CS274371B1 - Method of cyclohexanole and cyclohexanone mixture production - Google Patents
Method of cyclohexanole and cyclohexanone mixture production Download PDFInfo
- Publication number
- CS274371B1 CS274371B1 CS71989A CS71989A CS274371B1 CS 274371 B1 CS274371 B1 CS 274371B1 CS 71989 A CS71989 A CS 71989A CS 71989 A CS71989 A CS 71989A CS 274371 B1 CS274371 B1 CS 274371B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- oxidation
- cyclohexane
- chromium
- lithium salts
- cyclohexanol
- Prior art date
Links
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000000203 mixture Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title abstract description 5
- 230000003647 oxidation Effects 0.000 claims abstract description 22
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 22
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims abstract description 19
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011651 chromium Substances 0.000 claims abstract description 10
- 239000011541 reaction mixture Substances 0.000 claims abstract description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 238000004821 distillation Methods 0.000 claims abstract description 6
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 6
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 4
- 150000002432 hydroperoxides Chemical group 0.000 claims abstract description 4
- 239000003054 catalyst Substances 0.000 claims description 16
- 239000010941 cobalt Substances 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 3
- 239000012429 reaction media Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 238000000354 decomposition reaction Methods 0.000 abstract description 9
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 abstract 1
- FYLJKQFMQFOLSZ-UHFFFAOYSA-N cyclohexylperoxycyclohexane Chemical group C1CCCCC1OOC1CCCCC1 FYLJKQFMQFOLSZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- FGGJBCRKSVGDPO-UHFFFAOYSA-N hydroperoxycyclohexane Chemical group OOC1CCCCC1 FGGJBCRKSVGDPO-UHFFFAOYSA-N 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- SWFPCDJSMKKRFW-UHFFFAOYSA-N [Cr].[Li] Chemical class [Cr].[Li] SWFPCDJSMKKRFW-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
Vynález so týká sposobu výroby cyklohexanonu a cyklohexanolu založený na oxidácii cyklohexánu molekulovým kyslíkom a selektívnom rozklade cyklohexylhydroperoxidu zmesnýrai kovovými katalyzátormi.The invention relates to a process for the production of cyclohexanone and cyclohexanol based on the oxidation of cyclohexane by molecular oxygen and the selective decomposition of cyclohexyl hydroperoxide by mixed metal catalysts.
Cyklohexanon, doležitý medziprodukt na výrobu kaprolaktámu ea priemyselne vyrába z eyklohexónu alebo fenolu hydrogenúciou a následnou dehydrogenáciou vzniknutého cyklohexanolu. Cyklohexán sa oxiduje vzduchom pri takom tlaku, aby se jednak zachovala kvapalná fáza a zároveň aby sa zabezpečil obvod reakčného tepla odpařováním eyklohexónu.Cyclohexanone, an important intermediate for the production of caprolactam ea, is industrially produced from cyclohexone or phenol by hydrogenation and subsequent dehydrogenation of the resulting cyclohexanol. The cyclohexane is oxidized by air at a pressure to maintain both the liquid phase and to ensure the reaction heat circuit by evaporating the cyclohexone.
Beakčná teplota je závislá od toho či sa používá kovový katalyzátor alebo reakcia prebieha v nepřítomnosti katalyzátora. Katalyzovaná reakcie prebiehajú při teplotách 150 až 170 °C o množstvo kovového katalyzátora bývá velmi nízké, menej ako 8 ppm. NojdoležitejSou požiadavkou při oxidácii eyklohexónu je dosohovar.ie vysokej selektivity reakcie. Vzhíadom k typickému radikálovému mechanizmu oxidácie eyklohexónu sa to v praxi zabezpečuje tým, že reakcia prebieha len pri nízkých konverziách eyklohexónu, obvykle menej oko 4 až 6 %. Aj nnpriek tomu vznikají! následnými a bočnými reakciami vedťajšie zlúčeniny v množstvé až 25 %·. Hlavnými produktarai oxidácie je vždy' zmes cyklohexanolu a cyklohexanonu. Vzájomný poměr týchto látok v reakčnej zmesi je závislý hlavně od typu kovového katalyzátora. Pri použití kobaltového katalyzátora tento poměr bývá okolo 2. Okrem uvedených kyslíkatých produktov reakčná zmes obsahuje aj cyklohexylhydroperoxid. Jeho koncentrácia v reakčnej zmesi na výstupe z reaktora je závislá od viacerých faktorov a pohybuje sa od 0,7 % hmot. až do 1,2 % hmot. Na hodnotu koncentrócie významné vplýva typ reaktora používaného na oxidáciu, zloženie a koncentrácia kovového katalyzátora a sposob jeho pridávanie do reaktora v priebehu oxidácie.The reaction temperature depends on whether a metal catalyst is used or the reaction proceeds in the absence of the catalyst. Catalyst reactions take place at temperatures of 150-170 ° C with the amount of metal catalyst being very low, less than 8 ppm. An important requirement in the oxidation of cyclohexone is to achieve a high selectivity of the reaction. Due to the typical radical mechanism of oxidation of eyclohexone, this is ensured in practice by the fact that the reaction takes place only at low conversions of eyclohexone, usually less than 4-6%. Even they arise! Subsequent and side reactions in the amount of up to 25%. The main oxidation product is always a mixture of cyclohexanol and cyclohexanone. The ratio of these substances in the reaction mixture depends mainly on the type of metal catalyst. When using a cobalt catalyst, this ratio is about 2. In addition to the oxygen products mentioned, the reaction mixture also contains cyclohexyl hydroperoxide. Its concentration in the reaction mixture at the reactor outlet is dependent on several factors and ranges from 0.7% by weight. up to 1.2 wt. The concentration value is significantly influenced by the type of reactor used for oxidation, the composition and concentration of the metal catalyst, and the manner of its addition to the reactor during oxidation.
Xeďže rozkladom cyklohexylhydroperoxidu vzniká cyklohexanol a cyklohexanon je z hradiska výslednej selektivity procesu výroby doležitá zabezpečit' vysokú selektivitu jeho rozkladu na uvedené zlúčeniny. Termický rozklad tohoto hydroperoxidu je menej selektívny ako katalytický. K rozkladu dochádza při spracovaní reakčnej zmesi a to hlavně v stupni, v ktorom sa destilačne oddeťuje nezreagovaný cyklohexán odoxidačných produktov. Při tejto separácii nesmie dochádzať k zakoncentrovávaniu cyklohexylhydroperoxidu a preto třeba proces viesť tok, aby sa tento hydroperoxid rozkládal.Since the decomposition of cyclohexyl hydroperoxide produces cyclohexanol and cyclohexanone is essential to ensure a high selectivity of its decomposition to the compounds from the point of view of the resulting selectivity of the production process. The thermal decomposition of this hydroperoxide is less selective than catalytic. The decomposition takes place during the working up of the reaction mixture, especially in the step in which the unreacted cyclohexane of the oxidation products is distilled off. In this separation, there must be no concentration of cyclohexyl hydroperoxide and therefore a process flow must be conducted to decompose the hydroperoxide.
Uvedené nedostatky výroby zmesi cyklohexanolu a cyklohexanonu založenej na oxidácii cyklohexánu molekulovým kyslíkom pri teplotách 150 až 165 °C a tlaku 0,8 až 1,0 MPa v přítomnosti katalyzétorov na báze zmesi solí kobaltu, chrómu a lítia sa odstraňujú sposobom podl'a vynálezu, ktorého podstata spočívá v tom, že proces oxidácie sa katalyzujo celým množstvom kobaltového katalyzátora a maximálně 95-imi percentami solí Cr'+ a Lih rozpustnými v reakčnom prostředí, pričom zostávajúce množstvo solí CrJ+ a Li sa použije na selektívny rozklad hyóroperoxidov nachádzajúcich so v oxidačnom produkte, ktorý prebieha pri teplotách 60 až 125 °C v procesoch destilačného oddeťovania nezreagovaného cyklohexánu z reakčnej zmesi.The above drawbacks of producing a mixture of cyclohexanol and cyclohexanone based on oxidation of cyclohexane by molecular oxygen at temperatures of 150-165 ° C and a pressure of 0.8-1.0 MPa in the presence of catalysts based on a mixture of cobalt, chromium and lithium salts are eliminated according to the invention. which is characterized in that the process of oxidation, catalyze the whole amount of the cobalt catalyst and a maximum of 95-imino salt content of Cr '+ and L h soluble in the reaction medium, the remaining amount of the salts of Cr J + and Li is used for the selective decomposition of hyóroperoxidov contained with the oxidation product, which is carried out at temperatures of 60 to 125 ° C in processes of distillation of unreacted cyclohexane from the reaction mixture.
Množstvo zmesného katalyzátora, ktoré sa používá v popísnnom procese bývá 0,1 až 10 ppm vztahované na množstvo kvapalného cyklohexánu v oxidačnom reaktore. 2 tohoto množstva je 30 už SO hmot. solí kobaltu a zbytok tvoria soli Cr^ o Li+. Tieto dva kovové ióny vo formě solí, ktoré sú rozpustné v reakčnom systéme sa používajú vo vzájomr.om mólovom pomere 100 : 1 až 5 : 1. Přidávájú sa jednak do exidačného reaktora, ale časť sa přidává do rektifikačnej kolony, v ktorej sa separuje nezreagovaný cyklohexán od oxidačných produktov. Do kolony sa možu přidávat'na l’ubovol’nú přepážku alebo do varóka kolony. V přítomnosti týchto zmesných katalyzátorov dochádza k selektívnemu rozkladu cyklohexylhydroperoxidu, pričom v porovnaní s termickým rozkladom alebo rozkladem v přítomnosti kobaltového katalyzátora sa zvyšuje poměr tvorby cyklohexanonu k cyklohexanolu a znižuje sa koncentrácia tohoto hydroperoxidu na odtahu z destilačnejThe amount of mixed catalyst used in the description process is 0.1 to 10 ppm based on the amount of liquid cyclohexane in the oxidation reactor. 2 of this amount is 30 already SO mass. cobalt salts and the remainder are Cr CrO Li + salts. The two metal ions in the form of salts which are soluble in the reaction system are used in a molar ratio of 100: 1 to 5: 1. They are added to the exidation reactor, but part is added to the rectification column, where unreacted is separated. cyclohexane from oxidation products. Any column or column can be added to the column. In the presence of these mixed catalysts, there is a selective decomposition of cyclohexyl hydroperoxide, whereby the ratio of formation of cyclohexanone to cyclohexanol is increased relative to thermal or decomposition in the presence of cobalt catalyst and the concentration of this hydroperoxide in the distillation outlet is reduced.
Z · , I kolony. Y přítomnosti solí Cr-7 a Li sa nepodporuje priebeh následných neželotelnýchZ · I columns. Y the presence of Cr- 7 and Li salts does not support the course of subsequent non-caloric
CS 274371 Bl kor.denznčných, resp. iných reakcii. Výhody sposobu výroby zmesi cyklohexanolu a cyklo hexanonu podl'a vynálezu vidieť z následovnýeh príkladov.CS 274371 B1 corresp. other reactions. The advantages of the process of preparing a mixture of cyclohexanol and cyclo hexanone according to the invention can be seen from the following examples.
Příklad 1Example 1
Do reaktora pozostávajúceho zo šiestich členov kaskády sa ces skrubery vedřeA scrubber is pumped into a reactor consisting of six cascade members
294,2 t/h cirkulačného cyklohexánu, z ktorého je 293,2 t/h cyklohexánu, Ο,3θ3 t/h cyklohexnnolu, 0,206 t/h cyklohexanonu a 0,294 t/h vody. Reaktorom pretekajúca kvapalina sa prebubláva vzduchom v množstve 22,8 t/h. Qxidácia prebieha při prieaernej tep lote 157 °C za katalytického účinku naftenátu kobaltnatého, ktorý sa přidává vo formc roztoku v cyklohexáne, obsahujúceho 1,03 hmot. % kobaltu. Roztok kobaltnatého katalyzátora sa dávkuje následovně, do prvého člena kaskády 40 dm^ ε do druhého až piateho člena kaskády rovnako po 6 dra^ h“\ Do šieateho člena kaskády sa přidává 20 dm^ h-1 Ó,91 % hmot. roztoku chromitých o lítnych solí v cyklohexáne. Molový poměr uvedených kovov je 17 : 1. Na výstupe z reaktora oxidačná zmes obsahuje cyklohexanol a cyklohexanon v hmotnostnom pomere 1,45, pričom po oddělení nezreagovaného cyklohexánu v rektifikočnej koloně v ktorej vo vařáku je teplota 118 °C ostává v destilačnom zvyš ku 0,67 % hmot. cyklohexylhydroperoxidu.294.2 t / h of circulating cyclohexane, of which 293.2 t / h of cyclohexane, Ο, 3θ3 t / h of cyclohexanol, 0.206 t / h of cyclohexanone and 0.294 t / h of water. The liquid flowing through the reactor was bubbled through the air at 22.8 t / h. The oxidation is carried out at an average temperature of 157 ° C under the catalytic action of cobalt naphthenate, which is added in the form of a solution in cyclohexane containing 1.03 wt. % cobalt. The solution of cobalt catalyst is fed subsequently, the first member of the cascade 40 dm ^ ε in the second through fifth member of the cascade of the same at 6 hours dra ^ "\ La šieateho member of the cascade were added to 20 dm -1 h ^ O, 91% by weight. solution of chromium lithium salts in cyclohexane. The molar ratio of said metals is 17: 1. At the outlet of the reactor, the oxidation mixture contains cyclohexanol and cyclohexanone in a weight ratio of 1.45, where after separation of unreacted cyclohexane in a rectification column in which the temperature of 118 ° C remains in the distillation residue to 0, 67% wt. cyclohexyl.
Příklad 2Example 2
Postup, podmienky a množstvá ako v prí?ílade 1 s tým rozdielom, že soli Cr-^+ a Li+ vo formě 1,07 % hmot. roztoku v cyklohexáne sa přidávájú do piateho a šiesteho člena kaskády oxidačného reaktora v množstve po 6 dm h . Molový poměr uvedených kovov je 59 : 1. Do rektifikačnej kolony použitej no oddelenie nezreagovaného cyklohexánu z reakčnej zmesi v ktorej teplota vo vařáku je 109 °C so přidává uvedený roztok solí Cr^+ a Li+ v množstve 15 dm^ h-^. Destilačný zbytok obsahuje cyklohexylhydroperoxid o koncentrácii 0,32 % hmot., pričom hmotnostný poměr cyklohexanolu a cyklohexanonu v tomto zbytku je 1,40.The procedure, conditions and amounts as in at? Ilade 1 except that the Cr-salt ^ +, and Li + in the form of 1.07% by weight. of the solution in cyclohexane are added to the fifth and sixth members of the oxidation reactor cascade in amounts after 6 dm h. The molar ratio of the metals is 59: 1 to the rectification column used but the separation of unreacted cyclohexane from the reaction mixture in which the temperature in the boiler is 109 ° C with a salt solution is added the Cr VI + and Li + at 15 h dm ^ - ^. The distillation residue contains 0.32% by weight of cyclohexyl hydroperoxide, the cyclohexanol to cyclohexanone ratio by weight being 1.40.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS71989A CS274371B1 (en) | 1989-02-02 | 1989-02-02 | Method of cyclohexanole and cyclohexanone mixture production |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS71989A CS274371B1 (en) | 1989-02-02 | 1989-02-02 | Method of cyclohexanole and cyclohexanone mixture production |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS71989A1 CS71989A1 (en) | 1990-09-12 |
| CS274371B1 true CS274371B1 (en) | 1991-04-11 |
Family
ID=5339830
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS71989A CS274371B1 (en) | 1989-02-02 | 1989-02-02 | Method of cyclohexanole and cyclohexanone mixture production |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS274371B1 (en) |
-
1989
- 1989-02-02 CS CS71989A patent/CS274371B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS71989A1 (en) | 1990-09-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3797914B2 (en) | process | |
| US5241106A (en) | Process for producing ethyl acetate | |
| US4967014A (en) | Process for producing formaldehyde and derivatives thereof | |
| US5374767A (en) | Process for the production of cyclohexyladipates and adipic acid | |
| TWI234559B (en) | A process for preparing aliphatic carboxylic acids from aldehydes | |
| US4296263A (en) | Tertiary butyl alcohol production | |
| US4310712A (en) | Process for the production of phenol and acetone | |
| EP3186214B1 (en) | Controlled conversion of dimethyl benzyl alcohol to cumene hydroperoxide formed during the cumene oxidation process | |
| CN111056934B (en) | Method for preparing alpha-hydroxy ketone photoinitiator in microreactor | |
| US5206441A (en) | High rate process for preparation of cyclohexanol and cyclohexanone | |
| US6888035B2 (en) | Hydrogenation of cleavage effluents in phenol production | |
| CS274371B1 (en) | Method of cyclohexanole and cyclohexanone mixture production | |
| US2790010A (en) | Synthesis of meta-substituted phenols | |
| US4267379A (en) | Decomposition of cumene hydroperoxide and recovery of boron trifluoride catalyst | |
| US5180871A (en) | Process for producing phenols | |
| US2687438A (en) | Method of preparing | |
| CA1328470C (en) | Process for producing phenols | |
| US6075169A (en) | Process for preparing oxidation products from cyclohexane in counterflow | |
| RU2404954C2 (en) | Method of producing phenol and acetone | |
| JPH0337530B2 (en) | ||
| US3290384A (en) | Aralkyl hydroperoxide production | |
| RU2378253C1 (en) | Method of preparing ethylbenzene hydroperoxide | |
| US3933924A (en) | Process for preparing hydroxydiphenyl | |
| US4001342A (en) | Production of ethylphenols | |
| JP2006526627A (en) | Continuous process for producing bisphenol A from cumene hydroperoxide |