JP2004018841A - Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor - Google Patents

Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor Download PDF

Info

Publication number
JP2004018841A
JP2004018841A JP2002180539A JP2002180539A JP2004018841A JP 2004018841 A JP2004018841 A JP 2004018841A JP 2002180539 A JP2002180539 A JP 2002180539A JP 2002180539 A JP2002180539 A JP 2002180539A JP 2004018841 A JP2004018841 A JP 2004018841A
Authority
JP
Japan
Prior art keywords
photoreactive
sugar
compound
group
receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002180539A
Other languages
Japanese (ja)
Other versions
JP2004018841A5 (en
JP4340423B2 (en
Inventor
Nobuo Sugiura
杉浦 信夫
Hidekazu Takagi
高木 秀和
Hiroharu Kimata
木全 弘治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP2002180539A priority Critical patent/JP4340423B2/en
Publication of JP2004018841A publication Critical patent/JP2004018841A/en
Publication of JP2004018841A5 publication Critical patent/JP2004018841A5/ja
Application granted granted Critical
Publication of JP4340423B2 publication Critical patent/JP4340423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoreactive sugar compound and a labeled photoreactive sugar compound useful for researches on function and structure of a biopolymer such as a sugar receptor interactive with the sugar, and a method for capturing the sugar receptor by the photoreactive sugar compound and a method for measuring the sugar receptor by the labeled photoreactive sugar compound. <P>SOLUTION: The photoreactive sugar compound is represented by the following formula: A-X-Y (wherein A is a lipid, X is a sugar compound, Y is a photoreactive compound residue and - is a covalent bond). The labeled photoreactive sugar compound is formed by combining the photoreactive sugar compound and a labeling compound residue. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規な光反応性糖化合物および糖親和性分子解析用プローブとしての用途を有する標識化光反応性糖化合物ならびにこれらを用いる糖受容体の捕捉方法および測定方法に係わるものである。
【0002】
【従来技術】
光反応性標識化合物は、薬物あるいはリガンドと蛋白質との相互作用を解析できる有用なプローブとして知られている。蛋白質を光反応により標識する反応基としてはアジド基が知られている。光反応性基としてアジド基を有する光反応性化合物と糖化合物からなる光反応性糖化合物としては、ヒアルロン酸、SASD(Sulfosuccinimidyl2−(p−azidosalicylamido)ethyl−1,3’−dithiopropionate)及びラジオアイソトープ[125I] からなる光反応性糖化合物(Glycobiology, vol.7no.1 pp.15−21, 1997)や、オリゴ糖、SANPAH(N−Succinimidyl6−(4’−azido−2’nitrophenylamino)−hexanoate)及びジゴキシンからなる光反応性糖化合物(Glycobiology vol.10 no.4 pp.357−364, 2000)などが知られており、蛋白質やレクチンの標識に用いられている。しかしながら、糖化合物に脂質が結合した脂質結合糖化合物に光反応性基が結合した光反応性糖化合物は知られておらず、また、該光反応性糖化合物を固相に固定化することにより、目的の糖受容体を簡単に標識、分離させようとする試みは未だなされていない。
【0003】
【発明が解決しようとする課題】
本発明は、糖と相互作用しうる蛋白質(糖受容体)などの生体高分子の機能や構造を研究するうえでの有用性を有する光反応性糖化合物および標識化光反応性糖化合物を提供することを目的とする。本発明の更なる目的は、光反応性糖化合物による糖受容体の捕捉方法及び標識化光反応性糖化合物を用いる糖受容体の測定方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記実状に鑑み鋭意検討を重ねた結果、目的の糖受容体を簡単に標識、分離することができる光反応性糖化合物および標識化光反応性糖化合物を製造することに成功し、本発明を完成するに至った。
すなわち本発明は、以下の通りである。
【0005】
〔1〕下記式で表される光反応性糖化合物。
A−X−Y
A:脂質
X:糖化合物
Y:光反応性化合物残基
−:共有結合
〔2〕Xで示される糖化合物がヒドロキシル基、アミノ基および/またはカルボキシル基を有する多糖またはオリゴ糖である〔1〕に記載の光反応性糖化合物。
〔3〕ヒドロキシル基、アミノ基および/またはカルボキシル基を有する多糖またはオリゴ糖がグリコサミノグリカンまたはそのオリゴ糖である〔2〕に記載の光反応性糖化合物。
〔4〕グリコサミノグリカンまたはそのオリゴ糖がヒアルロン酸、コンドロイチン、コンドロイチン硫酸、デルマタン硫酸、ヘパリン、ヘパラン硫酸、ケラタン硫酸およびこれらのオリゴ糖からなる群から選択される〔3〕に記載の光反応性糖化合物。
〔5〕Aで示される脂質がリン脂質である〔1〕に記載の光反応性糖化合物。
〔6〕リン脂質がホスファチジルエタノールアミンである〔5〕に記載の光反応性糖化合物。
〔7〕Yで示される光反応性化合物残基がアジド基、ジアゾ基およびジアジリン基からなる群から選択される光反応性基を有する光反応性化合物の残基である〔1〕に記載の光反応性糖化合物。
〔8〕Yで示される光反応性化合物残基が光反応性基としてアリールアジド基を有する光反応性化合物残基である〔1〕に記載の光反応性糖化合物。
〔9〕XとYがエステル結合またはアミド結合によって結合している〔1〕に記載の光反応性糖化合物。
〔10〕XとYがジスルフィド結合を有するスペーサー基を介して結合している〔1〕に記載の光反応性糖化合物。
〔11〕〔1〕〜〔10〕のいずれかに記載の光反応性糖化合物と標識化合物残基が結合した標識化光反応性糖化合物。
〔12〕〔11〕記載の標識化光反応性糖化合物を含む光反応性標識試薬。
〔13〕〔1〕〜〔10〕のいずれかに記載の光反応性糖化合物を固着した固相と、糖受容体とを接触させて光反応性糖化合物と糖受容体を結合させ、次いで光を照射し、該光反応性糖化合物の光反応性化合物残基と該糖受容体を結合することによって該糖受容体を固相に捕捉することを特徴とする糖受容体の捕捉方法。
〔14〕〔11〕記載の標識化光反応性糖化合物を固着した固相と、糖受容体とを接触させて該標識化光反応性糖化合物と糖受容体を結合させ、次いで光を照射し、該標識化光反応性糖化合物の光反応性化合物残基と該糖受容体を光反応により結合させることによって該糖受容体を固相に捕捉すると共に標識化し、標識化された該受容体を固相に結合した状態または固相から遊離させた後に検出することを特徴とする糖受容体の測定方法。
【0006】
【発明の実施の形態】
以下、発明の実施の形態により本発明を詳説する。
本発明の光反応性糖化合物は、糖化合物(X)に脂質(A)が結合した脂質結合糖化合物(A−X)と、これに結合した光反応性化合物残基(Y)よりなる。
すなわち、本発明の光反応性糖化合物は、下記一般式で示される。
【0007】
A−X−Y
【0008】
本発明の光反応性糖化合物を構成する糖化合物としては、ヒドロキシル基、アミノ基および/またはカルホキシル基を有する多糖、オリゴ糖が挙げられ、例えば、ムチン型糖鎖、Asn型糖鎖、シアリル糖鎖、グリコサミノグリカン、ラクトサミン、N−アセチルラクトサミン、ラクトサミンオリゴ糖、シアリルラクトサミン、グルカン、マンナン、フルクタン、ガラクタン、ポリウロン酸、オリゴアミノ糖、ポリアミノ糖、ガラクトオリゴ糖などが挙げられ、その中でも特にグリコサミノグリカンが好ましい。グリコサミノグリカンは、D−グルコサミン又はD−ガラクトサミンと、D−グルクロン酸および/またはD−ガラクトースとの二糖の繰り返し単位を基本骨格として構成される多糖であり、動物等の天然物から抽出されたもの、微生物を培養して得られたもの、化学的若しくは酵素的に合成されたもの等のいずれも光反応性糖化合物の合成に使用することができる。具体的には例えば、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸(コンドロイチン硫酸A、コンドロイチン硫酸C、コンドロイチン硫酸D、コンドロイチン硫酸E、コンドロイチン硫酸K等)、デルマタン硫酸、ケラタン硫酸、ヘパラン硫酸、ヘパリン及びその誘導体などが挙げられ、特にコンドロイチン硫酸が好ましいが、これらに限定されるものではない。コンドロイチン硫酸の分子量は、一般に1,000〜1,000,000程度であるが、約2,000〜200,000程度が好ましく、特に約3,000〜100,000が好ましい。また、糖化合物は上記グリコサミノグリカンのオリゴ糖でもよく、化学的分解により製造したもの、糖分解酵素を用いて製造したもの等いずれも光反応性糖化合物の合成に使用することができる。
【0009】
前述の糖化合物に結合させる脂質としては、動物、植物、微生物などの天然物由来、又は化学的もしくは酵素的に合成若しくは部分的に分解された複合脂質又は単純脂質を使用することができ、リン脂質等のグリセロ脂質、長鎖の脂肪酸、長鎖の脂肪族アミン、コレステロール類、スフィンゴ脂質、セラミド等いずれも使用することができる。特にホスファチジルエタノールアミン、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルトレオニン、エタノールアミンプラスマロゲン、セリンプラスマロゲン、リゾホスファチジルコリン、リゾホスファチジルイノシトール等のリン脂質、モノアシルグリセロール、ジアシルグリセロール等の中性脂質等のグリセロ脂質が好ましい。これらのうち、リン脂質が特に好ましく、その中でもホスファチジルエタノールアミンが更に好ましい。
アシル基を有する脂質中のアシル基の鎖長及び不飽和度は特に限定されないが、炭素数6以上のものが好ましい。アシル基としては例えばパルミトイル(ヘキサデカノイル)又はステアロイル(オクタデカノイル)などが例示される。
【0010】
また、本発明の光反応性糖化合物の合成に際し、これらの脂質は遊離型であっても、通常使用される塩型であってもよい。
糖化合物と脂質との結合位置は特に限定されるものではないが、糖化合物の末端部が好ましく、特に還元末端への結合が好ましい。また、結合の態様は特に限定されないが、特に化学結合が好ましく、その中でも共有結合による結合が最も好ましい。
【0011】
グリコサミノグリカンと脂質とが結合した脂質結合グリコサミノグリカンの場合、グリコサミノグリカンのカルボキシル基(ラクトンを含む)、アルデヒド基(ヘミアセタール基も含む)、ヒドロキシル基若しくは1級アミノ基等の官能基、又はグリコサミノグリカンに別途導入された前記官能基と、脂質のカルボキシル基、アルデヒド基若しくは1級アミノ基等の官能基、または脂質に別途導入された前記官能基との間で形成される酸アミド結合(−CO−NH−)、エステル結合又はアミノアルキル結合(−CH−NH−)によって共有結合したものが好ましい。
【0012】
特に、グリコサミノグリカンの還元末端のピラノース環を開環させ、化学的処理によって形成されたグリコサミノグリカンのカルボキシル基(ラクトンを含む)と、脂質の1級アミノ基との反応によって形成された酸アミド結合(−CO−NH−)、グリコサミノグリカンのウロン酸部分のカルボキシル基と、脂質の1級アミノ基との反応によって形成された酸アミド結合(−CO−NH−)、又はグリコサミノグリカンの還元末端のピラノース環を開環させ、化学的処理によって形成されたグリコサミノグリカンのアルデヒド基と、脂質の1級アミノ基との反応によって形成されたシッフ塩基を還元して形成されたアミノアルキル結合(−CH−NH−)により結合されたもの、あるいはグリコサミノグリカンの還元末端(ヘミアセタール)のアルデヒド基と、脂質の1級アミノ基との反応によって形成されたシッフ塩基を還元して形成されたアミノアルキル結合(−CH−NH−)により結合されたものが好ましい。
【0013】
なお、上記共有結合に関与するアミノ基、カルボキシル基、アルデヒド基(ヘミアセタール基を含む)、ヒドロキシル基はグリコサミノグリカン又は脂質に元来存在するもの、これらに化学的処理を施すことによって形成されたもの、或いは上記官能基を末端に有するスペーサー化合物を、予めグリコサミノグリカン又は脂質と反応させることによって別途導入されたもののいずれであってもよい。
【0014】
脂質結合糖化合物の製造法は、所望の構造の化合物を合成できる方法である限り限定されるものではないが、公知の方法によって製造することができる。例えば、脂質がグリコサミノグリカンの還元末端に共有結合した脂質結合グリコサミノグリカンの製造法としては、例えば、還元末端限定酸化法、還元末端ラクトン法(特許第2997018号公報、特許第2986519号公報、特許第2986518号公報及び特開平9−30979号公報)またはヘミアセタール法(特願2002−143898,特許出願中)等が挙げられる。
【0015】
本発明の光反応性化合物残基としては、アジド基(アルキルアジド、アリールアジド及びニトロフェニルアジド等)、ジアゾ基(ジアゾケトン、ジアゾアセチル、ジアゾマロニル、トリフルオロメチルジアゾアセチル及びp−トルエンスルホニルジアゾアセチル等)、ジアジリン基(アリールジアリジリン等)等の光反応性基を有する光反応性化合物残基が挙げられ、この中でも光反応性基としてアジド基、好ましくはアリールアジド、より具体的にはフェニルアジド基を有する光反応性化合物残基が好ましい。
【0016】
本発明の光反応性糖化合物を合成するためには、通常、A−Xで表される脂質結合糖化合物を合成し、次いでこれに上記光反応性基を有する光反応性化合物を反応させるが、合成が可能である限り他の方法、例えば、糖化合物に光反応性化合物を反応させてX−Yを合成し、これに脂質を反応させて光反応性糖化合物を合成してもよい。
【0017】
本発明の光反応性糖化合物において脂質結合糖化合物の糖部分と光反応性残基とは、エステル結合またはアミド結合により結合していることが好ましい。その結合方法としては、糖部分のヒドロキシル基またはアミノ基に光反応性化合物の活性エステルを反応させる方法(活性エステル法)、糖部分にウロン酸が含まれる場合、該ウロン酸のカルボキシル基と光反応性化合物のアミノ基とをカルボジイミド類などの縮合剤により縮合させる方法、糖部分のウロン酸のカルボキシル基を活性エステル、酸アジドまたはカルボキシクロリドのような活性型とし、光反応性化物のアミノ基と縮合させる方法、糖部分がN−アセチルヘキソサミンを含む場合、N−アセチルヘキソサミンにヒドラジンを作用させ、アセチル基を遊離させてアミノ基とし、前記活性エステル法もしくは縮合剤により縮合させる方法等が挙げられる。
【0018】
上記合成反応に用いる光反応性化合物は、上記光反応性基を有する化合物であれば市販の光反応性試薬でよく、例えば、スルホスクシンイミジル(4−アジド−サリチルアミド)ヘキサノエート)(Sulfosuccinimidyl(4−azido−salicylamido)hexanoate,商品名:Sulfo−NHS−LC−ASA)、スルホスクシンイミジル(4−アジド−フェニルジチオ)プロピオネート)(Sulfosuccinimidyl(4−azido−phenyldithio)propionate、商品名:Sulfo−SADP)、スルホスクシンイミジル6−(4′−アジド−2′ニトロフェニルアミノ)−ヘキサノエート(Sulfosuccinimidyl6−(4’−azido−2’−nitrophenylamino)−hexanoate、商品名:Sulfo−SANPAH)、スルホスクシンイミジル−2−[6−(ビオチンアミド)−2−(p−アジドベンズアミド)−ヘキサノアミド]エチル−1,3′−ジチオプロピオネート(Sulfosuccinimidyl−2−[6−(biotinamido)−2−(p−azidobenzamido)−hexanoamido]ethyl−1,3’−dithiopropionate、商品名:Sulfo−SBED)、N−ヒドロキシスルホスクシンイミジル−4−アジドベンゾエート(N−Hydroxysulfosuccinimidyl−4−azidobenzoate、商品名:Sulfo−HSAB)、N−ヒドロキシスクシンイミジル−4−アジドサリチル酸(N−Hydroxysuccinimidyl−4−azidosalicylic acid、商品名:NHS−ASA)、N−スクシンイミジル(4′−アジド−フェニル)1,3′−ジチオプロピオネート(N−Succinimidyl(4’−azdo−phenyl)1,3’−dithiopropionate、商品名:SADP)、スルホスクシンイミジル2−[7−アジド−4−メチルクマリン−3−アセトアミド]エチル−1,3′−ジチオプロピオネート(Sulfosuccinimidyl2−[7−azido−4−methylcoumarin−3−acetamido]ethyl−1,3’−dithiopropionate、商品名:SAED)、スルホスクシンイミジル−2−(m−アジド−o−ニトロベンズアミド)エチル1,3′−ジチオプロピオネート(Sulfosuccinimidyl−2−(m−azido−o−nitrobenzamido)ethyl1,3’−dithiopropionate、商品名:SAND)、N−スクシンイミジル−6−(4′−アジド−2′−ニトロフェニルアミド)ヘキサノエート(N−Succinimidyl−6−(4’−azido−2’−nitrophenylamino)hexanoate、商品名:SANPAH)、スルホスクシンイミジル2−(p−アジド−サリシルアミド)エチル1,3′−ジチオプロピオネート(Sulfosuccinimidyl2−(p−azido−salicylamido)ethyl1,3’−dithiopropionate、商品名:SASD)、スルホスクシンイミジル(パーフルオロアジドベンザミド)エチル−1,3′―ジチオプロピオネート(Sulfosuccinimidyl(perfluoroazidobenzamido)ethyl−1,3’−dithiopropionate、商品名:SFAD)、p−アジドベンゾイル ヒドラジド(p−Azidobenzoyl hydrazide、商品名:ABH)、N−5−アジド−2−ニトロベンジルオキシ−スクシンイジド(N−5−Azido−2−nitrobenzyloxy−succinimide、商品名:ANB−NOS)、4−(p−アジドサリチルアミド)−ブチルアミン(4−(p−Azidosalicylamido)−butylamine、商品名:ASBA)、ビオチン−N−Boc−フェニルアミノジアジリン(Biotin−N−Boc−phenylaminodiazirin、商品名:アフィライト−CHO)などが挙げられる。この中でも特にスルホスクシンイミジル−2−[6−(ビオチンアミド)−2−(p−アジドベンズアミド)−ヘキサノアミド]エチル−1,3′−ジチオプロピオネート(Sulfosuccinimidyl−2−[6−(biotinamido)−2−(p−azidobenzamido)−hexanoamido]ethyl−1,3’−dithiopropionate、商品名:Sulfo−SBED)が好ましい。
【0019】
本発明の光反応性糖化合物を標識化することにより、糖受容体の微量検出とアフィニティー精製を同時に行うことができる。
光反応性糖化合物を標識化するためには、ビオチン、蛍光物質、ラジオアイソトープ、抗体、GFPなどの蛍光蛋白質、ルシフェリンなどの発光蛋白質などを用いることができ、この中でも特にビオチンが好ましい。
【0020】
光反応性糖化合物と標識化合物との結合方法は、あらかじめ光反応性試薬に標識化合物残基を結合させておく方法(Bioconjugate Techniques, pp.289−291 Academic Press, 1994)、糖残基あるいは光反応化合物残基に蛍光物質を結合させる方法(Carbohydr. Res., 105, 69−85, 1982)、光反応化合物中の ヒドロキシフェニル(hydroxyphenyl) 残基にラジオアイソトープ125Iを結合させる方法(Glycobiology, vol.7 no.1 pp.15−21, 1997)、糖残基に125Iを結合させる方法(Anal. Biochem., 139, 168−177, 1984)、光反応で結合させる蛋白質分子(糖受容体)をあらかじめ遺伝子工学的に蛍光蛋白質や発光蛋白質との融合蛋白質として調製しておく方法、あるいは化学的に蛍光蛋白質や発光蛋白質を結合させておく方法、などが挙げられる。また、糖化合物自体を標識化合物として扱うことも可能である。すなわち、糖化合物特異的に認識する特異抗体(ポリクローン抗体やモノクローン抗体)や糖結合分子(レクチンやヘパリン結合性サイトカイン、ヒアルロン酸結合性蛋白質など)を用いて光反応性糖化合物を認識する方法なども挙げられる。
【0021】
また、光反応性糖化合物において、糖化合物と光反応性化合物とはジスルフィド結合を有するスペーサーを介して結合していることが好ましい。より具体的には、NH−(CH)n−S−S−(CH)m−CO−〔式中、n,mは1〜8の整数〕で示されるスペーサーを介し、該スペーサーのNH−が光反応性化合物に由来するCO−とアジド結合し、CO−が糖化合物に由来するOH−またはNH−と結合していることが好ましい。ジスルフィド結合を有するスペーサーを導入することにより、光反応性糖化合物と糖受容体を親和性により結合させた後、ジチオスレイトール等のジスルフィド結合を開裂させる物質を作用させることにより、糖部分と結合した糖受容体を遊離させることができる。
【0022】
本発明の光反応性標識試薬は、本発明の標識化光反応性糖化合物を主成分として含み、該試薬はこの化合物の機能を害さない限り、水、緩衝剤、安定化剤、塩等の添加物を含んでいてもよい。
【0023】
本明細書において「光反応性標識試薬」とは、糖受容体に親和性を有する光反応糖化合物を含む標識試薬を意味するものとし、糖受容体とは糖化合物と親和性を有する、すなわち、糖化合物との特異的な相互作用により糖化合物に結合性を示す蛋白質を意味し、具体的には糖化合物に特異的なレクチン、受容体、酵素、抗体などを包含する。
また、本発明の標識化光反応性糖化合物を用いて糖受容体を標識する方法は以下の通りである。
【0024】
すなわち、本発明の標識化光反応性糖化合物をプラスチックプレート、プラスチックビーズおよび多孔性担体等の固相に固着し、種々の糖受容体を含む混合系と接触させることにより、糖部分と糖化合物との特異的相互作用によって両者を結合させる。その結合反応と同時又はその後に、光を照射し、光反応により、光反応性糖化合物の糖部分に特異的に相互作用する糖受容体のアミノ酸残基側鎖や末端アミノ基あるいは末端カルボキシル基と、該光反応性糖化合物の光反応性基とがラジカル反応で結合し、糖受容体を標識することができる。
【0025】
上記の方法により標識した糖受容体は、糖受容体に結合した糖化合物を検出する自体公知の検出系、例えば、パーオキシダーゼ結合ストレプトアビジンを用いた酵素免疫測定法(ELISA)様のビオチン検出系、標識ラジオアイソトープを検出するシンチレーションカウンターやガンマーカウンター、蛍光物質や発光物質を検出する蛍光検出機やルミノメーター、糖化合物に特異的に反応する抗体や糖結合分子を使ったELISA様の糖鎖検出系などによって高感度で検出することができる。また、標識した糖受容体をSDSポリアクリルアミドゲル電気泳動などで分離し、ウエスタンブロッティングして、上記各種検出系により糖受容体を識別することが出来る。
【0026】
更に、糖化合物と光反応性化合物残基の結合は解離可能な結合、例えばスペーサー部位にジスルフィド結合を存在させることにより、糖化合物部分を容易に解離することができる。解離する手段としては、例えば、ジチオスレイトールやメルカプトエタノールなどのチオール試薬で処理する方法などが挙げられる。
なお、解離可能な結合を有しない場合においても、糖化合物分解酵素を用いることにより、糖化合物部分を容易に切り離すことができる。
【0027】
本発明の光反応性標識試薬は、糖受容体等の糖鎖関連蛋白質の構造及び機能解析に極めて有用なプローブ又は精製手段となることが期待される。
【0028】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。
(参考例1)
コンドロイチン硫酸C−ホスファチジルエタノールアミン結合体(CSC−PE)の合成
サメ軟骨由来コンドロイチン硫酸C(CSC)ナトリウム塩(生化学工業(株)製、平均分子量:20,000)2.0gを蒸留水100mlに溶解し、Dowex 50W−X8(室町化学社製、Hform)カラム(2.5cmΦ × 6.5cm)にアプライし、ナトリウム塩フリーとなった通過液を氷浴上で集め、更に100mlの蒸留水を流し洗浄液として一緒に集めた。通過液集積開始からpHをモニターし、テトラブチルアンモニウム(But)水溶液を添加し、pHを弱酸性から中性に調整した。その溶液(約200ml)をロータリーエバポレーターで約100mlまで減圧濃縮し、室温で3日間凍結乾燥して、CSC・But 塩を乾燥粉末として得た。この時の収率はほぼ定量的であった。
【0029】
その乾燥粉末を脱水メタノール50mlに溶解し、ジパルミトイルホスファチジルエタノールアミン(PE)208mg(300μmol)の脱水メタノール溶液50mlを添加した。窒素雰囲気下、50℃で1時間撹拌した後、トリメチルアミンボラン複合体((CHN・BH)73.0mgを加え、更に50℃で撹拌を続けた。(CHN・BH を更に(73mgずつ)2回(24時間おき)添加し、50℃で3日間反応させた。
【0030】
反応液を減圧濃縮後、メタノールを加え減圧濃縮を繰り返し、その残渣に0.2M 酢酸ナトリウム水溶液 40mlを加えた。室温で約2時間撹拌した後、遠心分離(6,000rpm、30分以上)により不溶物を除去し、その上清に酢酸ナトリウム飽和エタノールを3倍容(120ml)加えて4℃で2時間以上置き、生成した沈殿を遠心分離(4℃、6,000rpm、30分以上)により集めた。その沈殿を乾燥させずに、水50mlおよびメタノール50mlを加え、溶解させた。その溶液にブチルセルロファイン type H(生化学工業(株)製)ゲル5gを添加した。その懸濁液をゆっくりと撹拌しながら、1M 食塩水(20ml)をゆっくり滴下して、反応生成物を吸着させた。4℃で2時間撹拌後、カラム(2.5cmΦ × 8.0cm)に充填した。溶液を抜き、0.2M 食塩水200mlで洗浄した後、蒸留水50mlおよび30%(v/v)メタノール−蒸留水混液200mlで溶出した。溶出液中のメタノールを留去し、その残留液に酢酸ナトリウム飽和エタノールを3倍容加え、生成した沈殿を遠心分離により集めた。沈殿をエタノールで再洗浄して濾取、真空乾燥することで、求めるコンドロイチン硫酸C−リン脂質結合体(CSC−PE)が0.8g得られた。
【0031】
(参考例2)
コンドロイチン硫酸A−ホスファチジルエタノールアミン結合体(CSA−PE)の合成
クジラ軟骨由来コンドロイチン硫酸A(CSA,生化学工業(株)製、平均分子量15,000)1.0gを参考例1と同様にして、塩交換をし、ジパルミトイルホスファチジルエタノールアミンと反応させて、疎水クロマトグラフィーで精製して、目的のコンドロイチン硫酸A−脂質結合体(CSA−PE)が0.31g得られた。
【0032】
(参考例3)
コンドロイチン硫酸D−ホスファチジルエタノールアミン結合体(CSD−PE)の合成
サメ軟骨由来コンドロイチン硫酸D(CSD,生化学工業(株)製、平均分子量20,000)1.18gを参考例1と同様にして、塩交換をし、ジパルミトイルホスファチジルエタノールアミンと反応させて、疎水クロマトグラフィーで精製して、目的のコンドロイチン硫酸D−脂質結合体(CSD−PE)が0.35g得られた。
【0033】
(参考例4)
コンドロイチン硫酸E−ホスファチジルエタノールアミン結合体(CSE−PE)の合成
イカ軟骨由来コンドロイチン硫酸E(CSE,生化学工業(株)製、平均分子量100,000)1.7gを参考例1と同様にして、塩交換をし、ジパルミトイルホスファチジルエタノールアミンと反応させて、疎水クロマトグラフィーで精製して、目的のコンドロイチン硫酸E−脂質結合体(CSE−PE)が0.66g得られた。
【0034】
(参考例5)
デルマタン硫酸−ホスファチジルエタノールアミン結合体(DS−PE)の合成
ニワトリ鶏冠由来デルマタン硫酸(DS,生化学工業(株)製、平均分子量32,000)0.8gを参考例1と同様にして、塩交換をし、ジパルミトイルホスファチジルエタノールアミンと反応させて、疎水クロマトグラフィーで精製して、目的のデルマタン硫酸−脂質結合体(DS−PE)が0.23g得られた。
【0035】
(参考例6)
ヒアルロン酸−ジパルミトイルホスファチジルエタノールアミン結合体(HA−PE)の合成
羊睾丸由来ヒアルロニダーゼ(シグマ社)により限定分解して得た低分子化鶏冠由来ヒアルロン酸(HA、生化学工業(株)製、平均分子量23,000)0.9gを参考例1と同様にして、塩交換をし、ジパルミトイルホスファチジルエタノールアミンと反応させて、ヒアルロン酸−脂質結合体(HA−PE)が0.3g得られた。
【0036】
(参考例7)
ヘパリン−ホスファチジルエタノールアミン結合体(HP−PE)の合成
ウシ腸管由来ヘパリン(Hep、和光純薬社製、平均分子量10,000)6.0gを参考例1と同様にして、塩交換をし、ジパルミトイルホスファチジルエタノールアミンと反応させて、ヘパリン−脂質結合体(HP−PE)が0.45g得られた。
【0037】
(実施例1)
光反応性ホスファチジルエタノールアミン結合コンドロイチン硫酸C誘導体(CSC−PE)の合成
参考例1で得られたCSC−PE 5.25 mgを0.5 mlのリン酸緩衝生理食塩水(PBS)pH 7.2)に溶解し、光反応性化合物である架橋試薬 Sulfosuccinimidyl−2−[6−(biotinamido)−2−(p−azidobenzamido)−hexanoamido]ethyl−1,3’−dithiopropionate(Sulfo−SBED, Pierce社製)1.1 mgのDMSO(20μl)溶液を添加、混合し、遮光状態で室温3時間静置反応した。以後の操作は全て遮光下で実験を行った。
【0038】
反応後、0.1 mmol/mlのエタノールアミン水溶液10μlを添加して更に室温で10分間反応させて、Sulfo−SBEDの未反応の活性エステル基を潰した。反応液に 1.3% 酢酸カリウム含有 95% エタノールを加え、−20℃で1時間静置後、13,000 rpmで20分間遠心分離して沈殿を集め、再度PBS 0.5 ml を加えて溶解させ、その遠心(13,000 rpm, 10分間)上清を脱塩カラム(First Desalting Column, Pharmacia社製)にアプライし、PBSを緩衝液として2 ml/minの流速で流し、ボイド画分(1.1〜1.8分の溶出液)1.4 mlを集めた。
【0039】
得られた光反応性CSC−PE溶液は、0.2μlずつに分注し、遮光下−80℃で保存した。この標品のコンドロイチン硫酸含量はカルバゾール法で、2.0 mg/mlあり、コンドロイチナーゼABC消化され、その消化液の二糖分析値は元のコンドロイチン硫酸原料の二糖分析値と良く一致した。
【0040】
(実施例2)
光反応性ホスファチジルエタノールアミン結合コンドロイチン硫酸A誘導体(CSA−PE)の合成
参考例2で得られたCSA−PE5.22 mgを0.5 mlのPBS(pH 7.2)に溶解し、Sulfo−SBED1.35 mgのDMSO(20μl)溶液を添加し、実施例1と同様に架橋反応し、エタノール沈殿、脱塩精製により、光反応性CSA−PE溶液(2.13 mg/ml)を得た。
【0041】
(実施例3)
反応性ホスファチジルエタノールアミン結合デルマタン硫酸誘導体(DS−PE)の合成
参考例5で得られたDS−PE5.68 mgを0.5 mlのPBS(pH 7.2)に溶解し、Sulfo−SBED1.08 mgのDMSO(20μl)溶液を添加し、実施例1と同様に架橋反応し、エタノール沈殿、脱塩精製により、光反応性DS−PE溶液(1.76 mg/ml)を得た。
【0042】
(実施例4)
光反応性ホスファチジルエタノールアミン結合コンドロイチン硫酸D誘導体(CSD−PE)の合成
参考例3で得られたCSD−PE5.50 mgを0.5 mlのPBS(pH 7.2)に溶解し、Sulfo−SBED1.18 mgのDMSO(20μl)溶液を添加し、実施例1と同様に架橋反応し、エタノール沈殿、脱塩精製により、光反応性CSD−PE溶液(2.28 mg/ml)を得た。
【0043】
(実施例5)
光反応性ホスファチジルエタノールアミン結合コンドロイチン硫酸E誘導体(CSE−PE)の合成
参考例4で得られたCSE−PE5.88 mgを0.5 mlのPBS(pH 7.2)に溶解し、Sulfo−SBED1.40 mgのDMSO(20μl)溶液を添加し、実施例1と同様に架橋反応し、エタノール沈殿、脱塩精製により、光反応性CSE−PE溶液(1.52 mg/ml)を得た。
【0044】
(実施例6)
光反応性ホスファチジルエタノールアミン結合ヒアルロン酸誘導体(HA−PE)の合成
参考例6で得られたHA−PE5.73 mgを0.5 mlのPBS(pH 7.2)に溶解し、Sulfo−SBED1.19 mgのDMSO(20μl)溶液を添加し、実施例1と同様に架橋反応し、エタノール沈殿、脱塩精製により、光反応性HA−PE溶液(1.58 mg/ml)を得た。
【0045】
(実施例7)
光反応性ホスファチジルエタノールアミン結合ヘパリン誘導体(HP−PE)の合成
参考例7で得られたHP−PE6.77 mgを0.5 mlのPBS(pH 7.2)に溶解し、Sulfo−SBED1.39 mgのDMSO(20μl)溶液を添加し、実施例1と同様に架橋反応し、エタノール沈殿、脱塩精製により、光反応性HP−PE溶液(2.66 mg/ml)を得た。
【0046】
(実施例8)
細胞表面蛋白質と光反応性CSC−PEとの結合試験
48穴のプラスチックプレートに上記実施例1の光反応性CSC−PEを5,10,20,50μg/mlと濃度を変えて200μl/well添加して、4℃で一晩静置して塗布させた。ハンクス液で2回洗浄した後、マウス由来培養繊維芽細胞株10T1/2の1×10cell/ml懸濁液を200μl/well添加し、5%CO環境下37℃で5分および15分間インキュベートし、直ちに340nmの紫外線を1分間照射した。非接着細胞をピペッティングで除き、接着細胞が残ったプレートにSDS−page用sample bufferとジチオスレイトール(DTT)を加え懸濁し、100℃3分間の加熱処理後、その半分量を10%SDS−pageにかけた。電気泳動後、ウェスタンブロッティングを行い、パーオキシダーゼ結合ストレプトアビジンを反応させ、ECL法(Amersham社製)で、ビオチンを含む架橋試薬が結合した蛋白質群を検出した。図1にそのパターンを示す。分子量120k,80k,70k,50k,40−30k付近にいくつかのはっきりした蛋白質バンドが見られた。
【0047】
これらは、コンドロイチン硫酸に結合した蛋白質あるいはコンドロイチン硫酸の近傍にあった蛋白質と考えられ、接着した際にコンドロイチン硫酸と特異的に相互作用する細胞表面蛋白質が複数存在することが伺われる。なお、このときDTT処理をしているためジスルフィド結合が切り離され、コンドロイチン硫酸部分は分離されて泳動される。
【0048】
同様に、実施例2から7で得た各種光反応性GAG−PE誘導体をプレートの固相化し、結合する細胞表面蛋白質群の分析を行い、上記CSC結合蛋白質とは一部異なったパターンの蛋白質バンドが見られた。これらから、それぞれのGAG糖鎖に特異的なあるいは共通な細胞表面結合蛋白質を解析することが出来る。
【0049】
【発明の効果】
本発明の光反応性糖化合物および標識化光反応性糖化合物は、固層に固定化することにより、糖と相互作用する蛋白質(糖受容体)を簡単に捕捉することができる。
【図面の簡単な説明】
【図1】光反応性CSC−PEと細胞表面蛋白質との光反応架橋物のウエスタンブロッティングを示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel photoreactive sugar compound, a labeled photoreactive sugar compound having use as a probe for analyzing a sugar affinity molecule, and a method for capturing and measuring a sugar receptor using the same.
[0002]
[Prior art]
Photoreactive labeling compounds are known as useful probes that can analyze the interaction between a drug or ligand and a protein. Azide groups are known as reactive groups for labeling proteins by photoreaction. Examples of the photoreactive sugar compound comprising a photoreactive compound having an azide group as a photoreactive group and a sugar compound include hyaluronic acid, SASD (Sulfosuccinimidyl2- (p-azidosalicylamido) ethyl-1,3'-dithiopropionate) and radioisotope [ 125 I], a photoreactive sugar compound (Glycobiology, vol. 7 no. 1 pp. 15-21, 1997), an oligosaccharide, SANPAH (N-Succinimidyl 6- (4′-azidodo-2′nitrophenylamino) -hexanoate) and Photoreactive sugar compounds composed of digoxin (Glycobiology vol. 10 no. 4 pp. 357-364, 2000) and the like are known and used for labeling proteins and lectins. However, a photoreactive sugar compound in which a photoreactive group is bound to a lipid-bound sugar compound in which a lipid is bound to a sugar compound is not known, and by immobilizing the photoreactive sugar compound on a solid phase, Attempts to easily label and separate the target sugar receptor have not been made yet.
[0003]
[Problems to be solved by the invention]
The present invention provides a photoreactive sugar compound and a labeled photoreactive sugar compound having utility in studying the function and structure of a biopolymer such as a protein (sugar receptor) that can interact with sugar. The purpose is to do. It is a further object of the present invention to provide a method for capturing a sugar receptor with a photoreactive sugar compound and a method for measuring a sugar receptor using a labeled photoreactive sugar compound.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-described circumstances, and as a result, have been able to produce a photoreactive sugar compound and a labeled photoreactive sugar compound capable of easily labeling and separating a target sugar receptor. Successfully, the present invention has been completed.
That is, the present invention is as follows.
[0005]
[1] A photoreactive sugar compound represented by the following formula:
A-X-Y
A: Lipid
X: sugar compound
Y: Photoreactive compound residue
-: Covalent bond
[2] The photoreactive saccharide compound according to [1], wherein the saccharide compound represented by X is a polysaccharide or an oligosaccharide having a hydroxyl group, an amino group and / or a carboxyl group.
[3] The photoreactive saccharide compound according to [2], wherein the polysaccharide or oligosaccharide having a hydroxyl group, amino group and / or carboxyl group is glycosaminoglycan or its oligosaccharide.
[4] The photoreaction according to [3], wherein the glycosaminoglycan or its oligosaccharide is selected from the group consisting of hyaluronic acid, chondroitin, chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate, keratan sulfate and these oligosaccharides. Sex sugar compounds.
[5] The photoreactive sugar compound according to [1], wherein the lipid represented by A is a phospholipid.
[6] The photoreactive sugar compound according to [5], wherein the phospholipid is phosphatidylethanolamine.
[7] The residue according to [1], wherein the photoreactive compound residue represented by Y is a photoreactive compound residue having a photoreactive group selected from the group consisting of an azide group, a diazo group and a diazirine group. Photoreactive sugar compounds.
[8] The photoreactive sugar compound according to [1], wherein the photoreactive compound residue represented by Y is a photoreactive compound residue having an arylazide group as a photoreactive group.
[9] The photoreactive sugar compound according to [1], wherein X and Y are linked by an ester bond or an amide bond.
[10] The photoreactive saccharide compound according to [1], wherein X and Y are linked via a spacer group having a disulfide bond.
[11] A labeled photoreactive saccharide compound in which the photoreactive saccharide compound according to any one of [1] to [10] is bound to a labeling compound residue.
[12] A photoreactive labeling reagent comprising the labeled photoreactive sugar compound according to [11].
[13] contacting the solid phase to which the photoreactive sugar compound according to any one of [1] to [10] is fixed with a sugar receptor to bind the photoreactive sugar compound to the sugar receptor; A method for capturing a sugar receptor, comprising irradiating light to bind the photoreactive compound residue of the photoreactive sugar compound to the sugar receptor, thereby capturing the sugar receptor on a solid phase.
[14] A solid phase to which the labeled photoreactive sugar compound described in [11] is fixed and a sugar receptor are contacted to bind the labeled photoreactive sugar compound to the sugar receptor, and then irradiated with light. The photoreactive compound residue of the labeled photoreactive sugar compound is bound to the sugar receptor by a photoreaction to capture and label the sugar receptor on a solid phase, and to label the labeled receptor. A method for measuring a sugar receptor, wherein detection is performed after a body is bound to or released from a solid phase.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail by embodiments of the present invention.
The photoreactive sugar compound of the present invention comprises a lipid-bound sugar compound (AX) in which a lipid (A) is bound to a sugar compound (X) and a photoreactive compound residue (Y) bound thereto.
That is, the photoreactive sugar compound of the present invention is represented by the following general formula.
[0007]
A-X-Y
[0008]
Examples of the sugar compound constituting the photoreactive sugar compound of the present invention include polysaccharides and oligosaccharides having a hydroxyl group, an amino group and / or a carboxyl group, and examples thereof include mucin-type sugar chains, Asn-type sugar chains, and sialyl sugars. Chain, glycosaminoglycan, lactosamine, N-acetyllactosamine, lactosamine oligosaccharide, sialyl lactosamine, glucan, mannan, fructan, galactan, polyuronic acid, oligoamino sugar, polyamino sugar, galacto-oligosaccharide, and the like. Among them, glycosaminoglycan is particularly preferred. Glycosaminoglycan is a polysaccharide composed of a repeating unit of disaccharide of D-glucosamine or D-galactosamine and D-glucuronic acid and / or D-galactose as a basic skeleton, and is extracted from natural products such as animals. Any of those obtained, those obtained by culturing microorganisms, those chemically or enzymatically synthesized can be used for the synthesis of photoreactive sugar compounds. Specifically, for example, hyaluronic acid, chondroitin, chondroitin sulfate (chondroitin sulfate A, chondroitin sulfate C, chondroitin sulfate D, chondroitin sulfate E, chondroitin sulfate K, etc.), dermatan sulfate, keratan sulfate, heparan sulfate, heparin and derivatives thereof And chondroitin sulfate is particularly preferred, but is not limited thereto. The molecular weight of chondroitin sulfate is generally about 1,000 to 1,000,000, preferably about 2,000 to 200,000, and particularly preferably about 3,000 to 100,000. The sugar compound may be an oligosaccharide of the glycosaminoglycan described above, and any of those produced by chemical degradation and those produced by using a glycolytic enzyme can be used for the synthesis of a photoreactive sugar compound.
[0009]
As the lipid to be bound to the aforementioned sugar compound, complex lipids or simple lipids derived from natural products such as animals, plants and microorganisms, or chemically or enzymatically synthesized or partially degraded can be used. Glycerolipids such as lipids, long-chain fatty acids, long-chain aliphatic amines, cholesterols, sphingolipids, and ceramides can all be used. Glycerolipids such as phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidyltreonine, ethanolamine plasmalogen, serine plasmamalogen, lysophosphatidylcholine, and lysophosphatidylinositol, and neutral lipids such as monoacylglycerol and diacylglycerol. Is preferred. Of these, phospholipids are particularly preferred, and phosphatidylethanolamine is more preferred.
The chain length and degree of unsaturation of the acyl group in the acyl group-containing lipid are not particularly limited, but those having 6 or more carbon atoms are preferred. Examples of the acyl group include palmitoyl (hexadecanoyl) and stearoyl (octadecanoyl).
[0010]
In synthesizing the photoreactive sugar compound of the present invention, these lipids may be in a free form or in a commonly used salt form.
The bonding position between the sugar compound and the lipid is not particularly limited, but is preferably at the end of the sugar compound, and particularly preferably at the reducing end. The mode of bonding is not particularly limited, but a chemical bond is particularly preferable, and a covalent bond is most preferable.
[0011]
In the case of lipid-bound glycosaminoglycan in which glycosaminoglycan and lipid are bound, carboxyl group (including lactone), aldehyde group (including hemiacetal group), hydroxyl group or primary amino group of glycosaminoglycan, etc. Between the functional group, or the functional group separately introduced into glycosaminoglycan, and a functional group such as a carboxyl group, an aldehyde group or a primary amino group of lipid, or the functional group separately introduced into lipid. The formed acid amide bond (—CO—NH—), ester bond or aminoalkyl bond (—CH 2 Those covalently bonded by -NH-) are preferable.
[0012]
In particular, the pyranose ring at the reducing end of glycosaminoglycan is opened, and the carboxyl group (including lactone) of glycosaminoglycan formed by chemical treatment is reacted with the primary amino group of lipid to form. Acid amide bond (—CO—NH—), an acid amide bond (—CO—NH—) formed by the reaction between the carboxyl group of the uronic acid portion of glycosaminoglycan and the primary amino group of the lipid, or The pyranose ring at the reducing end of glycosaminoglycan is opened, and the Schiff base formed by the reaction between the aldehyde group of glycosaminoglycan formed by the chemical treatment and the primary amino group of the lipid is reduced. The aminoalkyl bond formed (-CH 2 -NH-) or amino formed by reducing a Schiff base formed by the reaction of an aldehyde group at the reducing end (hemiacetal) of glycosaminoglycan with a primary amino group of lipid. Alkyl bond (-CH 2 -NH-) is preferred.
[0013]
The amino group, carboxyl group, aldehyde group (including hemiacetal group) and hydroxyl group involved in the covalent bond are those originally present in glycosaminoglycan or lipid, and are formed by subjecting them to chemical treatment. Or a spacer compound having the above-mentioned functional group at the end, which has been separately introduced in advance by reacting it with glycosaminoglycan or lipid.
[0014]
The method for producing the lipid-bound sugar compound is not limited as long as it is a method capable of synthesizing a compound having a desired structure, but can be produced by a known method. For example, as a method for producing a lipid-bound glycosaminoglycan in which a lipid is covalently bonded to a reducing end of glycosaminoglycan, for example, a reducing terminal-limited oxidation method, a reducing terminal lactone method (Japanese Patent No. 2997018, Japanese Patent No. 2986519) Gazette, Japanese Patent No. 2968618 and Japanese Patent Application Laid-Open No. 9-30979) or the hemiacetal method (Japanese Patent Application No. 2002-143898, patent pending).
[0015]
The photoreactive compound residue of the present invention includes an azide group (alkyl azide, aryl azide, nitrophenyl azide, etc.), a diazo group (diazoketone, diazoacetyl, diazomalonyl, trifluoromethyldiazoacetyl, p-toluenesulfonyldiazoacetyl, etc.). ), A photoreactive compound residue having a photoreactive group such as a diazirine group (such as an aryldiaridylline). Among them, the photoreactive group is preferably an azide group, preferably an aryl azide, more specifically phenyl. Photoreactive compound residues having an azide group are preferred.
[0016]
In order to synthesize the photoreactive sugar compound of the present invention, a lipid-bound sugar compound represented by AX is usually synthesized, and then reacted with the photoreactive compound having the photoreactive group. Alternatively, as long as synthesis is possible, XY may be synthesized by reacting a sugar compound with a photoreactive compound, and a lipid may be reacted therewith to synthesize a photoreactive sugar compound.
[0017]
In the photoreactive sugar compound of the present invention, the sugar moiety of the lipid-bound sugar compound and the photoreactive residue are preferably bonded by an ester bond or an amide bond. Examples of the bonding method include a method of reacting an active ester of a photoreactive compound with a hydroxyl group or an amino group of a sugar moiety (active ester method). A method in which the amino group of the reactive compound is condensed with a condensing agent such as a carbodiimide, the carboxyl group of uronic acid in the sugar moiety is made into an active form such as an active ester, acid azide or carboxy chloride, and the amino group of the photoreactive compound When the sugar moiety contains N-acetylhexosamine, hydrazine is allowed to act on N-acetylhexosamine to release an acetyl group to form an amino group, and the active ester method or a method of condensing with the condensing agent. Can be
[0018]
The photoreactive compound used in the above synthesis reaction may be a commercially available photoreactive reagent as long as it is a compound having the above photoreactive group. For example, sulfosuccinimidyl (4-azido-salicylamide) hexanoate) (Sulfosuccinimidyl) (4-azido-salicylamido) hexanoate, trade name: Sulfo-NHS-LC-ASA), sulfosuccinimidyl (4-azido-phenyldithio) propionate) (Sulfosuccinimidyl (4-azido-phenyldithiopionate, trade name) Sulfo-SADP), sulfosuccinimidyl 6- (4'-azido-2'nitrophenylamino) -hexanoate (Sulfosuccinimidyl6- (4'-azido-2) '-Nitrophenylamino) -hexanoate, trade name: Sulfo-SANPAH), sulfosuccinimidyl-2- [6- (biotinamide) -2- (p-azidobenzamide) -hexanoamido] ethyl-1,3'-dithio Propionate (Sulfosuccinimidyl-2- [6- (biotinamido) -2- (p-azidobenzamido) -hexanoamido] ethyl-1,3'-dithiopropionate, trade name: Sulfo-S-hydroxy-Sulfo-Sulfo-S-N-Sulfone -4-Azidobenzoate (N-hydroxysulfosuccinimidyl-4-azidobenzoate, trade name: Sulfo-HSAB), N-hydroxysuccinine Midyl-4-azidosalicylic acid (N-hydroxysuccinicimidyl acid, trade name: NHS-ASA), N-succinimidyl (4'-azido-phenyl) 1,3'-dithiopropionate (N-Succinimidyl) '-Azdo-phenyl) 1,3'-dithiopropionate (trade name: SADP), sulfosuccinimidyl 2- [7-azido-4-methylcoumarin-3-acetamido] ethyl-1,3'-dithiopropio Nate (Sulfosuccinimidyl2- [7-azido-4-methylcoumarin-3-acetamido] ethyl-1,3'-dithiopropionate, trade name: SAED), sulfosucciniy Jil-2- (m-azido-o-nitrobenzamido) ethyl 1,3'-dithiopropionate (Sulfosuccinimidyl-2- (m-azido-o-nitrobenzamido) ethyl1,3'-dithiopropionate, trade name: SAND) N-succinimidyl-6- (4'-azido-2'-nitrophenylamido) hexanoate (N-Succinimidyl-6- (4'-azido-2'-nitrophenylamino) hexanoate, trade name: SANPAH), sulfosuccinine Sulfosuccinimidyl 2- (p-azido-salicylamido) ethyl 1,3'-imidyl 2- (p-azido-salicylamido) ethyl 1,3'-dithiopropionate dithiopropionate (trade name: SASD), sulfosuccinimidyl (perfluoroazidobenzamide) ethyl-1,3'-dithiopropionate (Sulfosuccinimidyl (perfluoroazodidobenzamido) ethyl-1,3'-dipidithiopionate, 3'-dithiopionate) , P-azidobenzoyl hydrazide (p-Azidobenzoyl hydrazide, trade name: ABH), N-5-azido-2-nitrobenzyloxy-succinidide (N-5-Azido-2-nitronitroxy-succinimide, trade name: ANB-NO) ), 4- (p-Azidosalicylamido) -butylamine (4- (p-Azidosalicylamido) -b utilamine, trade name: ASBA), biotin-N-Boc-phenylaminodiazirine (Biotin-N-Boc-phenylaminodiazirin, trade name: Affilite-CHO) and the like. Among these, sulfosuccinimidyl-2- [6- (biotinamide) -2- (p-azidobenzamide) -hexanoamido] ethyl-1,3'-dithiopropionate (Sulfosuccinimidyl-2- [6- ( biotinamido) -2- (p-azidobenzamido) -hexanoamido] ethyl-1,3'-dithiopropionate (trade name: Sulfo-SBED) is preferable.
[0019]
By labeling the photoreactive sugar compound of the present invention, detection of a trace amount of a sugar receptor and affinity purification can be performed simultaneously.
In order to label the photoreactive sugar compound, biotin, a fluorescent substance, a radioisotope, an antibody, a fluorescent protein such as GFP, a luminescent protein such as luciferin, and the like can be used. Among them, biotin is particularly preferable.
[0020]
The binding method between the photoreactive sugar compound and the labeling compound may be a method in which a labeling compound residue is previously bound to a photoreactive reagent (Bioconjugate Technologies, pp. 289-291 Academic Press, 1994), a sugar residue or a photoreactive sugar compound. A method of binding a fluorescent substance to a residue of a reactive compound (Carbohydr. Res., 105, 69-85, 1982), and a method of producing a radioisotope at a hydroxyphenyl residue in a photoreactive compound. 125 I (Glycobiology, vol. 7 no. 1 pp. 15-21, 1997) 125 I. (Anal. Biochem., 139, 168-177, 1984), a protein molecule (sugar receptor) to be bound by a photoreaction is prepared by genetic engineering in advance as a fusion protein with a fluorescent protein or a luminescent protein. Or a method of chemically binding a fluorescent protein or a photoprotein. Further, the sugar compound itself can be treated as a labeling compound. That is, a photoreactive sugar compound is recognized using a specific antibody (polyclonal antibody or monoclonal antibody) or a sugar binding molecule (lectin, heparin binding cytokine, hyaluronic acid binding protein, etc.) that specifically recognizes a sugar compound. Methods are also included.
[0021]
Further, in the photoreactive sugar compound, it is preferable that the sugar compound and the photoreactive compound are bonded via a spacer having a disulfide bond. More specifically, NH- (CH 2 ) N-S-S- (CH 2 ) Via a spacer represented by m-CO- (where n and m are integers from 1 to 8), NH- of the spacer forms an azide bond with CO- derived from the photoreactive compound, and CO- is a saccharide. OH- or NH derived from the compound 2 It is preferably bonded to-. By introducing a spacer having a disulfide bond, the photoreactive sugar compound and the sugar receptor are bound with affinity, and then a substance that cleaves a disulfide bond such as dithiothreitol is acted on to bind to the sugar moiety. The released sugar receptor can be released.
[0022]
The photoreactive labeling reagent of the present invention contains the labeled photoreactive sugar compound of the present invention as a main component, and the reagent does not impair the function of this compound. It may contain additives.
[0023]
As used herein, the term "photoreactive labeling reagent" shall mean a labeling reagent containing a photoreactive sugar compound having an affinity for a sugar receptor, and a sugar receptor having an affinity for a sugar compound, , A protein that exhibits binding properties to a sugar compound by specific interaction with the sugar compound, and specifically includes lectins, receptors, enzymes, antibodies, and the like specific to the sugar compound.
A method for labeling a sugar receptor using the labeled photoreactive sugar compound of the present invention is as follows.
[0024]
That is, the labeled photoreactive saccharide compound of the present invention is fixed to a solid phase such as a plastic plate, a plastic bead and a porous carrier, and is brought into contact with a mixed system containing various saccharide acceptors, whereby a saccharide moiety and a saccharide compound are obtained. Are bound by a specific interaction with Simultaneously with or after the binding reaction, light is irradiated, and the photoreaction causes a side chain, a terminal amino group, or a terminal carboxyl group of an amino acid residue of a sugar receptor that specifically interacts with the sugar moiety of the photoreactive sugar compound. And a photoreactive group of the photoreactive sugar compound are bonded by a radical reaction, whereby the sugar receptor can be labeled.
[0025]
The sugar receptor labeled by the above-mentioned method is used as a detection system known per se for detecting a sugar compound bound to the sugar receptor, for example, a biotin detection system such as enzyme immunoassay (ELISA) using peroxidase-conjugated streptavidin. Scintillation counter and gamma counter for detecting labeled radioisotopes, fluorescence detectors and luminometers for detecting fluorescent and luminescent substances, ELISA-like sugar chain detection using antibodies and sugar-binding molecules that specifically react with sugar compounds It can be detected with high sensitivity depending on the system. The labeled sugar receptor can be separated by SDS polyacrylamide gel electrophoresis or the like and subjected to Western blotting to identify the sugar receptor by the above-described various detection systems.
[0026]
Further, the bond between the sugar compound and the photoreactive compound residue can be easily dissociated by allowing a dissociable bond, for example, a disulfide bond at a spacer site. Examples of the dissociation method include a method of treating with a thiol reagent such as dithiothreitol or mercaptoethanol.
In addition, even when it does not have a dissociable bond, the sugar compound portion can be easily cut off by using the sugar compound degrading enzyme.
[0027]
The photoreactive labeling reagent of the present invention is expected to be a very useful probe or purification means for analyzing the structure and function of sugar chain-related proteins such as sugar receptors.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist of the present invention is not exceeded.
(Reference Example 1)
Synthesis of chondroitin sulfate C-phosphatidylethanolamine conjugate (CSC-PE)
2.0 g of shark cartilage-derived chondroitin sulfate C (CSC) sodium salt (manufactured by Seikagaku Corporation, average molecular weight: 20,000) is dissolved in 100 ml of distilled water, and Dowex 50W-X8 (manufactured by Muromachi Chemical Co., Ltd., H + The solution was applied to a (form) column (2.5 cmΦ × 6.5 cm), and the sodium salt-free passing solution was collected on an ice bath. Further, 100 ml of distilled water was flown to collect the washing solution. The pH was monitored from the beginning of the passage liquid accumulation, and tetrabutylammonium (But) 4 N + ) An aqueous solution was added to adjust the pH from weakly acidic to neutral. The solution (about 200 ml) was concentrated under reduced pressure to about 100 ml with a rotary evaporator, and lyophilized at room temperature for 3 days to obtain CSC-But. 4 N + The salt was obtained as a dry powder. The yield at this time was almost quantitative.
[0029]
The dried powder was dissolved in 50 ml of dehydrated methanol, and a solution of 208 mg (300 μmol) of dipalmitoylphosphatidylethanolamine (PE) in 50 ml of dehydrated methanol was added. After stirring at 50 ° C. for 1 hour under a nitrogen atmosphere, a trimethylamine borane complex ((CH 3 ) 3 N ・ BH 3 ) 73.0 mg was added and stirring was continued at 50 ° C. (CH 3 ) 3 N ・ BH 3 Was further added (73 mg each) twice (every 24 hours) and reacted at 50 ° C. for 3 days.
[0030]
After the reaction solution was concentrated under reduced pressure, methanol was added thereto, and the mixture was repeatedly concentrated under reduced pressure. To the residue was added 40 ml of a 0.2 M aqueous sodium acetate solution. After stirring at room temperature for about 2 hours, insoluble materials were removed by centrifugation (6,000 rpm, 30 minutes or more), and 3 times the volume of sodium acetate-saturated ethanol (120 ml) was added to the supernatant. The resulting precipitate was collected by centrifugation (4 ° C., 6,000 rpm, 30 minutes or more). Without drying the precipitate, 50 ml of water and 50 ml of methanol were added and dissolved. 5 g of butyl cellulofine type H (manufactured by Seikagaku Corporation) gel was added to the solution. While the suspension was stirred slowly, 1M saline (20 ml) was slowly added dropwise to adsorb the reaction product. After stirring at 4 ° C. for 2 hours, the mixture was packed in a column (2.5 cmφ × 8.0 cm). The solution was drained, washed with 200 ml of 0.2 M saline, and eluted with 50 ml of distilled water and 200 ml of a 30% (v / v) methanol-distilled water mixture. The methanol in the eluate was distilled off, and sodium acetate-saturated ethanol (3 volumes) was added to the remaining solution. The resulting precipitate was collected by centrifugation. The precipitate was washed again with ethanol, collected by filtration, and dried under vacuum to obtain 0.8 g of a desired chondroitin sulfate C-phospholipid conjugate (CSC-PE).
[0031]
(Reference Example 2)
Synthesis of Chondroitin Sulfate A-Phosphatidylethanolamine Conjugate (CSA-PE)
In the same manner as in Reference Example 1, 1.0 g of whale cartilage-derived chondroitin sulfate A (CSA, manufactured by Seikagaku Corporation, average molecular weight 15,000) was subjected to salt exchange, and reacted with dipalmitoyl phosphatidylethanolamine. Purification by hydrophobic chromatography provided 0.31 g of the target chondroitin sulfate A-lipid conjugate (CSA-PE).
[0032]
(Reference Example 3)
Synthesis of chondroitin sulfate D-phosphatidylethanolamine conjugate (CSD-PE)
1.18 g of chondroitin sulfate D (CSD, manufactured by Seikagaku Corporation, average molecular weight: 20,000) derived from shark cartilage was subjected to salt exchange in the same manner as in Reference Example 1, and reacted with dipalmitoyl phosphatidylethanolamine. Purification by hydrophobic chromatography gave 0.35 g of the target chondroitin sulfate D-lipid conjugate (CSD-PE).
[0033]
(Reference Example 4)
Synthesis of chondroitin sulfate E-phosphatidylethanolamine conjugate (CSE-PE)
In the same manner as in Reference Example 1, 1.7 g of squid cartilage-derived chondroitin sulfate E (CSE, manufactured by Seikagaku Corporation, average molecular weight: 100,000) was subjected to salt exchange and reacted with dipalmitoyl phosphatidylethanolamine. Purification by hydrophobic chromatography provided 0.66 g of the target chondroitin sulfate E-lipid conjugate (CSE-PE).
[0034]
(Reference Example 5)
Synthesis of dermatan sulfate-phosphatidylethanolamine conjugate (DS-PE)
In the same manner as in Reference Example 1, salt exchange was performed on 0.8 g of dermatan sulfate (DS, manufactured by Seikagaku Corporation, average molecular weight: 32,000) derived from chicken cockscomb and reacted with dipalmitoyl phosphatidylethanolamine to obtain a hydrophobic product. Purification by chromatography gave 0.23 g of the desired dermatan sulfate-lipid conjugate (DS-PE).
[0035]
(Reference Example 6)
Synthesis of hyaluronic acid-dipalmitoyl phosphatidylethanolamine conjugate (HA-PE)
In the same manner as in Reference Example 1, 0.9 g of hyaluronic acid (HA, manufactured by Seikagaku Corporation, average molecular weight 23,000) derived from sheep testicle-derived hyaluronidase (Sigma) was obtained by limited digestion. After salt exchange, the mixture was reacted with dipalmitoyl phosphatidylethanolamine to obtain 0.3 g of a hyaluronic acid-lipid conjugate (HA-PE).
[0036]
(Reference Example 7)
Synthesis of heparin-phosphatidylethanolamine conjugate (HP-PE)
In the same manner as in Reference Example 1, 6.0 g of bovine intestine-derived heparin (Hep, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10,000) was subjected to salt exchange, reacted with dipalmitoylphosphatidylethanolamine, and reacted with heparin-lipid. 0.45 g of a compound (HP-PE) was obtained.
[0037]
(Example 1)
Synthesis of photoreactive phosphatidylethanolamine-linked chondroitin sulfate C derivative (CSC-PE)
5.25 mg of the CSC-PE obtained in Reference Example 1 was dissolved in 0.5 ml of phosphate buffered saline (PBS) pH 7.2), and a crosslinking reagent Sulfosuccinimidyl-2- as a photoreactive compound was dissolved. [6- (biotinamido) -2- (p-azidobenzamido) -hexanoamido] ethyl-1,3'-dithiopropionate (Sulfo-SBED, Pierce) 1.1 mg of DMSO (20 μl), and a solution were added. The reaction was allowed to stand at room temperature for 3 hours in the light-shielded state. All subsequent operations were performed under light shielding.
[0038]
After the reaction, 10 μl of a 0.1 mmol / ml ethanolamine aqueous solution was added, and the mixture was further reacted at room temperature for 10 minutes to crush unreacted active ester groups of Sulfo-SBED. To the reaction solution, 95% ethanol containing 1.3% potassium acetate was added, and the mixture was allowed to stand at −20 ° C. for 1 hour, centrifuged at 13,000 rpm for 20 minutes to collect a precipitate, and 0.5 ml of PBS was added again. The supernatant is centrifuged (13,000 rpm, 10 minutes), and the supernatant is applied to a desalting column (First Desalting Column, manufactured by Pharmacia), and the mixture is flowed at a flow rate of 2 ml / min using PBS as a buffer, and the void fraction is removed. (1.1-1.8 min eluate) 1.4 ml were collected.
[0039]
The obtained photoreactive CSC-PE solution was dispensed in 0.2 μl aliquots and stored at −80 ° C. under light shielding. The chondroitin sulfate content of this sample was 2.0 mg / ml by the carbazole method, and chondroitinase ABC digestion was performed. The disaccharide analysis value of the digested solution was in good agreement with the disaccharide analysis value of the original chondroitin sulfate raw material. .
[0040]
(Example 2)
Synthesis of photoreactive phosphatidylethanolamine-linked chondroitin sulfate A derivative (CSA-PE)
5.22 mg of CSA-PE obtained in Reference Example 2 was dissolved in 0.5 ml of PBS (pH 7.2), and a solution of 1.35 mg of Sulfo-SBED in DMSO (20 μl) was added. Crosslinking reaction was performed in the same manner, and a photoreactive CSA-PE solution (2.13 mg / ml) was obtained by ethanol precipitation and desalting purification.
[0041]
(Example 3)
Synthesis of reactive phosphatidylethanolamine-linked dermatan sulfate derivative (DS-PE)
5.68 mg of DS-PE obtained in Reference Example 5 was dissolved in 0.5 ml of PBS (pH 7.2), and a solution of 1.08 mg of Sulfo-SBED in 20 μl of DMSO was added. Crosslinking reaction was performed in the same manner, and a photoreactive DS-PE solution (1.76 mg / ml) was obtained by ethanol precipitation and desalting purification.
[0042]
(Example 4)
Synthesis of photoreactive phosphatidylethanolamine-linked chondroitin sulfate D derivative (CSD-PE)
5.50 mg of CSD-PE obtained in Reference Example 3 was dissolved in 0.5 ml of PBS (pH 7.2), and a solution of 1.18 mg of Sulfo-SBED in 20 μl of DMSO was added. Cross-linking reaction was performed in the same manner, and a photoreactive CSD-PE solution (2.28 mg / ml) was obtained by ethanol precipitation and desalting purification.
[0043]
(Example 5)
Synthesis of photoreactive phosphatidylethanolamine-bound chondroitin sulfate E derivative (CSE-PE)
5.88 mg of CSE-PE obtained in Reference Example 4 was dissolved in 0.5 ml of PBS (pH 7.2), and a solution of 1.40 mg of Sulfo-SBED in DMSO (20 μl) was added. Crosslinking reaction was performed in the same manner, and a photoreactive CSE-PE solution (1.52 mg / ml) was obtained by ethanol precipitation and desalting purification.
[0044]
(Example 6)
Synthesis of photoreactive phosphatidylethanolamine-linked hyaluronic acid derivative (HA-PE)
5.73 mg of HA-PE obtained in Reference Example 6 was dissolved in 0.5 ml of PBS (pH 7.2), and a solution of 1.19 mg of Sulfo-SBED in 20 μl of DMSO was added. Crosslinking reaction was carried out in the same manner, and a photoreactive HA-PE solution (1.58 mg / ml) was obtained by ethanol precipitation and desalting purification.
[0045]
(Example 7)
Synthesis of photoreactive phosphatidylethanolamine-linked heparin derivative (HP-PE)
6.77 mg of HP-PE obtained in Reference Example 7 was dissolved in 0.5 ml of PBS (pH 7.2), and a solution of 1.39 mg of Sulfo-SBED in DMSO (20 μl) was added. Crosslinking reaction was performed in the same manner, and a photoreactive HP-PE solution (2.66 mg / ml) was obtained by ethanol precipitation and desalting purification.
[0046]
(Example 8)
Binding test between cell surface protein and photoreactive CSC-PE
The photoreactive CSC-PE of Example 1 was added to the 48-well plastic plate at a concentration of 5, 10, 20, 50 μg / ml at a concentration of 200 μl / well, and allowed to stand at 4 ° C. overnight for coating. Was. After washing twice with Hank's solution, 1 × 10 5 of a mouse-derived cultured fibroblast cell line 10T1 / 2 was used. 5 200 μl / well of the cell / ml suspension was added and 5% CO 2 2 The mixture was incubated at 37 ° C. in an environment for 5 minutes and 15 minutes, and immediately irradiated with ultraviolet light of 340 nm for 1 minute. Non-adherent cells were removed by pipetting, and a sample buffer for SDS-page and dithiothreitol (DTT) were added to the plate on which the adherent cells remained, and suspended. After heating at 100 ° C. for 3 minutes, half of the plate was treated with 10% SDS. -Page. After the electrophoresis, Western blotting was performed to react with peroxidase-conjugated streptavidin, and a protein group to which a cross-linking reagent containing biotin was bound was detected by an ECL method (Amersham). FIG. 1 shows the pattern. Several distinct protein bands were observed around molecular weights 120 k, 80 k, 70 k, 50 k, and 40-30 k.
[0047]
These are considered to be proteins bound to chondroitin sulfate or proteins near chondroitin sulfate, suggesting that there are a plurality of cell surface proteins that specifically interact with chondroitin sulfate when adhered. At this time, since the DTT treatment has been performed, disulfide bonds are cut off, and the chondroitin sulfate portion is separated and electrophoresed.
[0048]
Similarly, various photoreactive GAG-PE derivatives obtained in Examples 2 to 7 were immobilized on a plate, and a group of cell surface proteins to be bound was analyzed, and a protein having a pattern partially different from that of the CSC-binding protein was analyzed. A band was seen. From these, it is possible to analyze cell surface binding proteins specific or common to each GAG sugar chain.
[0049]
【The invention's effect】
By immobilizing the photoreactive sugar compound and the labeled photoreactive sugar compound of the present invention on a solid layer, a protein (sugar receptor) that interacts with sugar can be easily captured.
[Brief description of the drawings]
FIG. 1 is a diagram showing western blotting of a photoreactive crosslinked product of photoreactive CSC-PE and a cell surface protein.

Claims (14)

下記式で表される光反応性糖化合物。
A−X−Y
A:脂質
X:糖化合物
Y:光反応性化合物残基
−:共有結合
A photoreactive sugar compound represented by the following formula:
A-X-Y
A: lipid X: sugar compound Y: photoreactive compound residue-: covalent bond
Xで示される糖化合物がヒドロキシル基、アミノ基および/またはカルボキシル基を有する多糖またはオリゴ糖である請求項1に記載の光反応性糖化合物。The photoreactive sugar compound according to claim 1, wherein the sugar compound represented by X is a polysaccharide or an oligosaccharide having a hydroxyl group, an amino group and / or a carboxyl group. ヒドロキシル基、アミノ基および/またはカルボキシル基を有する多糖またはオリゴ糖がグリコサミノグリカンまたはそのオリゴ糖である請求項2に記載の光反応性糖化合物。The photoreactive saccharide compound according to claim 2, wherein the polysaccharide or oligosaccharide having a hydroxyl group, an amino group and / or a carboxyl group is glycosaminoglycan or its oligosaccharide. グリコサミノグリカンまたはそのオリゴ糖がヒアルロン酸、コンドロイチン、コンドロイチン硫酸、デルマタン硫酸、ヘパリン、ヘパラン硫酸、ケラタン硫酸およびこれらのオリゴ糖からなる群から選択される請求項3に記載の光反応性糖化合物。The photoreactive saccharide compound according to claim 3, wherein the glycosaminoglycan or its oligosaccharide is selected from the group consisting of hyaluronic acid, chondroitin, chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate, keratan sulfate and these oligosaccharides. . Aで示される脂質がリン脂質である請求項1に記載の光反応性糖化合物。The photoreactive sugar compound according to claim 1, wherein the lipid represented by A is a phospholipid. リン脂質がホスファチジルエタノールアミンである請求項5に記載の光反応性糖化合物。The photoreactive sugar compound according to claim 5, wherein the phospholipid is phosphatidylethanolamine. Yで示される光反応性化合物残基がアジド基、ジアゾ基およびジアジリン基からなる群から選択される光反応性基を有する光反応性化合物の残基である請求項1に記載の光反応性糖化合物。The photoreactive compound residue according to claim 1, wherein the photoreactive compound residue represented by Y is a residue of a photoreactive compound having a photoreactive group selected from the group consisting of an azide group, a diazo group, and a diazirine group. Sugar compounds. Yで示される光反応性化合物残基が光反応性基としてアリールアジド基を有する光反応性化合物残基である請求項1に記載の光反応性糖化合物。The photoreactive sugar compound according to claim 1, wherein the photoreactive compound residue represented by Y is a photoreactive compound residue having an arylazide group as a photoreactive group. XとYがエステル結合またはアミド結合によって結合している請求項1に記載の光反応性糖化合物。The photoreactive sugar compound according to claim 1, wherein X and Y are linked by an ester bond or an amide bond. XとYがジスルフィド結合を有するスペーサー基を介して結合している請求項1に記載の光反応性糖化合物。The photoreactive sugar compound according to claim 1, wherein X and Y are linked via a spacer group having a disulfide bond. 請求項1〜10のいずれかに記載の光反応性糖化合物と標識化合物残基が結合した標識化光反応性糖化合物。A labeled photoreactive saccharide compound in which the photoreactive saccharide compound according to any one of claims 1 to 10 is bound to a labeling compound residue. 請求項11記載の標識化光反応性糖化合物を含む光反応性標識試薬。A photoreactive labeling reagent comprising the labeled photoreactive sugar compound according to claim 11. 請求項1〜10のいずれかに記載の光反応性糖化合物を固着した固相と、糖受容体とを接触させて光反応性糖化合物と糖受容体を結合させ、次いで光を照射し、該光反応性糖化合物の光反応性化合物残基と該糖受容体を結合することによって該糖受容体を固相に捕捉することを特徴とする糖受容体の捕捉方法。A solid phase to which the photoreactive sugar compound according to any one of claims 1 to 10 is fixed, and a sugar receptor is contacted to bind the photoreactive sugar compound to the sugar receptor, and then irradiated with light, A method for capturing a sugar receptor, comprising capturing the sugar receptor on a solid phase by binding the photoreactive compound residue of the photoreactive sugar compound to the sugar receptor. 請求項11記載の標識化光反応性糖化合物を固着した固相と、糖受容体とを接触させて該標識化光反応性糖化合物と糖受容体を結合させ、次いで光を照射し、該標識化光反応性糖化合物の光反応性化合物残基と該糖受容体を光反応により結合させることによって該糖受容体を固相に捕捉すると共に標識化し、標識化された該受容体を固相に結合した状態または固相から遊離させた後に検出することを特徴とする糖受容体の測定方法。A solid phase to which the labeled photoreactive saccharide compound according to claim 11 is fixed, and a sugar receptor are contacted to bind the labeled photoreactive saccharide compound to the sugar receptor, and then irradiating with light, By binding the photoreactive compound residue of the labeled photoreactive sugar compound to the sugar receptor by photoreaction, the sugar receptor is captured and labeled on a solid phase, and the labeled receptor is immobilized. A method for measuring a sugar receptor, wherein the detection is performed in a state of being bound to a phase or after being released from a solid phase.
JP2002180539A 2002-06-20 2002-06-20 Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor Expired - Fee Related JP4340423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180539A JP4340423B2 (en) 2002-06-20 2002-06-20 Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180539A JP4340423B2 (en) 2002-06-20 2002-06-20 Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor

Publications (3)

Publication Number Publication Date
JP2004018841A true JP2004018841A (en) 2004-01-22
JP2004018841A5 JP2004018841A5 (en) 2005-10-27
JP4340423B2 JP4340423B2 (en) 2009-10-07

Family

ID=31177633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180539A Expired - Fee Related JP4340423B2 (en) 2002-06-20 2002-06-20 Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor

Country Status (1)

Country Link
JP (1) JP4340423B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015579A1 (en) * 2005-08-04 2007-02-08 Teijin Limited Cellulose derivative
US7893226B2 (en) 2004-09-29 2011-02-22 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Use of lipid conjugates in the treatment of diseases
WO2011027868A1 (en) * 2009-09-03 2011-03-10 公益財団法人野口研究所 Method for producing 11-sugar sialyloligosaccharide-peptide
JP2011231293A (en) * 2010-04-30 2011-11-17 Asahi Kasei Corp Glycopeptide derivative and method for producing the same
US8076312B2 (en) 2000-01-10 2011-12-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Use of lipid conjugates in the treatment of disease
JP2012191932A (en) * 2011-03-03 2012-10-11 Asahi Kasei Corp Method for producing 11-sugar sialyloligosaccharide-asparagine
US8304395B2 (en) 2000-01-10 2012-11-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Lipid conjugates in the treatment of disease
US8372815B2 (en) 2000-01-10 2013-02-12 Yissum Research Development Company Use of lipid conjugates in the treatment of conjunctivitis
US8501701B2 (en) 2000-01-10 2013-08-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Use of lipid conjugates in the treatment of disease
US8859524B2 (en) 2005-11-17 2014-10-14 Yissum Research Development Company Of The Hebrew University Of Jerusalem Lipid conjugates in the treatment of chronic rhinosinusitis
US8865681B2 (en) 2004-03-02 2014-10-21 Yissum Research Development Company of the Hebrew Unitersity of Jerusalem Use of lipid conjugates in the treatment of diseases or disorders of the eye
US8883761B2 (en) 2001-01-10 2014-11-11 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of diseases associated with vasculature
US8901103B2 (en) 2000-01-10 2014-12-02 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of diseases
US8906882B2 (en) 2005-11-17 2014-12-09 Yissum Research Development Company Of The Hebrew University Of Jerusalem Lipid conjugates in the treatment of allergic rhinitis
US8916539B2 (en) 2000-01-10 2014-12-23 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of disease
US9040078B2 (en) 2000-01-10 2015-05-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of diseases of the nervous system
FR3029784A1 (en) * 2014-12-16 2016-06-17 Oreal COSMETIC PROCESS FOR ATTENUATING WRINKLES
EP3127922A4 (en) * 2014-03-31 2017-11-08 Seikagaku Corporation Anti-chondroitin-sulfate-e antibody

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673102A (en) * 1992-02-05 1994-03-15 Seikagaku Kogyo Co Ltd Photo-reactive glycosaminoglycan, crosslinked glycosaminoglycan and their production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673102A (en) * 1992-02-05 1994-03-15 Seikagaku Kogyo Co Ltd Photo-reactive glycosaminoglycan, crosslinked glycosaminoglycan and their production

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372815B2 (en) 2000-01-10 2013-02-12 Yissum Research Development Company Use of lipid conjugates in the treatment of conjunctivitis
US8916539B2 (en) 2000-01-10 2014-12-23 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of disease
US8901103B2 (en) 2000-01-10 2014-12-02 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of diseases
US9012396B2 (en) 2000-01-10 2015-04-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of conjunctivitis
US8865878B2 (en) 2000-01-10 2014-10-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of diseases
US8076312B2 (en) 2000-01-10 2011-12-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Use of lipid conjugates in the treatment of disease
US8501701B2 (en) 2000-01-10 2013-08-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Use of lipid conjugates in the treatment of disease
US8383787B2 (en) 2000-01-10 2013-02-26 Yissum Research Development Company Use of lipid conjugates in the treatment of diseases
US9040078B2 (en) 2000-01-10 2015-05-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of diseases of the nervous system
US8304395B2 (en) 2000-01-10 2012-11-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Lipid conjugates in the treatment of disease
US8883761B2 (en) 2001-01-10 2014-11-11 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of lipid conjugates in the treatment of diseases associated with vasculature
US8865681B2 (en) 2004-03-02 2014-10-21 Yissum Research Development Company of the Hebrew Unitersity of Jerusalem Use of lipid conjugates in the treatment of diseases or disorders of the eye
US7893226B2 (en) 2004-09-29 2011-02-22 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Use of lipid conjugates in the treatment of diseases
WO2007015579A1 (en) * 2005-08-04 2007-02-08 Teijin Limited Cellulose derivative
US8378091B2 (en) 2005-08-04 2013-02-19 Teijin Limited Cellulose derivative
US8906882B2 (en) 2005-11-17 2014-12-09 Yissum Research Development Company Of The Hebrew University Of Jerusalem Lipid conjugates in the treatment of allergic rhinitis
US8859524B2 (en) 2005-11-17 2014-10-14 Yissum Research Development Company Of The Hebrew University Of Jerusalem Lipid conjugates in the treatment of chronic rhinosinusitis
US8809496B2 (en) 2009-09-03 2014-08-19 The Noguchi Institute Production method of 11-sugar sialylglycopeptide
JP2011162762A (en) * 2009-09-03 2011-08-25 Asahi Kasei Corp Method for producing 11-sugar sialyloligosaccharide-peptide
WO2011027868A1 (en) * 2009-09-03 2011-03-10 公益財団法人野口研究所 Method for producing 11-sugar sialyloligosaccharide-peptide
JP2011231293A (en) * 2010-04-30 2011-11-17 Asahi Kasei Corp Glycopeptide derivative and method for producing the same
JP2012191932A (en) * 2011-03-03 2012-10-11 Asahi Kasei Corp Method for producing 11-sugar sialyloligosaccharide-asparagine
EP3127922A4 (en) * 2014-03-31 2017-11-08 Seikagaku Corporation Anti-chondroitin-sulfate-e antibody
FR3029784A1 (en) * 2014-12-16 2016-06-17 Oreal COSMETIC PROCESS FOR ATTENUATING WRINKLES
WO2016096594A1 (en) * 2014-12-16 2016-06-23 L'oreal Cosmetic process for attenuating wrinkles
US10328014B2 (en) 2014-12-16 2019-06-25 L'oreal Cosmetic process for attenuating wrinkles

Also Published As

Publication number Publication date
JP4340423B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
JP4340423B2 (en) Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor
AU609386B2 (en) Endoglycosidase assay
Feizi et al. [28] Neoglycolipids: Probes of oligosaccharide structure, antigenicity, and function
JP5139085B2 (en) Solid-phase oligosaccharide tagging: manipulation techniques for immobilized carbohydrates
Harvey Analysis of carbohydrates and glycoconjugates by matrix‐assisted laser desorption/ionization mass spectrometry: An update for the period 2005–2006
Adler et al. High Affinity Binding of the Entamoeba histolytica Lectin to Polyvalent N-Acetylgalactosaminides (∗)
US4175073A (en) Reactive derivatives of HS-group-containing polymers
Vynios et al. Advances in analysis of glycosaminoglycans: its application for the assessment of physiological and pathological states of connective tissues
Zanetta et al. Diversity of sialic acids revealed using gas chromatography/mass spectrometry of heptafluorobutyrate derivatives
Moreno et al. Delineation of the epitope recognized by an antibody specific for N-glycolylneuraminic acid—containing gangliosides
Nakano et al. Extraction, isolation and analysis of chondroitin sulfate glycosaminoglycans
Kojima Molecular aspects of the plasma membrane in tumor cells
van Kuppevelt et al. Sequencing of glycosaminoglycans with potential to interrogate sequence-specific interactions
EP3279220A1 (en) Method for sulfating glycosaminoglycan
JP5704661B2 (en) Novel galectin-sugar chain conjugate, galectin activity regulator
EP3221337B1 (en) Multivalent ligand-lipid constructs
CA2210041C (en) Branched cyclodextrins and method for producing them
de Souza et al. Synthesis of gold glyconanoparticles: Possible probes for the exploration of carbohydrate‐mediated self‐recognition of marine sponge cells
Gemma et al. Enabling methodology for the end functionalisation of glycosaminoglycan oligosaccharides
Samuelsson et al. Studies on the interaction between hyaluronan and a rat colon cancer cell line
Martinez et al. Glycan array technology
Johansson et al. Interaction of Helicobacter pylori with sialylated carbohydrates: the dependence on different parts of the binding trisaccharide Neu5Acα3Galβ4GlcNAc
Whitehead et al. Custom glycosylation of cells and proteins using cyclic carbamate-derivatized oligosaccharides
WO2017100618A1 (en) Methods of releasing glycans from peptides and other conjugates
Thonar et al. Structural studies on proteoglycan from human chondrosarcoma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees