CS276775B6 - A process for preparing (H) radioisotope-labeled fractions of hyaluronic acid or a salt thereof - Google Patents

A process for preparing (H) radioisotope-labeled fractions of hyaluronic acid or a salt thereof Download PDF

Info

Publication number
CS276775B6
CS276775B6 CS6390A CS6390A CS276775B6 CS 276775 B6 CS276775 B6 CS 276775B6 CS 6390 A CS6390 A CS 6390A CS 6390 A CS6390 A CS 6390A CS 276775 B6 CS276775 B6 CS 276775B6
Authority
CS
Czechoslovakia
Prior art keywords
hyaluronic acid
salt
radioactivity
radioisotope
labeled
Prior art date
Application number
CS6390A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS9000063A2 (en
Inventor
Ladislav Ing Csc Soltes
Peter Rndr Csc Chabrecek
Zoltan Mudr Csc Kallay
Michal Judr Ing Guttmann
Hynek Ing Hradec
Jiri Ing Csc Filip
Original Assignee
Ustav Ex Farmakologie Sav
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ustav Ex Farmakologie Sav filed Critical Ustav Ex Farmakologie Sav
Priority to CS6390A priority Critical patent/CS276775B6/en
Publication of CS9000063A2 publication Critical patent/CS9000063A2/en
Publication of CS276775B6 publication Critical patent/CS276775B6/en

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Riešenie sa týká sposobu přípravy ("^H) rádioizotopom značených frakcii kyseliny hyalurónovej (HA) alebo jej solí o definevanej molekulovej hmotnosti. Postup spočiva v tom, že sa natívna HA alebo jej sol označí (3H) rádioizotopom, zmeria zsa radioaktivita odobratej vzorky metodou kvapalinovej scintilačnej spektrometrie (LSC). Následné sa HA alebo jej sol nechá prechádzat cez vrstvu kationomeniča, s výhodou zozskupiny derivátov karboxymetylcelylozy, a potom sa rozdělí na frakcie metodou vysokoúčinnej gélovej permeačnej chromatografie a potom sa zmeria radioaktivita odobratej vzorky prislušnej frakcie HA alebo jej soli metodou LSC. Produkt má vysokú rádiochemickú čistotu a vysokú mernú rádioáktivitú.The solution relates to a method of preparing (3H) radioisotope-labeled fractions of hyaluronic acid (HA) or its salts of defined molecular weight. The procedure consists in labeling native HA or its salt with (3H) radioisotope, measuring the radioactivity of the sample taken by the liquid scintillation spectrometry (LSC) method. Subsequently, HA or its salt is allowed to pass through a cation exchanger layer, preferably from the group of carboxymethylcellulose derivatives, and then divided into fractions by the high-performance gel permeation chromatography method, and then measuring the radioactivity of the sample taken of the relevant fraction of HA or its salt by the LSC method. The product has high radiochemical purity and high specific radioactivity.

Description

y 1y 1

CS 276 775 BS oCS 276 775 BS o

Vynález sa týká sposobu přípravy ( H) rádioizotopom značených frakcií kyseliny hya-lurónovej alebo jej soli o definovnnej raolekulovej hmotnosti a hodnotenia kvality týchtolátok.The present invention relates to a process for the preparation of (H) radiolabelled fractions of hylauronic acid or a salt thereof with a definitive molecular weight and an evaluation of the quality of said bodies.

Kyselina hyalurónová /Ha/ a jej deriváty sá polysacharidy glykozaminoglykány zlože-né z opakujúcich sa jednotiek glukuronátu a N-acetylglukozamínu. Narastujáci záujam ovýskům HA a jej derivátov je sposobený rozširujácim sa uplatněním radu preparátov s obsa-hom HA v oftalmológii, reumatológii, dermatológii a v Salších odboroch medicinskej praxe.Možnosti rozširenia aplikácii HA a jej derivátov závisia tiež od Salšieho poznania ichbiochemie v organizme živočichov. Pre in vivo štúdie sa s výhodou používá rádioizotopomznačená HA resp. jej deriváty. Tieto látky musia mat vysoká /= 95 %/ rádiochemická čisto-tu a vysoká měrná rádioaktivitu. HA resp. jej soli je možné získat z tkaniva kohátichhrebienkov, z ludskej pupočnej šnúry, zo sklovca alebo z priedušnice hovadzieho dobytka,ale z baktérii Streptococcus zooepidemicus. HA izolovaná z ktoréhokolvek zdroja je struk-turálně identická, može však byt izolovaná s variabilným stupnom čistoty i polymerizač-ného stupňa.Hyaluronic acid (IIa) and its derivatives are glycosaminoglycan polysaccharides composed of repeating units of glucuronate and N-acetylglucosamine. The growing interest of HA and its derivatives is due to the expanding use of a variety of preparations containing HA in ophthalmology, rheumatology, dermatology and other fields of medical practice. The possibilities of extending the application of HA and its derivatives also depend on the greater knowledge of ichbiochemistry in animal organisms. For in vivo studies, the radioisotope-labeled HA and the like, respectively, are preferably used. its derivatives. These substances must have a high (= 95%) radiochemical purity and a high specific radioactivity. HA resp. its salts can be obtained from cohesive tissue, from human umbilical cord, from vitreous humor or from bovine trachea, but from Streptococcus zooepidemicus. HA isolated from any source is structurally identical, but can be isolated with varying degrees of purity and degree of polymerization.

Na přípravu rádioaktivne- značenej HA a jej derivátov sa využivajá dva sposoby: 1. I< danému biosyntetizujácemu systému /buňky, tkaninové kultáry/ produkujácemu HA sapridajá rádioaktivne prekurzory /napr. (3H)-, (^C)- glukóza, N-acetylglukózamín/.Týmto sposobom sa připravila (3H)- i (^4C)- značená HA s molekulovou hmotnostou rá-dovo až 106 Da /Gallagher 3.T. + kol.: Biochem. 3. 148, 187, /1975/; Winterbourna D. 3. + kol.: Biochem. 3. 182, 707, /1979/; Underhill C.B., Toole B.P.: 3. Cell Biol. 82,475, /1979/). Výhodou tejto metody je, že sa získá HA s vysokou molekulovou hmotnostou a použitímspecificky značených prekurzorov može byt radioaktivita zavedená na specifické mies-to v molekule HA.Two methods are used to prepare radiolabeled HA and its derivatives: 1. Add radioactive precursors to the given biosynthesizing system / cell, the HA culture producing cells (e.g. (3H) -, (CC) -glucose, N-acetylglucosamine) This method produced (3H) -1 (C4C) -labeled HA with a molecular weight of up to 106 Da / Gallagher 3.T. + col .: Biochem. 148, 187 (1975); Winterbourna D. 3rd + Biochem. 182, 707 (1979); Underhill C.B., Toole B.P .: 3. Cell Biol. 82, 475, (1979)). The advantage of this method is that a high molecular weight HA is obtained and, using specifically labeled precursors, the radioactivity can be introduced into specific sites in the HA molecule.

Nevýhodou tohto spfisobu přípravy rádioaktivnej HA je prácnost izolácie značenej HAz reakčnej zmesi, potřeba jej dočistenia od balastných rádioizotopom značených endo-génnych látok, poměrně nízký rádiochemický výtažok, často nízká alebo neznáma měrnáradioaktivita, přístrojová náročnost. 2. Chemická metoda přípravy rádioaktivne značenej HA bola prvýkrát publikovaná v r.1982 /Hook M. + kol.: Anal. Biochem. 119, 235, /1982/, ke3 autoři připravili hyalurónová3 3 kyselinu N-deacetyláciou nativnej HA hydrazinom a následnou N( H)-acetyláciou s ( H)--acetanhydridom. Izolácia vysokomolekulovej frakcie (3H)-hyalurónovej kyseliny odnízkomolekulových frakcií sá robila rovnovážnou dialýzou a gélovou chromatografiou.Touto metodou sa připravila HA s měrnou radioaktivitou (3-4) x 10 cpm/ ^,ug kyselinyurónovej.·The disadvantage of this method of preparation of radioactive HA is the laboriousness of isolating the labeled HAz reaction mixture, the need for its purification from the ballast radioisotope-labeled endogenous substances, the relatively low radiochemical extract, often low or unknown non-radioactivity, the instrumental intensity. 2. The chemical method for the preparation of radiolabelled HA was first published in 1982 / Hook M. + al .: Anal. Biochem. 119, 235, (1982), the authors prepared hyaluronic acid by N-deacetylation of native HA with hydrazine followed by N (H) -acetylation with (H) -acetanhydride. The isolation of the high molecular weight fraction of (3H) -hyaluronic acid by the removal of the molecular fractions was done by equilibrium dialysis and gel chromatography. This method produced HA with specific radioactivity (3-4) x 10 cpm / µg of uronic acid.

Nevýhodou tohto postupu je, že celý proces přípravy a izolácie (3H)-hyalurónovejkyseliny je náročný vzhladom na materiálně vybavenie i čas a poskytuje derivát s poměrněnízkou měrnou rádioaktivitou.A disadvantage of this process is that the entire process of preparing and isolating (3H) -hyaluronic acid is both material and time consuming and provides a relatively radioactivity derivative.

Calšiu metodu na přípravu vysokomolekulovej HA /o mol. hmot. 3 x 103 Da/ značená triciom vypracovali Orlando a kol. /Orlando P. + kol.: 3. Label, Comp. Radiopharm. 22, 951, /1985/). HA sa oxidovala jodistanom sodným a po vyčistění oxidačnóho produktu ultrafil- tráciou a rovnovážnou dialýzou sa spatné redukovala s ( H)-NaBH.. Po dočištěni produktu3 z * rovnovážnou dialýzou a ultrafiltráciou sa získala ( H)-hyaluronová kyselina s rádioche-mickou čistotou 95 % a s měrnou rádioaktivitou zv5,55 MBq/mg.·Another method for the preparation of high molecular weight HA / o mol. wt. 3 x 10 3 Da / tritiated by Orlando et al. / Orlando P. + al .: 3. Label, Comp. Radiopharm. 22, 951 (1985)). HA was oxidized with sodium periodate and, after purification of the oxidation product by ultrafiltration and equilibrium dialysis, was poorly reduced with (H) -NaBH. After purification of the product3 from * by equilibrium dialysis and ultrafiltration, (H) -hyaluronic acid with 95% purity was obtained % and with specific radioactivity from 5.55 MBq / mg.

Nevýhodou tejto metody je, že pri oxidácii sa znižuje molekulová hmotnost HA a žeultrafiltrácia ňie je najvhodnejšia, keóže biomakromolekuly často upchávajá póry v ultra-filtračných membránách. ’A disadvantage of this method is that in the oxidation the molecular weight of HA is reduced and that the ultrafiltration of HA is the most suitable, since biomacromolecules often clog pores in the ultra-filtration membranes. '

Metoda, pri ktorej sa zachovává integrita molekuly HA po zavedeni izotopu s vysokouměrnou rádioaktivitou pozostúva z redukcie oligosacharidov HA pomocou NaBH^ /modifikuje saThe method by which the integrity of the HA molecule is maintained after introduction of the high radioactivity isotope consists of reducing the HA oligosaccharides with NaBH 4 / modifying

CS 275 775 BS 2 iba koncový rodukujúci cukor/, oxidácie vicinálnych hydroxylových skupin a reakcie s al-kyldiaminmi a s Bolton-Hunterovým reagensora /N-sukcinimidyl-3-(4-hydroxyfenyl)propionát/.Výsledný hydroxyfenyl derivát HA sa lahko rádioiodiduje s Na I na redukujúcom konciretazca. Touto metodou možno získat oligosacharidy HAsměrnou rádioaktivitou až lOOOkrátvyššou (Raja R.3. + kol.: Anal. Biochem. 139, 158, /1984/) ako udávájú autoři vyššie opí-saných metod.CS 275 775 BS 2 only suggests the end-productive sugar, oxidation of vicinal hydroxyl groups and reaction with alkyldiamines and Bolton-Hunter reagent (N-succinimidyl-3- (4-hydroxyphenyl) propionate). I on a reducing constructor. By this method, oligosaccharides can be obtained by a radioactive radioactivity of up to 1000 times higher (Raja R.3. + Kol. Anal. Biochem. 139, 158, (1984)) as reported by the authors.

Nevýhodou metody je, že nie je vhodná pre polymérnu, ale iba pre oligomernu HA.The disadvantage of the method is that it is not suitable for polymer but only for oligomer HA.

Kyselinu hyaluronovú možno jednoducho previest na kyselinu ( H)-hyaluronovú izoto-povou výměnou vodikov za tricium vo vodnom roztoku za katalýzy Pd/CaCOg.Hyaluronic acid can easily be converted to (H) -hyaluronic acid by isotonic exchange of hydrogen to tritium in aqueous Pd / CaCO 3 catalysis.

Derivát (3H)-hyalurónovej kyseliny možno tiež připravit alkyláciou nativneho biopo-lyméru s ( H)-metylbromidom s vysokou měrnou rádioaktivitou /1,5 TBq/moll/, v prostředíkvapalného amoniaku pri nizkej teplote (-33,5 °C) bez špeciálnej úpravy východiskovoj HA.Týmto spo'sobom sa připraví reakčná zmes s vysokou měrnou rádioaktivitou, z ktorej sa vy-sokomolekulový derivát H-hyaluronovej kyseliny, resp. jeho frakcie dalej vyizolujú niekto-rou vhodnou metodou a charakterizuji!*The (3H) -hyaluronic acid derivative can also be prepared by alkylating a native biopolymer with (H) -methyl bromide with a high specific radioactivity (1.5 TBq / mole) in low-temperature liquid ammonia (-33.5 ° C) without special In this way, a high specific radioactivity reaction mixture is prepared from which the H-hyaluronic acid derivative or the H-hyaluronic acid derivative is formed. its fractions further isolate by some suitable method and characterize! *

Na charaktěrizáciu molekulových hmotností HA bolí použité nasledujúce techniky: a) viskozimetria (H. Bothner, T. Waaler, O. Wik: Int. □. Biol. Macromol. 1988, 10, 287--291; E. Shimada, G. Matsumura: O. Biochem. 78, 513-517, 1975; b) rozptyl světla (H. Bothner; T. Waaler, 0. Wik: Ing. 0. Biol. Macromol. 1988, 10, 287--291; R. L. Cleland: Arch. Biochem. Biophys. 1977, 180, 57-53; Barret T.W., Baxter 0. E.: Physiol. Chen. Phys. 1982, 14, 19-29); c) sedimentačně analýza (Swann 0. A.: Biochem. Biophys. Acta 1958, 155, 17-30; T. C. Lau-rent, M. Ryan; A. Pietruszkiewicz: Biochim. Biophys. Acta 1950, 42, 476-485); d) rovnovážná ultracentrifugácia (E. Shimada, G. Matsumura: O. Biochem. 78, 513-517, 1975); e) gólová chromatografia (N. Motohashi, I. Moři: O. Chromatogr. 1984, 299, 508-512; M.Terbojevich, A. Česáni, M. Palumbo: Carbohydr. Res, 1985, 157, 259-272; Beaty N. B.,The following techniques have been used to assess HA molecular weights: a) viscosimetry (H. Bothner, T. Waaler, O. Wik: Int. Biol. Macromol. 1988, 10, 287-291; E. Shimada, G. Matsumura : O. Biochem., 78, 513-517, 1975. (b) light scattering (H. Bothner; T. Waaler, 0. Wik: 0 Biol. Macromol. 1988, 10, 287--291; RL Cleland: Arch. Biochem Biophys 1977, 180, 57-53 Barret TW, Baxter E, Physiol Chen, 1982, 14, 19-29; c) sedimentation analysis (Swann O. Biochem. Biophys. Acta 1958, 155, 17-30; TC Renting, M. Ryan; A. Pietruszkiewicz: Biochim. Biophys. Acta 1950, 42, 476-485) ; d) equilibrium ultracentrifugation (E. Shimada, G. Matsumura: O. Biochem. 78, 513-517, 1975); e) Goal Chromatography (N. Motohashi, I. Sea: O. Chromatogr. 1984, 299, 508-512; M. Terbojevich, A. Cesani, M. Palumbo: Carbohydr. Res, 1985, 157, 259-272; Beaty NB,

Tew W. P., Mello R. □.: Anal. Biochem. 1985, 147, 387-395). Zásadnou nevýhodou viskozimetria a rozptylu světla je, že sa týrnito metodami stano-ví len priemerná molekulová hmotnost (viskozitný, Rv, resp. hmotnostný, M^, priemer) apolymery s rozdielnou distribúciou molekulových hmotnosti možu byt považované v dosled-ku rovnakých hodnot Mv, či Rw za totožné látky. Sedimentačně analýza ako i rovnovážnáultracentrifugácia poskytujú sice širšiu výpove3 o tvare distribúcie molekulových hmot-ností analyzovaného polyméru, avšak prevádzka týchto metod je cenovo neúmerne vysoká. Gó-lová chromatografia na rozdiel od jej vysokoéčinnej modifikácie (HP GPC) je poměrně poma-lá. Oedna analýza spravidla trvá niekolko hodin až desiatok hodin.Tew W. P., Mello R., Anal. Biochem. 1985, 147, 387-395). A major disadvantage of viscosimetry and light scattering is that only the average molecular weight (viscosity, Rv, respectively, mass, M i, diameter) is determined by the three methods and apolymers with different molecular weight distributions can be considered as the same Mv, or R w for the same substances. Sedimentation analysis as well as equilibrium ultracentrifugation provide a broader expression of the molecular weight distribution of the polymer being analyzed, but the operation of these methods is cost-intensive. Gel chromatography, unlike its high-performance modification (HP GPC), is relatively slow. As a rule, one analysis takes several hours to tens of hours.

Pre charaktěrizáciu distribúcie molekulových hmotnosti, ako aj jednotlivých defino-vých priemerov molekulovej hmotnosti polymérov (biopolymérov) sa dnes vo svete najfrekven-tovanejšie použiva metoda vysokoúčinnej gélovej permeačnej chromatografie (HP GPC).Highly efficient gel permeation chromatography (HP GPC) is the most frequently used method in the world today to characterize the molecular weight distribution as well as the individual molecular weight diameters of the polymers (biopolymers).

Uvedené nevýhody známých postupov odstraňuje sposob pripravy ( H) rádioizotopom zna-čených frakcii kyseliny hyalurónovej alebo jej soli o definovanej molekulovej hmotnostipodlá vynálezu. Oeho podstata je, že sa nativna kyselina hyalurónová alebo jej sol označí(3H) rádioizotopom a zmeria sa radioaktivita odobratej vzorky metodou kvapalinovej scin-tilačnej spektrometrie (LSS). Značená HA sa s výhodou robí tak, že sa na vodný roztok kyseli-ny hyalurónovej alebo jej soli pžsobi za přítomnosti katalyzátore Pd/CaCOg plynným trí-ciom, odstráni sa rozpúštadlo a labilná rádioaktivta. Iným vhodným sposobom značenia HAje, že sa alkyluje s ( H)-methylbromidom v prostředí kvapalného amoniaku, ktorý sa po neu-tralizácii odstráni. (3H) rádioizotopom označená kyselina hyalurónová alebo jej sol sa ne- 3 CS 275 775 B6 chá prechádzat cez vrstvu kationomeniča, s výhodou zo skupiny dsrivátov karboxymetylce-lulózy, Následné sa HA alebo jej sol rozdělí na frakcie a stanoví sa ich modekulováhmotnost metodou vysokoúčinnej gélovej permeačnej chromatografie (HP GPC). HP GPC izolá-cia a identifikácia frakcii (3H)-HA ako aj soli sa robi pomocou chromatografických kolonnaplněných hydroxyethylmetakrylátom. Ako mobilná fáza sa použije 0,1 M vodný roztok du-sičnanu sodného, NaNOg. Nakoniec sa‘zmeria radioaktivita odobratej vzorky prislušnej frak-cie HA alebo jej soli metodou kvapalinovej scintilačnej spektrometrie. Přednosti navrhovaného sposobu spočívajú predovšetkým v tom, že bez predchádzajúcejmodifikácie východiskovéj HA, ktorá často mala za následok zniženie molekulovej hmotnos-ti, sa dosiahne označenie HA triciom s molovou rádioaktivitou niekolkonásobne vyššou akopri doteraz používaných metodách. Dalej izolócia ( H)-hyaluronovej kyseliny alebo jej so-li z reakčnej zmesi pomocnou GPC,' ktorá je Jednoduchá a nenáročná, je účinnejšia ako do-teraz používané (dialýza resp. ultrafiltrácia); vysokoúčinná modifikácia GPC je aj pod-statné rýchlejšia. Okrem vysokém mernej radioaktivity sa sposobom podlá vynálezu pripra-ví ( H)-hyaluronová kyselina resp. jej sol s vysokou rádiochemickou čistotou pričom kom-bináciou metod· GPC a LSS možno okrem toho-jednoducho charakterizovat ich molekulová dis-tribúciu a polymolekularitu a stanovit mernú radioaktivitu roznych frakcii. Ďalej uvedené příklady ozrejmujú navrhovaný postup, pričom však nijako neobmedzujúrozsah ochrany vynálezu. Příklad 1The aforementioned disadvantages of the known processes are eliminated by the preparation of (H) a radioisotope-labeled fraction of hyaluronic acid or a salt thereof with a defined molecular weight of the invention. The essence of this is that native hyaluronic acid or its salt is labeled with (3H) radioisotope and the radioactivity of the collected sample is measured by liquid scintillation spectrometry (LSS). Preferably, the labeled HA is gaseous triturated with an aqueous solution of hyaluronic acid or its salt in the presence of a Pd / CaCO 3 catalyst, the solvent and the labile radioactivity are removed. Another suitable way of labeling HA is to alkylate it with (H) -methyl bromide in a liquid ammonia which is removed after neutralization. (3H) radioisotope-labeled hyaluronic acid or a salt thereof is not passed through a cation exchange layer, preferably a carboxymethylcellulose derivative, Subsequent to HA or a salt thereof being separated into fractions and determined by their high performance gel method permeation chromatography (HP GPC). HP GPC isolation and identification of the (3H) -HA as well as salt fractions are done by chromatographic colony supplementation with hydroxyethyl methacrylate. A 0.1 M aqueous sodium bisulfate solution, NaNOg, is used as the mobile phase. Finally, the radioactivity of the sample of the appropriate fraction of HA or its salt is measured by liquid scintillation spectrometry. In particular, the advantages of the present invention are that without prior modification of the starting HA, which often results in a reduction in molecular weight, HA tritiation with a molar radioactivity is achieved several times higher than previously used. Further isolating (H) -hyaluronic acid or its salt from the reaction mixture by the auxiliary GPC, which is simple and undemanding, is more effective than currently used (dialysis or ultrafiltration); the highly efficient GPC modification is also substantially faster. In addition to the high specificity of radioactivity, the (H) -hyaluronic acid (s) is prepared according to the invention. its solubility with high radiochemical purity with combination of GPC and LSS methods can furthermore be characterized by their molecular distribution and polymolecularity and the specific radioactivity of the various fractions. The following examples illustrate the proposed process, but do not limit the scope of the invention in any way. Example 1

Do reakčnej banky o objeme 1,0 ml sa odváži 10 mg katalyzátore (10% PdO/CaCOg) apripipetuje sa 0,5 ml vodného roztoku kyseliny hyalurónovej (10 mg). Reakčná banka sa po-tom připojí k titračnej aparatúre. Dej obsah sa ochladí kvapalným dusikom a titračná apa-ratura sa evakuuje. Do reakčnej banky sa za pomoci Toeplerovej pumpy privedie do zásob-níka 200 G3q trícia bez nosiča. Reakčná zmes sa premiešava elektromagneticky pri teplo-to 295 K. Po 100 min. sa reakcia ukonči, obsah reakčnej banky sa zmrazí a zostatkovétrícium sa prevedie do zásobniko. Mrazovou sublimáciou v uzavretoro systéme sa odstránirozpúštadlo a labilná rádioaktivita. Odparok sa rozpustí v 2’ml redestilovanej vody a ka-talyzátor sa oddělí odstředěním. Zbytky labilně viazaného trícia sa odšťránia opakovanoumrazovou sublimáciou v uzavretom systéme. Vzorka reakčnej zmesi sa nastrekne do HP GPCsystému a na kolonách naplněných hydroxyethylmetakrylátom (Separon HEMA S-1000 a SeparonHEMA S-300) zapojených v sérii sa reakčná zmes rozdělí do frakcii o roznej molekulovejhmotnosti. Mobilnú fázu tvoři 0,1 M vodný roztok dusičnanu, sodného, NaN0„. I< izolovaným 3 , ·* -frakciám ( H) hyaluronovej kyseliny sa přidá álikvotné množstvo-kvapalného scintilátoraa ich rádioaktivita sa zmeria metodou kvapalinovej scintilačnej spektrometrie na přístro-ji Packard 300 CD. Z vysokomolekulových frakcii ( H)-HA s vysokou rádioaktivitou sa alikvotnó část (100 ,ul) — 3 » opatovne nastrekne do HP GPC systému a stanovia sa molekulové charakteristiky (JH)-hyalu-rónovej kyseliny. Zo získaných hodnot boli vypočítané následovné charakteristiky: - 3 5 - priemerná molekulová hmotnost Mp ( H)-HA a 2,28 x 10 Da - polymolekularita vzorky D a 1,98 - měrná rádioaktivita čistej ( H)-HA = 3,3 MBq/mg Přiklad 2 K vodnému roztoku kyseliny hyalurónovej (5 mg v 0,5 rol redestilovanej vody) sa přidá0,6 ml etanolu a 9 ml éteru. Vzniknutý·roztok s bielou suspenziou sa odpari na vákuovejodparke a odparok sa vysuší do konštantnej hmotnosti. Reakčná aparatura so spatným chla-dičom sa vypláchne sušeným amoniakom. I< odparku v reakčnej banka o objeme 10 ml sa pri-destilujú 3 ml suchého amoniaku. Reakčná zmes sa mieša 10 min za varu amoniaku a k re-akčnej zmesi sa pridajú 2 mg sodika. Vzniknutý modrý roztok sa za minutu odfarbi. Přidá10 mg of catalyst (10% PdO / CaCO 3) was weighed into a 1.0 mL reaction flask and 0.5 mL of an aqueous hyaluronic acid solution (10 mg) was pipetted. The reaction flask was then connected to a titration apparatus. The contents are cooled with liquid nitrogen and the titration apparatus is evacuated. Carrier 200 G3q tritium is fed to the reaction flask with a Toepler pump. The reaction mixture is stirred electromagnetically at 295 K. After 100 min. the reaction is stopped, the contents of the reaction flask are frozen and the residual tritium is transferred to the reservoir. Freeze-sublimation in a sealed system removes solvent and labile radioactivity. The residue is dissolved in 2 ml of redistilled water and the catalyst is separated by centrifugation. The debris-bound tritium residues are removed by repeated freeze-drying in a closed system. A sample of the reaction mixture was injected into the HP GPCsystem, and on the columns packed with hydroxyethyl methacrylate (Separon HEMA S-1000 and SeparonHEMA S-300), the reaction mixture was separated into a fraction of different molecular weights. The mobile phase is 0.1 M aqueous sodium nitrate solution, NaNO. An isolated amount of liquid scintillator is added to the isolated 3 &apos; -frame of Hyaluronic Acid and their radioactivity is measured by the liquid scintillation spectrometry method on a Packard 300 CD apparatus. From high radioactivity (H) -HA high molecular weight fractions, an aliquot (100 µl) of β 3 is carefully injected into an HP GPC system and the molecular characteristics of (1 H) -hyalonic acid are determined. The following characteristics were calculated from the obtained values: - 3 5 - average molecular weight Mp (H) -HA and 2.28 x 10 Da - polymolecularity of sample D and 1.98 - specific radioactivity of pure (H) -HA = 3.3 MBq Example 2 To an aqueous solution of hyaluronic acid (5 mg in 0.5 roll of redistilled water) was added 0.6 mL of ethanol and 9 mL of ether. The resulting white suspension solution is evaporated in a vacuum evaporator and the residue is dried to constant weight. Rinse the reaction apparatus with dried ammonia. 3 ml of dry ammonia were distilled off in a 10 ml reaction flask. The reaction mixture is stirred for 10 minutes at the boiling point of ammonia and 2 mg of sodium are added to the reaction mixture. The resulting blue solution was decolorized per minute. Adds

Claims (3)

PATENTOVÉ NÁROKYPATENT CLAIMS 3 Λ 3 Λ 1. Sposob přípravy ( H) radioizotopem značených frakcií kyseliny hyaluronovej alebo jej solí o definovansj molekulovej hmotnossi, vyznačujúci sa tým, že sa nativna kyselina hyaluronová alebo jej sol označí ( H) rádioizotopóm, zmeria sa rádioaktivita odobratej vzorky metodou kvapalinovej scintilačnej spektrometrie, radioizotopem označená kyselina hyaluronová,' alebo jej sol sa nechá prechádzat cez vrstvu kationomsniča s výhodou zo skupiny derivátov karboxymetylcelulozy,' následné sa kyselina hyaluronová alebo jej sol rozdělí na frakcie metodou vysokoúčinnej gélovej permeačnej chromatografie a potom sa zmeria radioaktivita odobratej vzorky príslušnej frakcie kyseliny hyaluronovej alebo jej soli metodou kvapalinovej scintilačnej spektrometrie. Process for the preparation of (H) radiolabeled fractions of hyaluronic acid or its salts with a defined molecular weight, characterized in that the native hyaluronic acid or its salt is labeled with (H) radioisotope, the radioactivity of the sampled sample is measured by liquid scintillation spectrometry hyaluronic acid or a salt thereof is passed through a cation exchange layer preferably from the group of carboxymethylcellulose derivatives, then the hyaluronic acid or its salt is fractionated by high performance gel permeation chromatography and then the radioactivity of a sample of the relevant hyaluronic acid fraction or by liquid scintillation spectrometry. CS 276 775 B6CS 276 775 B6 2. Sposob přípravy podía bodu 1, vyznačujúci sa tým, že sa natívna kyselina hyalurónová alebo jej sol označí (¾) rádioizotopom tak, že sa na vodný roztok kyseliny hyalurónovej alebo jsj soli posobí za přítomnosti katalyzátore Pd/CaCO3 plynným tríciom, odstrání sa rozpúštadlo a labilná radioaktivita.2. The preparation method according to item 1, characterized in that the native hyaluronic acid or its salt is radiolabeled (¾) by treating the aqueous solution of hyaluronic acid or its salt with tritium gas in the presence of a Pd / CaCO 3 catalyst, removing solvent and labile radioactivity. 3. Sposob přípravy podía bodu 1, vyznačujúci sa tým; že sa natívna kyselina hyalurónová alebo jej sol označí (3H) rádioizotopom tak, že sa alkyluje s (3H)-metylbromidom v prostředí kvapalného amoniaku, ktorý sa po neutralizácii odstraní.3. The method of preparation according to item 1, characterized in that; to the native hyaluronic acid or a salt thereof labeled (3 H) and a radioisotope that is alkylated with a (3 H) -metylbromidom in a liquid ammonia which is removed after neutralization.
CS6390A 1990-01-05 1990-01-05 A process for preparing (H) radioisotope-labeled fractions of hyaluronic acid or a salt thereof CS276775B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS6390A CS276775B6 (en) 1990-01-05 1990-01-05 A process for preparing (H) radioisotope-labeled fractions of hyaluronic acid or a salt thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS6390A CS276775B6 (en) 1990-01-05 1990-01-05 A process for preparing (H) radioisotope-labeled fractions of hyaluronic acid or a salt thereof

Publications (2)

Publication Number Publication Date
CS9000063A2 CS9000063A2 (en) 1991-08-13
CS276775B6 true CS276775B6 (en) 1992-08-12

Family

ID=5332138

Family Applications (1)

Application Number Title Priority Date Filing Date
CS6390A CS276775B6 (en) 1990-01-05 1990-01-05 A process for preparing (H) radioisotope-labeled fractions of hyaluronic acid or a salt thereof

Country Status (1)

Country Link
CS (1) CS276775B6 (en)

Also Published As

Publication number Publication date
CS9000063A2 (en) 1991-08-13

Similar Documents

Publication Publication Date Title
Zappe et al. State‐of‐the‐art glycosaminoglycan characterization
Chai et al. Characterization of heparin oligosaccharide mixtures as ammonium salts using electrospray mass spectrometry
Song et al. Analysis of the glycosaminoglycan chains of proteoglycans
Kurup et al. Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4
Pervin et al. Preparation and structural characterization of large heparin-derived oligosaccharides
Scott et al. Periodate oxidation and the shapes of glycosaminoglycuronans in solution
US7728589B2 (en) Method for sequence determination using NMR
Sisu et al. Modern developments in mass spectrometry of chondroitin and dermatan sulfate glycosaminoglycans
O Staples et al. Analysis of glycosaminoglycans using mass spectrometry
Hagner-McWhirter et al. Biosynthesis of heparin/heparan sulfate: kinetic studies of the glucuronyl C5-epimerase with N-sulfated derivatives of the Escherichia coli K5 capsular polysaccharide as substrates
US10259889B2 (en) Method for sulfating glycosaminoglycan
Kogan et al. Hyaluronic acid: A biopolymer with versatile physico-chemical and biological properties
Guerrini et al. Low-molecular-weight heparins: differential characterization/physical characterization
Han et al. Monosaccharide compositions of sulfated chitosans obtained by analysis of nitrous acid degraded and pyrazolone-labeled products
JP2004018841A (en) Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor
Chi et al. Mass spectrometry for the analysis of highly charged sulfated carbohydrates
Drummond et al. Electrophoretic sequencing of heparin/heparan sulfate oligosaccharides using a highly sensitive fluorescent end label
US8101733B1 (en) Methods of evaluating mixtures of polysaccharides
Macchione et al. Synthesis of Chondroitin Sulfate Oligosaccharides Using N‐(Tetrachlorophthaloyl)‐and N‐(Trifluoroacetyl) galactosamine Building Blocks
Kariya et al. Disaccharide analysis of heparin and heparan sulfate using deaminative cleavage with nitrous acid and subsequent labeling with paranitrophenyl hydrazine
CS276775B6 (en) A process for preparing (H) radioisotope-labeled fractions of hyaluronic acid or a salt thereof
Guo et al. Advancing MS n spatial resolution and documentation for glycosaminoglycans by sulfate-isotope exchange
ES2398102T3 (en) Method of determining specific groups that constitute heparins or low molecular weight heparins
Gemma et al. Enabling methodology for the end functionalisation of glycosaminoglycan oligosaccharides
BRPI0314654B1 (en) heparin or low molecular weight heparin analysis method for the presence of oligosaccharide chains terminated by a 1,6-anhydrous bond and derivatives thereof