 5 cm od optického propojení s vláknovou braggovskou mřížkou (FBG) je do ytterbiového vlákna zapsána mřížka s dlouhou periodou (LPFG), s periodou 150 až 500 pm a délce 5 až 20 mm, ve vzdálenosti 30 až 300 mm od první mřížky s dlouhou periodou (LPFG) je zapsána druhá mřížka s dlouhou periodou (LPFG) se stejnými parametry jako první mřížka s dlouhou periodou (LPFG), a buď ve vzdálenosti 1 až 3 m od druhé LPFG je ytterbiové vlákno kolmo zalomeno a rozhraní
..5 ·*·*· ·»» · ·· • « · · · ♦ · · · · — · · · · · · · ° · · · · ·····» · · ·«····* · · • · ·· ·· · ······· sklo/vzduch tak tvoří výstupní zrcadlo, nebo ve vzdálenosti 3 až 10 m od druhé LPFG je ytterbiové vlákno opticky propojeno se slučovačem optického záření laserového signálu a optického čerpání, přičemž na vláknový vstup slučovače určený pro optické čerpání je opticky napojen čerpací zdroj, tedy vláknový výstup mnohamódového optického čerpání na vlnové délce v rozsahu 920 až 980 nm a s optickým výkonem 1 až 9 W, a na vláknový výstup slučovače určený pro jednomódový laserový signál je napojena další vláknová braggovská mřížka (FBG), která tvoří výstupní zrcadlo laserového rezonátoru, a která má centrální vlnovou délku shodnou s centrální vlnovou délkou vláknové braggovské mřížky (FBG) a šířku pásma propustnosti 0, 3 až 1 nm, přičemž všechna optická propojení jsou zajištěna svářem.
Přičemž v oblasti vymezené propojením ytterbiového vlákna s FBG a koncem druhé LPFG, tedy v oblasti, která tvoří hřebenový spektrální filtr, je optické vlákno obklopeno vnějším pláštěm s nižším indexem lomu než má křemenné sklo, a to v rozmezí n=l (vzduch) až n=l,44 (polymemí pokryv), přičemž zbytek ytterbiem dopovaného optického vlákna je s výhodou obklopen polymemím pokryvem s indexem lomu n=l,37 až 1,53, v případě, že zařízení zahrnuje zdroj mnohamódového optického čerpání je s výhodou obklopen polymemím pokryvem s indexem lomu n=l,37 až 1,44.
Zařízení podle předmětu vynálezu tak neobsahuje mechanicky pohyblivé součásti ani externí elektrický modulátor. Modulace jakosti Q rezonátoru laseru se děje nikoliv externím elektrickým signálem, ale optickým polem uvnitř rezonátoru, a to jak optickým polem čerpání, tak optickým polem samotného signálu. Výhodami navrhovaného řešení jsou tedy jednodušší konstrukce laseru, protože neobsahuje externí elektrický modulátor, a další výhodou je i z principu vyšší spolehlivost, protože laser neobsahuje mechanicky pohyblivé součásti.
^Objasnění výkresů-/
Obr. 1 znázorňuje blokové schéma zařízení. 1 - zdroj optického čerpání (např. polovodičové laserové diody) s výstupním zářením vedeným v jednomódovém vlákně, tzv. pigtailu, 2 - vláknová braggovská mřížka (FBG), 3 - mřížka s dlouhou periodou (LPFG) zapsaná do 4 - ytterbiového vlákna, kolmo zalomený konec vlákna tvořící výstupní zrcadlo - 5 laseru, 6 - výstupní záření laseru, jednotlivá optická vlákna jsou navzájem opticky propojena svárem - 7.
Obr. 2 znázorňuje princip Machova-Zehnderova interferometru založeného na dvojici zapsaných LPFG do ytterbiového vlákna. LPFG mají délku L a jsou od sebe vzdáleny o vzdálenost d. Ytterbiové vlákno se skládá z jádra J dopovaného ytterbiem, přičemž jádro je obklopeno vnitřním pláštěm 8 a dalším, vnějším pláštěm 9. Parametry LPFG jsou zvoleny tak, že
X
* * · » procházející záření laseru se rozdělí na část A, která se šíří vnitřním pláštěm, a část B, která se gíří ytterbiem dopovaným jádrem. Po vzdálenosti d se pomocí druhé LPFG naváže záření z vnitřního pláště zpátky do jádra, kde interferuje se zářením šířícím se v jádře.
Obr. 3 znázorňuje spektrální propustnost (transmisi) Machova-Zehnderova interferometru při nízké inverzi populace ytterbia (přerušovaná čára) a vysoké inverzi populace ytterbia (plná čára). Vlnová délka maximální odrazivosti FBG je znázorněna silnou přerušovanou čarou.
ď
Na 0br. 4 je závislost transmise spínacího prvku na výkonu čerpání pro vlnovou délku laserového signálu určenou FBG, Laserový signál má výkon 10 pW. Čerpacím zářením vhodného výkonu lze tedy sepnout modulátor z nulové transmise na vysokou propustnost. Stimulovanou emisí dochází i k zesílení signálu, byť je délka ytterbiem dopovaného vlákna mezi dvěma LPFG jen krátká.
Na Qbr. 5 je závislost transmise spínacího prvku na výkonu laserového signálu uvnitř rezonátoru. S rostoucím výkonem laserového záření v rezonátoru dochází k snižování transmise modulátoru.
Obr. 6 znázorňuje variantní blokové schéma zařízení. 1 - zdroj optického čerpání (např. polovodičové laserové diody) s výstupním zářením vedeným v jednomódovém vlákně, tzv. pigtailu, 2 - vláknová braggovská mřížka (FBG), 3 - mřížka s dlouhou periodou (LPFG) zapsaná do ytterbiového vlákna - 4, 6 - výstupní záření laseru, jednotlivá optická vlákna jsou navzájem opticky propojena svárem - 7, ytterbiové vlákno - 4 je celé pokryto prostředím s nižším indexem lomu než má křemenný vnitřní plášť vlákna a na jeho konec je svarem - 7 napojen slučovač - 10, k dalším ramenům slučovače 10 jsou napojeny další FBG 2, která tvoří výstupní zrcadlo laserového rezonátoru, a čerpací zdroj LL prwzdčnr
Příklady Uskutečněni vynálezu
Příklad 1
Optické zařízení (pasivně Q-spínaný vláknový laser), jehož blokové schéma je na Qbr, 1 je sestaveno tak, že zdroj 1 optického čerpání má vlnovou délku 976 nm a výkonovou úroveň 600 mW, je opticky propojen s FBG 2 s centrální vlnovou délkou 1064 nm a šířkou pásma
Y · ··· · · · · — tí-·· · · * · · ··
O'· · ·«· «··»·» ·· • A * ♦ · · · ·· ♦ » * A ·· · «·*···· ^propustnosti 0,1 nm, výstup FBG 2 je opticky propojen sytterbiovým vláknem 4, které má jednomódové jádro pro vlnové délky od 1000 nm a je dopované ytterbiem o molámí koncentraci 1500 ppm, průměr jádra vlákna je 4,5 pm a vnější průměr skleněného vlákna je 125 pm, ve vzdálenosti 3 cm od optického propojení s FBG 2 je do ytterbiového vlákna 4 zapsána LPFG 3 s periodou 350 pm a délce 10 mm, ve vzdálenosti 50 mm od první LPFG 3 je zapsána druhá LPFG 3 se stejnými parametry jako první LPFG 3, v oblasti vymezené propojením ytterbiového vlákna 4 s FBG 2 a koncem druhé LPFG 3 je optické ytterbiové vlákno 4 obklopeno polymemím vnějším pláštěm 9 s nižším indexem lomu než má křemenné sklo,a to n=l,37, vnitřní plášť 8 je tvořen po celém vláknu křemenným sklem, zbylá část ytterbiem dopovaného optického vlákna je obklopena standardní polymemí ochranou. Ve vzdálenosti 3 m od druhé LPFG 3 je ytterbiem dopované optické vlákno 4 kolmo zalomeno a rozhraní sklo/vzduch tak tvoří výstupní zrcadlo 5 s odrazivostí 3, 5 %. Všechna optická propojení jsou zajištěna svarem 7.
Příklad 2
Optické zařízení (pasivně Q-spínaný vláknový laser), jehož blokové schéma je na Qbr. 6 je sestaveno tak, že zdroj 1 optického čerpání má vlnovou délku 976 nm a výkonovou úroveň 200 mW, je opticky propojen s FBG 2 s centrální vlnovou délkou 1064 nm a šířkou pásma propustnosti 0,1 nm, výstup FBG 2 je opticky propojen sytterbiovým vláknem 4, které je jednomódové na vlnové délce od 1000 nm a je dopované ytterbiem o molámí koncentraci 1500 ppm, průměr jádra vlákna je 4,5 pm a vnější průměr skleněného vlákna je 125 pm, ve vzdálenosti 5 cm od optického propojení s FBG 2 je do ytterbiového vlákna 4 zapsána LPFG 3 s periodou 350 pm a délce 10 mm, ve vzdálenosti 50 mm od první LPFG 3 je zapsána druhá LPFG 3 se stejnými parametry jako první LPFG 3. Ytterbiem dopované optické vlákno 4 je v celé délce obklopeno vnějším pláštěm 9 z polymeru s nižším indexem lomu než má křemenné sklo,a to n=l,37 a vnitřní plášť 8 je tvořen křemenným sklem. Ve vzdálenosti 7 m od druhé LPFG 3 je ytterbiové vlákno 4 opticky propojeno se slučovačem W optického záření laserového signálu a optického čerpání, na vláknový vstup slučovače 10 určený pro optické čerpání je opticky napojen čerpací zdroj jj_, tedy vláknový výstup mnohamódového optického čerpání na vínové délce 976 nm a s optickým výkonem 5 W, na vláknový vstup/výstup slučovače 10 určený pro jednomódový laserový signál je napojena další FBG 2, která tvoří výstupní zrcadlo 5 laserového rezonátoru, a která má centrální vlnovou délku shodnou s centrální vlnovou délkou FBG 2 a šířku pásma propustnosti 0,5 nm a odrazivostí 20 %. Všechna optická propojení jsou zajištěna svárem 7.
I >
• ♦
Průmyslová využitelnost
Navrhované technické řešení impulzních vláknových laserů může být s výhodou využito v různých oblastech techniky, např. v laserových systémech pro zpracování materiálu nebo pro medicínské laserové systémy.
Seznam vztahových značek:
- zdroj optického čerpání
- vláknová braggovská mřížka (FBG)
-- mřížka s dlouhou periodou (LPFG)
- optické vlákno (ytterbiové vlákno, optické vlákno dopované ytterbiem)
- výstupní zrcadlo
- výstupní záření
- svař
- vnitřní plášť
- vnější plášť
- slučovač (slučovač optického záření laserového signálu a optického čerpání)
- čerpací zdroj

Claims (1)

  1. PATENTOVÉ NÁROKY
    1. Celovláknový laser s pasivním Q-spínánín^vyznačující se tím, že zahrnuje zdroj (!) optického čerpání, který je opticky propojen s vláknovou braggovskou mřížkou (2), výstup vláknové braggovské mřížky (2) je opticky propojen s optickým vláknem (4), do kterého jsou zapsány dvě vláknové mřížky (3) s dlouhou periodou, přičemž optické vlákno (4) je dopováno ytterbiem a za druhou vláknovou mřížkou (3) s dlouhou periodou je optické vlákno (4) buď kolmo zalomenoznebo opticky propojeno se slučovačem (10) optického záření laserového signálu a optického čerpání, na který jsou opticky napojeny čerpací zdroj (11) a další vláknová braggovská mřížka (2).
CZ20110362A 2011-06-17 2011-06-17 Celovláknový laser s pasivním Q-spínáním CZ303333B6 (cs)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CZ20110362A CZ303333B6 (cs) 2011-06-17 2011-06-17 Celovláknový laser s pasivním Q-spínáním

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ20110362A CZ303333B6 (cs) 2011-06-17 2011-06-17 Celovláknový laser s pasivním Q-spínáním

Publications (2)

Publication Number Publication Date
CZ2011362A3 true CZ2011362A3 (cs) 2012-08-01
CZ303333B6 CZ303333B6 (cs) 2012-08-01

Family

ID=46576060

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ20110362A CZ303333B6 (cs) 2011-06-17 2011-06-17 Celovláknový laser s pasivním Q-spínáním

Country Status (1)

Country Link
CZ (1) CZ303333B6 (cs)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107543794A (zh) * 2017-09-11 2018-01-05 山东大学 基于双光栅调q光纤激光器的光声光谱气体检测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9625231D0 (en) * 1996-12-04 1997-01-22 Univ Southampton Optical amplifiers & lasers
US7233724B2 (en) * 2003-11-20 2007-06-19 Northrop Grumman Corporation Long period bragg grating optical signal attenuation
DE602004020780D1 (de) * 2004-11-30 2009-06-04 Univ Lille Sciences Tech Passiv gütegeschalteter Ytterbium-dotierter Festkörperlaser mit Samarium-dotierter Faser als sättigbarer Absorber
WO2009084755A1 (en) * 2007-12-31 2009-07-09 Optonest Corporation An all-fiber pulsed fiber laser module
JP2011114061A (ja) * 2009-11-25 2011-06-09 Fujikura Ltd レーザ発振器、及び、モードフィルタ

Also Published As

Publication number Publication date
CZ303333B6 (cs) 2012-08-01

Similar Documents

Publication Publication Date Title
EP1608048A2 (en) Pulsed laser apparatus and method
CN103414093B (zh) 一种全光纤脉冲激光器
Ma et al. Widely tunable thulium-doped fiber laser based on multimode interference with a large no-core fiber
Peterka et al. Long‐period fiber grating as wavelength selective element in double‐clad Yb‐doped fiber‐ring lasers
TWI430527B (zh) Q-切換引發之增益切換鉺脈衝雷射系統
CN114421271A (zh) 全光纤式掺钕光纤激光器
CN102244351A (zh) 基于单壁碳纳米管的被动锁模器件及其制备方法
JP6026885B2 (ja) ドープされたファイバを実装する光源、当該光源用ファイバ、および、当該ファイバの製造方法
CZ2011362A3 (cs) Celovláknový laser s pasivním Q-spínáním
KR20110065305A (ko) 이중 클래드 광섬유 레이저 소자
US20230163553A1 (en) Fiber laser system
CN103746280A (zh) 一种长谐振腔全光纤单频激光器
Zhou et al. Fiber ring laser employing an all-polarization-maintaining loop periodic filter
RU2566385C1 (ru) Волоконный источник однонаправленного одночастотного поляризованного лазерного излучения с пассивным сканированием частоты (варианты)
WO2008074359A1 (en) Optical fibre laser
Monga et al. Numerical analysis of ring erbium-doped fiber laser with Q-switching based on dynamic overlapping of narrowband filters
KR100928242B1 (ko) 전광식 펄스형 광섬유 레이저 모듈
CN110086077A (zh) 基于氧化镓倍频晶体的光纤激光器
Spirin et al. Passively stabilized Brillouin fiber lasers with doubly resonant cavities
Babin et al. Random distributed feedback Raman fiber lasers
Li et al. Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser
Li et al. Mode competition in Er-doped fiber Bragg grating fiber laser
Barmenkov et al. Polarization switchable Erbium‐doped all‐fiber laser
WO2009084755A1 (en) An all-fiber pulsed fiber laser module
Zou et al. Wavelength switchable bidirectional Q-switched fiber laser based on 45° tilted fiber grating and carbon nanotube

Legal Events

Date Code Title Description
MM4A Patent lapsed due to non-payment of fee

Effective date: 20190617