CS276775B6 - Process for preparing (3h)radiolabelled fractions of hyaluronic acid or salts thereof - Google Patents

Process for preparing (3h)radiolabelled fractions of hyaluronic acid or salts thereof Download PDF

Info

Publication number
CS276775B6
CS276775B6 CS6390A CS6390A CS276775B6 CS 276775 B6 CS276775 B6 CS 276775B6 CS 6390 A CS6390 A CS 6390A CS 6390 A CS6390 A CS 6390A CS 276775 B6 CS276775 B6 CS 276775B6
Authority
CS
Czechoslovakia
Prior art keywords
hyaluronic acid
radioactivity
molecular weight
fractions
salt
Prior art date
Application number
CS6390A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS9000063A2 (en
Inventor
Ladislav Ing Csc Soltes
Peter Rndr Csc Chabrecek
Zoltan Mudr Csc Kallay
Michal Judr Ing Guttmann
Hynek Ing Hradec
Jiri Ing Csc Filip
Original Assignee
Ustav Ex Farmakologie Sav
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ustav Ex Farmakologie Sav filed Critical Ustav Ex Farmakologie Sav
Priority to CS6390A priority Critical patent/CS276775B6/en
Publication of CS9000063A2 publication Critical patent/CS9000063A2/en
Publication of CS276775B6 publication Critical patent/CS276775B6/en

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Riešenie sa týká sposobu přípravy ("^H) rádioizotopom značených frakcii kyseliny hyalurónovej (HA) alebo jej solí o definevanej molekulovej hmotnosti. Postup spočiva v tom, že sa natívna HA alebo jej sol označí (3H) rádioizotopom, zmeria zsa radioaktivita odobratej vzorky metodou kvapalinovej scintilačnej spektrometrie (LSC). Následné sa HA alebo jej sol nechá prechádzat cez vrstvu kationomeniča, s výhodou zozskupiny derivátov karboxymetylcelylozy, a potom sa rozdělí na frakcie metodou vysokoúčinnej gélovej permeačnej chromatografie a potom sa zmeria radioaktivita odobratej vzorky prislušnej frakcie HA alebo jej soli metodou LSC. Produkt má vysokú rádiochemickú čistotu a vysokú mernú rádioáktivitú.The solution relates to the preparation method ("^ H)" radioisotope-labeled acid fractions of hyaluronic acid (HA) or its salts of defined molecular weight. Approach is that the HA is native or its salt is labeled with (3H) radioisotope, measured the radioactivity of the sample taken by liquid scintillation spectrometry (LSC). Followed by HA or letting the sol pass through the layer a cation exchanger, preferably a group carboxymethylcelyl derivatives, and thereafter is separated into fractions by the high-efficiency method gel permeation chromatography and then the radioactivity is measured sample of the respective HA fraction or salts thereof by LSC. The product has high radiochemical purity and high radioactive.

Description

Vynález sa týká sposobu přípravy ( H) radioizotopem značených frakci! kyseliny hyaluronovej alebo jej solí o definovanej molekulovej hmotnosti a hodnotenia kvality týchto látok.The invention relates to a process for the preparation of (H) radiolabeled fractions! hyaluronic acid or its salts of defined molecular weight and the evaluation of the quality of these substances.

Kyselina hyalurónová /Ha/ a jej deriváty sú polysacharidy glykozaminoglykány zložené z opakujúcich sa jednotiek glukuronátu a N-acetylglukozamínu. Narastujúci záujem o výskům HA a jej derivátov je sposobený rozširujúcim sa uplatněním radu preparátov s obsahom HA v oftalmológii, reumatológii, dermatológii a v Salšich odboroch medicinskej praxe. Možnosti rozšírenia aplikácii HA a jej derivátov závisia tiež od Salšieho poznania ich biochemie v organizme živočichov. Pre in vivo štúdie sa s výhodou používá rádioizotopom značená HA resp. jej deriváty. Tieto látky musia mat vysoká /= 95 %/ rádiochemickú čistotu a vysokú mernú radioaktivitu. HA resp. jej soli je možné získat z tkaniva kohútich hrebienkov, z ludskej pupočnej šnúry, zo sklovca alebo z priedušnice hovádzieho dobytka, ale z baktérii Streptococcus zooepidemicus. HA izolovaná z ktoréhokolvek zdroja je strukturálně identická, može však byt izolovaná s variabilným stupnom čistoty i polymerizačného stupňa.Hyaluronic acid (Ha) and its derivatives are glycosaminoglycan polysaccharides composed of repeating units of glucuronate and N-acetylglucosamine. The growing interest in the development of HA and its derivatives is due to the expanding application of a number of preparations containing HA in ophthalmology, rheumatology, dermatology and in the Salsh fields of medical practice. The possibilities of expanding the application of HA and its derivatives also depend on Salší's knowledge of their biochemistry in the animal organism. For in vivo studies, radiolabeled HA or HA is preferably used. its derivatives. These substances must have high (= 95%) radiochemical purity and high specific radioactivity. HA resp. its salts can be obtained from the tissue of rooster combs, from the human umbilical cord, from the vitreous or from the trachea of bovine animals, but from the bacterium Streptococcus zooepidemicus. HA isolated from any source is structurally identical, but can be isolated with both varying degrees of purity and degree of polymerization.

Na přípravu rádioaktivne- značenej HA a jej derivátov sa využívajú dva sposoby:For the preparation of radioactively - labeled HA and its derivatives are used in two ways:

1. K danému biosyntetizujúcemu systému /buňky, tkaninové kultúry/ produkujúcemu HA sa pridajú radioaktivně prekurzory /napr. (^H)-, (^C)- glukóza, N-acetylglukózamín/. Týmto sposobom sa připravila (3H)- i (^C)- značená HA s molekulovou hmotnostou rádovo až ΙΟθ Da /Gallagher 3.T. + kol.: Biochem. 9. 148, 187, /1975/; Winterbourne D.1. Radioactive precursors are added to a given biosynthetic system (cell, tissue culture) producing HA. (1 H) -, (1 C) -glucose, N-acetylglucosamine]. In this way, ( 3 H) -i (1 C) -labeled HA with a molecular weight of the order of ΙΟθ Da / Gallagher 3.T. + col .: Biochem. 9. 148, 187, (1975); Winterbourne D.

3. + kol.: Biochem. □. 182, 707, /1979/; Underhill C.B., Toole B.P.: 3. Cell Biol. 82, 475, /1979/).3. + col .: Biochem. □. 182, 707, (1979); Underhill C.B., Toole B.P .: 3. Cell Biol. 82, 475, (1979)).

Výhodou tejto metody je, že sa získá HA s vysokou molekulovou hmotnostou a použitím specificky značených prekurzorov može byt radioaktivita zavedená na Specifické miesto v molekule HA. ·The advantage of this method is that high molecular weight HA is obtained, and using specifically labeled precursors, radioactivity can be introduced at a specific site in the HA molecule. ·

Nevýhodou tohto spfisobu přípravy rádioaktivnej HA je prácnost izolácie značenej HA z reakčnej zmesi, potřeba jej dočistenia od balastných rádioizotopom značených endogénnych látok, poměrně nízký rádiochemický výtažok, často nízká alebo neznáma měrná radioaktivita, přístrojová náročnost.The disadvantages of this method of preparation of radioactive HA are the laboriousness of isolating labeled HA from the reaction mixture, the need to purify it from ballast radiolabeled endogenous substances, relatively low radiochemical yield, often low or unknown specific radioactivity, instrumentation.

2. Chemická metoda přípravy rádioaktivne značenej HA bola prvýkrát publikovaná v r.1982 /Hook M. + kol.: Anal. Biochem. 119, 236, /1982/, ke3 autoři připravili hyalurónovú 3 3 kyselinu N-deacetyláciou natívnej HA hydrazinom a následnou N( H)-acatyláciou s ( H)3 *2. A chemical method for the preparation of radiolabeled HA was first published in 1982 / Hook M. + et al .: Anal. Biochem. 119, 236, (1982), when the authors prepared hyaluronic acid 3 by N-deacetylation of native HA with hydrazine and subsequent N (H) -acetylation with (H) 3 *

-acetanhydridom. Izolácia vysokomolekulovej frakcie ( H)-hyaluronovej kyseliny od nizkomolekulových frakcii sá robila rovnovážnou dialýzou a gélovou chromatografiou. Touto metodou sa připravila HA s měrnou radioaktivitou (3-4) x 10 cpm/ ^ug kyseliny uronovej.·-acetic anhydride. Isolation of the high molecular weight (H) -hyaluronic acid fraction from the low molecular weight fractions was performed by equilibrium dialysis and gel permeation chromatography. HA with specific radioactivity (3-4) x 10 cpm / μg uronic acid was prepared by this method.

Nevýhodou tohto postupu je, že celý proces přípravy a izolácie ( H)-hyaluronovej kyseliny je náročný vzhladom na materiálně vybavenia i čas a poskytuje derivát s poměrně nízkou měrnou rádioaktivitou.The disadvantage of this process is that the whole process of preparation and isolation of (H) -hyaluronic acid is time-consuming and time-consuming and provides a derivative with a relatively low specific radioactivity.

z 5" Of 5

Dalšiu metodu na přípravu vysokomolekulovej HA /o mol. hmot. 3 x 10 Da/ značená tríciom vypracovali Orlando a kol. /Orlando P. + kol.: □. Label, Comp. Radiopharm. 22, 961, /1985/). HA sa oxidovala jodistanom sodným a po vyčistění oxidačného produktu ultrafiltráciou a rovnovážnou dialýzou sa spatné redukovala s ( H)-NaBH.. Po dočištění produktu z * rovnovážnou dialýzou a ultrafiltráciou sa získala ( H)-hyaluronová kyselina s rádiochemickou čistotou 95 % a s měrnou rádioaktivitou zv5,55 MBq/mg.·Another method for the preparation of high molecular weight HA / o mol. mass 3 x 10 Da / tritium labeled by Orlando et al. / Orlando P. + col .: □. Label, Comp. Radiopharm. 22, 961, (1985)). HA was oxidized with sodium periodate and after purification of the oxidation product by ultrafiltration and equilibrium dialysis, it was badly reduced with (H) -NaBH. After purification of the product by equilibrium dialysis and ultrafiltration, (H) -hyaluronic acid with radiochemical purity of 95% and specific radioactivity was obtained. zv5.55 MBq / mg ·

Nevýhodou tejto metody je, že pri oxidácii sa znižuje molekulová hmotnost HA a že ultrafiltrácia nie je najvhodnejšia, ke3že biomakromolekuly často upehávajú póry v ultrafiltračných membránách. ....... ’The disadvantage of this method is that the molecular weight of HA is reduced during oxidation and that ultrafiltration is not the most suitable, as biomacromolecules often clog pores in ultrafiltration membranes. ....... ’

Metoda, při ktorej sa zachovává integrita molekuly HA po zavedení izotopu s vysokou měrnou rádioaktivitou pozostáva z redukcie oligosacharidov HA pomocou NaBH^ /modifikuje saThe method by which the integrity of the HA molecule is maintained after the introduction of a isotope with high specific radioactivity consists in the reduction of HA oligosaccharides with NaBH 4 / modified

CS 276 775 86 iba koncový redukujúci cukor/, oxidácie vicinálnych hydroxylových skupin a reakcis s alkyldiamínmi a s Bolton-Hunterovým reagensora /N-sukcinimidyl-3-(4-hydroxyfenyl)propionát/. Výsledný hydroxyfenyl derivát HA sa lahko rádioiodiduje s Na I na redukujúcom konci retazca. Touto metodou možno získat oligosacharidy HAsměrnou rádioaktivitou až lOOOkrát vyššou (Raja R.3. + kol.: Anal. Biochem. 139, 168, /1984/) ako udávájú autoři vyššie opisaných metod.CS 276 775 86 only terminal reducing sugar (oxidation of vicinal hydroxyl groups and reaction with alkyldiamines and Bolton-Hunter reagent (N-succinimidyl-3- (4-hydroxyphenyl) propionate). The resulting hydroxyphenyl derivative of HA is easily radioiodidized with Na I at the reducing end of the chain. By this method, oligosaccharides can be obtained with HA radioactivity up to 1000 times higher (Raja R.3. + Et .: Anal. Biochem. 139, 168, (1984)) than stated by the authors of the methods described above.

Nevýhodou metody je, že nie je vhodná pře polymérnu, ale iba pře oligoměrnu HA.The disadvantage of the method is that it is not suitable for polymer, but only for oligomeric HA.

Kyselinu hyaluronovú možno jednoducho previest na kyselinu ( H)-hyaluronovú izotopovou výměnou vodíkov za trícium vo vodnom roztoku za katalýzy Pd/CaC03. ·Hyaluronic acid can be easily converted to (H) -hyaluronic acid by isotope exchange of hydrogens for tritium in aqueous solution under Pd / CaCO 3 catalysis. ·

Derivát ( H)-hyaluronovej kyseliny možno tiež připravit alkyláciou natívneho biopolyméru s ( H)-metylbromidom s vysokou měrnou rádioaktivitou /1,5 TBq/moll/, v prostředí kvapalného amoniaku pri nízkej teplote (-33,5 °C) bez špeciálnej úpravy východiskovoj HA. Týmto spo'sobom sa připraví reakčná zmes s vysokou měrnou rádioaktivitou, z ktorej sa vysokomolekulový derivát H-hyaluronovej kyseliny, resp. jeho frakcie dalej vyizolujú niektorou vhodnou metodou a charakterizujú.The (H) -hyaluronic acid derivative can also be prepared by alkylation of the native biopolymer with (H) -methyl bromide with high specific radioactivity (1.5 TBq / mol), in a liquid ammonia medium at low temperature (-33.5 ° C) without special treatment. starting HA. In this way, a reaction mixture with high specific radioactivity is prepared, from which the high molecular weight derivative of H-hyaluronic acid, resp. its fractions are further isolated by some suitable method and characterized.

Na chařaktěrizáciu molekulových hmotností HA boli použité nasledujúce techniky:The following techniques were used to characterize the molecular weights of HA:

a) viskozimetria (H. Bothner, T. Waaler, O. Wik: Int. 3. Biol. Macrotnol. 1988, 10, 287-291; E. Shimada, G. Matsumura: □. Biochem. 78, 513-517, 1975;a) viscosimetry (H. Bothner, T. Waaler, O. Wik: Int. 3. Biol. Macrotnol. 1988, 10, 287-291; E. Shimada, G. Matsumura: Bio. Biochem. 78, 513-517, 1975;

b) rozptyl světla (H. Bothner; T. Waaler, 0. Wik: Ing. □. Biol. Macromol. 1988, 10, 287-291; R. L. Cleland: Arch. Biochem. Biophys. 1977, 180, 57-63; Barret T.W., Baxter 3. E.: Physiol. Chen. Phys. 1982, 14, 19-29);b) light scattering (H. Bothner; T. Waaler, 0. Wik: Ing. □. Biol. Macromol. 1988, 10, 287-291; RL Cleland: Arch. Biochem. Biophys. 1977, 180, 57-63; Barret TW, Baxter 3. E .: Physiol. Chen. Phys. 1982, 14, 19-29);

c) sedimentačná analýza (Swann D. A.: Biochem. Biophys. Acta 1963, 156, 17-30; T. C. Laurent, M. Ryan; A. Pietruszkiewicz: Biochim. Biophys. Acta I960, 42, 476-485);c) sedimentation analysis (Swann D. A .: Biochem. Biophys. Acta 1963, 156, 17-30; T. C. Laurent, M. Ryan; A. Pietruszkiewicz: Biochim. Biophys. Acta I960, 42, 476-485);

d) rovnovážná ultracentrifugácia (E. Shimada, G. Matsumura: O. Biochem. 78, 513-517, 1975);d) equilibrium ultracentrifugation (E. Shimada, G. Matsumura: O. Biochem. 78, 513-517, 1975);

e) gólová chromatografia (N. Motohashi, I. Mori: O. Chromatogr. 1984, 299, 508-512; M. Terbojevich, A. Česaní, M. Palumbo: Carbohydr. Res, 1986, 157, 269-272; Beaty N. B., Tew W. P., Mello R. Anal. Biochem. 1985, 147, 387-395).e) goal chromatography (N. Motohashi, I. Mori: O. Chromatogr. 1984, 299, 508-512; M. Terbojevich, A. Česaní, M. Palumbo: Carbohydr. Res, 1986, 157, 269-272; Beaty NB, Tew WP, Mello R. Anal. Biochem. 1985, 147, 387-395).

Zásadnou nevýhodou viskozimetria a rozptylu světla je, že sa týmito metodami stanoví len priemerná molekulová hmotnost (viskozitný, Rv, resp. hmotnostný, M^, priemor) a polymery s rozdielnou distribúciou molekulových hmotností možu byt považované v dosledku rovnakých hodnot Mv, či za totožné látky. Sedimentačná analýza ako i rovnovážná ultracentrifugácia poskytujú sice širšiu výpoveň o tvare distribúcle molekulových hmotnosti analyzovaného polyméru, avšak prevádzka týchto metod je cenovo neúmeřne vysoká. Gólová chromatografia na rozdiel od jej vysokoúčinnej modifikácie (HP GPC) je poměrně pomalá. Oedna analýza spravidla trvá niekolko hodin až desiatok hodin.The main disadvantage of viscosimetry and light scattering is that these methods only determine the average molecular weight (viscosity, R v , or mass, M ^, average) and polymers with different molecular weight distributions can be considered as the result of the same values of M v , or for identical substances. Sedimentation analysis as well as equilibrium ultracentrifugation provide a broader indication of the shape of the molecular weight distribution of the analyzed polymer, but the operation of these methods is disproportionately high. Goal chromatography, in contrast to its high performance modification (HP GPC), is relatively slow. One analysis usually takes several hours to tens of hours.

Pre chařaktěrizáciu distribúcie molekulových hmotnosti, ako aj jednotlivých definevých priemerov molekulovej hmotnosti polymérov (biopolymérov) sa dnes vo svete najfrekventovanejšie použiva metoda vysokoúčinnej gélovej permeačnej chromatografie (HP GPC).The method of high-performance gel permeation chromatography (HP GPC) is the most frequently used in the world today for the characterization of the molecular weight distribution as well as the individual defined average molecular weights of polymers (biopolymers).

Uvedené nevýhody známých postupov odstraňuje sposob přípravy (3H) rádioizotopom značených frakcii kyseliny hyaluronovej alebo jej solí □ definovanej molekulovej hmotnosti podía vynálezu. Deho podstata je, že sa nativna kyselina hyalurónová alebo jej sol označí ( H) rádioizotopom a zmeria sa radioaktivita odobratej vzorky metodou kvapalinovej scintilačnej spektrometrie (LSS). Značená HA sa s výhodou robi tak, že sa na vodný roztok kyseliny hyaluronovej alebo jej soli pžsobi za přítomnosti katalyzátore Pd/CaCOg plynným tríciom, odstráni sa rozpúštadlo a labilná rádioaktivta. Iným vhodným sposobom značenia HA je, že sa alkyluje s ( H)-methylbromidom v prostředí kvapalného amoniaku, ktorý sa po neutralizácii odstráni. (3H) rádioizotopom označená kyselina hyalurónová alebo jej sol sa neSaid disadvantages of the known processes are eliminated by the process for the preparation of ( 3 H) radiolabeled fractions of hyaluronic acid or its salt nevý defined molecular weight according to the invention. In essence, the native hyaluronic acid or its salt is radiolabeled with (H) and the radioactivity of the sample is measured by liquid scintillation spectrometry (LSS). The labeled HA is preferably made by treating an aqueous solution of hyaluronic acid or a salt thereof with tritium gas in the presence of a Pd / CaCO 3 catalyst, removing the solvent and labile radioactivity. Another suitable method of labeling HA is that it is alkylated with (H) -methyl bromide in liquid ammonia, which is removed after neutralization. (3 H) labeled with a radioisotope hyaluronic acid or its salt is not

CS 275 775 B6 chá prechádzat cez vrstvu kationomeniča, s výhodou zo skupiny derivátov karboxymetylcelulózy. Následné sa HA alebo jej sol rozdělí na frakcis a stanoví sa ich modekulová hmotnost metodou vysokoúčinnej gélovej permeačnej chromatografie (HP GPC) . HP GPC izolácia a identifikácia frakci! ( H)-HA ako aj soli sa robí pomocou chromatografických kolon naplněných hydroxyethylmetakrylátom. Ako mobilná fáza sa použije 0,1 M vodný roztok dusičnanu sodného, NaNOg. Nakoniec sa'zmeria radioaktivita odobratej vzorky prislušnej frakcie HA alebo jej soli metodou kvapalinovej scintilačnej spektrometrie.CS 275 775 B6 can be passed through a cation exchanger layer, preferably from the group of carboxymethylcellulose derivatives. Subsequently, the HA or its salt is divided into fractions and their modular mass is determined by high performance gel permeation chromatography (HP GPC). HP GPC Isolation and Fraction Identification! (H) -HA as well as salts are made using chromatographic columns packed with hydroxyethyl methacrylate. A 0.1 M aqueous solution of sodium nitrate, NaNO 2, is used as the mobile phase. Finally, the radioactivity of the sample taken of the relevant fraction of HA or its salt is measured by liquid scintillation spectrometry.

Přednosti navrhovaného sposobu spočivajú predovšetkým v tom, že bez predchádzajúcej modifikácie východiskovéj HA, ktorá často mala za následok zníženie molekulovej hmotnosti, sa dosiahne označenie HA tríciom s molovou rádioaktivitou niekoíkonásobne vyššou ako pri doteraz používaných metodách. Dalej izolácia ( H)-hyaluronovej kyseliny alebo jej soli z reakčnej zmesi pomocnou GPC,' ktorá je jednoduchá a nenáročná, je účinnejšia ako doteraz používané (dialýza resp. ultraflltrácia); vysokoúčinná modifikácia GPC je aj podstatné rýchlejšia. Okrem vysokém mernej radioaktivity sa sposobom podía vynálezu pripraví ( H)-hyaluronová kyselina resp. jej sol s vysokou rádiochemickou čistotou pričom kombináciou metod·GPC a LSS možno okrem toho-jednoducho charakterizovat ich molekulová distribúciu a polymolekularitu a stanovit měrné radioaktivitu režných frakci!.The advantages of the proposed method are, in particular, that without prior modification of the starting HA, which often resulted in a decrease in molecular weight, the labeling of HA with tritium with a molar radioactivity several times higher than with the hitherto used methods is achieved. Furthermore, the isolation of (H) -hyaluronic acid or its salt from the reaction mixture by means of GPC, which is simple and undemanding, is more efficient than hitherto used (dialysis or ultrafiltration); high-efficiency GPC modification is also significantly faster. In addition to the high specific radioactivity, (H) -hyaluronic acid or its salt with high radiochemical purity, while the combination of GPC and LSS methods can also easily characterize their molecular distribution and polymolecularity and determine the specific radioactivity of the gray fractions.

Ďalej uvedené příklady ozrejmujú navrhovaný postup, pričom však nijako neobmedzujú rozsah ochrany vynálezu.The following examples illustrate the proposed process without, however, limiting the scope of the invention in any way.

Příklad 1Example 1

Do reakčnej banky o objeme 1,0 ml sa odváži 10 mg katalyzátore (10% PdO/CaCOg) a pripipetuje sa 0,5 ml vodného roztoku kyseliny hyaluronovej (10 mg). Reakčná banka sa potom připoj! k titračnej aparatére. Dej obsah sa ochladí kvapalným dusíkem a titračná aparatura sa evakuuje. Do reakčnej banky sa za pomoci Toeplerovej pumpy privedie do zásobníka 200 GBq trícia bez nosiča. Reakčná zmes sa premiešava elektromagneticky pri teplo to 295 K. Po 100 min. sa reakcia ukončí, obsah reakčnej banky sa zmrazí a zostatkové trícium sa prevedie do zásobnika. Mrazovou sublimáciou v uzavretom systéme se odstráni rozpúštadlo e labilná radioaktivita. Odparok sa rozpustí v 2’ml redestilovanej vody a katalyzátor sa oddělí odstředěním. Zbytky labilně vlaženého trícia sa odšťránia opakovanou mrazovou sublimáciou v uzavretom systéme. Vzorka reakčnej zmesi sa nastrekne do HP GPC systému a na kolonách naplněných hydroxyethylmetakrylátom (Separon HEMA S-1000 a Separon HEMA S-300) zapojených v sérii sa reakčná zmes rozdělí do frakci! o roznej molekulovej hmotnosti. Mobilnú fázu tvor! 0,1 M vodný roztok dusičnanu, sodného, NaNO„. K izolovaným 3 , . J Weigh 10 mg of catalyst (10% PdO / CaCO 3) into a 1.0 mL reaction flask and pipette 0.5 mL of aqueous hyaluronic acid (10 mg). The reaction flask is then connected! to the titration apparatus. The contents are cooled with liquid nitrogen and the titration apparatus is evacuated. Using a Toepler pump, 200 GBq of unsupported tritium is introduced into the reaction flask into a reservoir. The reaction mixture is stirred electromagnetically at a temperature of 295 K. After 100 min. the reaction is terminated, the contents of the reaction flask are frozen and the residual tritium is transferred to a reservoir. Freeze sublimation in a closed system removes solvent and labile radioactivity. The residue is dissolved in 2 ml of redistilled water and the catalyst is separated by centrifugation. Residues of labile moistened tritium are removed by repeated freeze sublimation in a closed system. A sample of the reaction mixture was injected into the HP GPC system and on columns packed with hydroxyethyl methacrylate (Separon HEMA S-1000 and Separon HEMA S-300) connected in series, the reaction mixture was fractionated! of different molecular weight. Mobile stage creature! 0.1 M aqueous solution of nitrate, sodium, NaNO3. To isolated 3,. J

-frakciám ( H) hyaluronovej kyseliny sa přidá álikvotné množstvo-kvapalného scintilátora a ich radioaktivita sa zmeria metodou kvapalinovej scintilačnej spektrometrie na přístroji Packard 300 CD.An aliquot of the liquid scintillator is added to the (H) -hyaluronic acid fractions and their radioactivity is measured by liquid scintillation spectrometry on a Packard 300 CD.

Z vysokomolekulových frakci! ( H)-HA s vysokou rádioaktivitou sa alikvotná čas opětovně nastrekne do HP GPC systému a stanovie sa molekulové charakteristiky t (100 .ul) (dH)-hyalurónovej kyseliny. Zo získaných hodnot boli vypočítané následovně charakteristiky:From high molecular weight fractions! The high radioactivity (H) -HA is re-injected into the HP GPC system for an aliquot time and the molecular characteristics of t (100 .mu.l) ( d H) -hyaluronic acid are determined. From the obtained values, the following characteristics were calculated:

- 3 5- 3 5

- priemerná molekulová hmotnost Mp ( H)-HA = 2,28 x 10 Da- average molecular weight Mp (H) -HA = 2.28 x 10 Da

- polymolekularita vzorky D a 1,98 q- polymolecularity of sample D and 1.98 q

- měrná radioaktivita čistej ( H)-HA = 3,3 MBq/mg- specific radioactivity of pure (H) -HA = 3.3 MBq / mg

Příklad 2Example 2

K vodnému roztoku kyseliny hyaluronovej (5 mg v 0,5 ml redestilovanej vody) sa přidá 0,6 ml etanolu a 9 ml éteru. Vzniknutý· roztok s bielou suspenziou sa odpaří na vákuovej odparke a odparok sa vysuší do konštantnej hmotnosti. Reakčná aparatura so spatným chladičem sa vypláchne sušeným amoniakem. K odparku v reakčnej banke o objeme 10 ml sa pridestilujú 3 ml suchého amoniaku. Reakčná zmes sa mieša 10 min za varu amoniaku a k reakčnej zmesi sa pridajú 2 mg sodíka. Vzniknutý modrý roztok sa za minutu odfarbí. PřidáTo an aqueous solution of hyaluronic acid (5 mg in 0.5 ml of redistilled water) was added 0.6 ml of ethanol and 9 ml of ether. The resulting white suspension solution was evaporated in a vacuum evaporator and the residue was dried to constant weight. The reaction apparatus with a reflux condenser is rinsed with dried ammonia. 3 ml of dry ammonia are distilled off to the residue in a 10 ml reaction flask. The reaction mixture was stirred for 10 minutes under boiling ammonia, and 2 mg of sodium was added to the reaction mixture. The resulting blue solution decolorizes in one minute. Adds

CS 276 775 B5 oCS 276 775 B5 o

sa 0,5 ml toluénu, v ktorom je rozpuštěných 5 GBq ( H)-metylbromidu. Reakčná zmes sa refluxuje 1 hodinu při elektromagnstickom miešaní. Kvapalný amoniak sa po neutralizácii (4 mg HN.C1) nechá odpařit. Odparek sa rozpustí v redestilovanej vodě a znova odpaří. Po rozpuštění odparku sa čistá ( H)-hyaluronová kyselina izoluje zo zmesi pomocou gélovej permeačnej chromatografie na koloně Superose 6 (sletovaná agaroza) tak, že zmes sa rozdělí do frakci! podlá molekulových hmotností, v ktorých sa zmeria radioaktivita metodou 3with 0.5 ml of toluene in which 5 GBq of (H) -methyl bromide are dissolved. The reaction mixture is refluxed for 1 hour with electromagnetic stirring. After neutralization (4 mg HN.C1), the liquid ammonia is allowed to evaporate. The residue is dissolved in redistilled water and evaporated again. After dissolving the residue, pure (H) -hyaluronic acid is isolated from the mixture by gel permeation chromatography on a Superose 6 column (soldered agarose) so that the mixture is fractionated! according to the molecular weights at which the radioactivity is measured by method 3

LSS. Vysokomolekulové frakcie čistej ( H)-HA s vysokou měrnou rádioaktivitou sa spoja a opatovne analyzuji! gólovou permeačnou chromatografiou na přístroji FPLC Pharmacia a kvapalinovou scintilačnou spektrometriou na přístroji Packard 300 CD.LSS. High molecular weight fractions of pure (H) -HA with high specific radioactivity are pooled and carefully analyzed! goal permeation chromatography on a FPLC Pharmacia instrument and liquid scintillation spectrometry on a Packard 300 CD instrument.

Z nameraných hodnot boli vypočítané následovně charakteristiky: *· 3 5From the measured values, the characteristics were calculated as follows: * · 3 5

- priemerná molekulová hmotnost M ( H)-HA = 3,92 x 10 DA- average molecular weight M (H) -HA = 3.92 x 10 DA

- polymolekularita vzorky D = 1,55- polymolecularity of sample D = 1.55

- měrná radioaktivita ( H)-HA a 37,2 MBq/mg.- specific radioactivity (H) -HA and 37.2 MBq / mg.

Přiklad 3Example 3

Z reakčnej zmesi; pripravenej podlá přikladu 2, sa alikvotná část vysokomolekulové3 ho ( H)-derivátu kyseliny hyaluronovej nastrekne do HP GPC systému, uvedeného v přikla de 1 a frakcionujo sa na frakcie-po 0,65 ml efluenta, v ktorých sa zmeria radioaktivita metodou LSC uvedenou v příklade 1. Z frakcie s najvysšou rádioaktivitou sa do HP GPC syskvoli charakterizaci! diotribúcie jej molekulových hmot3 * ( H)-derivátu kyseliny hyaluronovej:From the reaction mixture; prepared according to Example 2, an aliquot of the high molecular weight (H) -hyaluronic acid derivative was injected into the HP GPC system described in Example 1 and fractionated into fractions of 0.65 ml of effluent, in which the radioactivity was measured by the LSC method described in Example 1. From the fraction with the highest radioactivity, characterization into the HP GPC was obtained! diotribution of its molecular weight 3 * (H) -hyaluronic acid derivative:

= 9,91 x 104 Da; polymolekularita 0 = 1,37; měrná rádiotému opatovne nastrekne vzorka, ností. Zistili sa tieto hodnoty Priemerná molekulová hmotností M aktivita 7,6 MBq/mg.= 9.91 x 10 4 Da; polymolecularity 0 = 1.37; specific radiothema, inject the sample again. The following values were found: Average molecular weight M activity 7.6 MBq / mg.

Obdobne možno danou metodou charakterizovat ktorúkolvek frakciu vysokomolekulověho 3 / ( H)~derivátu kyseliny hyaluronovej.Similarly, any fraction of a high molecular weight 3 / (H) -hyaluronic acid derivative can be characterized by a given method.

Příklad 4 čistá (¾)-hyaluronová kyselina připravená podlá příkladu 2 sa podrobila enzymatickej degradácii enzýmom-hyaluronidázou EC 3.2.1.35 (Sevac, USOL Praha) pri 37 °C. Množ3 stvo přidaného enzýmu bolo 48 TRU/1 mg ( H)-HA. V časových intervaloch (0,2, 6, 10 a 24 h) sa odoberalo po 100 ^ul reakčnej .zmesi, 10 minút sa nechalo povarit na inaktiváciu enzýmu a odcentrifugovalo pri 15 000 ot/min. HP GPC analýza, rovnako ako meranie distribúcie rádioaktivity jednotlivých vzoriek bolo robené ako v příklade 1. Z distribúcie radioaktivity po 24 hod. digescii vyplynulo, že elučný objem je 14,4 ml, čo odpovedá hodnotě M a 30 000 Da a radioaktivita 19 693 dpm. Pa 48 hod. digescii bol elučný objem 15 ml a rádioakvitia 21 183 dpm. Vzniklý pík rádioaktívnej ( H)-HA sa už dalším posobením enzýmu o nezměnil. Výsledná frakcia nízkomolekulovej ( H)-HA sa vyznačuje nízmou polydisperzitou, preto jej rádioaktivita narástla. Uvedená kinetika degradácie ( H)-HA je totožná s kinetikou degradácie neznačenej kyseliny hyaluronovej.Example 4 Pure (¾) -hyaluronic acid prepared according to Example 2 was subjected to enzymatic degradation by the enzyme hyaluronidase EC 3.2.1.35 (Sevac, USOL Prague) at 37 ° C. The amount of enzyme added was 48 TRU / 1 mg (H) -HA. At time intervals (0.2, 6, 10 and 24 h), 100 [mu] l of the reaction mixture was taken, boiled for 10 minutes to inactivate the enzyme and centrifuged at 15,000 rpm. HP GPC analysis as well as measurement of the radioactivity distribution of the individual samples was performed as in Example 1. From the radioactivity distribution after 24 hours. digestion showed an elution volume of 14.4 ml, corresponding to an M value of 30,000 Da and a radioactivity of 19,693 dpm. Fri 48 hours digestion, the elution volume was 15 ml and the radioactivity was 21,183 dpm. The resulting peak of radioactive (H) -HA was not altered by further treatment with the enzyme. The resulting low molecular weight (H) -HA fraction is characterized by low polydispersity, therefore its radioactivity has increased. The degradation kinetics of (H) -HA are identical to the degradation kinetics of unlabeled hyaluronic acid.

Claims (3)

CS 27G 775 B5 4 o sa O,'5 ml toluénu, v ktorom je rozpuštěných 5 GBq ( H)-metylbromidu. Reakčná zmes sa re-fluxuje 1 hodinu pri elektromagnetickom miešani. Kvapalný amoniak sa pa neutralizácii(4 mg HN^Cl) nechá odpařit. Odparok sa rozpust! v redestilovanej vodě a znova odpaří. Porozpuštění odparku sa čistá (3H)-hyalurónová kyselina izoluje zo zraesi pomocou gélovejpermeačnej chromatografie na kolóne Superose 6 (sietovaná agaróza) tak, že zmes sa roz-dělí do frakci! podlá molekulových hmotností, v ktorých sa zmeria radioaktivita metodou 3 LSS. Vysokomolekulové frakcie čistej ( H)-HA s vysokou měrnou rádioaktivitou sa spoja aopatovno analyzujú gólovou permeačnou chromatografiou na přístroji FPLC Pharmacia a kva-palinovou scintilačnou spoktrometriou na přístroji Packard 300 CD. 2 nameraných hodnot boli vypočítané následovně charakteristiky: *•3 5 - priemerná molekulová hmotnost M ( H)-HA = 3,92 x 10 DA - polymolekularita vzorky D = 1,55 3 - měrná radioaktivita ( H)-HA a 37,2 MBq/mg. Přiklad 3 Z reakčnej zmesi; pripravenej podlá příkladu 2, sa alikvotná část vysokomolekulové-ho (3H)-derivátu kyseliny hyalurónovej nastrekne do HP GPC systému, uvedeného v přikla-de 1 a frakcionuja sa na frakcie-po 0,65 ml efluenta, v ktorých sa zmeria radioaktivitametodou LSC uvedenou v přiklade 1. 2 frakcie s najvyššou rádioaktivitou sa do HP GPC sys-tému opatovne nastrekne vzorka, kvoli charakterizaci! distribúcie jej molekulových hmot-nosti. 2istili sa tieto hodnoty (3H)-derivátu kyseliny hyalurónovej: Priemerná molekulová hmotnosti Mp = 9,91 x 104 Da; polymolekularita D = 1,37; měrná rádio-aktivita 7,6 MBq/mg. Obdobné možno danou metodou charakterizovat ktorúkolvsk frakciu vysokomolekulového 3 ? ( H)~derivátu kyseliny hyalurónovej. Příklad 4 čistá (3H)-hyalurónová kyselina připravená podlá přikladu 2 sa podrobila enzymatic-kej degradácii enzýmom-hyaluronidázou EC 3.2.1.35 (Sevac, USOL Praha) pri 37 °C. Množ-stvo přidaného enzýmu bolo 48 TRU/1 mg ( H)-HA. V časových intervaloch (0,2, 6, 10 a 24 h)sa odoberalo po 100 ^ul reakčnej .zmesi, 10 rainút sa nechalo povarit na inaktiváciu enzý-mu a odcentrifugovalo pri 15 000 ot/min. HP GPC analýza, rovnako ako meranie distribúcierádioaktivity jednotlivých vzoriek bolo robené ako v přiklade 1. 2 distribúcie radioak-tivity po 24 hod. digescii vyplynulo, že elučný objem je 14,4 ml, čo odpovedá hodnotěM = 30 000 Da a radioaktivita 19 693 dpm. Po 48 hod. digescii bol elučný objem 15 ml arádioakvitia 21 183 dpm. Vzniklý pík rádioaktívnej (3H)-HA sa už Salšim působením enzýmu nezměnil. Výsledná frakcia nízkomolekulovej ( H)-HA sa vyznačuje nízmou polydisperzitou, 3 preto jej rádioaktivita narástla. Uvedená kinetika degradácie ( H)-HA je totožná s kine-tikou degradácie neznačenej kyseliny hyalurónovej. PATENTOVÉ NÁROKY5 ml of toluene in which 5 GBq of (H) -methyl bromide are dissolved. The reaction mixture was refluxed for 1 hour under electromagnetic stirring. Liquid ammonia is allowed to evaporate by neutralization (4 mg HN3 Cl). The residue is dissolved! in redistilled water and evaporate again. Dissolution of the residue is pure (3H) -hyaluronic acid isolated from the precipitate by gel-permeation chromatography on a Superose 6 column (meshed agarose) so that the mixture is fractionated! according to the molecular weights in which the radioactivity is measured by the 3 LSS method. High-molecular-weight high (H) -HA high fractions of high purity radioactivity were pooled and analyzed by goal permeation chromatography on a FPLC Pharmacia instrument and quadrant scintillation spoktrometry on a Packard 300 CD. 2 measured values were calculated as follows: * • 3 5 - average molecular weight M (H) -HA = 3.92 x 10 DA - sample polymolecularity D = 1.55 3 - specific radioactivity (H) -HA and 37.2 MBq / mg. Example 3 From the reaction mixture; prepared according to Example 2, an aliquot of the high molecular weight (3H) -hyaluronic acid derivative is injected into the HP GPC system shown in Example 1 and fractionated into fractions of 0.65 ml of effluent in which the LSC radioactivity is measured. In Example 1, 2 fractions with the highest radioactivity are carefully injected into the HP GPC system for characterization! distribution of its molecular weight. The following (3H) -hyaluronic acid derivative values were found: Mean molecular weight Mp = 9.91 x 10 4 Da; polymolecularity D = 1.37; specific radioactivity 7.6 MBq / mg. Similarly, a high-molecular-weight 3? (H) -hyaluronic acid derivative. Example 4 pure (3H) -hyaluronic acid prepared according to Example 2 was subjected to enzymatic degradation by enzyme-hyaluronidase EC 3.2.1.35 (Sevac, USOL Prague) at 37 ° C. The amount of enzyme added was 48 TRU / 1 mg (H) -HA. At time intervals (0.2, 6, 10 and 24 h), 100 µl of reaction mixture was collected, 10 was allowed to boil for enzyme inactivation and centrifuged at 15,000 rpm. HP GPC analysis, as well as the measurement of the radioactivity distribution of individual samples, was performed as in Example 1. 2 radioactivity distributions after 24 hours of digestion showed that the elution volume was 14.4 ml, corresponding to a M = 30,000 Da and radioactivity of 19,693 dpm . After 48 hours of digestion, the elution volume was 15 ml and 21,183 dpm. The resulting radioactive (3H) -HA peak was not altered by the enzyme with the enzyme. The resulting low molecular weight (H) -HA fraction is characterized by low polydispersity, 3 therefore its radioactivity increased. Said kinetics of degradation of (H) -HA is identical to that of unlabeled hyaluronic acid. PATENT CLAIMS 1. SpSsob přípravy (3H) radioizotopem značených frakcii kyseliny hyalurónovej alebo jejsoli o definovanej molekulovej hmotnossi, vyznačujúci sa tým, že sa nativna kyselinahyaluronová alebo jej sol označí ( H) rádioizotopom, zmeria sa radioaktivita odobra-tej vzorky metodou kvapalinovej scintilačnej spektrometrie, rádioizotopom označenákyselina hyaluronová,' alebo jej sol sa nechá prechádzat cez vrstvu kationomeniča s vý-hodou zo skupiny derivátov karboxymetylcelulózy,' následné sa kyselina hyaluronová ale-bo jej sol rozdělí na frakcie metodou vysokoúčinnej gélovej permeačnej chromatografiea potom sa zmeria radioaktivita odobratej vzorky příslušnéJ frakcie kyseliny hyaluro-novej alebo jej soli metodou kvapalinovej scintilačnej spektrometrie. 4 3. 5 CS 276 775 B6A process for the preparation of (3H) radiolabelled fractions of hyaluronic acid or a defined molecular weight thereof, characterized in that the native hyaluronic acid or its salt is labeled with (H) a radioisotope, the radioactivity of the sample is measured by liquid scintillation spectrometry, the radioisotope labeled acid hyaluronic acid, or a salt thereof, is passed through a cation exchange layer preferably from the carboxymethylcellulose derivative group, the hyaluronic acid or a salt thereof is then separated into fractions by the high performance gel permeation chromatography method, then the radioactivity of the respective fraction of hyaluronic acid is measured. new or its salt by liquid scintillation spectrometry. 4 3. 5 EN 276 775 B6 2. Sposob přípravy podlá bodu 1, vyznačujúci sa tým, že sa nativna kyselina hyalurónováalebo jej sol označí (¾) ródioizotopom tak, že sa na vodný roztok kysoliny hyaluró-novej alebo jej soli posobi za přítomnosti katalyzátore Pd/CaCOg plynným triciom, od-stráni sa rozpúštadlo a labilná radioaktivita. Sposob přípravy podlá bodu 1, vyznačujúci sa tým,' že sa nativna kyselina hyalurónováalebo jej sol označí (3H) rádioizotopom tak, že sa alkyluje s (3H)-metylbromidom vprostředí kvapalného amoniaku, ktorý sa po neutralizaci! odstráni.2. A process according to claim 1, wherein the native hyaluronic acid or a salt thereof is labeled with (¾) riodioisotope by transferring a tritium gas to the aqueous solution of hyaluronic acid or a salt thereof in the presence of a Pd / CaCO3 catalyst. solvent and labile radioactivity are lost. A process according to claim 1, wherein the native hyaluronic acid or a salt thereof is labeled with (3H) a radioisotope such that it is alkylated with (3H) -methyl bromide in the liquid ammonia medium to be neutralized! will be removed.
CS6390A 1990-01-05 1990-01-05 Process for preparing (3h)radiolabelled fractions of hyaluronic acid or salts thereof CS276775B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS6390A CS276775B6 (en) 1990-01-05 1990-01-05 Process for preparing (3h)radiolabelled fractions of hyaluronic acid or salts thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS6390A CS276775B6 (en) 1990-01-05 1990-01-05 Process for preparing (3h)radiolabelled fractions of hyaluronic acid or salts thereof

Publications (2)

Publication Number Publication Date
CS9000063A2 CS9000063A2 (en) 1991-08-13
CS276775B6 true CS276775B6 (en) 1992-08-12

Family

ID=5332138

Family Applications (1)

Application Number Title Priority Date Filing Date
CS6390A CS276775B6 (en) 1990-01-05 1990-01-05 Process for preparing (3h)radiolabelled fractions of hyaluronic acid or salts thereof

Country Status (1)

Country Link
CS (1) CS276775B6 (en)

Also Published As

Publication number Publication date
CS9000063A2 (en) 1991-08-13

Similar Documents

Publication Publication Date Title
Pervin et al. Preparation and structural characterization of large heparin-derived oligosaccharides
Ogren et al. Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma.
Shriver et al. Heparin and heparan sulfate: analyzing structure and microheterogeneity
Zappe et al. State‐of‐the‐art glycosaminoglycan characterization
Kurup et al. Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4
Wende et al. 1D NMR methods for determination of degree of cross-linking and BDDE substitution positions in HA hydrogels
Yamada et al. Isolation of the porcine heparin tetrasaccharides with glucuronate 2-O-sulfate.: Heparinase cleaves glucuronatE 2-O-sulfate-containing disaccharides in highly sulfated blocks in heparin
Volpi et al. High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides
TWI769176B (en) Biosynthetic heparin
Hagner-McWhirter et al. Biosynthesis of heparin/heparan sulfate: kinetic studies of the glucuronyl C5-epimerase with N-sulfated derivatives of the Escherichia coli K5 capsular polysaccharide as substrates
Schiller et al. New methods to study the composition and structure of the extracellular matrix in natural and bioengineered tissues
EP3279220B1 (en) Method for sulfating glycosaminoglycan
BRPI0509068B1 (en) method for quantifying the amount of components in a sample of material selected from unfractionated heparins and fractionated heparins
Han et al. Monosaccharide compositions of sulfated chitosans obtained by analysis of nitrous acid degraded and pyrazolone-labeled products
Drummond et al. Electrophoretic sequencing of heparin/heparan sulfate oligosaccharides using a highly sensitive fluorescent end label
Sudo et al. 1H nuclear magnetic resonance spectroscopic analysis for determination of glucuronic and iduronic acids in dermatan sulfate, heparin, and heparan sulfate
Kariya et al. Disaccharide analysis of heparin and heparan sulfate using deaminative cleavage with nitrous acid and subsequent labeling with paranitrophenyl hydrazine
US8101733B1 (en) Methods of evaluating mixtures of polysaccharides
Yates et al. Recent innovations in the structural analysis of heparin
Kozlowski et al. Hydrolytic degradation of heparin in acidic environments: nuclear magnetic resonance reveals details of selective desulfation
Zaia Principles of mass spectrometry of glycosaminoglycans
Chandarajoti et al. De novo synthesis of a narrow size distribution low-molecular-weight heparin
Linhardt et al. New methodologies in heparin structure analysis and the generation of LMW heparins
CS276775B6 (en) Process for preparing (3h)radiolabelled fractions of hyaluronic acid or salts thereof
Falshaw et al. Comparison of the glycosaminoglycans isolated from the skin and head cartilage of Gould's arrow squid (Nototodarus gouldi)