CS263194B1 - Catalyst for preparing alkylenoxides and/or isomers them - Google Patents
Catalyst for preparing alkylenoxides and/or isomers them Download PDFInfo
- Publication number
- CS263194B1 CS263194B1 CS8610071A CS1007186A CS263194B1 CS 263194 B1 CS263194 B1 CS 263194B1 CS 8610071 A CS8610071 A CS 8610071A CS 1007186 A CS1007186 A CS 1007186A CS 263194 B1 CS263194 B1 CS 263194B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- catalyst
- reaction
- vicinal
- propylene oxide
- diol
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 70
- 239000000203 mixture Substances 0.000 claims abstract description 50
- 239000010457 zeolite Substances 0.000 claims abstract description 16
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 14
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 11
- 239000002253 acid Substances 0.000 claims abstract description 5
- 150000001447 alkali salts Chemical class 0.000 claims abstract description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 4
- 239000011707 mineral Substances 0.000 claims abstract description 4
- 150000007513 acids Chemical class 0.000 claims abstract description 3
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- 230000002195 synergetic effect Effects 0.000 claims abstract description 3
- 150000002009 diols Chemical class 0.000 claims description 33
- 150000005690 diesters Chemical group 0.000 claims description 27
- 238000002360 preparation method Methods 0.000 claims description 8
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 6
- 239000002808 molecular sieve Substances 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 21
- 230000008569 process Effects 0.000 abstract description 13
- 239000002585 base Substances 0.000 abstract description 2
- 150000001735 carboxylic acids Chemical class 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 85
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 44
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 42
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 35
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 35
- 230000036961 partial effect Effects 0.000 description 35
- 235000013772 propylene glycol Nutrition 0.000 description 35
- 239000000758 substrate Substances 0.000 description 33
- 239000000047 product Substances 0.000 description 21
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 18
- VEGXEWGKYMMJKP-UHFFFAOYSA-N 1-hydroxypropyl acetate Chemical group CCC(O)OC(C)=O VEGXEWGKYMMJKP-UHFFFAOYSA-N 0.000 description 17
- MLHOXUWWKVQEJB-UHFFFAOYSA-N Propyleneglycol diacetate Chemical compound CC(=O)OC(C)COC(C)=O MLHOXUWWKVQEJB-UHFFFAOYSA-N 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 14
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 14
- 239000000306 component Substances 0.000 description 14
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 12
- 238000000197 pyrolysis Methods 0.000 description 12
- 238000011068 loading method Methods 0.000 description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 8
- 239000007795 chemical reaction product Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 8
- 238000006137 acetoxylation reaction Methods 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- -1 hydroxy esters Chemical class 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 235000011056 potassium acetate Nutrition 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 150000002924 oxiranes Chemical class 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000007806 chemical reaction intermediate Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 239000002638 heterogeneous catalyst Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- YJNKLTDJZSXVHQ-UHFFFAOYSA-N 1-hydroxypropan-2-yl acetate Chemical compound OCC(C)OC(C)=O YJNKLTDJZSXVHQ-UHFFFAOYSA-N 0.000 description 2
- PPPFYBPQAPISCT-UHFFFAOYSA-N 2-hydroxypropyl acetate Chemical compound CC(O)COC(C)=O PPPFYBPQAPISCT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- JABXMSSGPHGCII-UHFFFAOYSA-N acetic acid;propane-1,2-diol Chemical class CC(O)=O.CC(O)CO JABXMSSGPHGCII-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000006136 alcoholysis reaction Methods 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010931 ester hydrolysis Methods 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- HVAMZGADVCBITI-UHFFFAOYSA-M pent-4-enoate Chemical compound [O-]C(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-M 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- NYECUHJTLLCQKE-UHFFFAOYSA-N 1-hydroxypropyl formate Chemical group CCC(O)OC=O NYECUHJTLLCQKE-UHFFFAOYSA-N 0.000 description 1
- NNTSJYNXVNXPJQ-UHFFFAOYSA-N B([O-])([O-])[O-].B(O)(O)O.B(O)(O)O.B(O)(O)O.[K+].[Ca+2] Chemical compound B([O-])([O-])[O-].B(O)(O)O.B(O)(O)O.B(O)(O)O.[K+].[Ca+2] NNTSJYNXVNXPJQ-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- JEWHCPOELGJVCB-UHFFFAOYSA-N aluminum;calcium;oxido-[oxido(oxo)silyl]oxy-oxosilane;potassium;sodium;tridecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.[Na].[Al].[K].[Ca].[O-][Si](=O)O[Si]([O-])=O JEWHCPOELGJVCB-UHFFFAOYSA-N 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- RBHJBMIOOPYDBQ-UHFFFAOYSA-N carbon dioxide;propan-2-one Chemical compound O=C=O.CC(C)=O RBHJBMIOOPYDBQ-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- UYAAVKFHBMJOJZ-UHFFFAOYSA-N diimidazo[1,3-b:1',3'-e]pyrazine-5,10-dione Chemical compound O=C1C2=CN=CN2C(=O)C2=CN=CN12 UYAAVKFHBMJOJZ-UHFFFAOYSA-N 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000001030 gas--liquid chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 235000019580 granularity Nutrition 0.000 description 1
- 229910052677 heulandite Inorganic materials 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropyl acetate Chemical compound CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229910001711 laumontite Inorganic materials 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052674 natrolite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910001743 phillipsite Inorganic materials 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- JVUYWILPYBCNNG-UHFFFAOYSA-N potassium;oxido(oxo)borane Chemical compound [K+].[O-]B=O JVUYWILPYBCNNG-UHFFFAOYSA-N 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229940116423 propylene glycol diacetate Drugs 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010993 response surface methodology Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Katalyzátor pre technologický postup, ktorý je založený na schopnosti rozkladu niektorých látok za svýšenej teploty. < Podstatou riešenia je synergická zmes iontové aktívneho zeolitu, ktorý je vo formě molekulového šita a bázickej látky zo skupiny alkalických soli karboxylových alebo minerálnych kyselin, ktoré majú hodnotu pH v 0,1 molárnom vodnom roztoku 8 až 13, pričom ich koncentrácia vztiahnuté na zeolit je v rozmedzí 0,1 až 50 % hmot.Catalyst for Technological Process which is based on the degradation ability some substances at elevated temperature. < The essence of the solution is a synergistic mixture ionic active zeolite that is in the in the form of a molecular seam and a base from the group of alkali salts of carboxylic acids or the mineral acids they have pH in 0.1 molar aqueous solution 8 to 13, their concentration being related the zeolite is in the range of 0.1 to 50% by weight.
Description
Vynález sa týká katalyzátoru vhodného pre přípravu alkylénoxidov a/alebo ich izomérov bezodpadovou technológiou, ktorá je založená na schopnosti rozkladu niektorých látok za zvýšenej teploty.The invention relates to a catalyst suitable for the preparation of alkylene oxides and / or isomers thereof by a waste-free technology which is based on the ability to decompose certain substances at elevated temperature.
So zdokonalováním acetoxylácie alkénov najmá propylénoxidu novými progresívnymi postupmi, ktoré spočívajú v nahradení drahého paládiového katalyzátora inými prvkami a ich zlúčeninami, ako je telúr a selén, titán, mangán, cín, med, lítium, draslík ai. popr. elektrochemickým acyloxylačným procesom, sa otvorila cesta k využitiu produktov tejto oxyesterifikačnej reakcie. Tak z propylénu a kyseliny octovej působením kyslíka vzniká zmes viciálnych aoetooypropanolov, t.j. l-acetoxy-2-propanolu a 2-acetoxy-l-propanolu inak nazývané propylénglykolmonoacetáty /hydroxyestery/ a 1,2-diacetoxypropánu inak propylénglykoldiacetátu /diesteru/. Reakcia může byť vedená aj tak, že hlavným produktom sú bud hydroxyestery alebo diester.With the enhancement of acetoxylation of alkenes, propylene oxide in particular is progressing by new progressive methods of replacing the expensive palladium catalyst with other elements and their compounds, such as tellurium and selenium, titanium, manganese, tin, honey, lithium, potassium and others. eventually. electrochemical acyloxylation process, the way to utilize the products of this oxyesterification reaction has been opened. Thus, propylene and acetic acid are treated with oxygen to form a mixture of the primary oeto-o-propanols, i. 1-acetoxy-2-propanol and 2-acetoxy-1-propanol otherwise called propylene glycol monoacetates (hydroxy esters) and 1,2-diacetoxypropane otherwise propylene glycol diacetate (diester). The reaction may also be conducted such that the main product is either hydroxy esters or diester.
Je známy spůsob přípravy propylénoxidu, založený podlá Brownsteina /USA pat. 4 012 423, NSR pat. 2 412 136/ na deacyloxylačnéj reakcii vicinálnych hydroxyesterov podlá uvedenaj reakčnej sohémy:A process for the preparation of propylene oxide based on Brownstein / US Pat. No. 4,012,423, German Pat. No. 2,412,136 on the deacyloxylation reaction of vicinal hydroxyesters according to the following reaction scheme:
R|-C-C-R4 R 1 -CCR 4
OH (katalyzátor]OH (catalyst)
250 až 600 °C250-600 ° C
Ro R / C— C / v/ + RjCOOHR a R / C C / of / + RjCOOH
Všeobecný princip deacyloxylácie je v podstatě založený na odštiepení acyloxyskupiny /Rg-CO-O-/ z uhlovodíkového reťazca alifatických acyloxyderivátov uhlovodíkov spolu s vodíkovým atómom zo susedného atomu uhlíka alebo hydroxylovej skupiny, viazanej na tomto uhlíkovom atome. Vicinálne hydroxyestery za podmienok deacyloxylačnéj reakcie bud cyklizujú za vzniku příslušného derivátu oxiránu, alebo tvoria deriváty izomérov oxiránu, zatiai čo vicinálne diestery tvoria odpovedajúce alkenylestery /USA pat. 2 441 540, USA pat. 2 251 983, USA pat. 2 485 694, NSR pat. 2 120 715/. Reakcia je v obidvoch prípadoch charakterizovaná vznikom príslušnej karboxylovej kyseliny ako koprodukčného produktu. Z termodynamického hladiska je pyrolýza hydroxyesteru na oxid silné endotermická.The general principle of deacyloxylation is essentially based on the cleavage of the acyloxy group (Rg-CO-O-) from the hydrocarbon chain of aliphatic acyloxy derivatives of hydrocarbons together with a hydrogen atom from an adjacent carbon atom or a hydroxyl group attached to this carbon atom. Vicinal hydroxyesters under the deacyloxylation reaction conditions either cyclize to form the corresponding oxirane derivative, or form derivatives of oxirane isomers, while vicinal diesters form the corresponding alkenyl esters / US Pat. No. 2,441,540, U.S. Pat. No. 2,251,983, U.S. Pat. No. 2,485,694, Germany Pat. 2,120,715 /. The reaction is characterized in both cases by the formation of the corresponding carboxylic acid as a co-product. From the thermodynamic point of view, the pyrolysis of hydroxyester to oxide is strong endothermic.
Hydroxyestery můžu byt spracované reakciou v kvapalnej /NSR pat. 2 707 638/, ale častejšie v plynnéj fáze bud samotné, alebo zriedené nosným plynom, ktorým může byť aj kvapalina kondenzu júca pri teplote okolo 25 °C /napr. benzen/. Reakčná teplota musí byt dostatočne vysoká k udržaniu hydroxyesteru v parnej fáze za reakčných podmienok: 250 až 600 °C. Reakcia sa usktčňuje v širokom rozsahu tlakov: 0,7 až 2 758 kPa, pričom klučová důležitost má parciálny tlak hydroxyesteru. Bolo zistené, že za zníženého tlaku dochádza k vyššej konverzil substrátu bez straty selektivity. Preferovaný parciálny tlak hydroxyesteru sa pohybuje v rozmedzí 6,9 až 103,4 kPa. Kontaktný čas substrátu /S/ může byť 0,001 až 20 s, zaťaženie katalyzátora /K/ od 0,5 do 1 000 molg.molj/.h 1.Hydroxyesters can be treated by reaction in a liquid / NSR pat. No. 2,707,638), but more often in the gas phase either alone or diluted with a carrier gas, which may also be a condensation liquid at a temperature of about 25 ° C (e.g. benzene /. The reaction temperature must be high enough to maintain the hydroxyester in the vapor phase under the reaction conditions: 250 to 600 ° C. The reaction is carried out over a wide range of pressures: 0.7 to 2758 kPa, the key pressure being the hydroxyester partial pressure. It has been found that under reduced pressure, higher substrate conversions occur without loss of selectivity. The preferred partial pressure of the hydroxyester ranges from 6.9 to 103.4 kPa. The contact time of the substrate / S / can be 0.001 to 20 s, the load of the catalyst / C / 0.5 to 1000 molg.molj / .h first
Postup umožňujúci spracovávať zmes 1,2-diacetoxypropánu a vicinálnych acetoxypropanolov, tak ako sa získá acetoxyláciou propénu aj za přítomnosti 1,2-propándiolu bol vypracovaný pre reakcie ako v kvapalnej /NSR pat. 2 707 638/, tak i v plynnej fáze /USA pat. 4 012 424,A process allowing to treat a mixture of 1,2-diacetoxypropane and vicinal acetoxypropanols, as obtained by acetoxylation of propene even in the presence of 1,2-propanediol, has been developed for reactions as in the liquid / NSR pat. No. 2,707,638] and in the gas phase (U.S. Pat. 4 012 424
NSR pat. 2 635 566, NSR pat. 2 624 628, NSR pat. 2 709 440/. Prítomnosť 1,2-diacetoxypropánu nie je na závadu, jednako len spracovanie zmesi obsahujúcej menšie množstvo hydroxyesteru dává tak nízké konverzie per pass, že je postup prakticky nepoužívatelný pre tvorbu oxiránov. Preto sa predom zmes, v ktorej převláda diester spraoováva selektívnou hydrolýzou /alkoholýzou/ diesteru na hydroxyester a čiastočne na diol, zatiai čo zmes, v ktorej převláda diol sa esterifikuje tak, aby zmes obsahovala 20 až 80 % výsledných esterov v rovnovážnej zmesi, čo odpovedá koncentráoii hydroxyesteru min. 32 % mol. Pri reakcii v kvapalnej fáze sa uskutočňuje parciálna hydrolýza resp. esterifikáoia priamo za reakčných podmienok deacyloxylácie.NSR pat. No. 2,635,566, German Pat. No. 2,624,628, Germany Pat. 2,709,440 /. The presence of 1,2-diacetoxypropane is not a problem, but the treatment of a mixture containing less hydroxyester gives such low conversions per pass that the process is practically unusable for oxirane formation. Therefore, the predominantly diester mixture is first treated by selective hydrolysis / alcoholysis / diester to the hydroxyester and partially to the diol, whereas the predominantly diol mixture is esterified to contain 20-80% of the resulting esters in the equilibrium mixture, corresponding to concentration of hydroxyester min. 32 mol% In the liquid phase reaction, partial hydrolysis or partial hydrolysis is performed. esterification directly under the deacyloxylation reaction conditions.
Všetky uvedené spůsoby deacyloxylácie v plynnej fáze na heterogénnych katalyzátoroch využívajú ako surovinu bud čistý hydroxyester alebo jeho zmesi s diesterom /event. aj s diolom/, v ktorých je účinnou zložkou hydroxyester. To vyžaduje zvýšené nároky ako pre syntézu oxyesterifikačnou reakciou /drahé paládiové katalyzátory/, tak pre úpravu reakčnej zmesi /parciálna1’hydrolýza/. Zloženie použitého substrátu, osobitne obsah diesteru a/alebo diolu, ovplyvňuje aj množstvo nežiadúcich vedlajších produktov deacyloxylačnéj reakcie, ktoré vznikajú paralelnými, konsekutívnymi a konkurenčnými dehydratačnými, esterifikačnými, izomerizačnými a pyrolytickými reakciami. V dósledku toho klesá selektivita reakcie na propylén oxid a znižuje sa aj životnost katalyzátora.All of the above-mentioned gas-phase deacyloxylation processes on heterogeneous catalysts utilize either pure hydroxyester or mixtures thereof with a diester / event. also with a diol / in which the active ingredient is a hydroxyester. This requires increased demands both for synthesis by oxyesterification reaction (expensive palladium catalysts) and for treatment of the reaction mixture (partial 1 'hydrolysis). The composition of the substrate used, in particular the diester and / or diol content, also affects a number of undesired by-products of the deacyloxylation reaction, which are produced by parallel, consecutive and competitive dehydration, esterification, isomerization and pyrolytic reactions. As a result, the selectivity of the reaction to propylene oxide decreases and the life of the catalyst is also reduced.
Je známy spósob přípravy propylénoxidu a/alebo jeho izomérov založený na poznatku, že pyrolytickej eliminácii sa vystaví iba zmes vicinálneho diolu s vicinálnym diesterom, a to bud napr. v ekvimolárnom pomere v kvapalnej fáze /NSR pat. 2 707 638/ alebo v plynnej fáze na heterogénnych katalyzátoroch s molárnym pomerom diolu k diestoeru 1:1 až 4:1, s výhodou /ČSSR AO 250 584/. Za uvedených reakčných podmienok nie je hydroxyester pre tvorbu propylénoxidu vóbec potřebný, hlavným prekurzorom propylénoxidu je 1,2-propándiol, ktorý podlieha za podmienok heterogénnej katalytickej reakcie v plynnej fáze dehydratácii za aktivačného pósobenia jeho diacetátu. Nadbytok diolu pósobí priaznivo na selektivitu tvorby propylénoxidu a spósobuje, že reakčný produkt neobsahuje kyselinu octovú, ktorá inak vzniká deacyloxyláciou ako disporporcionačnou reakciou vzniknutého hyroxyesteru tak diesteru. Kyselina octová pósobí nepriaznívo v priebehu reakcie /znižuje výtažok propylénoxidu spatnou reakciou/, ako aj v reakčnom produkte /znižuje selektivitu na propylénoxid podporováním jeho izomerizácie/. Okrem toho spósobuje aj silnú koróziu zariadenia, ktorá technicky stažuje a ekonomicky znevýhodňuje priemyselnú realizáciu procesu.A process for the preparation of propylene oxide and / or its isomers is known, based on the finding that only a mixture of vicinal diol with vicinal diester is exposed to pyrolytic elimination, e.g. in equimolar ratio in liquid phase / NSR Pat. No. 2,707,638 (or in the gas phase on heterogeneous catalysts having a molar ratio of diol to diesther of 1: 1 to 4: 1, preferably (ČSSR AO 250 584). Under the above reaction conditions, the hydroxyester is unnecessary for the formation of propylene oxide, the main propylene oxide precursor being 1,2-propanediol, which undergoes dehydration under the activation of the heterogeneous gas-phase catalytic reaction under the activation action of its diacetate. Excess diol has a beneficial effect on the selectivity of propylene oxide formation and causes the reaction product to be free of acetic acid, which otherwise results from deacyloxylation as a dispersion reaction of the resulting hyroxyester and diester. Acetic acid acts adversely during the reaction (decreases propylene oxide yield by a bad reaction), as well as in the reaction product (reduces selectivity to propylene oxide by promoting its isomerization). In addition, it also causes severe corrosion of the equipment, which technically compromises and economically disadvantages the industrial implementation of the process.
Napriek tomu, Že ako substrát vystupuje zmes dvoch chemicky rozdielnych látok /diesteru a diolu/, ktoré samotné podliehajú za reakčných podmienok radě vedlajších pyrolytických reakcii, nevznikajú pri ich spoločnej reakcii v plynnej fáze na heterogénnych katalyzátoroch charakteristické rozkladné produkty /alylacetát a iné alkenylestery, 1- a 2-propanol, 2-acetoxypropán, metyletylketon a iné/ na rozdiel od ich spoločnej reakcie uskutočnenej v kvapalnej fáze. Okrem propylénoxidu a jeho izomérov vzniká iba velmi malé množstvo acetaldehydu /selektivita max. 3 %/.Although a mixture of two chemically different substances (diester and diol), which themselves undergo a series of secondary pyrolytic reactions under reaction conditions, acts as a substrate, their decomposition in gas phase on heterogeneous catalysts does not produce characteristic decomposition products (allyl acetate and other alkenyl esters). and 2-propanol, 2-acetoxypropane, methyl ethyl ketone and others / as opposed to their common liquid phase reaction. In addition to propylene oxide and its isomers, only a very small amount of acetaldehyde is produced / selectivity max. 3% /.
Eventuelně přítomný vicinálny hydroxyester v substráte nie je na závadu, v tom případe je však výhodné 3alšie zvýšenie obsahu diolu v substráte, tak aby molárny poměr diolu k zmesi diesteru a hydroxyesteru bol min. 1,5:1, s výhodou 2,5:1, na rozdiel od reakcie uskutočnenej v kvapalnej fáze. Určité množstvo hydroxyesteru vzniká alkoholýzou vždy vo vačšej alebo menšej miere v závislosti na reakčných podmienkach, použitom nosiči a katalyzátore aj v priebehu samotnej reakcie zmesi diesteru a diolu.The possibly present vicinal hydroxyester in the substrate is not a defect, in which case it is preferred to further increase the diol content in the substrate so that the molar ratio of diol to the diester / hydroxyester mixture is min. 1.5: 1, preferably 2.5: 1, as opposed to the liquid phase reaction. Some hydroxyester is produced by alcoholysis to a greater or lesser extent, depending on the reaction conditions, the carrier and the catalyst used, even during the reaction of the diester / diol mixture itself.
V zmesi nezreagovaného diolu, diesteru a vzniknutého hydroxyesteru po separácii lahkovrúcich produktov sa estery hydrolyzujú a získaný diol recirkuluje ako substrát a čiastočne sa odoberá ako vedlajší produkt. Kyselina octová z hydrolýzy esterov sa regeneruje a vracia do procesu acetoxylácie propylénu. Uvedený spósob přípravy je využitelný aj pre vyššie alkylénoxidy resp. zmesi alkylénoxidov a/alebo ich izomérov.In a mixture of unreacted diol, diester and hydroxyester formed after separation of the bottled products, the esters are hydrolyzed and the diol obtained is recirculated as a substrate and partially recovered as a by-product. Acetic acid from ester hydrolysis is recovered and returned to the propylene acetoxylation process. Said method of preparation is also applicable to higher alkylene oxides, respectively. mixtures of alkylene oxides and / or isomers thereof.
Na katalyzátoroch s kyslými reakčnými centrami alebo pri práci bez katalyzátora, resp. na inertnej náplni vzniká deacyloxyláciou vicinálnych acetoxypropanolov, ktoré sú najdostupnejšie, alylalkohol a propionaldehyd /NSR pat. 2 504 981/, na bázických centrách sa tvoří propylénoxid. Pri deacyloxylácii na alylalkohol uskutočňovanej bez katalyzátora vzniká vSčšie množstvo alylacetátu a jeho izomérov konkurenčnou dehydratáciou /USA pat. 2 415 378/. Pre deacyloxyláciu na propionaldehyd je výhodné používat ako substrát vicinálne formyloxypropanoly pre priaznivý vplyv vznikajúceho oxidu uholnatého /Brit. pat. 655 968/. Katalytická deacyloxyláciu sprevádza vznik malého množstva acetonu.On catalysts with acidic reaction centers or when working without catalyst, resp. on an inert filler, it is formed by deacyloxylation of the vicinal acetoxypropanols that are most readily available, allyl alcohol and propionaldehyde / NSR pat. No. 2,504,981, propylene oxide is formed at basic centers. Deacyloxylation to allyl alcohol without catalyst results in greater amounts of allyl acetate and its isomers by competitive dehydration / US Pat. 2,415,378 /. For deacyloxylation to propionaldehyde, it is preferable to use vicinal formyloxypropanols as a substrate for the beneficial effect of the carbon monoxide / Brit formed. pat. 655,968 /. Catalytic deacyloxylation is accompanied by the formation of a small amount of acetone.
Ako katalyzátor pre tvorbu propylénoxidu bol použitý velký rad látok, najčastejšie oxidy a organické bázy kovov I., II. a III.A skupiny periodickej tabulky. So znížujúcou sa přednostou móžu byt použité boritany, fosforečnany, oxidy a uhličitany. Ako iné látky sa používajú soli alkalických kovov alebo alkalických zemin a kyseliny boritej /napr. tetraboritan sodný, draselný event. vápenatý, metaboritan draselný event. vápenatý/, hlinitan sodný a kremičitan sodný event. draselný. Ďalšie látky, ktoré móžu byt použité sú uhličitan horečnatý event. vápenatý, oxid barnatý, zinočnatý, event. nikelnatý a dvoj fosforečnan sodný. Organické bázy, ktoré by všeobecne mohli byť adsorbované na nosiči, sú obyčajne aromatické dusíkaté zlúčeniny, napr. pyridin, chinolín alebo akridín a alkylamíny o vyššej molekulovej hmotnosti, ktoré majú teplotu varu váčšiu ako 220 °C. Prohavejšie látky móžu byt s výhodou použité chemisorbované na neprchavých látkách. Tieto látky móžu byť použité samotné alebo v kombinácii s inými látkami.As a catalyst for the formation of propylene oxide a large number of substances were used, most often oxides and organic bases of metals I., II. and III.A groups of the periodic table. Borates, phosphates, oxides and carbonates can be used with decreasing preference. Alkali metal or alkaline earth salts and boric acid / e.g. sodium tetraborate, potassium tetraborate calcium, potassium metaborate event. calcium), sodium aluminate and sodium silicate, respectively. Potassium. Other substances that may be used are magnesium carbonate, eventually. calcium, barium oxide, zinc, optionally. nickel and dibasic sodium phosphate. Organic bases which could generally be adsorbed on a carrier are usually aromatic nitrogen compounds, e.g. pyridine, quinoline or acridine and higher molecular weight alkylamines having a boiling point greater than 220 ° C. More preferred materials can preferably be used chemisorbed on non-volatile materials. These substances may be used alone or in combination with other substances.
Ako najúčinnejšie sa však ukázali alkalické soli karboxylových kyselin s výhodou o rovnakom anióne, aký má odštiepujúca sa karboxylová skupina, napr. octan draselný, a to na neutrálnych alebo bázických nosičoch ako je α-alumina, karbid kremína, kremičitan zirkoničitý a kremičitan hlinitý. Kyslé nosiče ako je χ-alumina nie sú vhodné, pretože podporujú tvorbu aldehydov. Tak v případe deacyloxylácie samotných vicinálnych acetoxypropanolov na katalyzátore tvorenom 10 % AcOK/Al2C>3 pri 396 °C, parciálnom tlaku hydroxyestetu 24 kPa /benzén ako nosný plyn/a kontaktnom čase 1 s dosahuje selektivita na propylénoxid min. 76 % pri konverzii až 34 %. Alylalkohol za uvedených podmienok nevzniká. Malá část /okolo 3 %/ hydroxyesteru disproporoionuje na diester a diol. Koprodukčná kyselina octová sa regeneruje s účinnosťou ca 92 % /USA pat. 4 012 423, NSR pat. 2 412 136/. Použitím wolfrámového katalyzátora /10 % Na^WO^/ a -A12O3, 400 °C, kontaktný čas 1 s, nosný plyn - benzén, AoOH v substráte/ je možné údajné zvýšit selektivitu na propylénoxid až na 100 % pri poklese konverzie naHowever, alkali salts of carboxylic acids, preferably of the same anion as the leaving carboxyl group, e.g. potassium acetate, on neutral or basic carriers such as α-alumina, silicon carbide, zirconium silicate and aluminum silicate. Acid carriers such as χ-alumina are not suitable because they promote the formation of aldehydes. Thus, in the case of deacyloxylation of the vicinal acetoxypropanols themselves on a catalyst consisting of 10% AcOK / Al 2 C> 3 at 396 ° C, a 24 kPa hydroxyestet partial pressure (benzene as carrier gas) and a contact time of 1 s, the selectivity to propylene oxide is min. 76% up to 34% conversion. Allyl alcohol is not produced under these conditions. A small portion (about 3%) of the hydroxyester disproporoiones to the diester and diol. The co-producing acetic acid is regenerated with an efficiency of ca 92% / US Pat. No. 4,012,423, German Pat. 2,412,136 /. By using a tungsten catalyst (10% Na 2 WO 3) and -Al 2 O 3 , 400 ° C, contact time of 1 s, carrier gas - benzene, AoOH in substrate /, it is possible to increase the selectivity to propylene oxide up to 100% on the
3.6 % /Jap. pat. 79 144 304/.3.7% / Jap. pat. 79,144,304 /.
Pri deacyloxylácii zmesi hydroxyesteru, diesteru a/alebo diolu boli použité rovnaké katalyzátory a nosiče ako pri príprave propylénoxidu deacyloxyláciou samotných vicinálnych acetoxypropanolov, t.j. bázické katalyzátory v inertnom rozpúšťadle /sulfolán/ resp. na bázickom alebo neutrálnom nosiči /a -alumina, karbid kremíka, kremičitan hlinitý/. Používajú sa bud priamo vo formě karboxylátov alkalických kovov /napr. octan draselný/, alebo sa tvoria in šitu; prekurzorom sú alkalické soli slabých minerálnych kyselin, ako napr. uhličitan draselný /reakcie v kvapalnej fáze/ resp. kremičitan draselný /reakcie v plynnej fáze/. Konverzia a selektivita sa menia podlá zloženia substrátu, sú však obyčajne vSčšie ako pri pyrolýze samotného hydroxyesteru.In the deacyloxylation of the hydroxyester, diester and / or diol mixture, the same catalysts and supports were used as in the preparation of propylene oxide by deacyloxylation of the vicinal acetoxypropanols themselves, i. basic catalysts in an inert solvent (sulfolane) resp. on a basic or neutral support (and -alumina, silicon carbide, aluminum silicate). They are used either directly in the form of alkali metal carboxylates / e.g. potassium acetate /, or formed in situ; precursors are alkali salts of weak mineral acids such as e.g. potassium carbonate / liquid phase reactions / resp. potassium silicate (gas phase reaction). Conversion and selectivity vary according to substrate composition, but are generally greater than pyrolysis of hydroxyester alone.
Tak v kvapalnej fáze /katalyzátor K2CO3 v sulfoláne/ pri teplote 270 °C sa dosahuje selektivita na propylénoxid 80 % pri celkovej konverzii vztiahnutéj na hydroxyester až 68 %; rovnako v případe substrátu tvorenom iba ekvimolárnou zmesou diolu a diacetátu v teplotnom rozmedzí 250 až 260 °C, zostáva selektivita na propylénoxid v podstatě zachovaná /ca 79 %/, konverzia diolu je min. 83 %, diacetátu min. 72 % /NSR pat. 2 707 638/.Thus, in the liquid phase / K 2 CO 3 catalyst in sulfolane / at 270 ° C, a selectivity to propylene oxide of 80% is achieved with a total conversion based on hydroxyester up to 68%; likewise in the case of a substrate consisting of only an equimolar mixture of diol and diacetate in the temperature range of 250 to 260 ° C, the selectivity to propylene oxide remains substantially maintained (ca 79%), the diol conversion being min. 83%, diacetate min. 72% / FRG Pat. 2,707,638 /.
V plynnej fáze /8,65 ΐ KjSijOj/AljOj, 400 °C, parciálny tlak hydroxyesteru resp. substrátuIn the gas phase / 8.65 ΐ KjSiOOj / AljOj, 400 ° C, hydroxyester partial pressure resp. substrate
7.7 kPa resp. 21,3 kPa, kontaktný čas 0,84 s, prídavok vodnej páry/ potom selektivita dosahuje výše 93 % pri min. 37 % konverzii hydroxyesteru /USA pat. 4 012 424, NSR pat. 2 635 566/.7.7 kPa resp. 21.3 kPa, contact time 0.84 s, addition of water vapor / then selectivity reaches 93% at min. 37% conversion of hydroxyester / US Pat. No. 4,012,424, German Pat. 2,635,566 /.
V literatúre /NSR pat. 2 709 440/ uvádzané vysoké hodnoty molárnych výťažkov propylénoxidu /výše 62 % na katalyzátore 10 % AcOK/H2SiC>3 pri teplote 400 °C a parciálnom tlaku substrátu - hydroxyesteru a diolu - 24 kPa/ sú vztiahnuté iba na zmes vicinálnych acetoxypropanolov pri súčasnej konverzii 1,2-propándiolu a/alebo 1,2-diacetoxypropánu. Selektivita na propylénoxid nepřevyšuje 77 i.In literature / German Pat. No. 2,709,440 (reported high values of molar yields of propylene oxide / above 62% on a catalyst of 10% AcOK / H 2 SiC> 3 at 400 ° C and partial pressure of substrate - hydroxyester and diol - 24 kPa) are based only on the mixture of vicinal acetoxypropanols at simultaneous conversion of 1,2-propanediol and / or 1,2-diacetoxypropane. The selectivity to propylene oxide does not exceed 77 i.
Vysoká selektivita 88 % pri dostatočné vysokej konverzii hydroxyesteru ca 34 % bola dosiahnutá na katalyzátore 14 % Na2SiO3/Al2O3 pri teplote 400 °C so substrátom, ktorý je tvořený zmesou hydroxyesteru a diesteru s obsahom diolu menej ako 4 % hmot. pri parciálnom tlaku substrátu 21,3 kPa /NSR pat. 2 624 628/.High selectivity of 88% with a sufficiently high conversion of hydroxyester of ca 34% was achieved on a catalyst of 14% Na 2 SiO 3 / Al 2 O 3 at 400 ° C with a substrate consisting of a mixture of hydroxyester and diester with a diol content of less than 4% . at a partial substrate pressure of 21.3 kPa / NSR Pat. 2,624,628 /.
V případe substrátu, ktorý je tvořený ekvimolárnou zmesou diolu a diacetátu (ČSSRIn the case of a substrate consisting of an equimolar mixture of diol and diacetate (
AO 250 584/, na katalyzátore 10 t hmot. AcOK/ a-AljOj dosahuje selektivita na propylénoxid ca 80 % pri konverzii diolu 13 % a diacetátu 9 %. Reakčná teplota bola 300 °C, počiatočný parciálny tlak klučovéj zložky substrátu t.j. 1,2-propándiolu 13,3 kPa a zataženie katalyzátore 16,7 kggI.kgK 1.h 1. Vyšších výťažkov propylénoxidu bez podstatnéj straty selektivity pri rovnakom počiatočnom parciálhom tlaku 1,2-propándiolu na rovnakom katalyzátore je možné dosiahnuť optlmallzáciou reakčnej teploty, zaťaženia katalyzátora a zloženia substrátu t.j. poměru diolu k diesteru.AO 250 584), on a catalyst of 10 t. AcOK / α-Al 1 O 3 has a selectivity to propylene oxide of ca 80% with a diol conversion of 13% and a diacetate of 9%. The reaction temperature was 300 ° C, the initial partial pressure of the loop component of the substrate, i.e., 1,2-propanediol, was 13.3 kPa, and the catalyst loading was 16.7 kg g / kg K 1 .h 1 . Higher yields of propylene oxide without substantial loss of selectivity at the same initial partial pressure of 1,2-propanediol on the same catalyst can be achieved by optimizing the reaction temperature, the catalyst loading and the substrate composition, ie the diol to diester ratio.
V ostatnom čase bol navrhnutý k uskutočneniu deacyloxylačnej reakcie špeciálny transportný fluidný katalytický reaktor /Eur. pat. 2 561, USA pat. 399 295/, ktorý má oproti konvenčným katalytickým reaktorom niektoré výhody napriek tomu, že dosahovanou selektivitou na propylenoxid /max. 86 %/ alebo výťažkom /ca 34 8/ nepřevyšuje predchádzajúce spósoby. Pracuje sa s katalyzátorom K2SíOj/A12O3 event. SiC alebo SiO2 pri teplote 375 °C, kontaktnom čase 0,8 s so substrátom, ktorý je tvořený zmesou hydroxyesteru a diesteru /obsah diolu je menší ako 0,7 % hmot./ s prídavkom vodnéj páry za parciálneho tlaku hydroxyesteru 6,9 až 55,2 kPa. Pre porovnanie v reaktore s konvenčnou fluidnou vrstvou katalyzátora dochádza k značnému spatnému miešaniu a dlhej kontaktněj době; spatné miešanie spósobuje vratné reakcie a znižuje selektivitu, vodná para uvádzaná priamo do reaktora v priebehu separácie kondenzuje a spósobuje hydrolýzu produktu. V reaktore s nehýbne uloženým katalyzátorom je zase obtiažne udržať konstantnú teplotu a vznikajú problémy so selektivitou.More recently, a special transport fluidized bed catalyst / Eur has been proposed to carry out the deacyloxylation reaction. pat. No. 2,561, U.S. Pat. No. 399,295], which has some advantages over conventional catalytic reactors, although the selectivity to propylene oxide / max. 86% (or yield (ca 348)) does not exceed the previous methods. Catalyst K 2 SiO 2 / Al 2 O 3 is used . SiC or SiO 2 at 375 ° C, contact time 0.8 sec with substrate consisting of a mixture of hydroxyester and diester (diol content less than 0.7% w / w) with addition of water vapor at a partial pressure of hydroxyester 6.9 to 55.2 kPa. For comparison, in a reactor with a conventional fluidized bed catalyst, there is considerable agitation and a long contact time; poor mixing causes reverse reactions and reduces selectivity, water vapor introduced directly into the reactor during separation condenses and causes product hydrolysis. In a fixed catalyst reactor, it is again difficult to maintain a constant temperature and selectivity problems arise.
Tieto a dalšie uvedené nedostatky doterajšich katalyzátorov odstraňuje katalyzátor podlá předloženého vynálezu. Katalyzátor vhodný najmS pre přípravu alkylénoxidov /epoxidov resp, oxiránov/ /napr. propylénoxidu/ a/alebo ich izomérov pyrolytickou elimináciou alifatických acyloxyderivátov uhlovodíkov, ako vicinálnych hydroxyesterov popřípadě ich zmesi s vicinálnym diesterom a/alebo diolom event. iba zmesi vicinálneho diesteru a vicinálneho diolu, ktorého podstatou je, že katalyzátor je tvořený synergickou zmesou iontové aktívneho zeolitu na báze hlinitokremičitanu alkalického kovu a/alebo kovu alkalickéj zeminy, ktorý je vo formě molekulového síta, a bázickej látky zo skupiny alkalických solí karboxylových alebo minerálnych kyselin, ktoré majú hodnotu pH v 0,1 molránom vodnom roztoku 8 až 13, pričom ich koncentrácia vztiahnutá na zeolit sa pohybuje v rozmedzí 0,1 až 50 % hmot., s výhodou 5 až 15 % hmot.These and other disadvantages of the prior art catalysts are overcome by the catalyst of the present invention. Catalyst suitable in particular for the preparation of alkylene oxides (epoxides or oxiranes) / e.g. % of propylene oxide and / or isomers thereof by pyrolytic elimination of aliphatic acyloxy derivatives of hydrocarbons, such as vicinal hydroxyesters or mixtures thereof with vicinal diester and / or diol, respectively. only mixtures of a vicinal diester and a vicinal diol, the nature of which is that the catalyst consists of a synergistic mixture of an ionic active zeolite based on an alkali metal and / or alkaline earth metal which is in the form of a molecular sieve and a basic substance from the alkali carboxy or mineral salt group acids having a pH in the 0.1 moles of aqueous solution of 8 to 13, the concentration based on the zeolite being in the range of 0.1 to 50% by weight, preferably 5 to 15% by weight.
Katalytická aktivita zeolitov súvisí s prítomnosťou protónov alebo viacvalenčných katiónov, ktoré sú velmi silnými Brflnstedovými centrami, okrem toho dehydratované formy zeolitických katalyzátorov obsahujú rózne velké regulárně pórovité kanály a dutiny /kavity/, čo im umožňuje plniť molekulárně sitovú funkciu, pričom súčasne so stratou vody dochádza k strate Brflnstedovskej kyslosti a vzniku Lewisovských centier, ktoré majú tiež vplyv na katalytickú aktivitu.The catalytic activity of zeolites is related to the presence of protons or multi-valent cations, which are very strong Brflnsted centers, in addition, dehydrated forms of zeolite catalysts contain differently sized regular porous channels and cavities, allowing them to perform molecular sieve function while water loss occurs to the loss of Brflnsted acidity and the formation of Lewis centers, which also have an effect on catalytic activity.
Na aktivitu katalyzátora má vplyv aj doba a spósob aktivácie.The activity and mode of activation also influence the activity of the catalyst.
Pri pósobení Specifických adsorpčně - katalytických a iontomeničových vlastností sa využívajú ako vrodené kyslo aktivně centrá, ktoré tvoria protónovú /H+/ a hydroxylovú /OH-/ kyslosť, tak chemickou modifikáciou ešte získanú hydrolytickú /Al3+/ kyslosť /vznik vazby Si-OH/, pričom stupeň aktivity týchto centier sa líši ako do formy, tak do vzniku. Zavedenie jedno resp. viacvalenčných iónov do zeolitickej štruktúry iónovou výměnou modifikuje nielen fyzikálno-chemické vlastnosti /velkosť vstupných otvorov do kavít/, ale aj katalytickú aktivitu zeolitových katalyzátorov. Bolo dokázané, že pri určitom stupni výměny katalytická aktivita zeolitov pre mnohé reakcie dosahuje optimum. Okrem selektívnej adsorpcie, vyplývajúcej z geometrického usporiadania /primárná štruktúra pórov/ a neselektívnej Langmuirovskej adsorpcie /sekundárná štruktúra pórov/ móžu mať zeolity aj selektivitu, vyplývajúcu zo špecifickej interakcie s niektorými aktívnymi centrami /elektrostatická interakcia s polárnými alebo polarizovatelnými molekulami vyvolaná kationami kovov přítomných v štruktúre zeolitu a schopnost tvořit vodíkové mostíky s hydroxylovými skupinami SiO2/.The multiplication of specific adsorption-catalytic and ion-exchange properties utilizes both the innate acid-active centers that form proton (H + ) and hydroxyl (OH ) / acidity, and the hydrolytic (Al 3+ ) acidity / Si-OH bond obtained by chemical modification. and the degree of activity of these centers varies both in form and in formation. The introduction of one resp. The formation of polyvalent ions into the zeolite structure by ion exchange modifies not only the physicochemical properties (the size of the cavity inlets), but also the catalytic activity of the zeolite catalysts. It has been shown that at some degree of exchange, the catalytic activity of zeolites reaches optimum for many reactions. In addition to selective adsorption resulting from the geometrical arrangement (primary pore structure) and non-selective Langmuir adsorption (secondary pore structure), the zeolites may also have selectivity resulting from specific interaction with some active centers / electrostatic interaction with polar or polarizable molecular structures present zeolite and the ability to form hydrogen bridges with hydroxyl groups of SiO 2 ).
Všeobecné vhodné zeolity sú aluminosilikáty ideálneho vzorca Mp,Dq^A1p+2qSir°2p+4q+2rJ ·8Η2° kde: Μ - jednomocný kovGeneral Suitable aluminosilicate zeolites are the ideal formula M p, D q ^ 2? A1 + p Si R 2p + 4q + 2RJ 8Η · 2 ° wherein: Μ - monovalent metal
D - dvojmocný kov p, q, r, s - stechiometrické koeficientyD - divalent metal p, q, r, s - stoichiometric coefficients
Do úvahy prichádzajú najmS typy s priestorovo vyvinutou štruktúrou, ktoré sú teplotně najstabilnejšie, a to ako prfrodné zeolity /napr. skupiny analcimu, natrolitu, heulanditu /klinoptiolitu/, phillipsitu, mordenitu, chabazitu, faujasitu, laumontitu/, tak syntetické /napr. typu A, χ, Y, ZSM/.Suitable are, in particular, types with a spatially developed structure which are the most thermally stable, such as natural zeolites / e.g. analcim, natrolite, heulandite (clinoptiolite), phillipsite, mordenite, chabazite, faujasite, laumontite / and synthetic groups (e.g. of type A, χ, Y, ZSM /.
Výhodou navrhovaného katalytického systému oproti známým katalyzátorom je vysoká selektivita tvorby propylénoxidu SR pri dostatočne vysokej konverzi! klučového komponentu substrátu Xkk event· parciálnej konverzii klučového komponentu substrátu na rozkladné produkty Klúčový komponent substrátu tvoří bud zmes vicinálnyoh acetoxypropanolov pri pyrolýze hydroxyesteru alebo 1,2-propándiol pri pyrolýze zmesi 1,2-propándiolu a 1,2-diacetoxypropánu. Výťažok je udávaný ako stupeň premeny na k-tu reakčnú zložku X^.The advantage of the proposed catalyst system over the known catalysts is the high selectivity of the formation of propylene oxide S R at a sufficiently high conversion! A key component of the substrate X · kt event of partial conversion of the core components of the substrate to the degradation products of the substrate forms a key component of the mixture, either vicinálnyoh acetoxypropanolov the hydroxy ester or pyrolysis of 1,2-propanediol for the heat treatment of 1,2-propanediol and 1,2-diacetoxypropane. The yield is given as the degree of conversion to the k-th reactant X ^.
sk - ITT·100 W k * ftokk ftkk Aokk = ňkk/P Aokk kk s k - ITT · 100 W k * ft okk ft k A okk = n k / P A okk k
Kk/PKk / P
kde: S - selektivita /integrálna/where: S - selectivity / integral /
X - konverzia /stupeň premeny/ ή - molárne množstvo látky fmol.h-1] indexy:X - conversion / degree of conversion / ή - molar amount of substance fmol.h -1 ] indices:
k - rozkladný komponent reakčnej zmesi kk - klučový komponent reakčnej zmesik - decomposition component of the reaction mixture
P - rozkladné produktyP - decomposition products
Zaťaženie katalyzátora bolo charakterizované - z důvodu, že reakcie sú sprevádzané změnou hustoty reakčnej zmesi v důsledku nenulovej změny počtu molov počas pyrolýzy - ako poměr celkového prietoku reakčnej zmesi t.j. substrátu /Gg/ £kggh J 8 inertného nosného plynu /Gj £kgj.h-1] k celkovému množstvu katalyzátora W £kgK] :The load of the catalyst were characterized by - the fact that the reaction is accompanied by a change in the density of the reaction mixture due to a non-zero change in the number of moles during pyrolysis - as the ratio of the total flow of the reaction mixture, i.e., substrate / G g / £ kg g h J8 inert carrier gas / Gj £ CHP .h -1 ] to the total amount of catalyst W £ kg K ]:
z - [•‘«si·’*;1·“1] z - [• '' si · '*; 1 · “ 1 ]
Poměr jednotlivých izomérov propylénoxidu v reakčnom produkte sa dá ovplyvniť známým spůsobom impregnáciou katalyzátorového nosiča různé aktívnymi bázickými látkami.The ratio of the individual isomers of propylene oxide in the reaction product can be influenced in a known manner by impregnating the catalyst support with various active bases.
Navrhovaný katalytický systém je použitelný aj pre přípravu vyšších alkylénoxidov resp. zmesi alkylénoxidov a/alebo ich izanérov uvedeným posterem v zmysle tohto vynálezu a je dotamenbovaný nasledujúcimi príkladmi, ktorá v žiadnom případe neobnedzujú hranice vynálezu anevylučujú možnost vyriability resp. využitia principu podstaty vynálezu.The proposed catalytic system is also applicable to the preparation of higher alkylene oxides, respectively. mixtures of alkylene oxides and / or isomers thereof by the above-mentioned poster within the meaning of the present invention and is illustrated by the following examples, which in no way limit the scope of the invention and do not exclude the possibility of incipientity. using the principle of the invention.
PříkladyExamples
Použité katalyzátorové nosiče boli nasledujúcej špecifickácie:The catalyst supports used were as follows:
Kremelina:Diatomaceous earth:
2 -1 Chemické zloženie: SiO,, měrný povrch: 1,2.10 m .kg , ekvivalentný poloměr porov *· —6 -3 3 “1 s maximálnym Specifickým objemom: 1,50.10 m, celkový Specifický objem pórov: 1,72.10 m .kg .2 -1 Chemical composition: SiO, specific surface area: 1.2.10 m .kg, equivalent radius * · —6 -3 3 “1 with maximum Specific volume: 1.50.10 m, total Specific pore volume: 1.72.10 m .kg.
a-Alumina:a-Alumina:
Chemické zloženie: A12O3, výrobný předpis: y-Al2O3 e-AljOj, měrný povrch:Chemical composition: A1 2 O 3 , production order: y-Al 2 O 3 e-AljOj, specific surface area:
18,4.10 m .kg , ekvivalentný poloměr pórov s maximálnym Specifickým objemom: 0,15.10-6 m, celkový Specifický objem pórov: 0,47.10-3 m3.kg-1.18,4.10 m .kg, equivalent pore radius with maximum Specific volume: 0,15.10 -6 m, total Specific pore volume: 0,47.10 -3 m 3 .kg -1 .
Nalsit 4A:Nalsit 4A:
Chemické složení: Na2pM2Si2O β] ' forma: molekulové šito s priemerom dutin 0,42.10-3 m, výrobná norma: PND-9-025-66, měrný povrch: 3,8.10 3 m2.kg 3, vnútrokraštalický povrch:Chemical composition: Na 2 pM 2 Si 2 O β] 'form: molecular sieve with a void diameter of 0.42.10 -3 m, production standard: PND-9-025-66, specific surface: 3.8.10 3 m 2 .kg 3 , intra-crystalline surface:
/650 až 800/.103 m2.kg 3, ekvivalentný poloměr pórov s maximálnym Specifickým objemom: 0,18.10-6 m, celkový Specifický objem pórov: 0,26.10-3 m3.kg-1./ 650 to 800 / .10 3 m 2 .kg 3 , equivalent pore radius with a maximum specific volume: 0.18.10 -6 m, total specific pore volume: 0.26.10 -3 m 3 .kg -1 .
Calsit 5A:Calsit 5A:
Chemické zloženie: Na2Ca[Al4Si4O16] , forma: molekulové šito s priemerom dutin 0,49.10-9 m, výrobná norma: PND-9-025-66, měrný povrch: 5,6.103 m2kg 3 , vnútrokryštalický povrch: /650 až 3 2 “1 ·» — ΛChemical composition: Na 2 Ca [Al 4 Si 4 O 16 ], form: molecular sieve with cavity diameter 0.49.10 -9 m, production standard: PND-9-025-66, specific surface: 5.6.10 3 m 2 kg 3 , intra-crystalline surface: / 650 to 3 2 “1 ·» - Λ
800/.10 m .kg , ekvivalentný poloměr pórov s maximálnym Specifickým objemom: 0,11.10-° m, — 3 3 —1 celkový Specifický objem porov: 0,38.10 m .kg .800 / .10 m .kg, equivalent pore radius with a maximum Specific Volume: 0.11.10 - ° m, - 3 3 —1 total Specific Specific Volume: 0.38.10 m .kg.
Nosiče danej zrnitosti boli impregnované aktívnou katalytickou zložkou, ktorá bola rozpuštěná v experimentálně stanovenom maximálnom množstve destilovanej vody schopnom totálnej adsorpcie. Katalyzátory boli potom sušené 4 hodiny v sušiarni pri teplote, ktorá sa postupné zvyšovala od 60 do 180 °C a aktivované pri 200 až 500 °C v prúde dusíka obsahujúceho malé množstvo vodnej páry.Carriers of the given particle size were impregnated with an active catalyst component which was dissolved in an experimentally determined maximum amount of distilled water capable of total adsorption. The catalysts were then dried for 4 hours in an oven at a temperature which gradually increased from 60 to 180 ° C and activated at 200 to 500 ° C in a stream of nitrogen containing a small amount of water vapor.
Pre reakcie bol použitý ocelový rúrkový reaktor s nehýbne uloženou vrstvou katalyzátora, ktorý mal vnútorný priemer 6.10 3 m a dížku 0,26 m. Reakčná teplota sa merala vnútri plášťa reaktora v střede vrstvy katalyzátora koncentricky umiestneným platinovým odporovým teplomerom o priemere 2,5.10 3 m a regulovala s presnosťou +1 °C proporcionálnym regulátorom. Pre zmenšenie axiálneho teplotného gradientu bolo prispůsobené elektrické vykurovanie reaktora tak, aby pozdížný teplotný grafient nebol věčší ako 1 °C. Radiálny gradient teploty a přestupu hmoty naprieč katalytického lůžka bol zmenšený vhodnou velkosťou zrn katalyzátora. Výška vrstvy katalyzátora bola zvolená s prihliadnutím na optimálně axiálně premiešavanie tak, aby bola splněná aproximácia piestového toku. Experimenty boli uskutočnené až po dosiahnutí ustáleného stavu reakčného systému /dávkovania vstupnej zmesi, reakčnej teploty a aktivity katalyzátora/. Vplyv vonkajšej difúzie bol vylúčený na základe stanovenia konštantnej hodnoty konverzie klučovéj zložky substrátu pre rovnaké hodnoty časovéj súradnice /t.j. recipročněj hodnoty zataženia katalyzátora/ pre různé hmotnosti katalyzátora. Faktor účinnosti vnútornej difúzie pre zvolené zrnitosti katalyzátora sa blížil k hodnotě 1.For the reactions, a steel tubular reactor with a fixed catalyst bed having an internal diameter of 6.10 3 m and a length of 0.26 m was used. The reaction temperature was measured inside the reactor jacket at the center of the catalyst bed by a concentrically placed 2.5 x 10 3 platinum resistance thermometer, and controlled with an accuracy of +1 ° C by a proportional regulator. To reduce the axial temperature gradient, the electrical heating of the reactor was adapted so that the longitudinal temperature graphient was not greater than 1 ° C. The radial gradient of temperature and mass transfer across the catalyst bed was reduced by a suitable catalyst grain size. The height of the catalyst layer was chosen with respect to optimal axial agitation to meet the piston flow approximation. The experiments were carried out only after reaching the steady state reaction system (feed rate, reaction temperature and catalyst activity). The effect of external diffusion was eliminated by determining a constant conversion value of the substrate component for the same time coordinate values (i.e., the reciprocal catalyst loading value) for the different catalyst weights. The internal diffusion efficiency factor for the selected catalyst granularities was close to 1.
Oblasť umiestnenia experimentov a rozsahy nezávisle premenných boli na základe předběžných pokusov stanovené metódou plánovaných pokusov /Response Surface Methodology/. Pre dosiahnutie maximálněj selektivity na propylénoxid /80,9 %/ a maximálněj hodnoty celkovej konverzie 1,2-propándiolu a zmesi vicinálnych acetoxypropanolov /100 %/ na katalyzátore.The location of the experiments and the ranges of the independent variables were determined on the basis of preliminary experiments using the Response Surface Methodology. To achieve maximum selectivity to propylene oxide (80.9%) and maximum total conversion of 1,2-propanediol and a mixture of vicinal acetoxypropanols (100%) on the catalyst.
% AcOK/SiO, sa optimálna hodnota zaťaženia katalyzátora Z pohybuje v rozpětí 5,9 až • 1 -1 o kgg^.kg^ .h , reakčná teplota od 296 do 448 °C, poměr počiatočných parciálnych tlakov 1,2-propándiolu k 1,2-diacetoxypropánu v rozmedzí 2,0 až 2,1; počiatočný parciálny tlak zmesi vicinálnych acetoxypropanolov od 21 do 48 kPa za podmienky, že celkový počiatočný parciálny tlak substrátu je 66,7 kPa. Experimenty sa uskutočnili v rozmedzí celkového pracovně ho tlaku 100 až 138 kPa. Pre různé zloženie substrátu boli hodnoty počiatočného parciálneho tlaku klúčovej zložky substrátu v rozmedzí 0,1 až 53,3 kPa.% Of AcOK / SiO, the optimum catalyst loading Z ranges from 5.9 to 11-1 kgg / kg / kg, reaction temperature from 296 to 448 ° C, the ratio of initial partial pressures of 1,2-propanediol to 1,2-diacetoxypropane in the range of 2.0 to 2.1; an initial partial pressure of a mixture of vicinal acetoxypropanols of from 21 to 48 kPa, provided that the total initial partial pressure of the substrate is 66.7 kPa. The experiments were carried out in a total working pressure of 100-138 kPa. For different substrate compositions, the initial partial pressure values of the key component of the substrate were in the range of 0.1 to 53.3 kPa.
Spůsob merania je zřejmý z nasledujúceho popisu. Nosný plyn /dusík/ prúdil z tlakovej flaše cez sústavu redukčných ventilov a adsorpčných věží naplněných postupné tuhým hydroxidom sodným, aktívnym uhlím a molekulovými sitami, cez maňostat a prietokomer do kapilárneho predohrievača vybaveného elektrickým vykuřováním, kde sa zohrial na reakčnú teplotu. Odtial prúdil do výparníka, kde sa miešal s parami substrátu, ktorý sa do výparníka dávkoval injekčnou striekačkou pomocou lineárneho dávkovada.The method of measurement is apparent from the following description. The carrier gas (nitrogen) flowed from the cylinder through a set of pressure reducing valves and adsorption towers filled sequentially with solid sodium hydroxide, activated carbon and molecular sieves, through a manometer and a flowmeter to a capillary preheater equipped with electric heating where it was heated to reaction temperature. From there it flowed into the evaporator, where it was mixed with the vapors of the substrate, which were dosed into the evaporator by syringe using a linear dispenser.
Vstupná plynná zmes, tlak ktorej sa meral ortuťovým manometrom, prúdila do reaktora zhora nadol, prechádzala postupné vrstvami skleněných guločiek, katalyzátora a sklenej vaty. Zreagovaná plynná zmes prúdila dalej koncentrickou keramickou trubičkou a na výstupe z reaktora sa meral jej tlak ortuťovým manometrom. Po ochladenl vodou v špirálovom chladiči sa oddělili a v zbernej banke chladené na -20 +5 °C zhromaždili kvapalné produkty. Posledně zvyšky pár lahkovrúcich zložiek vykondenzovali v vymrazovačke, chladené na -60 +10 °C rovnako ako zberná banka zmesou aceton - oxid uhličitý. Zvyšný plyn sa viedol cez diferenciálny kapilárny prietokomer, teploměr a bublinkový prietokomer do atmosféry. Kvapalné reakčné produkty sa odoberali zo zbernej banky a vymrazovačky kapilárami a po zmiešanl sa analyzovali chromatografiou plyn - kvapalina. Stanovenia všetkých zložiek boli vyhodnocované metodou absolútnej kalibrácie priamym zrovnáním.The feed gas mixture, which was measured by mercury manometer, flowed from top to bottom into the reactor, passed through successive layers of glass beads, catalyst and glass wool. The reacted gas mixture flowed further through a concentric ceramic tube and at the outlet of the reactor its pressure was measured with a mercury manometer. After cooling with water in a spiral cooler, they were separated and liquid products collected in a -20 + 5 ° C collection flask. The last few remnants of a few bottled ingredients condensed in a freezer, cooled to -60 +10 ° C as well as a collecting flask with an acetone-carbon dioxide mixture. The remaining gas was passed through a differential capillary flowmeter, thermometer, and bubble flowmeter to the atmosphere. Liquid reaction products were collected from a collecting flask and freezer by capillary and analyzed after gas-liquid chromatography. Assays of all components were evaluated by the absolute calibration method of direct comparison.
Příklad 1Example 1
Deacyloxylácia bola uskotočnená so substrátom, ktorý je zmesou 58,2 % hmot. l-acetoxy-2-propanolu a 32,4 % hmot. 2-acetoxy-l-propanolu a obsahuje 2,0 % hmot. 1,2-propándiolu,The deacyloxylation was carried out with a 58.2 wt. % of 1-acetoxy-2-propanol and 32.4 wt. % Of 2-acetoxy-1-propanol and contains 2.0 wt. 1,2-propanediol,
7,3 % hmot. 1,2-diacetoxypropánu a 0,08 % hmot. vody. Aktívnou zložkou katalyzátore octanom draselným /p.a./ bol impregnovaný nosič /10 % hmot./, ktorým bol syntetický zeolit Calsit 5A. Reakcia sa uskutočnila pri teplote 400 °C, počiatočný parciálny tlak zmesi vicinálnych acetoxypropanolov bol 13,2 kPa, celkový tlak 112,5 kPa, zaťaženie katalyzátore —1 —1 —1 —17.3 wt. % Of 1,2-diacetoxypropane and 0.08 wt. water. The active component of the catalyst with potassium acetate (p.a.) was impregnated with a carrier (10% by weight) which was a synthetic zeolite Calsit 5A. The reaction was carried out at 400 ° C, the initial partial pressure of the mixture of vicinal acetoxypropanols was 13.2 kPa, the total pressure was 112.5 kPa, the catalyst load -1-1-1-1-1
Z = 52,4 kgSI.kgK .h resp. 20,31 kgs.kgR.h , t.j. vztiahnuté na zmes acetoxypropanolov 155 mol.kg^1.h-1. Konverzia klučovej zložky substrátu, t.j. zmesi vicinálnych acetoxypropanolov bola 42,2 %, parciálna konverzia vicinálnych acetoxypropanolov na rozkladné produkty 23,5 %, selektivita na propylénoxid dosiahla 87,1 0, na propionaldehyd 12,0 %, na aceton 0,6 % a na alylakohol 0,3 %. Kyselina octová z pyrolýzy sa regeneruje s účinnosťou 35,9 %.Z = 52.4 kg SI .kg K .h resp. 20.31 kg of R .kg .h, that is based on a mixture of 155 acetoxypropanolov mol.kg ^ 1 h -1. The conversion of the grub component of the substrate, ie the mixture of vicinal acetoxypropanols was 42.2%, the partial conversion of vicinal acetoxypropanols to decomposition products 23.5%, the selectivity to propylene oxide reached 87.1%, to propionaldehyde 12.0%, to acetone 0.6% and to allyl alcohol 0.3%. Acetic acid from pyrolysis is regenerated with an efficiency of 35.9%.
Zmes nezreagovaného diolu, hydroxyesteru a diesteru, po predchádzajúcom oddestilovaní lahkovrúcich Stiepnych produktov pyrolýzy v prvom stupni a kyseliny octovej v druhom stupni sa spracováva sčasti totálnou hydrolýzou na 1,2-propándiol, sčasti sa vedie spSť na pyrolýzu. Proces je vedený takým spósobom, aby surovinou bola iba zmes vicinálnych acetoxypropanolov a 1,2-diacetoxypropánu dodávaná z acetoxylácie propylénu. Kyselina octová z pyrolýzy a hydrolýzy esterov sa regeneruje s celkovou účinnosťou 97 % a recirkuluje do procesu acetoxylácie propylénu. Na 1 000 kg propylénoxidu sa spotřebuje 1 318 kg propylénu a 52 kg kyseliny octovej, ako vedlajší produkt sa získá 922 kg 1,2-propándiolu.The mixture of unreacted diol, hydroxyester and diester, after previously distilling off the bottomed pyrolysis cleavage products in the first stage and acetic acid in the second stage, is worked up, in part, by total hydrolysis to 1,2-propanediol, and partially led back to pyrolysis. The process is conducted in such a way that the feedstock is only a mixture of vicinal acetoxypropanols and 1,2-diacetoxypropane supplied from the acetoxylation of propylene. Acetic acid from pyrolysis and ester hydrolysis is recovered with an overall efficiency of 97% and recirculated to the propylene acetoxylation process. 1000 kg of propylene oxide consume 1318 kg of propylene and 52 kg of acetic acid, and 922 kg of 1,2-propanediol are obtained as a by-product.
Příklad 2Example 2
Postupuje sa ako v příklade 1 s tým rozdielom, že zaťaženie katalyzátora Z = 16,6 kggj.kg^^.h Konverzia zmesi vicinálnych acetoxypropanolov dosiahla 70,7 i a parciálna konverzia vicinálnych acetoxypropanolov na rozkladné produkty 36,9 %. Výťažok propylénoxidu bol 46,5 %, proionaldehydu 12,4 % alylalkoholu 1,8 %, acetonu 0,7 % a acetaldehydu 0,3 %. Kyselina octová z pyrolýzy sa regeneruje s účinnostou 53,9 %.The procedure was as in Example 1, except that the catalyst loading Z = 16.6 kgg / kg kg. Conversion of the mixture of vicinal acetoxypropanols reached 70.7% and the partial conversion of vicinal acetoxypropanols to decomposition products 36.9%. The yield of propylene oxide was 46.5%, proionaldehyde 12.4% allyl alcohol 1.8%, acetone 0.7% and acetaldehyde 0.3%. Acetic acid from pyrolysis is regenerated with an efficiency of 53.9%.
V uvedených príkladoch 1 a 2 je hlavným produktom propylénoxid /s výnimkou koprodukčnej kyseliny octovej, ktorá sprevádza aj tvorbu izomérov propylénoxidu, pri nižších hodnotách počiatočného parciálneho tlaku zmesi vicinálnych acetoxypropanolov/ v širokom rozsahu zaťaženia katalyzátora a hodnót počiatočného parciálneho tlaku zmesi izomérnych acetoxypropanolov. Konverzia aj selektivita na propylénoxid rovnako ako aj na propionaldehyd sú preferované nižšou hodnotou počiatočného parciálneho tlaku acetoxypropanolov. Propylénoxid sa správa ako reakčný medziprodukt.In Examples 1 and 2, the main product is propylene oxide (except co-producing acetic acid, which also accompanies the formation of propylene oxide isomers, at lower initial partial pressure values of the vicinal acetoxypropanols mixture) over a wide range of catalyst loading and isomeric isopropanol initial initial pressure values. Conversion as well as selectivity to propylene oxide as well as propionaldehyde are preferred by a lower initial partial pressure of acetoxypropanols. Propylene oxide behaves as a reaction intermediate.
Příklad 3Example 3
Pyrolýza bola uskutočnená so substrátom, ktorý je ekvimolárnou zmesou 1,2-propándiolu /32,9 % hmot./ a 1,2-diacetoxypropánu /67,0 % hmot./ a obsahuje 0,08 % hmot. vody. Aktívnou zložkou katalyzátora octanom draselným /p.a./ bol impregnovaný nosič /10 % hmot./, ktorým bol syntetický zeolit Nalsit 4A. Reakcia sa uskutočnila pri teplote 350 °c, počiatočný parciálny tlak 1,2-propándiolu bol 13,6 kPa, celkový tlak 110,5 kPa, zaťaženie katalyzátoraPyrolysis was performed with a substrate which is an equimolar mixture of 1,2-propanediol (32.9% w / w) and 1,2-diacetoxypropane (67.0% w / w) and contains 0.08% w / w. water. The active component of the catalyst with potassium acetate (p.a.) was impregnated with a carrier (10% by weight) which was a synthetic zeolite Nalsit 4A. The reaction was carried out at 350 ° C, the initial partial pressure of 1,2-propanediol was 13.6 kPa, the total pressure was 110.5 kPa, the catalyst loading.
-1 -1 -1 -1 Z = 49,8 kgSI<kgK .h , t.j. vztiahnuté na 1,2-propándiol 123 mol.kgR .h . Konverzía klučovej zložky substrátu, t.j. 1,2-propándiolu bola 17,5 %, parciálna konverzía 1,2-propándiolu na rozkladné produkty 13,2 %, konverzía 1,2-diacetoxypropánu 4,5 %. Selektivita na propylénoxíd dosiahla 86,3 %, na propionaldehyd 7,6 %, na aceton 4,5 % a na acetaldehyd 1,6 %. Molárny poměr zreagovaného diolu k zreagovanému diesteru bol 4,0.-1 -1 -1 -1 Z = 49.8 kg SI <.h kg K, i.e., based on the 1,2-propanediol 123 mol.kg R .h. The conversion of the grub component of the substrate, i.e., 1,2-propanediol, was 17.5%, the partial conversion of 1,2-propanediol to decomposition products was 13.2%, and the conversion of 1,2-diacetoxypropane was 4.5%. The selectivity for propylene oxide was 86.3%, for propionaldehyde 7.6%, for acetone 4.5% and for acetaldehyde 1.6%. The molar ratio of reacted diol to reacted diester was 4.0.
Příklad 4Example 4
Postupuje sa ako v příklade 3 s tým rozdielom, že zaťaženie katalyzátora Z = 10,0 kg^j.kg^.h \ Konverzía 1,2-propándiolu dosiahla 39,5 %, parciálna konverzía 1,2-propándiolu na rozkladné produkty 30,0 %, konverzía 1,2-diacetoxypropánu 10,1 %. Selektivita na jednotlivé rozkladné produkty bola nasledujúca: propylénoxid 79,4 %, propionaldehyd 11,9 %, aceton 5,7 % a acetaldehyd 3,0 %. Hodnota molárneho poměru zreagovaného diolu k zreagovanému diesteru bola 4,0.The procedure was as in Example 3, except that the catalyst loading Z = 10.0 kg / kg kg / hr. Conversion of 1,2-propanediol reached 39.5%, partial conversion of 1,2-propanediol to decomposition products 30. % Conversion of 1,2-diacetoxypropane 10.1%. The selectivity for the individual decomposition products was as follows: propylene oxide 79.4%, propionaldehyde 11.9%, acetone 5.7% and acetaldehyde 3.0%. The molar ratio of the reacted diol to the reacted diester was 4.0.
Príklad5Example 5
Postupuje sa ako v příklade 3 s tým rozdielom, že počiatočný parciálny tlak 1,2-propándiolu bol 33,9 kPa, celkový tlak 113,0 kPa, zaťaženie katalyzátora Z = 24,9 kggj.kg^.h.-1. Konverzía 1,2-propándiolu bola 27,9 %, parciálna konverzía 1,2-propándiolu na rozkladné produkty 21,6 %, konverzía 1,2-diacetoxypropánu 6,6 %. Selektivita na jednotlivé rozkladné produkty bola následujúca: propylénoxid 79,6 %, propionaldehyd 14,5 8, aceton 4,2 %, acetaldehyd 1,7 %.The procedure was as in Example 3, except that the initial partial pressure of 1,2-propanediol was 33.9 kPa, the total pressure was 113.0 kPa, the catalyst loading Z = 24.9 kgg / kg / kg. -1 . The conversion of 1,2-propanediol was 27.9%, the partial conversion of 1,2-propanediol to decomposition products was 21.6%, and the conversion of 1,2-diacetoxypropane was 6.6%. The selectivity for the individual decomposition products was as follows: propylene oxide 79.6%, propionaldehyde 14.5%, acetone 4.2%, acetaldehyde 1.7%.
Hodnota molárneho poměru zreagovaného diolu k zreagovanému diesteru bola 4,3.The molar ratio of the reacted diol to the reacted diester was 4.3.
V uvedených príkladoch 3, 4, 5 je hlavným produktom propylénoxid, tvorba ktorého je iba mierne preferovaná vačším počiatočným parciálnym tlakom 1,2-propándiolu . Selektivita na propylénoxid rastie s nižším počiatočným parciálnym tlakom 1,2-propándiolu. Tvorba monoacetátu 1,2-propándiolu je perferovaná vyšším parciálnym tlakom 1,2-propándiolu v oblasti menšej hodnoty zaťaženia katalyzátora a naopak, rovnako ako konverzía 1,2-diacetoxypropánu a parciálna konverzía 1,2-propándiolu na hydroxyestery. Konverzía 1,2-propándiolu v uvedenej oblasti počiatočných parciálnych tlakov tejto zložky rasie. Žiadny z reakčných produktov sa nespráva ako reakčný medziprodukt alebo produkt následnéj reakcie. Rýchlosti jednotlivých reakcií sústavy na uvedené produkty klesajú v poradí:In the above Examples 3, 4, 5, the main product is propylene oxide, the formation of which is only slightly preferred by the larger initial partial pressure of 1,2-propanediol. The selectivity to propylene oxide increases with a lower initial partial pressure of 1,2-propanediol. The formation of 1,2-propanediol monoacetate is favored by the higher partial pressure of 1,2-propanediol in the region of the lower catalyst load and vice versa, as well as the conversion of 1,2-diacetoxypropane and the partial conversion of 1,2-propanediol to hydroxy esters. Conversion of 1,2-propanediol in said region of initial partial pressures of this racial component. None of the reaction products behaves as a reaction intermediate or post-reaction product. The rates of individual system responses to these products decrease in order:
propylénoxid>vicinálne acetoxypropanoly>propionaldehyd>acetón>acetaldehyd.propylene oxide> vicinal acetoxypropanols> propionaldehyde> acetone> acetaldehyde.
Reakčné produkty sa na povrchu katalyzátora neadsorbujú. Vicinálne hydroxyestery vzniknuté alkoholýzou diacetátu diolom nie sú za uvedených reakčných podmienok hlavným prekurzorom propylénoxidu, tým je 1,2-propándiol, ktorý podlieha dehydrataěnej reakcii za aktivačného pósobenia 1,2-diacetoxypropánu. Kyselina octová deacyloxylačnou reakciou vicinálnych acetoxypropanolov nevzniká, rovnako nie je reakčným produktom ani alylalkohol.The reaction products do not adsorb on the catalyst surface. The vicinal hydroxyesters formed by the diolysis of diacetate by diol are not the propylene oxide precursor under these reaction conditions, namely 1,2-propanediol, which undergoes a dehydration reaction under the activation action of 1,2-diacetoxypropane. Acetic acid is not produced by the deacyloxylation reaction of vicinal acetoxypropanols, nor is allyl alcohol the reaction product.
Príklad6Example 6
Pre porovnanie bola uskutočnená pyrolýza na katalyzátore, ktorý sa skládá z aktivněj zložky, ktorou je octan draselný /p.a./ a z nosiča, ktorý bol impregnovaný touto aktívnou zložkou /10 % hmot./ a ktorým «o-oxid hlinitý. Ako substrát bola použitá zmes 1,2-propándiolu /49,1 % hmot./ a 1,2-diacetoxypropánu /50,6 % hmot./ o molárnom pomere 2:1, obsahujúca 0,3 % hmot. vody.For comparison, pyrolysis was carried out on a catalyst consisting of an active ingredient, which is potassium acetate (p.a.), and a carrier impregnated with this active ingredient (10% by weight), and which is an o-alumina. A mixture of 1,2-propanediol (49.1% w / w) and 1,2-diacetoxypropane (50.6% w / w) with a 2: 1 molar ratio containing 0.3% w / w was used as substrate. water.
Reakcia sa uskutočnila pri teplote 450 °C, počiatočný parciálny tlak klučovej zložky substrátu, t.j. 1,2-propándiolu bol 13,3 kPa, celkový tlak 120,0 kPa, zaťaženie katalyzátora -1 -1 -1 -1The reaction was carried out at 450 ° C, the initial partial pressure of the cage component of the substrate, i. 1,2-propanediol was 13,3 kPa, total pressure 120,0 kPa, catalyst load -1 -1 -1 -1
50,0 kggI,kgK .h tj. 21,15 kgg.kgR .h . Kbnverzácia 1,2-propándiolu bola 32,5 %, parciálna konverzia 1,2 -propándiolu na rozkladné produkty 31,3 i, konverzácia 1,2-diaoetoxypropánu 30,4 %. Výtažok propylénoxidu bol 48,0 %, acetonu 9,3 %, propionaldehydu 4,8 %, acetaldehydu 1,1 %, alylalkoholu 0,3 %. Hodnota molárneho poměru zreagovaného diolu k zreagovanému diesteru bola 2,2.50.0 kg gI , kg K .h ie. 21.15 kg g .kg R .h. The conversion of 1,2-propanediol was 32.5%, the partial conversion of 1,2-propanediol to decomposition products 31.3%, the conversion of 1,2-diaoethoxypropane 30.4%. The yield of propylene oxide was 48.0%, acetone 9.3%, propionaldehyde 4.8%, acetaldehyde 1.1%, allyl alcohol 0.3%. The molar ratio of the reacted diol to the reacted diester was 2.2.
Konverzia aj selektivita na propylénoxid je vačšia pre nižšou hodnotu počiatočného parciálneho tlaku 1,2-propánďiolu, avšak propylénoxid je hlavným produktom iba pre najvSčšiu hodnotu zaťaženia katalyzátora a správa sa ako reakčný medziprodukt.Both the conversion and the selectivity to propylene oxide are greater for the lower initial partial pressure of 1,2-propanediol, but propylene oxide is the main product only for the highest catalyst loading and acts as a reaction intermediate.
Reakciou získané monoacetáty spolu s nezreagovaným diacetátom 1,2-propándiolu po oddestilovaní Iahkovrúcich produktov pyrolýzy sa hydrolyzujú na 1,2-propándiol, ktorý sčasti recirkuluje, sčasti sa odtahuje ako vedlajší produkt. Kyselina octová, ktorá sa vracia do procesu acetoxylácie propylénu, sa regeneruje s účinnosťou 73,0 %. Proces je vedený takým spčsobom, aby jedinou vstupnou surovinou bol 1,2-diacetoxypropán, získaný acetoxyláciou propylénu. Na 1 000 kg propylénoxidu sa spotřebuje 738 kg propylénu a 567 kg kyseliny octovej, ako vedlajší produkt sa získá 107 kg 1,2-propándiolu .The monoacetates obtained by the reaction, together with unreacted 1,2-propanediol diacetate, after distillation of the light-boiling pyrolysis products, are hydrolyzed to 1,2-propanediol, which is partially recirculated, partly withdrawn as a by-product. The acetic acid that is returned to the propylene acetoxylation process is regenerated with an efficiency of 73.0%. The process is conducted in such a way that the only feedstock is 1,2-diacetoxypropane, obtained by acetoxylation of propylene. 1000 kg of propylene oxide consume 738 kg of propylene and 567 kg of acetic acid, and 107 kg of 1,2-propanediol are obtained as a by-product.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS8610071A CS263194B1 (en) | 1986-12-29 | 1986-12-29 | Catalyst for preparing alkylenoxides and/or isomers them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS8610071A CS263194B1 (en) | 1986-12-29 | 1986-12-29 | Catalyst for preparing alkylenoxides and/or isomers them |
Publications (2)
Publication Number | Publication Date |
---|---|
CS1007186A1 CS1007186A1 (en) | 1988-09-16 |
CS263194B1 true CS263194B1 (en) | 1989-04-14 |
Family
ID=5447832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS8610071A CS263194B1 (en) | 1986-12-29 | 1986-12-29 | Catalyst for preparing alkylenoxides and/or isomers them |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS263194B1 (en) |
-
1986
- 1986-12-29 CS CS8610071A patent/CS263194B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS1007186A1 (en) | 1988-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2265565B1 (en) | Process for manufacturing acrolein or acrylic acid from glycerin | |
JP6082035B2 (en) | Process for producing acetic acid and dimethyl ether | |
US7951978B2 (en) | Process for producing acrolein and glycerin-containing composition | |
US20100168471A1 (en) | Method for preparing acrylic acid from glycerol | |
BG62804B1 (en) | METHOD FOR OBTAINING ACETIC ACID | |
RU2656599C2 (en) | Process for carbonylation of dimethyl ether | |
KR20100059891A (en) | Process for manufacturing acrolein from glycerol | |
JP2017519745A (en) | Improved catalytic performance in acetic acid production process | |
US4990662A (en) | Process for preparation of alpha, beta-unsaturated acids | |
CN102177145B (en) | Method for producing an alkylene oxide | |
EP0162475A2 (en) | Process for producing cyclic alcohol | |
US4400308A (en) | Silver-containing supported catalysts and catalyst intermediate products, processes for their preparation and their use | |
WO2013008279A1 (en) | Process for preparing catalyst used in production of acrolein and/or acrylic acid and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin | |
WO2014100132A1 (en) | Catalysts and processes for producing butanol | |
EP1289921A1 (en) | Aldol condensation reaction and catalyst therefor | |
CS263194B1 (en) | Catalyst for preparing alkylenoxides and/or isomers them | |
EP4129962B1 (en) | Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate | |
US6329549B1 (en) | Dimethyl ether for methyl group attachment on a carbon adjacent to an electron withdrawing group | |
US20030031624A1 (en) | Process for the preparation and isolation of alkene oxides from alkenes | |
JP2832047B2 (en) | Propylene production method | |
EP0021511B1 (en) | Process for the preparation of optionally alkyl-substituted resorcinol and catalyst to be used in this process | |
RU2072979C1 (en) | Method of synthesis of formaldehyde | |
Wang et al. | Baeyer–Villiger Oxidation over HZSM-5 Type Zeolites | |
EP0227331B1 (en) | Process for producing 2-hydroxyphenyl lower alkyl ketones | |
WO2025176792A1 (en) | Processes for the preparation of isoprenol and downstream products thereof |