CS274372B1 - Method of cyclohexanole and cyclohexanone mixture production - Google Patents
Method of cyclohexanole and cyclohexanone mixture production Download PDFInfo
- Publication number
- CS274372B1 CS274372B1 CS72089A CS72089A CS274372B1 CS 274372 B1 CS274372 B1 CS 274372B1 CS 72089 A CS72089 A CS 72089A CS 72089 A CS72089 A CS 72089A CS 274372 B1 CS274372 B1 CS 274372B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- cyclohexane
- cascade
- oxidation
- cyclohexanone
- salts
- Prior art date
Links
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000000203 mixture Substances 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title abstract description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims abstract description 28
- 230000003647 oxidation Effects 0.000 claims abstract description 26
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 26
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 claims abstract description 14
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 8
- 150000002739 metals Chemical class 0.000 claims abstract description 7
- 150000001868 cobalt Chemical class 0.000 claims abstract description 5
- 239000007791 liquid phase Substances 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 239000003054 catalyst Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000012071 phase Substances 0.000 claims description 2
- SWFPCDJSMKKRFW-UHFFFAOYSA-N [Cr].[Li] Chemical class [Cr].[Li] SWFPCDJSMKKRFW-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 150000003839 salts Chemical class 0.000 abstract description 4
- 229910003002 lithium salt Inorganic materials 0.000 abstract description 3
- 159000000002 lithium salts Chemical class 0.000 abstract description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract 1
- 229910052804 chromium Inorganic materials 0.000 abstract 1
- 239000011651 chromium Substances 0.000 abstract 1
- 229910017052 cobalt Inorganic materials 0.000 description 8
- 239000010941 cobalt Substances 0.000 description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- -1 alkoxy radicals Chemical class 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- FGGJBCRKSVGDPO-UHFFFAOYSA-N hydroperoxycyclohexane Chemical compound OOC1CCCCC1 FGGJBCRKSVGDPO-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 4
- 150000002432 hydroperoxides Chemical group 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 125000005609 naphthenate group Chemical group 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 2
- PNPPVRALIYXJBW-UHFFFAOYSA-N 6-oxohexanoic acid Chemical compound OC(=O)CCCCC=O PNPPVRALIYXJBW-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002311 glutaric acids Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002927 oxygen compounds Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
(57) Riešenie sa týke sposobu výroby zmesi cyklohexanolu a cyklohexanonu kálelyzovanou oxidáciou cyklohexánu molekulovým kyslíkom. Reakcia prebieha pri teplote 150 až 170 °C a takom tlaku, aby sa zachovala kvepalr.á fáza v přítomnosti katalyzátore. na báze solí kobaltu. Podstatou riešenia je, že oxióácia so uskutočňuje kontinuálně v reaktore pozostávajúcom z n-členov kaskády, kde n je 5 až 6, do ktorých sa pridávajú chronité a lítne soli v mólovom pomere 100 : 1 ež 1 : 1 v koncentrácii 0,1 až 8 ppm počítané na množstvo kvapalného cyklohexanu v reaktore, pričom soli týchto kovov sa přidávají! do n-tého a/alebo n-1 a/alebo n-2 a/alebo n-3 a/alebo n-4 člena kaskády.(57) The solution relates to a process for the production of a mixture of cyclohexanol and cyclohexanone by means of the catalytic oxidation of cyclohexane by molecular oxygen. The reaction is carried out at a temperature of 150-170 ° C and at a pressure such that the quaternary phase is maintained in the presence of a catalyst. based on cobalt salts. The essence of the solution is that the oxiation is carried out continuously in a reactor consisting of n-members of the cascade, where n is 5 to 6, to which are added chronic and lithium salts in a molar ratio of 100: 1 to 1: 1 in a concentration of 0.1 to 8 ppm calculated on the amount of liquid cyclohexane in the reactor, the salts of these metals being added. into the n-th and / or n-1 and / or n-2 and / or n-3 and / or n-4 cascade member.
274 372 (11) (13) El (51) Int. Cl. '274 372 (11) (13) El (51) Int. Cl. '
C 07 C 25/OS C 07 C í 9/4 03C 07 C 25 / OS C 07 C 9/4 03
OS 274372 BlOS 274372 Bl
Vynález sa týká sposobu výroby zmesi cyklohexanolu ct cyklohexanonu katalyzovanou oxidáciou cyklohexánu molekulovým kyslíkom.The invention relates to a process for the production of a mixture of cyclohexanol and cyclohexanone by catalyzing the oxidation of cyclohexane by molecular oxygen.
Jedným zo sposobov výroby cyklohexanonu je oxičácia cyklohexénu v kvapolr.ej fáze. Oxidovadlem je molekulový kyslík, najčastejšie přítomný vo vzduchu. Okrem cyklohexanonu oxidáciou vznikajú aj dalšie kyslíkaté produkty, z ktorých žiadané sú cyklohexanol a cyklohexylhydroperoxid. V podstatné menších množstvách sa tvoria monokarboxylové kyseliny, hlavně kyselino mravčia, valérová, kaprór.ová, hydroxy kaprór.ová, dalej kyselino adipová, glut.árová a jantárová, mor.oaldehyd kyseliny adipovéj a estery týchto kyselin s cyklohexonolon. Z plynných protíuktov sú to oxid uhoťr.atý a uhličitý.One method of producing cyclohexanone is by the liquid phase oxidation of cyclohexene. The oxidant is molecular oxygen, most commonly present in air. In addition to cyclohexanone, oxidation also produces other oxygen products, of which cyclohexanol and cyclohexyl hydroperoxide are desired. Monocarboxylic acids, in particular formic, valeric, caproic, hydroxy caproic, other adipic, glutaric and succinic acids, adipic acid monoaldehyde and esters of these acids with cyclohexonolone are formed in substantially smaller amounts. The gaseous counter-products are carbon monoxide and carbon dioxide.
Hlnvným medziproduktom oxidácie cyklohexénu je cyklohexylhydroperoxid. Jeho koncentrácie v oxidovonom cyklohexáne je závislá od doby oxidácie a konštrukčného materiálu reaktore. V kovových reektoroch koncentrácie hydroperoxidu dosahuje 1 až 2 % hmot., ale v skleněných reaktorech až 4 % hmot. Mnximálnn koncentrácie hydroperoxidu sa prudko znižuje ak oxidácia cyklohexánu je katalyzovaná přechodnými kovmi. Katalyticky aktivně sú len tie zlúčeniny kovov, ktoré vytvárajú jednoelektrónové redox systémy. Ak sú zlúčeniny přechodných kovov viazané v takej formě, že nie Je možná změna oxidačného stupňa kovového iónu, tak sú katalyticky slabo účinné alebo neúčinné.The main intermediate of cyclohexene oxidation is cyclohexyl hydroperoxide. Its concentration in the cyclohexane oxidon is dependent on the oxidation time and the reactor construction material. In metal rectors, the hydroperoxide concentration reaches 1 to 2% by weight, but in glass reactors up to 4% by weight. The maximum hydroperoxide concentration is sharply reduced if the oxidation of cyclohexane is catalyzed by transition metals. Only those metal compounds that form single-electron redox systems are catalytically active. If the transition metal compounds are bound in such a form that a change in the oxidation degree of the metal ion is not possible, they are catalytically poorly active or ineffective.
Ak kovový ión je slabé oxidočr.é činidlo, napr. ?b/,+ , Ce‘‘', tak bude převládat! rozklad hydroperoxidu na příslušný peroxy radikál; ak kovový ión je silné redukčr.é činidlo, tak preferovaný je rozklad hydroperoxidu na alkoxy redikály. Veliý počet kovov přechodného rcocenstva, napr. kobalt, mangán, nikel e pod., má však zrovnstelné valenčné stavy a preto rozklad hydroperoxidov na peroxy a alkoxy radikály prebieha rovnakou rýchlosťou. Katalytická účinnost1 solí přechodných kovov na rozklad sekundárných hydroporoxidov sa zmenšuje v tomto poradí: Co > Mn ? Cuž) Ni ) Fe»Zn. V tom istom poradí klesá katalytická aktivita solí přechodných kovov pri oxidácii cyklohexánu. Radikálový rozklad hydroperoxidov urýchťujú aj kerboxylové kyseliny, pretože je nepravděpodobné, še by při podmienkach oxidácie cyklohexánu rozkládali vznikajúce slabé kyseliny sekundárné hydroperoxidy na ketony’.If the metal ion is a weak oxidizing agent, e.g. ? b /, + , Ce ''', so will prevail! decomposing the hydroperoxide to the corresponding peroxy radical; when the metal ion is a strong reducing agent, it is preferable to decompose the hydroperoxide into alkoxy radicals. A large number of transition metal metals, e.g. however, cobalt, manganese, nickel, etc., have comparable valence states and therefore the decomposition of hydroperoxides into peroxy and alkoxy radicals proceeds at the same rate. The catalytic efficiency of 1 transition metal salts for the degradation of secondary hydroporoxides decreases in the following order: Co> Mn? Zn. In the same order, the catalytic activity of transition metal salts in the oxidation of cyclohexane decreases. The carboxylic acids also accelerate the radical decomposition of hydroperoxides, since under the conditions of cyclohexane oxidation the resulting weak acids are unlikely to decompose secondary hydroperoxides into ketones.
Pri rozklade cyklohexalhydroperoxiču so okrem cyklohexanolu a cyklohexanonu tvoří až 30 % iných kyslíkatých zlúčenín, ktoré v konečnou dósledku. znižujú selektivitu procesu. Cyklohexanol a cyklohexsnor. sa při podmienkach oxidácie veťrai ťohko dalej oxidujú. Preto v priemyselných procesoch sa oxidácia cyklohexánu uokutočňuje len do velni nízkých konverzií, 4 až 10 %. Kedže reakcia prebieha radikálovým mechanizmem, atak oxidujúcich so sufcstrátov, t.j. cyklohexánu ε produktov cyklohexanolu a cyklohexanonu je prevežne s alkoxy o peroxy radikální. Tieto, oko už bolo spomenuté, vznikajú rozkladem cyklohoxylperoxidu. To znamená, že pri kontinuálnej oxidácii, ktorá prebieha v kaskádo pozostávajúcej z niekoťkých samostatných re3kčných Členov, tak ako sa zvyšuje kenverzia cyklohexánu vzrastá zároveň aj koncentrácie cyklohexylhydroperoxidu. V přítomnosti kobaltového katalyzátore, ktorý oe najčastejšie používe ako katalyzátor oxidácie cyklohexánu, rozkledom cyklohexylhydroperoxidu sa generujú radikály a tým sa postupné v jednotlivých členoch kaskády zvyšuje rýchlosť iniciácie. Pretože v posledných členoch kaskády je najvyššia koncentrácia cyklohexanolu a cyklohexanonu, vyššie koncentrácie hydroperoxidu, t.j. aj vyššie rýchlosti iniciácie vedú k urýchleniu následnéj oxidácie cyklohexanonu a cyklohexanolu. To má za následok zvýšenie tvorby neželetel^ých vedlejších látok a tým pokles selektivity oxidácie na žiadané produkty.Upon decomposition of cyclohexalhydroperoxic, with the exception of cyclohexanol and cyclohexanone, it constitutes up to 30% of other oxygen compounds which ultimately result. reduce process selectivity. Cyclohexanol and cyclohexsnor. they oxidize readily under oxidation conditions. Therefore, in industrial processes, the oxidation of cyclohexane takes place only at very low conversions, 4-10%. As the reaction proceeds through a radical mechanism, attacking the sulphates, i.e. cyclohexane ε products of cyclohexanol and cyclohexanone is mostly radical with alkoxy and peroxy. These, as already mentioned, arise from the decomposition of cycloxyl peroxide. That is, in a continuous oxidation that takes place in a cascade consisting of several separate reactive members, as the cyclohexane kenvere increases, the concentration of cyclohexyl hydroperoxide also increases. In the presence of a cobalt catalyst, which is most commonly used as a cyclohexane oxidation catalyst, by the decomposition of cyclohexyl hydroperoxide, radicals are generated and thereby the rate of initiation is gradually increased in each member of the cascade. Since in the last cascade members the highest concentration of cyclohexanol and cyclohexanone is the highest, the higher concentrations of hydroperoxide, i. even higher initiation rates lead to acceleration of subsequent oxidation of cyclohexanone and cyclohexanol. This results in an increase in the formation of non-gelled side substances and thus a decrease in the selectivity of the oxidation to the desired products.
Uvedené nedostatky sa odstraňujú sposobom podía vynálezu, ktorého podstata spočívá v tom, že pri kontinuálnej oxidácii cyklohexánu s molekulovým kyslíkom v kvapalnej fáze, kntalyzovanej soíami kobaltu, ktorá sa uskutočňuje v reaktore pozostávejúcom z n členov kaskády, kde n jc 5 až 6, sa pridávajú soli Cr-^+ a Li+ v mólovom pomereThe above-mentioned drawbacks are overcome by the process according to the invention, characterized in that in the continuous oxidation of cyclohexane with molecular oxygen in the liquid phase, catalysed by cobalt salts, is carried out in a reactor consisting of n cascade members where n is 5 to 6 Cr @ + + and Li @ + in molar ratio
100 : 1 až 1 : 1 v koncentrácii 0,1 až 8 ppm, počítané na množstvo kvepolného cyklohexánu100: 1 to 1: 1 at a concentration of 0.1 to 8 ppm, calculated on the amount of quaternary cyclohexane
CS 274372 Bl v reaktoroch, pričom soli týchto kovov sa přidávají! kontinuálně do n-tého a/alebo n-1 a/alebo n-2 a/alebo n-3 a/alebo n-4 člena kaskády. Oxidácia cyklohesánu so uskutočňuje při teplotách 150 až 170 °C a takých tlakoch, aby so šachovala kvapolnó fáza a aby sa reakčné teplo z prevažnej časti odvádzalo odpařováním cyklohexánu. Zdrojom molekulového kyslíka je najčastejšie vzduch, ale može sa oj použiť iný plyn obsahujúci molekulový kyslík. Množstvo oxidačného činidla sa volí tak, obj’ obsah kyslíka v plj’ne odchádzojúcom z jednotlivých členov kaskády nikdy nebol nulový alebo vyšší ako je medza výbušnosti. Reakcia 3a iniciuje katalyzátorom, ktorým sú najčastejšie soli kobaltu rozpustné v cyklohexáne. Ich množstvo bývá okolo 0,5 až 4,5 ppm kobaltu. Výhodné sú alkanoáty, naftenáty e acetylacetonáty kobaltu v oxičačnom stupni 2 alebo 3. Zlúčeniny Cr^4- a lítia sa taktiež používajú vo formě rozpustnéj v cyklohexáne, napr. vo formě alkanoátov, naftenátov alebo acetylacetonátov. Do jednotlivých členov kaskády sa možu přidávat' jednotlivo alebo vo vzájemnej zmesi v príslušnom pomere. Účinkom týchto kokatalyzátorov sa znižuje koncentrácia hydroperoxidov v příslušných členoch kaskády. Je to spSsobené tým, že soli Cr^+ a lítia rozkladajú cyklohexylhydroperoxid bez tvorby přechodných radikálov, čiže znižujú rýchlosť iniciácie v jednotlivých členoch kaskády. Aby množstvo vedlejších produktov nebolo vysoké, oxidácia so uskutočňuje tok, obj’ konverzia cyklohexánu na výstupe z posledného člena kaskády bola 4 až 8 Výhody sposobu pódia vynálezu vidieť z nasledovných príkladov.CS 274372 B1 in reactors, the salts of these metals being added. continuously into the n-th and / or n-1 and / or n-2 and / or n-3 and / or n-4 cascade member. The oxidation of cyclohesane is carried out at temperatures of 150 to 170 ° C and pressures such that the liquid phase is checked and that the heat of reaction is largely removed by evaporation of cyclohexane. The source of molecular oxygen is most often air, but another gas containing molecular oxygen can be used. The amount of oxidizing agent is chosen such that the oxygen content of the filler leaving the individual cascade members has never been zero or higher than the explosion limit. Reaction 3a is initiated by a catalyst, most commonly the cobalt salts soluble in cyclohexane. Their amount is about 0.5 to 4.5 ppm of cobalt. Preferred alkanoates, e naphthenates of cobalt acetyl oxičačnom step 2 or 3. The compounds of Cr-4-, and lithium, are also used in a form soluble in cyclohexane, for example. in the form of alkanoates, naphthenates or acetylacetonates. They may be added to the individual members of the cascade individually or in admixture with each other in appropriate proportions. The effect of these cocatalysts reduces the concentration of hydroperoxides in the respective cascade members. This is because the Cr 2+ and lithium salts decompose cyclohexyl hydroperoxide without the formation of intermediate radicals, thus reducing the rate of initiation in the individual members of the cascade. In order that the amount of by-products is not high, the oxidation is carried out, the conversion of cyclohexane at the outlet of the last member of the cascade was 4 to 8.
Příklad 1Example 1
Do reaktora pozostávajúceho zo šiestich členov kaskády sa cez skrubery vedie 294,2 t/h cirkuločného cyklohexánu, z ktorého je 293)2 t/h cyklohexánu, 0,383 t/h cyklohexanolu, 0,206 t/h cyklohexanonu e 0,294 t/h vody. Reaktorom preteksjúca kvapalina sa prebublóva vzduchom v množstve 22,8 t/h. Oxidácia prebieha pri priememej teplote 157 °C a tlaku 0,9 MPa za katalytického účinku naftenátu kobaltnatého, ktorý so přidává vo formě roztoku v cyklohexáne, obsahujúceho 1,03 hmot. % kobaltu. Roztok kobaltnatého katalyzátora sa dávkuje následovně: do prvého člena kaskády 50 ómJ h-^, do druhého až piateho člena kaskády po 10 dm^ h-1. Z reaktora odchádza oxidačná zmes v množstve 296,8 t/h, z ktorej je 281,3 t/h cyklohexánu, 6,683 t/h cyklohexanolu, 3,260 t/h cyklohexanonu a 0,188 t/h vody. Zvyšok tvoria vedlajšie produkty oxidácie.A reactor consisting of six cascade members is fed through scrubbers with 294.2 t / h of cyclohexane, of which 293) is 2 t / h of cyclohexane, 0.383 t / h of cyclohexanol, 0.206 t / h of cyclohexanone and 0.294 t / h of water. The liquid flowing through the reactor was bubbled through the air at 22.8 t / h. The oxidation takes place at an average temperature of 157 ° C and a pressure of 0.9 MPa under the catalytic action of cobalt naphthenate, which is added as a solution in cyclohexane containing 1.03 wt. % cobalt. The solution of cobalt catalyst were fed as follows: the first member of the cascade 50 h om J - ^, the second through fifth member of the cascade 10 dm ^ h-1. The oxidation mixture was discharged from the reactor at 296.8 t / h, of which 281.3 t / h cyclohexane, 6.683 t / h cyclohexanol, 3.260 t / h cyclohexanone and 0.188 t / h water. The rest are by-products of oxidation.
Příklad 2Example 2
Podmienky a množstvá ako v příklade 1, ale kobaltnatý katalyzátor sa přidává len *5 do prvého a druhého člena kaskády v množstvách 50 a 10 dmJ h . Do štvrtého až šiesteho člena kaskádj’ sa přidává zmes naftenátov Cr^+ a lítia v mólovom pomere týchto kovov 85 : 1, ktoré sú rozpuštěné v cyklohexáne. Celková koncentrácia týchto kovov v cyklohexáne je 0,82 hmot. %. Do uvedených členov kaskádj’ sa cyklohexánovj’ roztok solí Cr^4 a uí+ dávkuje následovně, do štvrtého člena kaskády 5 diP h“\ do piateho člena kaskády 10 dnP h-1 a do šiesteho člena kaskády 20 dm^ h_1„ Na výstupe zo šiesteho člena kaskády odchádza exidačný produkt v množstve 297,4 t/h, ktorý je tvorenj’ 281,7 t/h cyklohexánu, 4,05 t/h cyklohexanonu, 5,98 t/h cyklohexanolu a 0,20 t/h vody.Conditions and amounts as in Example 1, but the cobalt catalyst is added only * 5 to the first and second cascade members in amounts of 50 and 10 dm J hr. A mixture of Cr 2+ and lithium naphthenates is added to the fourth to sixth member of the cascade, in a molar ratio of these metals of 85: 1, which are dissolved in cyclohexane. The total concentration of these metals in cyclohexane is 0.82 wt. %. To those members kaskádj 'is cyklohexánovj' salt solution of Cr and UI-4-fed subsequently, the fourth member of the cascade diP 5 hours' \ the five members of the cascade DNP 10 h-1, and the six members of the cascade 20 dm ^ h _1 "at the output an exidation product of 297.4 t / h, consisting of 281.7 t / h of cyclohexane, 4.05 t / h of cyclohexanone, 5.98 t / h of cyclohexanol and 0.20 t / h, is discharged from the sixth cascade member water.
Příklad 3Example 3
Podmienky a množstvá ako v příklade 1, ale kobaltnatj’ katalyzátor sa přidává do 3 1 prvého až piateho člena kaskády v následovnyd» množstvách; do prvého 40 dm h” a do ostatných členov kaskády rovnako po 6 dm^ h“1. Do šiesteho člena kaskády sa přidává 20 dm^ h-1 0,91 hmot. % roztoku solí Cr^+ a Li+ v cyklohexáne. Mólový’ poměr uvedených kovov je 17 : 1. Na výstupe z reaktora oxidačná zmes obsahuje cyklohexanol a cyklohexanon v hmotnostnom pomere 1,45, pričom množstvo vedlejších produktov ostává rovnaké ako v příklade 1.Conditions and amounts as in Example 1, but the cobalt catalyst is added to 3 L of the first to fifth cascade members in the following amounts; to the first 40 dm h ”and to the other cascade members as well after 6 dm ^ h“ 1 . 20 dm · h -1 0.91 wt. % of a solution of Cr 2+ and Li + salts in cyclohexane. The molar ratio of said metals is 17: 1. At the outlet of the reactor, the oxidation mixture contains cyclohexanol and cyclohexanone in a weight ratio of 1.45, the amount of by-products remaining the same as in Example 1.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS72089A CS274372B1 (en) | 1989-02-02 | 1989-02-02 | Method of cyclohexanole and cyclohexanone mixture production |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS72089A CS274372B1 (en) | 1989-02-02 | 1989-02-02 | Method of cyclohexanole and cyclohexanone mixture production |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS72089A1 CS72089A1 (en) | 1990-09-12 |
| CS274372B1 true CS274372B1 (en) | 1991-04-11 |
Family
ID=5339842
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS72089A CS274372B1 (en) | 1989-02-02 | 1989-02-02 | Method of cyclohexanole and cyclohexanone mixture production |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS274372B1 (en) |
-
1989
- 1989-02-02 CS CS72089A patent/CS274372B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS72089A1 (en) | 1990-09-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3957876A (en) | Process for the oxidation of cyclohexane | |
| JPS6041056B2 (en) | Cyclohexane oxidation method | |
| SK278383B6 (en) | Producing method of acrylic acid by two-step propylene catalytic oxidation | |
| CS274372B1 (en) | Method of cyclohexanole and cyclohexanone mixture production | |
| US6274764B1 (en) | Process for one step gas phase production of acetic acid from ethylene | |
| US20070260093A1 (en) | Process for Production of Cumene Hydroperoxide | |
| US5905173A (en) | Process for decomposing cycloalkyl hydroperoxide | |
| US3340304A (en) | Selective oxidation of cyclohexane to cyclohexanone | |
| CN1020591C (en) | Liquid Phase Oxidation of Cyclohexane | |
| US3539592A (en) | Production of oxygen-containing organic compounds | |
| US5406001A (en) | Method for the continuous preparation of a mixture of a cycloalkanone, a cycloalkanol and a cycloalkylhydroperoxide | |
| CN115403453A (en) | Method for preparing 1, 6-hexanedial from cyclohexene | |
| EP0225731B1 (en) | Production of cyclohexyl hydroperoxide | |
| JP2012512225A (en) | Catalytic oxidation of cyclohexane | |
| SK46099A3 (en) | Process for preparing oxidation products from cyclohexane in counterflow | |
| US3949004A (en) | Hydroperoxide production | |
| EP2695875A1 (en) | Improved method for the oxidation of alkyl aromatic hydrocarbons | |
| RU2378253C1 (en) | Method of preparing ethylbenzene hydroperoxide | |
| CN1028224C (en) | Two-step oxidation of isobutene or tert-butanol to produce methacrylic acid | |
| CN114105741B (en) | Preparation method of macrocyclic alcohol ketone | |
| CA1107758A (en) | Process for the manufacture of acetic acid | |
| US6930209B2 (en) | Liquid phase oxidation of cycloalkane compound | |
| CS274371B1 (en) | Method of cyclohexanole and cyclohexanone mixture production | |
| Ballarini et al. | The liquid-phase oxidation of cyclohexanone with oxygen, catalysed by Keggin-type polyoxometalates. A cleaner alternative to the current industrial process for adipic acid synthesis | |
| SK287877B6 (en) | Method of oxidation of cyclohexane |