CS267073B1 - Method of aryloxyalkanecarboxylic acids preparation - Google Patents
Method of aryloxyalkanecarboxylic acids preparation Download PDFInfo
- Publication number
- CS267073B1 CS267073B1 CS869793A CS979386A CS267073B1 CS 267073 B1 CS267073 B1 CS 267073B1 CS 869793 A CS869793 A CS 869793A CS 979386 A CS979386 A CS 979386A CS 267073 B1 CS267073 B1 CS 267073B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- compounds
- catalyst
- aryloxy
- oxygen
- amount
- Prior art date
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Riešenie sa týká spósobu pripravy aryloxyalkánkarboxylových kyselin oxidáciou aryloxyalkoholov kyslíkom alebo kyslík obsahujúcim plynom vo vodno-alkalickom prostředí pri teplote 50 až 110 °C a tlaku 0,1 až 1,0 MPa v přítomnosti katalyzátora, ktorým je paládium nanesené v množstve 2 až 8 % hmot. na anorganickom nosiči, aktivované zlúčeninami mangánu alebo kobaltu samotnými alebo v kombinácii so zlúčeninami kadmia, alebo kombináciami zlúčenin bizmutu so zlúčeninami zinku, pričom množstvo katalyzátora vztiahnuté na aryloxyalkohol je 0,5 až 20 % hmot. a množstvo aktivátora 10~5 až 10"^ molu zlúčeniny kovu na 1 mól aryloxyalkoholu. Riešenie je možné využiť v chemickom priemysle.The present invention relates to a process for the preparation of aryloxy-alkane carboxylic acids acids by oxidation of aryloxy alcohols oxygen or oxygen containing gas in water-alkaline medium at at a temperature of 50 to 110 ° C and a pressure of 0.1 to 1.0 MPa in the presence of a palladium catalyst 2 to 8 wt. on the inorganic carrier, activated by the compounds manganese or cobalt alone or in combination with cadmium compounds, or combinations thereof bismuth compounds with zinc compounds, wherein the amount of catalyst is based the aryloxy alcohol is 0.5 to 20 wt. and an amount of activator of 10 -5 to 10 µmol of compound metal per 1 mole of aryloxyalcohol. solution can be used in the chemical industry.
Description
2 CS 267 073 Bl
Vynález sa týká spósobu přípravy aryloxyalkánkarboxylových kyselin oxidáciou aryloxy-alkoholov kyslíkom alebo kyslík obsahujúcim plynom vo vodno-alkalickom prostředí za přítom-nosti katalyzátora.
Fenoxyoctové kyseliny sú hodnotné medziprodukty a majú hospodářsky význam ako herbicidy.Dóležitú skupinu herbicídov tvoria fenoxyoctové kyseliny substituované na benzénovom jadre,ako napr. 2-metyl-4-chlórfenoxyoctové kyselina, 2,4-dichlór-fenoxyoctová kyselina a 2-(2--metyl-4-chlórfenoxy)-propánkarboxylová kyselina. Tieto zlúčeniny sa technicky pripravujúzahrievaním příslušných fenolov s kyselinami (monochlóroctovou alebo 2-chlórpropiónovou)v přebytku vodného roztoku hydroxidu sodného. Pri tomto postupe je však nutné pracovats prebytkom príslušnej kyseliny, ktorá sa znehodnotí pri izolácii produktu. Z ekologického híadiska sú výhodnéjšie oxidačně postupy, ^ri ktorých sa příslušnýalkohol oxiduje vzduchom alebo kyslíkom v přítomnosti Pd/C, resp. Pt/C katalyzátorov vovodno-alkalickom prostředí. Obsah platinových kovov na nosiči sa mění v rozmedzí 2,5 až10 % hmot. (Ioffe I. I. Nikolsev Ju. T., Brodskij M. S.: Kinetika i kataliz. 1, 125 /1960/; SU 130 510) . Nevýhodou tohoto postupu je, že pri použití katalyzátorov typu Pt/C reakciaje málo selektívna, pričom prebieha oxidačně štiepenie za vzniku příslušného fenolu a CC^.Ďalšou nevýhodou je, že sa musí používat čerstvo připravený katalyzátor, musí sa pracovats nízkou koncentráciou fenoxyetanolu a pri opátovnom použití katalyzátora prudko klesávýtažok fenoxyoctovéj kyseliny (Ioffe I. I. Nikolaev Ju. T., Suchareva G. A. Ž. fiz. chim. 42, 266 /1968/) . * V GB 1 590 614 je opísané použitie samotného paládia ako katalyzátora oxidácie monoal-kyl, resp. monoalkylaryléterov polyetylénglykolu alebo polypropylénglykolu alebo ich zmesí,chemicky značné odlišných od jednoduchých substituovaných fenyl-2-hydroxyetyléterov, resp.fenyl-2-hydroxy-l-metyléterov.
Predmetom EP 73 545 je spósob přípravy éterkarboxylátov oxidáciou éteralkoholov s 88-percentnou konverziou, avšak v přítomnosti zmesi Pt a Pd katalyzátora. Výrazné zvýšenie aktivity a selektivity katalyzátora sa uvádza v DE 2 851 788, podláktorého sa oxidácia aryloxyetanolov uskutoČňuje v přítomnosti Pt alebo Pd katalyzátoradopovaného aktivátormi, ktorými sú zlúčeniny olova alebo bizmutu samotné alebo v kombiné-cii s kadmiom, resp. jeho zlúčeninami.
Teraz sa zistilo, že aryloxyalkánkarboxylové kyseliny všeobecného vzorca I r2 -O-C(H-COOH <:c) 1 2
v ktorom R znamená vodík alebo metyl a R a R sú rovnaké alebo rožne a znamenajú vodík,chlór alebo metyl, je možné připravit oxidáciou aryloxyalkoholov všeobecného vzorca II
1 2 v ktorom R, R , R majú už uvedený význam, kyslíkom alebo kyslík obsahujúcim plynom vo vod-no-alkalickom prostředí pri teplote 50 až 110 °C, tlaku 0,1 až 1,0 MPa v přítomnosti kataly-zátora, ktorým je paládium nanesené v množstve 2 až 8 % hmot. na anorganickom nosiči podlávynálezu. Podstata vynálezu spočívá v tom, že paládium je aktivované zlúčeninami mangánualebo kobaltu samotnými alebo v kombinácii so zlúčeninami kadmia, alebo kombináciou zlúčenín CS 267 073 Bl 3 bizmutu so zlúčeninami zinku. Množstvo katalyzátora vztiahnuté na aryloxyalkc. e 0,5• -5 -d , až 20 % hmot. a množstvo aktivátorov 10 až 10 molu zlúčeniny kovu na 1 mol aryloxyalko-holu.
Ako nosič sa m6že použit aktivně uhlie alebo CaCOj. Aktivátory sa přidávájú ku kataly-zátoru Pd/nosič vo formě vodných roztokov, resp. roztokov zriedených kyselin, z ktorýchv přítomnosti zásad vzniknú příslušné nerozpustné zlúčeniny.
Oxidácia podlá vynálezu sa uskutočňuje v přítomnosti alkálií, napr. NaOH, KOH aleaj Na2CO3, K2CO3· Množstvo alkálií sa volí tak, že na 1 mól oxidáciou vzniknutéj -COOH sku-piny sa přidá 0,5 až 5 mólov, s výhodou 1 až 3 moly alkálie.
Koncentrácia oxidovaného aryloxyalkoholu sa volí tak, aby vznikajúca aryloxyalkánkarbo-xylová kyselina zostávala počas reakcie rozpustná v reakčnom prostředí a nevypadávala akotuhá fáza. Vhodné sú koncentrácie od 5 do 30 % hmot. Výhoda spĎsobu podlá vynálezu spočívá v tom, že na aktiváciu, Pd-katalyzátora možnopoužit bežne dostupné zlúčeniny. mangánu (Mn/NO3/2 . 6 H20, MnCl2 . 4 H2O, MnS04 . 7 H20),kobaltu (Co/N03/2 . 6 H2O, CoCl2 . 6 H2O, CoS04 . 7 H2O),kadmia (CdCl2, Cd/NO3/2 . 4 H2O, CdSO4), bizmutu (Bi/NO3/3 . 5 H2O, BiClj), zinku (ZnCl2, ZnSO4 . 7 H2O, Zn/NO3/2 . 6 H2O).
Použitím aktivátorov Pd-katalyzátora podlá vynálezu sa výrazné skráti reakčný časoproti tomu, ked sa použije Pd-katalyzátor bez aktivátorov a dosiahne sa vysoká selekti-vita a životnost Pd-katalyzátora. S takto aktivovaným Pd-katalyzátorom je naviac možnépracovat pri nízkom tlaku kyslika a vysokej koncentrácii oxidovaného aryloxyalkoholu v ná-sadě .
Uvedené příklady ilustrujú, ale neobmedzujú predmet vynálezu. Příklad 1
Do 100 ml miešaného poloprietokového reaktora z nehrdzavejúcej ocele, opatřeného meračomteploty, prívodom a odvodom plynu, vonkajším plášťom na ohřev reaktora sa nadávkovalo 0,65gramov katalyzátora (aktivně uhlie s obsahom 5 % hmot. Pd) , 1 ml kyslého roztoku Mn/NO3/2 . . 6 H2O s obsahom 0,015 g Mn/NO3Z . 6 H2O, 50 ml 2,7 N NaOH a 15,2 g 2-metylfenoxyetanolu.
Po vypudení vzduchu z reakčnej nádoby kyslíkom sa zaplo miešanie a reakčná zmes sazahriala na 80 °C. Pri tejto teplote sa zavádzal do reakčnej zmesi kyslík pri tlaku 0,2 MPa.Priebeh reakcie sa kontroloval v pravidelných intervaloch analýzou obsahu kyslika v odplynea reakcia sa ukončila, ked už nedochádzalo k spotřebovávanou kyslika ~180 min. Po ukončeníreakcie sa za tepla odfiltroval z reakčnej zmesi katalyzátor a filtrát sa okyslil 2N roztokomkyseliny chlorovodíkovéj na pH = 1.
Po odfiltrovaní a vysušení koláča sa získalo 15,6 g bielej kryštalickej látky, v ktorejsa GLC analýzou stanovilo 0,4 % hmot. o-krezolu, 1,4 % hmot. nezreagovaného 2-metylfenoxyeta-nolu a 95,7 i hmot. 2-metylfenoxyoctovej kyseliny. Výťažok 2-metylfenoxyoctovej kyselinypředstavuje 90 % teorie.
2 CS 267 073 Bl
The invention relates to a process for the preparation of aryloxy-alkane carboxylic acids by oxidation of aryloxy-alcohols with oxygen or oxygen-containing gas in an aqueous-alkaline medium in the presence of a catalyst.
Phenoxyacetic acids are valuable intermediates and are of economic importance as herbicides. An important group of herbicides are phenoxyacetic acids substituted on the benzene ring, such as 2-methyl-4-chlorophenoxyacetic acid, 2,4-dichloro-phenoxyacetic acid and 2- (2--). methyl 4-chlorophenoxy) propanecarboxylic acid. These compounds are technically prepared by heating the corresponding phenols with acids (monochloroacetic acid or 2-chloropropionic acid) in an excess of aqueous sodium hydroxide solution. However, in this process, it is necessary to work with an excess of the corresponding acid which is destroyed when the product is isolated. From an ecological point of view, oxidation processes are preferable whereby the respective alcohol is oxidized by air or oxygen in the presence of Pd / C, respectively. Pt / C catalysts in water-alkaline media. The carrier metal platinum content varies from 2.5 to 10% by weight. (Ioffe II Nikolsev Ju. T., Brodsky MS: Kinetics and Catalyst 1, 125/1960 /; SU 130 510). A disadvantage of this process is that, when using Pt / C catalysts, the reaction is poorly selective, with oxidative cleavage resulting in the corresponding phenol and CCl4. Another disadvantage is that freshly prepared catalyst must be used and low phenoxyethanol concentrations must be used and at the using a catalyst to rapidly decompose phenoxyacetic acid (Ioffe II Nikolaev Ju. T., Suchareva GA et al., chim. 42, 266 (1968)). GB 1 590 614 discloses the use of palladium itself as a monoalkylated oxidation catalyst. monoalkylaryl ethers of polyethylene glycol or polypropylene glycol or mixtures thereof, chemically distinct from simple substituted phenyl-2-hydroxyethyl ethers and phenyl 2-hydroxy-1-methyl ethers, respectively.
EP 73 545 discloses the preparation of ether carboxylates by oxidation of ether alcohols with 88% conversion, but in the presence of a mixture of Pt and Pd catalysts. A significant increase in the activity and selectivity of the catalyst is disclosed in DE 2 851 788, whereby oxidation of aryloxyethanes is carried out in the presence of Pt or Pd catalyzed by activators, which are lead or bismuth compounds alone or in combination with cadmium, respectively. its compounds.
It has now been found that aryloxyalkanecarboxylic acids of the formula I 2 -OC (H-COOH <: c) 1 2
wherein R is hydrogen or methyl and R and R are the same or spit and are hydrogen, chloro or methyl, may be prepared by oxidation of aryloxy alcohols of formula II
Wherein R, R, R are as defined above with oxygen or oxygen-containing gas in an aqueous-alkaline medium at a temperature of 50 to 110 ° C, a pressure of 0.1 to 1.0 MPa in the presence of a catalyst to which the palladium is deposited in an amount of 2 to 8 wt. on the inorganic substrate of the invention. SUMMARY OF THE INVENTION The present invention is based on the fact that palladium is activated by compounds of manganese or cobalt alone or in combination with cadmium compounds, or a combination of compounds of CS 267 073 B1 bismuth with zinc compounds. Catalyst amount based on aryloxyalk. e 0.5 • -5 -d, up to 20% wt. and an amount of activators of 10 to 10 moles of metal compound per mole of aryloxyalkool.
Carbon or CaCO3 may be used as the carrier. Activators are added to the Pd / catalyst support in the form of aqueous solutions, respectively. dilute acid solutions to form the insoluble compounds in the presence of bases.
The oxidation according to the invention is carried out in the presence of alkali, e.g. NaOH, KOH and Na2CO3, K2CO3. The amount of alkali is chosen such that 0.5 to 5 mol, preferably 1 to 3, are added per mole by oxidation of the -COOH group formed. moles of alkali.
The concentration of the oxidized aryloxyalcohol is selected such that the resulting aryloxyalkanecarboxylic acid remains soluble in the reaction medium during the reaction and does not fall off the acute phase. Concentrations of from 5 to 30% by weight are suitable. An advantage of the process of the invention is that commercially available compounds can be used to activate the Pd catalyst. of manganese (Mn / NO 3/2. 6 H 2 O, MnCl 2. 4 H 2 O, MnSO 4 .7 H 2 O), cobalt (Co / N03 / 2. 6 H 2 O, CoCl 2. 6 H 2 O, CoSO 4 .7 H 2 O), cadmium (CdCl 2, Cd / NO3 / 2 .4 H2O, CdSO4), bismuth (Bi / NO3 / 3. 5 H2O, BiCl2), zinc (ZnCl2, ZnSO4 .7 H2O, Zn / NO3 / 2.6 H2O).
By using the Pd catalyst activators according to the invention, the reaction time is considerably shortened when the Pd catalyst is used without activators and a high selectivity and lifetime of the Pd catalyst is achieved. Moreover, with the Pd catalyst activated in this way, it is possible to work at low oxygen pressure and a high concentration of oxidized aryloxyalcohol in the composition.
These examples illustrate but do not limit the invention. Example 1
0.65 grams of catalyst (activated carbon containing 5 wt% Pd), 1 ml of acidic solution Mn / NO3 / 2 were metered into 100 ml of a stirred, semi-flow stainless steel reactor equipped with a meter, gas inlet and outlet, outer jacket for reactor heating. . . 6 H2O containing 0.015 g Mn / NO3Z. 6 H 2 O, 50 mL 2.7 N NaOH and 15.2 g 2-methylphenoxyethanol.
After expelling oxygen from the reaction vessel, stirring was started and the reaction mixture was heated to 80 ° C. At this temperature, oxygen was introduced into the reaction mixture at a pressure of 0.2 MPa. The course of the reaction was checked at regular intervals by analyzing the oxygen content of the off-gas and the reaction was stopped when no more oxygen was consumed ~ 180 min. After the reaction was complete, the catalyst was filtered hot from the reaction mixture and the filtrate was acidified to pH = 1 with 2N hydrochloric acid.
After filtering off and drying the cake, 15.6 g of a white crystalline solid were obtained in which 0.4% by weight by GLC analysis was obtained. % o-cresol, 1.4 wt. unreacted 2-methylphenoxyethanol and 95.7 wt. 2-methylphenoxyacetic acid. The yield of 2-methylphenoxyacetic acid is 90% of theory.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS869793A CS267073B1 (en) | 1986-12-22 | 1986-12-22 | Method of aryloxyalkanecarboxylic acids preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS869793A CS267073B1 (en) | 1986-12-22 | 1986-12-22 | Method of aryloxyalkanecarboxylic acids preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
CS979386A1 CS979386A1 (en) | 1989-05-12 |
CS267073B1 true CS267073B1 (en) | 1990-02-12 |
Family
ID=5446569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS869793A CS267073B1 (en) | 1986-12-22 | 1986-12-22 | Method of aryloxyalkanecarboxylic acids preparation |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS267073B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102180789A (en) * | 2011-03-25 | 2011-09-14 | 山东潍坊润丰化工有限公司 | Method for preparing aryloxycarboxylic acid technical |
-
1986
- 1986-12-22 CS CS869793A patent/CS267073B1/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102180789A (en) * | 2011-03-25 | 2011-09-14 | 山东潍坊润丰化工有限公司 | Method for preparing aryloxycarboxylic acid technical |
Also Published As
Publication number | Publication date |
---|---|
CS979386A1 (en) | 1989-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1103272A (en) | Process for producing carboxylic esters | |
US4328373A (en) | Method of preparing aldehydes | |
CN101234351A (en) | Catalyst for synthesizing vanillin and derivative and preparation | |
CN103524343B (en) | Method for synthesizing hydroxy-propyl acrylate | |
GB1333173A (en) | Process for preparing phenylesters of aliphatic carboxylic acids | |
CN114988990B (en) | Preparation method of vanillin | |
US5220054A (en) | Process for producing aminocarboxylic acid salt | |
CA1100528A (en) | Process for producing pyruvic acid | |
CN105601588A (en) | Method for synthesizing N-hydroxyethylpiperazine and piperazine by means of co-production | |
CN106831352A (en) | A kind of method of the direct phenol processed of dioxygen oxidation benzene | |
RU2186055C2 (en) | Method of synthesis of derivatives 3-carboxy-4-hydroxybenzaldehyde, method of synthesis of 4-hydroxybenzaldehyde, methods of synthesis of vanillin and ethylvanillin | |
US4238625A (en) | Process for the preparation of aryloxyacetic acid | |
EP3212608B1 (en) | Oxidative esterification process for making methyl methacrylate | |
CS267073B1 (en) | Method of aryloxyalkanecarboxylic acids preparation | |
CN102557908A (en) | Preparation method of 2- (cyclohex-1' -enyl) cyclohexanone | |
US4242525A (en) | Process for producing salts of pyruvic acid | |
US3859317A (en) | Process of preparing p-benzoquinone | |
CN100596296C (en) | Nicotinic acid preparing process | |
CN110105207B (en) | One-step oxidation esterification process and application of p-hydroxybenzaldehyde | |
CS209932B2 (en) | Method of making the phenylglyxole acid | |
US5756853A (en) | Process for the preparation of a substituted 4-hydroxybenzaldehyde | |
US3944622A (en) | Method for producing ketones | |
RU2024487C1 (en) | Process for praparing isovaleric acid | |
CN111825711B (en) | Vanadium pyridine catalyst for preparing 2, 5-dichlorophenol by catalytic oxidation and synthesis method and application thereof | |
CN115646488B (en) | Application of catalyst in preparation of 1, 5-pentanediamine through decarboxylation of L-lysine |