CS265334B1 - Vessel propeller measuring device - Google Patents

Vessel propeller measuring device Download PDF

Info

Publication number
CS265334B1
CS265334B1 CS878321A CS832187A CS265334B1 CS 265334 B1 CS265334 B1 CS 265334B1 CS 878321 A CS878321 A CS 878321A CS 832187 A CS832187 A CS 832187A CS 265334 B1 CS265334 B1 CS 265334B1
Authority
CS
Czechoslovakia
Prior art keywords
bearing
measuring
measuring element
propeller
protrusions
Prior art date
Application number
CS878321A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS832187A1 (en
Inventor
Frantisek Ing Bruna
Tomas Kopas
Original Assignee
Frantisek Ing Bruna
Tomas Kopas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frantisek Ing Bruna, Tomas Kopas filed Critical Frantisek Ing Bruna
Priority to CS878321A priority Critical patent/CS265334B1/en
Publication of CS832187A1 publication Critical patent/CS832187A1/en
Publication of CS265334B1 publication Critical patent/CS265334B1/en

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Riešenie sa týká zariadenia pre meranie náporu vrtule plavidla v hriadelovom vedení. Velkost náporu sa určuje meraním axiálnej sily pomocou měrného člena, ktorý je umiestnený medzi čelnú stranu vonkajšieho krúžku radiálně axiálneho ložiska a teleso ložiska. Měrný člen je v tvare medzikružia s výstupkami na obidvoch stranách. Medzi výstupkami sú umiestnené aktivně tenzometre, ktoré snímájú velkost cii formácie měrného člena. Kompenzačně t> iizometre sú umiestnené na vnútornej straně výstupkov. Měrný člen je možné využit tam, kde je třeba registrovat axiálně sily z valivého ložiska.The solution concerns a device for measuring the thrust of a vessel propeller in a shaft guide. The magnitude of the thrust is determined by measuring the axial force using a measuring element, which is placed between the front side of the outer ring of a radial-axial bearing and the bearing body. The measuring element is in the shape of an annulus with protrusions on both sides. Active strain gauges are placed between the protrusions, which sense the magnitude or formation of the measuring element. Compensating strain gauges are placed on the inner side of the protrusions. The measuring element can be used where it is necessary to register axial forces from a rolling bearing.

Description

265334 2265334 2

Vynález sa týká zariadenia pre meranie náporu lodnej vrtule plavidla v hriadelovomaxiálně radiálnom ložisku.BACKGROUND OF THE INVENTION The present invention relates to a device for measuring the propulsion of a ship propeller in a shaft-axial radial bearing.

Doposial známe zariadenia umožňovali meranie'náporu vrtule plavidla len pri přistaveníplavidla do meracieho zariadenia umiestneného v opravárenskéj loděnici. Nevýhodou tohotospósobu merania je, že neumožňuje merat nápor za prevádzky, pretože silové snímače súumiestnené mimo plavidla. Snímanie náporu priamo meraním sily prenášanej v osi hriadelaje nepřesné, pretože hriadel je dimenzovaná najmá na přenos krútiaceho momentu a tlakovénemáhania od axiálnej sily sú radovo menšie ako ostatné namáhanie od krútiaceho momentua ohybu. Toto zariadenie je aj zložitejŠie, nakolko vyžaduje přenos meraných veličin z pohyblivej časti.So far known devices have allowed the measurement of the propeller of the vessel only when the vessel is delivered to a measuring device located in the repair yard. The disadvantage of this method of measurement is that it does not allow the in-service load to be measured because the force transducers are located outside the vessel. Stress sensing directly by measuring the force transmitted in the shaft axis is inaccurate because the shafts are dimensioned for transmitting the torque and the compressive load from the axial force is inferior to the other torque and bending stresses. This device is also more complicated as it requires the transmission of the measured quantities from the moving part.

Vyššie uvedené nedostatky sú odstránené zariadením pre meranie náporu lodnej vrtuleplavidla, zostávajúce z hriadela, ktorý je uložený v ložiskovom telese pomocou radiálněaxiálneho ložiska. Podstata riešenia spočívá v tom, že měrný člen v tvare medzikružias výstupkami na obidvoch stranách je umiestnený medzi čelnú stranu vonkajšieho krúžkuložiska na straně smerom k motoru plavidla a ložiskové teleso. Měrný člen je pevne spojenýs ložiskovým telesom. Vonkajší a vnútorný priemer měrného člena je zhodný s vonkajšíma vnútorným priemerom vonkajšieho krúžku ložiska. Aktivně tenzometre sú umiestnené nabočnej straně měrného člena privrátenej k ložisku tak, že hrana výstupku ležiaceho nastraně měrného člena, ktorá sa dotýká ložiskového telesa, je v polovici aktívneho tenzometra.Kompenzačné tenzometre sú umiestnené na vnútornom priemere měrného člena v mieste výstupkov.The aforementioned drawbacks are eliminated by the device for measuring the propeller thrust, remaining from the shaft, which is supported in the bearing body by a radial-axial bearing. The essence of the solution is that the ring-shaped measuring element by the protrusions on both sides is located between the face of the outer ring bearing on the side facing the vessel motor and the bearing housing. The measuring member is fixedly connected to the bearing body. The outer and inner diameter of the measuring member is identical to the outer inner diameter of the outer bearing ring. The active strain gauges are located on the side of the measuring member facing the bearing, such that the edge of the projection lying on the side of the measuring member that contacts the bearing body is half-active strain gauge. The compensating strain gauges are located on the inside diameter of the measuring member at the point of the projections.

Hlavnou výhodou zistovania náporu vrtule plavidla pomocou měrného člena umiestnenéhov ložisku plavidla je možnosť merania náporu počas prevádzky. To umožňuje v spojení s další-mi veličinami zisťovať technický stav vrtule 1 optimalizoval; prevádzku plavidla počas plavby,čo má vplyv na úsporu paliva. Ďalšou výhodou je, že měrný člen nie je pohyblivý, čo zjednodu-šuje vývod výstupného signálu do vyhodnocovacieho prístroja.The main advantage of finding the propeller's thrust with the aid of the vessel bearing measuring member is the ability to measure the in-service thrust. This allows, in conjunction with other variables, to determine the technical condition of the propeller 1 optimized; vessel operation during navigation, which has an impact on fuel economy. A further advantage is that the measuring member is not movable, which simplifies the output signal output to the evaluation device.

Na obrázku 1 je naznačené umiestnenie měrného člena pre meranie náporu v ložiskovomtelese hriadelového vedenia podlá tohoto vynálezu. Na obrázku 2 je tento měrný člen zobrazenýv náryse a pódoryse, kde sú naznačené miesta umiestnenia tenzometrov. V ložiskovom telese £ je pomocou radiálně axiálneho ložiska _5 uložený hriadel £. Měrnýčlen JI v tvare medzikružia s výstupkami 2 na obidvoch stranách je umiestnený medzi čelnústranu vonkajšieho krúžku ložiska 5^ a ložiskové teleso 6 na straně smerom k motoru plavidla. S ložiskovým telesom je měrný člen pevne spojený. Vnútorný a vonkajší priemer měrnéhočlena JL je zhodný s vnútorným a vonkajším priemerom vonkajšieho krúžku ložiska JS. Výstupky7 sú rovnoměrně rozložené striedavo na obidvoch stranách. Aktivně tenzometre 2 sú umiestnenéna bočnej straně měrného člena privrátenej k ložisku _5 tak, Že hrana výstupku 2 ležiacehona straně měrného člena 3^, ktorá sa dotýká ložiskového telesa j6, je v polovici aktívnehotenzometra, to je v mieste najváčšieho priehybu. Kompenzačné tenzometre 2 sť* umiestnenéna vnútornom priemere měrného člena JL v mieste výstupkov 2' to je v mieste najmenšej deformá-cie. Hermetizácia tenzometrov a ich vývodov k vyhodnocovaciemu zariadeniu je proti vonkajšímvplyvom zabezpečená tmelom. Nápor vrtule vyvolává axiálnu silu prenášanú hriadelom £ cezradiálně axiálně ložisko 5. do vonkajšieho krúžku ložiska cez měrný člen JL do ložiskovéhotelesa £ a dalej do konštrukcie plavidla. Měrný člen 1. má výstupky 2 pravidelné rozmiestnenépo celom obvode, čo umožňuje prenášať axiálnu silu celého obvodu nepohyblivého vonkajšiehokrúžku ložiska Striedavo rozmiestnené výstupky _7 na obidvoch stranách měrného člena_1 vytvárajú nosníky, ktoré sa pósobiacou silou deformujú. Súčet prírastku deformácii indiko-vaný tenzometrami 2 proti kludovej polohe je úměrný prenášanej axiálnej sile, to znamenánáporu. Aktivně tenzometre 2 sú umiestnené v mieste kde je lineárna závislost deformáciena pósobiacej sile. Ciachovanie měrného člena JL vykonané mimo plavidla kde sa zistí charakte-ristika meracieho snímača je nutné korigovat v kludovej polohe vyhodnocovacím prístrojompodlá zmien, ktoré vzniknú v uložení tak, že sa meria len prírastok deformácie, ktorý jeúměrný podlá charakteristiky měrného člena prenášanej sile. část axiálnej sily, ktorá saFigure 1 shows the location of the measuring member for measuring the thrust in the shaft guide shaft of the present invention. Figure 2 is a front elevational view showing the locations of the strain gauges. Shafts 6 are mounted in the bearing body 6 by means of a radially axial bearing 5. The ring-shaped member J1 with the projections 2 on both sides is located between the face of the outer ring of the bearing 5 and the bearing body 6 on the side of the motor. The bearing body is fixedly connected to the bearing body. The inner and outer diameter of the gauge member JL is coincident with the inner and outer diameter of the outer bearing ring JS. The projections 7 are evenly distributed alternately on both sides. Actively the strain gauges 2 are located on the side of the measuring member facing the bearing 5 such that the edge of the protrusion 2 lying on the side of the measuring member 3, which is in contact with the bearing body 6, is in the middle of the active sensor, that is, at the point of the greatest deflection. The compensating strain gauges 2 located at the inner diameter of the measuring member 11 at the location of the protrusions 2 'are at the point of least deformation. Sealing of strain gauges and their outlets to the evaluation device is sealed against sealant. The propeller thrust causes the axial force transmitted by the shaft 6 radially to the bearing 5 axially into the outer ring of the bearing via the measuring element 11 to the bearing hotel 6 and further into the vessel structure. The measuring member 1 has protrusions 2 regularly distributed over the entire circumference, which allows the axial force of the entire circumference of the stationary outer ring of the bearing to be transmitted. The alternately spaced protrusions 7 on both sides of the measuring member 1 form beams deforming with the acting force. The sum of the deformation increments indicated by the strain gauges 2 versus the rest position is proportional to the transmitted axial force, that is to say, the displacement. The actively strain gauges 2 are located at the point where the linear dependence of the deformed acting force. Calibration of the measuring element JL carried out outside the vessel where the characteristic of the measuring sensor is found is to be corrected in the rest position by the evaluation device of the changes that occur in the bearing so that only the deformation increment is measured which is proportional to the characteristic of the measuring element transmitted. part of the axial force that is

Claims (1)

3 265334 vplyvom uložení ložiska í> prenáša třením cez valcovú časť vonkajšieho krúžku ložiska jj do telesa ložiska 6 je malá a neovplyvni výsledok vzhladom na přesnost, ktorá je potřebná pre účely zisťovania velkosti náporu vrtule plavidla. Vyhodnocovanie sa vykonává prístrojom pre dynamické tenzometrické merania. Měrný člen podlá tohoto vynálezu je možné využit v strojárenstve, kde je třeba snímataxiálně sily prenášané ložiskom. PREDMET VYNÁLEZU Zariadenie pre meranie náporu vrtule plavidla, pozostávajúce z hriadela, ktorý jeuložený v ložiskovom telese pomocou radiálně axiálneho ložiska sa vyznačuje tým, že měrnýčlen (1) v tvare medzikružia s výstupkami (7) na obidvoch stranách je umiestnený medzičelnú stranu vonkajšieho krúžku ložiska (5) na straně smerom k motoru plavidla a ložiskovételeso (6), ku ktorému je měrný člen upevněný, kde vonkajší a vnútorný priemer měrnéhočlena (1) je zhodný s vonkajším a vnútorným priemerom vonkajšieho krúžku ložiska (5),pričom aktivně tenzometre (2) sú umiestnené na bočnej straně měrného člena (1) privrátenejk ložisku (5) tak, že hrana výstupku (7) ležiaceho na straně měrného člena (1), ktorása dotýká ložiskového telesa (6) je v polovici aktivneho tenzometra (2) a kompenzačnět&nzometre (3) sú umiestnené na vnútornom priemere měrného člena (1) v mieste výstupkov (7). 1 výkres3 265334 is small and does not affect the result with respect to the accuracy required for the purpose of determining the size of the propeller's propeller due to the bearing bearing being frictionally transferred through the cylindrical portion of the outer bearing ring. The evaluation is performed by a dynamic strain gauge measuring instrument. The measuring element according to the invention can be used in mechanical engineering where the force transmitted by the bearing is to be sensitized. OBJECT OF THE INVENTION A device for measuring the propeller of the propeller, consisting of a shaft which is mounted in a bearing body by means of a radially-axial bearing, characterized in that the annular member (1) with the protrusions (7) on both sides is located on the outer ring of the bearing ring ( 5) on the vessel side of the vessel and the bearing housing (6) to which the measuring element is mounted, wherein the outer and inner diameter of the gauge element (1) is identical to the outer and inner diameter of the bearing outer ring (5), actively the strain gauges (2) are located on the side of the measuring element (1) facing the bearing (5) so that the edge of the protrusion (7) lying on the side of the measuring element (1) which contacts the bearing body (6) is in the middle of the active strain gauge (2) and compensates & the meters (3) are located on the inside diameter of the measuring element (1) at the point of the protrusions (7). 1 drawing
CS878321A 1987-11-19 1987-11-19 Vessel propeller measuring device CS265334B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS878321A CS265334B1 (en) 1987-11-19 1987-11-19 Vessel propeller measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS878321A CS265334B1 (en) 1987-11-19 1987-11-19 Vessel propeller measuring device

Publications (2)

Publication Number Publication Date
CS832187A1 CS832187A1 (en) 1989-01-12
CS265334B1 true CS265334B1 (en) 1989-10-13

Family

ID=5433597

Family Applications (1)

Application Number Title Priority Date Filing Date
CS878321A CS265334B1 (en) 1987-11-19 1987-11-19 Vessel propeller measuring device

Country Status (1)

Country Link
CS (1) CS265334B1 (en)

Also Published As

Publication number Publication date
CS832187A1 (en) 1989-01-12

Similar Documents

Publication Publication Date Title
US6484582B2 (en) Rolling bearing with sensing unit which can be remotely interrogated
EP0156081B1 (en) Pressure transducer
US4285234A (en) Load-measuring devices
US5563349A (en) Diametral extensometer
US4312241A (en) Load cell
JPH0359431A (en) Pressure sensor and calibrating method of the same
EP0814328A2 (en) A device for measuring compressive forces
CS265334B1 (en) Vessel propeller measuring device
US4201081A (en) Pressure responsive sensing device
CN115876368B (en) Force transducer for high-temperature high-pressure water environment and assembly method thereof
CN120043455A (en) Calibration device and test method for fiber grating pipeline deformation sensor
GB1589332A (en) Methods of and apparatus for determining axial thrust in rolling bearings
SU1362969A1 (en) Method of measuring axial force of ship propeller and device for effecting same
US5111690A (en) Valve stem load monitoring system with means for monitoring changes in the valve yoke elongation
US4870271A (en) Method and apparatus for determining the size of defects in rolling element bearings with high frequency capability
GB2036344A (en) Load-measuring devices
SU561887A1 (en) Pressure sensor
SU1362918A1 (en) Device for calibrating strain gauge transducers of deformations in dynamic mode
SU1111040A1 (en) Device for calibration and measuring stop-force of shafting propeller shaft
GB2168498A (en) Thrust measuring devices
SU1719933A1 (en) Contacting pressure test dynamometer
CN223565133U (en) Anchor cable sensor based on optical fiber MEMS technology
SU1610162A1 (en) Device for assessing distribution of contact pressure in annular sealed gap
SU1666928A1 (en) Method of torque transducer calibration
FR2365112A1 (en) Measurement of static or dynamic axial bearing thrust - using strain gauges at deformation region for increased accuracy and reduction of intermediate transfer elements