CS269549B1 - Spoaob to increase the efficiency of DNA transfer to bacterial cells - Google Patents
Spoaob to increase the efficiency of DNA transfer to bacterial cells Download PDFInfo
- Publication number
- CS269549B1 CS269549B1 CS883560A CS356088A CS269549B1 CS 269549 B1 CS269549 B1 CS 269549B1 CS 883560 A CS883560 A CS 883560A CS 356088 A CS356088 A CS 356088A CS 269549 B1 CS269549 B1 CS 269549B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- efficiency
- dna
- cells
- transfer
- bacterial cells
- Prior art date
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Riešenie sa týká sposobu zvýšenia efektivnosti přenosu ζΝΑ do bakteriálně;) buňky použitím zlůčenín všeobecných vzprcov I. a II., kde R.=uhlovodíkový retazee s počtom uhlíkov 6 až 20, priamy alebo rozvětvený, n = 2 až }2, X » Cl, Br, I., ktoré sa pridávaju k reakčnej zmesi pri nevodění stavu kompetencie u buniek v množstve 0,0001 až 0,5 mg/ml. Riešenie je možné použit v oblasti géngvého inžinierstva, modemých biotechnologií, pri vytváření genových bánk, a všade tam, kde sa vyžaduje zvýšený přechod DNK do recipientných buniek.The solution relates to a method of increasing the efficiency of the transfer of ζΝΑ into bacterial cells by using compounds of general formulae I. and II., where R. = a hydrocarbon chain with a number of carbons from 6 to 20, straight or branched, n = 2 to }2, X » Cl, Br, I., which are added to the reaction mixture when the cells are not in a competent state in an amount of 0.0001 to 0.5 mg/ml. The solution can be used in the field of gene engineering, modern biotechnologies, in the creation of gene banks, and wherever increased transfer of DNA into recipient cells is required.
Description
Vynález sa týká sposobu zvýšenia efektivnosti přenosu deoxyribonukleovej kyseliny (DNA) do hostitelskej buňky.Použitím látok všeobecných vzorcovThe invention relates to a method for increasing the efficiency of the transfer of deoxyribonucleic acid (DNA) into a host cell. By using substances of the general formulae
CH_ I J CH_ I J
CH3 - +N - CH3 ,x“ *1 (I)CH 3 - + N - CH 3 ,x“ *1 (I)
CH3 ch3 CH 3 ch 3
CH3 - * N - (CH2)n - * N - CH3 . 2X kde Rj · uhlovodíkový refazec s počtom uhlíkov 6 až 20, priamy alebo rozvětvený, připadne obsahujúci heteroatdm, n = 2 až 12, X » Cl, Br, I,CH 3 - * N - (CH 2 ) n - * N - CH 3 . 2X where Rj · hydrocarbon chain with a number of carbons 6 to 20, straight or branched, optionally containing heteroatomdm, n = 2 to 12, X » Cl, Br, I,
Přenos hybridných molekul DNK in vitro do nových hostitelských buniek je nevyhnutnou súčastou manipulácii v génovom inžinierstve. Cielom tohoto postupu je klonovanie cudzorodej genetickej informácie v recipientných buňkách, jej rozmnoženie a selekcia s následným výberom vhodných klonov.The transfer of hybrid DNA molecules in vitro into new host cells is an essential part of genetic engineering manipulation. The goal of this procedure is to clone foreign genetic information in recipient cells, propagate it, and select it, with the subsequent selection of suitable clones.
Přenos génov do bakteriálně) buňky sa može uskutečňovat tromi základnými spOsobmi; transformáciou, alebo transfekciou - t, j, priamym vychytáváním volnej DNA recipientnými buňkami, transdukciou, pri ktorej je DNA přenesená fágom z jednej buňky do druhé) a konjugáciou, pri ktorej sa přenos DNA uskutečňuje priamym kontaktom medzi dvorná bakteriálnymi buňkami. Výsledkom je dědičná změna reci? pientnej buňky.Gene transfer into bacterial cells can be accomplished in three basic ways: transformation, or transfection - i.e., direct uptake of free DNA by recipient cells, transduction, in which DNA is transferred by phage from one cell to another, and conjugation, in which DNA is transferred by direct contact between bacterial cells. The result is a heritable change in the recipient cell.
Bakteria, která je schopná přijímat exogénnu volnu DNA a inkorporovat ju do svojho genOmu sa nazýva kompetentnou. Pre niektoré baktérie (Streptococcus pneumoniae, Haemophilus influenzae, Bacillus subtilis) je kompetencia prirodzeným fyziologickým stavem počas rastového cyklu, zatiat čo u mnohých baktérií (napr, Escherichia coli), kvasiniek, a taktiež u buniek živočíchov kultivovaných in vitro musí byť kompetencia umele navodená fyzikálno-chemickými postupmi.A bacterium that is able to take up exogenous free DNA and incorporate it into its genome is called competent. For some bacteria (Streptococcus pneumoniae, Haemophilus influenzae, Bacillus subtilis) competence is a natural physiological state during the growth cycle, while for many bacteria (e.g., Escherichia coli), yeasts, and also for animal cells cultured in vitro, competence must be artificially induced by physicochemical procedures.
Nevýhodou doterajších metOd je, že pre najčastejšie používané hostitelské buňky (E.coli) je potřebné relativné komplikovaným sposobom indukovat kompetenciu, pričom efektivnost transformácie (počet transformantov na vnesené množstvo DNA) je malá. Podobné, prijímanie velkých plazmidov ( > 30 kb ) kompetentnou buňkou je neefektívne,The disadvantage of the current methods is that for the most commonly used host cells (E. coli) it is necessary to induce competence in a relatively complicated way, while the efficiency of transformation (number of transformants per introduced amount of DNA) is low. Similarly, the uptake of large plasmids (> 30 kb) by competent cells is inefficient,
Transformácia E.coli volnou DNA je velmi významná pře technolčgiu klonovania ONA, lebo kompetentné buňky možu byt poměrně íahko transformované roznymi malými replikónmi, ktoré sú používané pre konštrukciu rekombinantných molekul ONA, Naviac, aj přenos klonovaných génov do geneticky nového prostredia je doležitou etapou ich analýzy. Zvýšenie efektivnosti transformácie buniek exogénnou DNA je možné využít v oblasti génového inžinierstva a moderných biotechnologii, pri vytvárani genových bánk v mikroorganizmoch.Transformation of E. coli with free DNA is very important for the technology of DNA cloning, because competent cells can be relatively easily transformed with various small replicons, which are used for the construction of recombinant DNA molecules. In addition, the transfer of cloned genes into a genetically new environment is also an important stage of their analysis. Increasing the efficiency of cell transformation with exogenous DNA can be used in the field of genetic engineering and modern biotechnology, when creating gene banks in microorganisms.
CS 269 549 BlCS 269 549 Bl
Podstata riešenia podia vynálezu spočívá v použití povrchovo aktivnych katiónových látok, ktoré po přidaní do reakčnej zmesi zvyšujú efektivnost transformácie až 10 krát.The essence of the solution according to the invention lies in the use of surface-active cationic substances, which, when added to the reaction mixture, increase the efficiency of the transformation by up to 10 times.
Výhodou riešenia podía vynálezu je, že s nepatrnou modifikáciou zaužívanej metódy transformácie je možné použitím takého istého množstva izolovanej ONA získat niekoíkonásobné množstvo transformantov.The advantage of the solution according to the invention is that with a slight modification of the usual transformation method, it is possible to obtain a multiple amount of transformants using the same amount of isolated DNA.
Sálej uvedené příklady ilustrujú, ale neobmedzujú využitie spásobu podlá vynálezu.The following examples illustrate, but do not limit, the use of the invention.
Přiklad 1 ml exponsnciálnej kultury E.coli DH1 v LB půdě sa po centrifugovaní (frekvence otáčení 7000 minl, 4 °C, 10 min) resuspenduje v 5 ml ohledného roztoku CaCl2 (0,05 mol/1) a nechá sa 20 min. pri 0 °C. Po dalšom centrifugovaní a resuspendovaní v 1 ml chladného roztoku Cacl2 (0,05 mol/1) sa suspenzia rozdělí do skúmaviek po 200^1.Example 1 ml of an exponential culture of E.coli DH1 in LB medium is resuspended in 5 ml of a CaCl 2 solution (0.05 mol/l) after centrifugation (rotation frequency 7000 min/l, 4 °C, 10 min) and left for 20 min. at 0 °C. After further centrifugation and resuspension in 1 ml of a cold CaCl 2 solution (0.05 mol/l), the suspension is distributed into 200 ml tubes.
Ku vzorke v skúmavke sa přidá 20/.1 zásobného roztoku detergentu N.N*-bis (oktyldimetyl)-l,6-hexándiamóniumdibromidu (výsledná koncentrácia 20/«g/ml), a po 10 min, 4 °C sa přidá roztok DNA (plazmid pAT153) tak, aby v skúmavke bol l^g DNA. Zmes sa inkubuje pri 0 °C 30 min, potom sa zahřeje na 42 °C na 2 min, přidá sa 0,75 ml LB pódy a po 30 min pri 37 °C sa vysieva po 10//1 suspenzie na Petriho misky obsshujúce živný agar s ampicilínom, Vyrastajú len buňky, do ktorých sa dostal plazmid pAT153, Ku kontrolným vzorkám nebol detergent přidaný. Výsledky vid. tab, 1. přiklad 2To the sample in the test tube, 20/.1 of the stock solution of the detergent NN*-bis (octyldimethyl)-1,6-hexanediammoniumdibromide (final concentration 20 / «g/ml) is added, and after 10 min, 4 °C, the DNA solution (plasmid pAT153) is added so that there is 1^g of DNA in the test tube. The mixture is incubated at 0 °C for 30 min, then heated to 42 °C for 2 min, 0.75 ml of LB broth is added and after 30 min at 37 °C, 10//1 of the suspension is plated onto Petri dishes containing nutrient agar with ampicillin. Only cells into which the plasmid pAT153 has been introduced grow. No detergent was added to the control samples. Results see table, 1. Example 2
Vzorka bola spracovaná ako v přiklade 1, miesto N,N'- bis(oktyldimetyl)1,6-hexándiamóniumdibromidu bolo přidané také isté množstvo N,N'~bis(pentadecyldimetyl)-l,6-hexándiamóniumdibromidu (2^úg/ml), Výsledky vid, tab, 1.The sample was processed as in Example 1, but instead of N,N'-bis(octyldimethyl)1,6-hexanediammonium dibromide, the same amount of N,N'-bis(pentadecyldimethyl)-1,6-hexanediammonium dibromide (2 µg/ml) was added. Results see Table 1.
Přiklad 3Example 3
Vzorka bola spracovaná ako v příklade 1, miesto plazmidu pAT153 bol k E.coli BH101 přidaný plazmid pBR322 a oktyldimetylamóniumjodid (0,1 mg/ml).The sample was processed as in Example 1, instead of plasmid pAT153, plasmid pBR322 and octyldimethylammonium iodide (0.1 mg/ml) were added to E. coli BH101.
Vid. tab. 1. .See Table 1. .
Přiklad 4Example 4
Vzorka bola spracovaná ako v příklade 1, ale k buňkám E.coli 0M83 miesto N,N*-bis (oktyldimetyl)-l,6-hexándiamóniumdibromidu, bol přidaný n,Π - bis (teThe sample was processed as in Example 1, but instead of N,N*-bis (octyldimethyl)-1,6-hexanediammonium dibromide, n,Π - bis (te
CS 269 549 Bl ·CS 269 549 Bl ·
tradecyldimetyl)-l,6-hexándiaméniumdibromid (20^g/ml), a miesto vysokovyčistenej DNA (pAT153) bola přidaná ONA získaná rýchlometčdou (pUC9). Množstvo buniek obsahujJcich plazmid bolo určené výsevom na MacConkey agar, na ktorom tvoria červené kolčnie.(tradecyldimethyl)-1,6-hexanediammonium dibromide (20 µg/ml), and DNA obtained by rapid method (pUC9) was added instead of highly purified DNA (pAT153). The number of cells containing the plasmid was determined by plating on MacConkey agar, on which they formed red colonies.
Výsledky vid. tab.,1.Results see table 1.
TABUÍKA 1TABLE 1
Cg - N,N'-bis(oktyldimetyl )-l,6-hexándiaméniumdibromidCg - N,N'-bis(octyldimethyl)-1,6-hexanediamenium dibromide
C^4 - N,N*-bis(tetradecyldimetyl)-l,6-hexándiamóniumdibromid c15 - nX-bis(pentadecyldimetyl)-l,6-hexándiamóniumdibromid Cyjjj - oktyldimetylamóniumjodidC^ 4 - N,N*-bis(tetradecyldimethyl)-1,6-hexanediammonium dibromide c 15 - nX-bis(pentadecyldimethyl)-1,6-hexanediammonium dibromide Cyjjj - octyldimethylammonium iodide
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS883560A CS269549B1 (en) | 1988-05-25 | 1988-05-25 | Spoaob to increase the efficiency of DNA transfer to bacterial cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS883560A CS269549B1 (en) | 1988-05-25 | 1988-05-25 | Spoaob to increase the efficiency of DNA transfer to bacterial cells |
Publications (2)
Publication Number | Publication Date |
---|---|
CS356088A1 CS356088A1 (en) | 1989-09-12 |
CS269549B1 true CS269549B1 (en) | 1990-04-11 |
Family
ID=5376042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS883560A CS269549B1 (en) | 1988-05-25 | 1988-05-25 | Spoaob to increase the efficiency of DNA transfer to bacterial cells |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS269549B1 (en) |
-
1988
- 1988-05-25 CS CS883560A patent/CS269549B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS356088A1 (en) | 1989-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DiNardo et al. | Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes | |
McEwen et al. | Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions. | |
Barth et al. | Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons | |
Kelly et al. | Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air | |
AU624353B2 (en) | Process for integration of a chosen gene on the chromosome of a bacterium and bacterium obtained by the said process | |
Seo et al. | Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli | |
RU1838410C (en) | Method of obtaining alpha-amylase | |
EP0063763B1 (en) | Novel plasmids | |
Sawers et al. | Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins | |
Frank et al. | Construction and characterization of chromosomal insertional mutations of the Pseudomonas aeruginosa exoenzyme S trans-regulatory locus | |
Humbert et al. | Genetic and biomedical studies demonstrating a second gene coding for asparagine synthetase in Escherichia coli | |
Deutch et al. | Analysis of the Escherichia coli proBA locus by DNA and protein sequencing | |
Fornari et al. | Genetic transformation of Rhodopseudomonas sphaeroides by plasmid DNA | |
KR101083136B1 (en) | Microorganisms for producing l-amino acids and process for producing l-amino acids using them | |
JPH0112477B2 (en) | ||
JPH0838162A (en) | Method of identifying and isolating mutant of tfda-2, 4-d-mono oxygenase gene and plasmid containing tfda gene | |
Jacobs et al. | Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Escherichia coli K-12. | |
Hahm et al. | Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase | |
Murooka et al. | Genetic mapping of tyramine oxidase and arylsulfatase genes and their regulation in intergeneric hybrids of enteric bacteria | |
Tsunekawa et al. | Acquisition of a sucrose utilization system in Escherichia coli K-12 derivatives and its application to industry | |
Nano et al. | Plasmid rearrangements in the photosynthetic bacterium Rhodopseudomonas sphaeroides | |
FR2559781A1 (en) | NOVEL HYBRID PLASMIDIC VECTOR OF E. COLI PROVIDING THE POWER TO FERMENT SUCROSE AND ITS PREPARATION METHOD | |
Sako et al. | Coordinate expression of Escherichia coli dnaA and dnaN genes | |
Chun et al. | A Bradyrhizobium japonicum gene essential for nodulation competitiveness is differentially regulated from two promoters | |
PL180300B1 (en) | a vector containing such a DNA fragment, as well as a micro-organism containing the indicated DNA fragment or a vector and a biotechnological method for the production of L-carnitine EN PL PL PL EN |