CS267358B1 - A method of preparing high temperature superconducting thin films - Google Patents
A method of preparing high temperature superconducting thin films Download PDFInfo
- Publication number
- CS267358B1 CS267358B1 CS879535A CS953587A CS267358B1 CS 267358 B1 CS267358 B1 CS 267358B1 CS 879535 A CS879535 A CS 879535A CS 953587 A CS953587 A CS 953587A CS 267358 B1 CS267358 B1 CS 267358B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- layers
- oxygen
- minutes
- pressure
- preparation
- Prior art date
Links
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Riešenie sa týká spósobu přípravy vysokoteplotných supravodivých tenkých vrstiev, ktorého podstata je v tom, že vrstvy sa nanášajú kodepozíciou prvkov vzácných zemin, pričom vákuové nanášanie sa deje pri tlaku kyslíka 10-2 Pa a teplote podložky 550 a 650 °C, po skončení nanášania sa vrstvy temperujú ďa ej pri teplote podložky 550 až 650 °C pri tlaku kyslíka 1 až 3 Pa po dobu 10 až 30 minút, potom je vrstva nechaná v kyslíku s tlakom 104 Pa po dobu 30 až 60 minút pri izbovej teplote. Riešenie má využitie v oblasti kryoelektronických štruktúr, pri príprave detekčných zariadení slabých magnetických polí a príprave štruktúr pre rýchly přenos informácií.The solution concerns the method of preparing high-temperature superconducting thin layers, the essence of which is that the layers are applied by co-deposition of rare earth elements, while the vacuum deposition takes place at an oxygen pressure of 10-2 Pa and a substrate temperature of 550 and 650 °C, after the application is finished, the layers are further tempered at a substrate temperature of 550 to 650 °C at an oxygen pressure of 1 to 3 Pa for 10 to 30 minutes, then the layer is left in oxygen with a pressure of 104 Pa for 30 to 60 minutes at room temperature. The solution is used in the field of cryoelectronic structures, in the preparation of detection devices for weak magnetic fields and the preparation of structures for rapid information transfer.
Description
(57) Riešenie sa týká spósobu přípravy vysokoteplotných supravodivých tenkých vrstiev, ktorého podstata je v tom, že vrstvy sa nanášajú kodepozíciou prvkov vzácných zemin, pričom vákuové nanášanie sa deje pri tlaku kyslíka IO~2 Pa a teplote podložky 550 a 650 °C, po skončení nanášania sa vrstvy temperujú ďa ej pri teplote podložky 550 až 650 °C pri tlaku kyslíka 1 až 3 Pa po dobu 10 až 30 minút, potom je vrstva nechaná v kyslíku s tlakom 104 Pa po dobu 30 až 60 minút pri izbovej teplote. Riešenie má využitie v oblasti kryoelektronických štruktúr, pri príprave detekčných zariadení slabých magnetických polí a príprave štruktúr pre rýchly přenos informácií. CS 267358 B1 CS 267 358 Bl 1(57) The present invention relates to a process for the preparation of high temperature superconducting thin films, the principle of which is to deposit the layers by the codeposition of rare earth elements, the vacuum deposition being carried out at an oxygen pressure of 10 ~ 2 Pa and a pad temperature of 550 and 650 ° C, at the end of the application, the layers are tempered at a substrate temperature of 550 to 650 ° C at an oxygen pressure of 1 to 3 Pa for 10 to 30 minutes, then the layer is left in oxygen with a pressure of 10 4 Pa for 30 to 60 minutes at room temperature. The solution is used in the field of cryoelectronic structures, in the preparation of weak magnetic field detection devices and in the preparation of structures for the rapid transmission of information. EN 267358 B1 EN 267 358 B1
Vynález sa týká spósobu přípravy vysokoteplotných supravodivých tenkých vrstiev na báze prvkov vzácných zemin, napr. Y, Ba, La, Lu atd’., bez dodatočného žíhania v kyslíkovej atmosféře po vytiahnutí z vákuovej aparatúry. Příprava tenkých supravodivých vrstiev vákuovými metodami, s ciel’om získať vysokoteplotně supravodivé vrstvy na báze prvkov vzácných zemin vyžaduje po vybratí vzoriek z depozičnej vákuovej aparatúry dodatočné žíhanie v kyslíkovej atmosféře pri teplote 800 až 900 °C. V dósledku tohoto dodatočného žíhania dochádza ku kryštalizácii vrstvy v tetragonálnej fáze a pri pomalom ochladzovaní k přechodu do orthorombickej fázy, ktorá je zodpovědná za supravodivosť pri teplotách kvapalného dusíka.The present invention relates to a process for the preparation of high-temperature superconducting rare-earth thin films, e.g., Y, Ba, La, Lu, etc., without additional annealing in an oxygen atmosphere after withdrawal from the vacuum apparatus. The preparation of thin superconducting layers by vacuum methods, with the aim of obtaining high-temperature superconducting layers on the basis of rare earth elements requires additional annealing in an oxygen atmosphere at a temperature of 800 to 900 ° C after sampling from the deposition vacuum apparatus. As a result of this additional annealing, the tetragonal phase is crystallized and is slowly converted to the orthorhombic phase, which is responsible for superconductivity at liquid nitrogen temperatures.
Medzi známe postupy přípravy supravodivých vrstiev patří napr. příprava vrstiev YiBa2Cu3Ov viď Dijkkamp, D. — Venkatesan, T. — Wu, X. D. and al.: Preparation of Y-Ba-Cu Oxide superconductor thin films using pulsed laser evaporation from high Tc bulk materiál, Appl. phys. lett., 1987, 51, s. 613 až 629, kde po depozícii sa vtstva vyberie z vákuovej aparatúry a v peci sa dodatočne žíhá v kyslíkovej atmosféře pri teplote 900 °C po dobu 30 minút s následným žíháním pri teplote 540 °C po dobu 10 hodin.Known processes for the preparation of superconducting layers include, for example, the preparation of YiBa2Cu3Ov layers, see Dijkkamp, D. - Venkatesan, T. - Wu, XD and al .: Preparation of Y-Ba-Cu Oxide Superconductor Thin Films Using Pulsed Laser Evaporation from High Tc Bulk Material , Appl. phys. Lett., 1987, 51, pp. 613-629, where after deposition the vine is removed from the vacuum apparatus and the furnace is additionally annealed in an oxygen atmosphere at 900 ° C for 30 minutes followed by annealing at 540 ° C for 10 hours.
Pri doteraz známých postupoch přípravy vysokoteplotných supravodivých vrstiev je nutné po skončení depozičného procesu a vybratí vzoriek na laboratórnu atmosféru používať pec s možnosťou přívodu kyslíka do priestoru, kde sa nachádza vzorka.In the hitherto known processes for the preparation of high-temperature superconducting layers, it is necessary to use an oxygen-supplying furnace in the sample room after the deposition process has been completed and the samples for laboratory atmosphere have been removed.
Uvedené nedostatky odstraňuje spósob přípravy vysokoteplotných supravodivých tenkých vrstiev na báze prvkov vzácných zemin podlá vynálezu, ktorého podstata spočívá v tom, že vrstvy sa nanášajú kodepozíciou prvkov vzácných zemin pri tlaku kyslíka 10"’ Pa a teplote podložky 550 až 650 °C, po skončení nanášania sa vrstvy ponechajú vo vákuovej aparatúre pri teplote 550 až 650 °C, pri tlaku kyslíka 1 až 3 Pa po dobu 10 až 30 minút a nakoniec sa vrstva nechá ochladil na izbovú teplotu v kyslíku s tlakom 104 Pa po dobu 30 až 60 minút. Výhoda uvedeného postupu je i v tom, že sa nemusí použiť pec pre dodatočné žíhanie vzoriek, a keďže vzorka je supravodivá už vo vákuovej aparatúre, je možné naparoval ďalšie vrstvy potřebné pri tvorbě elektronických štruktúr bez porušenia vákua, čím zamedzíme degradácii supravodivej vrstvy vodnými parami, resp. iným znečištěním a tak připravil požadovanú štruktúru v dobrej kvalitě, bez degradácie vlastností obvodu.The above drawbacks are overcome by the method of the invention for the preparation of high-temperature superconducting rare-earth thin films, wherein the layers are applied by codeposition of rare earth elements at an oxygen pressure of 10 µm and a substrate temperature of 550 to 650 ° C, after application of the coating the layers are kept in a vacuum apparatus at 550 to 650 ° C, at an oxygen pressure of 1 to 3 Pa for 10 to 30 minutes, and finally the layer is allowed to cool to room temperature in oxygen with a pressure of 104 Pa for 30 to 60 minutes. the process is also in that there is no need for an additional annealing furnace, and since the sample is superconducting already in the vacuum apparatus, it is possible to steam additional layers needed to form electronic structures without disturbing the vacuum, thereby avoiding degradation of the superconducting layer by water vapor other contamination and thus prepare the desired structure in good quality, without degrading circuit properties.
Tenká vrstva, připravená kodepozíciou z troch termických zdrojov pri tlaku kyslíka 10"2 Pa, pri teplote podložky 550 °C a hrúbke vrstvy 0,7 pm so zložením blízkým YiBa2Cu3Ox, je po napaření nechaná pri teplote podložky 550 °C a tlaku kyslíka 3 Pa po dobu 10 minút. Následovalo schladnutie podložky na izbovú teplotu pri tlaku kyslíka 104 Pa a vzorka bola ponechaná pri tomto tlaku po dobu 60 minút. Nakoniec vzorka bola vytiahnutá z vákuovej aparatúry a vykazovala supravodivé vlastnosti. V druhom příklade je vzorka připravená ako v prvom příklade pri teplote podložky 650 °C, po napaření nechaná pri teplote podložky 650 °C a tlaku kyslíka 1 Pa po dobu 30 minút. Následovalo schladnutie podložky na izbovú teplotu pri tlaku kyslíka 104 Pa a vzorka bola ponechaná pri tomto tlaku po dobu 30 minút. Nakoniec vzorka bola vytiahnutá z vákuovej aparatúry a vykazovala supravodivé vlastnosti.A thin layer prepared by codeposition from three thermal sources at an oxygen pressure of 10 2 Pa, at a substrate temperature of 550 ° C and a layer thickness of 0.7 µm with a composition close to YiBa 2 Cu 3 O x, is left at a pad temperature of 550 ° C and an oxygen pressure of 3 Pa. After 10 minutes, the pad was cooled to room temperature under an oxygen pressure of 10,000 Pa and the sample was left at this pressure for 60 minutes, finally the sample was withdrawn from the vacuum apparatus and showed superconducting properties. at a substrate temperature of 650 ° C, after evaporation at a substrate temperature of 650 ° C and an oxygen pressure of 1 Pa for 30 minutes, followed by cooling of the substrate to room temperature at a pressure of 104 Pa and leaving the sample at this pressure for 30 minutes. the sample was withdrawn from the vacuum apparatus and showed superconducting properties.
Vynález má využitie v oblasti tvorby kryomikroelektronických štruktúr, s možnosťou využitia týchto mikroštruktúr ako senzorov na detekciu slabých magnetických polí, resp. na rýchly přenos informácií s frekvenciou rádovo 101 až 102 GHz.The invention has utility in the field of cryomicroelectronic structures, with the possibility of using these microstructures as sensors for detecting weak magnetic fields, respectively. for fast information transfer with a frequency range of 101 to 102 GHz.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS879535A CS267358B1 (en) | 1987-12-21 | 1987-12-21 | A method of preparing high temperature superconducting thin films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS879535A CS267358B1 (en) | 1987-12-21 | 1987-12-21 | A method of preparing high temperature superconducting thin films |
Publications (2)
Publication Number | Publication Date |
---|---|
CS953587A1 CS953587A1 (en) | 1989-07-12 |
CS267358B1 true CS267358B1 (en) | 1990-02-12 |
Family
ID=5445269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS879535A CS267358B1 (en) | 1987-12-21 | 1987-12-21 | A method of preparing high temperature superconducting thin films |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS267358B1 (en) |
-
1987
- 1987-12-21 CS CS879535A patent/CS267358B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS953587A1 (en) | 1989-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hubler | Pulsed laser deposition | |
US4882312A (en) | Evaporation of high Tc Y-Ba-Cu-O superconducting thin film on Si and SiO2 with a zirconia buffer layer | |
Zhang et al. | Metalorganic chemical vapor deposition of Tl2CaBa2Cu2O y superconducting thin films on sapphire | |
Wood | Role of atomic-scale roughness in surface-enhanced Raman scattering | |
Mankiewich et al. | High critical-current density Ba2YCu3O7 thin films produced by coevaporation of Y, Cu, and BaF2 | |
Findikoglu et al. | Sr2AlTaO6 films for multilayer high‐temperature superconducting device applications | |
Chu et al. | Surface engineering of the flexible metallic substrate by SDP‐Gd‐Zr‐O layer for IBAD‐MgO templates | |
CS267358B1 (en) | A method of preparing high temperature superconducting thin films | |
Hammond et al. | Superconducting properties of Nb3 (Al, Ge) prepared by vacuum vapor deposition of the elements | |
KR100193053B1 (en) | Manufacturing method of high temperature superconducting thin film | |
JPH01152770A (en) | Substrate with superconducting thin film | |
CS268584B1 (en) | A method of heat treating high temperature superconducting thin films | |
JPH0337913A (en) | Oxide superconductor thin film material | |
KR920009654B1 (en) | Lanthanum aluminate thin film manufacturing sputtering target manufacture method | |
Kúš et al. | Preparation of Gd-Ba-Cu-O superconducting thin films on silicon substrates by magnetron sputtering | |
Komatsu | High-Tc superconducting glass-ceramics and fibers | |
JPH03109204A (en) | Production of superconducting thin film | |
Renk | Infrared Studies of Thallium Cuprate Superconductors | |
JPH01100818A (en) | High temperature superconducting material | |
Chang et al. | Laser deposition of quality high T/sub c/superconductor films | |
Berdahl et al. | Sputtering of high-temperature superconductors: A bibliography | |
Durny et al. | Non-resonant microwave absorption in high-Tc thin films | |
JPH01176216A (en) | Method for producing composite oxide superconducting thin film | |
Van Veen et al. | Properties of Bi-Sr-Ca-Cu oxide films produced by laser ablation deposition | |
Kasuga et al. | Bi–Sr–Ca–Cu–O superconducting thin plates prepared by glass-ceramic processing: Dependence of Tc on the thickness |