CS261853B2 - Method of aminoglycoside antibiotic's selectively acylated n-protected derivative production - Google Patents

Method of aminoglycoside antibiotic's selectively acylated n-protected derivative production Download PDF

Info

Publication number
CS261853B2
CS261853B2 CS797711A CS771179A CS261853B2 CS 261853 B2 CS261853 B2 CS 261853B2 CS 797711 A CS797711 A CS 797711A CS 771179 A CS771179 A CS 771179A CS 261853 B2 CS261853 B2 CS 261853B2
Authority
CS
Czechoslovakia
Prior art keywords
amino
hydrogen
formula
zinc
hydroxy
Prior art date
Application number
CS797711A
Other languages
Czech (cs)
Other versions
CS771179A2 (en
Inventor
Hamao Umezawa
Sumio Umezawa
Tsutomu Tsuchiya
Yasushi Takagi
Tomo Jikihara
Original Assignee
Microbial Chem Res Found
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microbial Chem Res Found filed Critical Microbial Chem Res Found
Priority to CS829399A priority Critical patent/CS261859B2/en
Publication of CS771179A2 publication Critical patent/CS771179A2/en
Publication of CS261853B2 publication Critical patent/CS261853B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon or a metal, e.g. chelates or vitamin B12
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/22Cyclohexane rings, substituted by nitrogen atoms
    • C07H15/222Cyclohexane rings substituted by at least two nitrogen atoms
    • C07H15/226Cyclohexane rings substituted by at least two nitrogen atoms with at least two saccharide radicals directly attached to the cyclohexane rings
    • C07H15/234Cyclohexane rings substituted by at least two nitrogen atoms with at least two saccharide radicals directly attached to the cyclohexane rings attached to non-adjacent ring carbon atoms of the cyclohexane rings, e.g. kanamycins, tobramycin, nebramycin, gentamicin A2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To obtain the title substance useful for preparing antibiotic amikacin, by forming a complex from an aminoglycoside antibiotic, e.g. kanamycin, gentamicin, or sisomicin, with zinc cations, and by acylating the complex. CONSTITUTION:An aminoglycoside antibiotic consisting of deoxystreptamine having an 3-aminoglycosyl or 3-alkylaminoglycosyl group at the 6-position, e.g. a compound of the formula (R<1> is OH or NH2; R<2> and R<3> are H or OH; R<4> is OH, NH2, or 1-4C alkylamino group), is reacted with zinc cations to form a zinc complex. The amino group without forming a complex bond with zinc is acylated and protected to remove the zinc, and the title substance is obtained. The complex bonds are formed at amino and OH groups at positions different from the well-known Ni, Co, Cu, or Cd cations, and various antibiotics can be obtained by introducing the desired acyl group into the amino group at the 1-position after removal of zinc cations.

Description

ČESKOSLOVENSKA SOCIALISTICKÁ

REPUBLIKA (19)

POPIS VYNÁLEZU

K PATENTU 261853 (Π) (B2)

ÚƘAD PRO VYNÁLEZYA OBJEVY (22) Pƙihláơeno 12 11 79 (21) (PV 7711-79) (32) (31) (33) Právo pƙednosti od 11 11 78(138402) Japonsko (51) Int. Cl.4C 07 H 15/234 (40) Zveƙejněno 15 06 88(45) Vydáno 15 07 89 (72)

Autor vynĂĄlezu UMEZAWA HAMAO, UMEZAWA SUMIO, TOKIO, TSUCHIYA TSUTOMU,TAKAGI YASUSHI, JIKIHARA ΀ΟΜΟ, KANAGAWA (Japonsko) (73)

Majitel patentu ZAIDAN HOJIN BISEIBUTSU KAGAKU KENKYU KAI, TOKIO (Japonsko) (54) ZpĆŻsob vĂœroby selektivně acylovanĂ©ho N-clirĂĄněnĂ©ho derivĂĄtuaminoglykosidovĂ©ho antibiotika 1

VynĂĄlez se tĂœkĂĄ zpĆŻsobu vĂœroby selek-tivně acylovanĂ©ho N-chrĂĄněnĂ©ho derivĂĄtuaminoglykosidovĂ©ho antibiotika.

Tento vynĂĄlez se zvlĂĄĆĄtě tĂœkĂĄ novĂ©hozpĆŻsobu vĂœroby selektivně chrĂĄněnĂ©ho N--acylcvanĂ©ho derivĂĄtu aminoglykosidovĂ©hoantibiotika, pƙi kterĂ©m některĂ© aminosku-piny nebo alkylaminoskupiny v určitĂœch po-lohĂĄch. aminoglykosidovĂ© molekuly jsou se-lektivně chrĂĄněny neboli blokovĂĄny acylo-vou skupinou. VynĂĄlez se tudĂ­ĆŸ tĂœkĂĄ novĂ©-ho zpĆŻsobu selektivnĂ­ ochrany některĂœchaminoskupin nebo alkylaminoskupin v ur-t^Ăœch polohĂĄch aminoglykosidavĂ©ho' anti-biotika a nalĂ©zĂĄ hlavnĂ­ pouĆŸitĂ­ pƙi vĂœroběselektivně chrĂĄněnĂ©ho N-acylovanĂ©ho deri-vĂĄtu aminoglykosidovĂ©ho antibiotika, kterĂ©obsahuje deoxystreptaminovou strukturu ob-sahujĂ­cĂ­ 3“-aminoglykosyloTOu skupinu spo-jenou s 6-hydroxyskupinou deoxystreptami-novĂ© části v aminoglykosidovĂ© molekule.

AminoglykosidovĂ© antibiotikum, pouĆŸitel-nĂ© podle tohoto vynĂĄlezu, mĆŻĆŸe bĂœt pƙesně-ji definovĂĄno jako aminoglykosidovĂ© anti-biotikum sestĂĄvajĂ­cĂ­ z 6-O-(3“-amino- nebo3“-alkylamino-3“-deoxyglykosyl) -2-deoxy-streptaininu, kterĂœ mĆŻĆŸe popƙípadě obsaho-vat 4-0-(6‘-aminoglykosyl)ovĂœ substituent.TypickĂœmi pƙíklady jsou kanamyciny, gent- 2 amiciny, sisomicin, netilmicin a verdami-cin.

Je znĂĄmo, ĆŸe aminoglykosidovĂĄ antibioti-ka, jako napƙíklad kanamyciny, jsou lĂĄtkyobsahujĂ­cĂ­ několik aminoskupin a hydroxy-skupin, kterĂ© majĂ­ poměrně vysokĂœ a roz-ličnĂœ stupeƈ reaktivnosti. MnohĂ© druhy po-lysyntetickĂœch aminoglykosidovĂœch antibio-tik, kterĂ© jsou odvozenĂ© od pĆŻvodnĂ­ch ami-noglykosidovĂœch antibiotik byly pƙipravenysynteticky. Pƙi semisyntĂ©ze těchto derivĂĄtĆŻje často nutnĂ© nebo vĂœhodnĂ© zajistit, abyněkterĂ© aminoskupiny a/nebo některĂ© hyd-roxyskupiny ve vĂœchozĂ­m arainoglykosido-vĂ©m antibiotiku byly selektivně chrĂĄněnyalespoƈ jednou vhodnou ochrannou skupi-nou.

Pro selektivnĂ­ ochranu aminoskupin a//nebo hydroxyskupin v aminoglykosidovĂ©mantibiotiku byly vyvinuty rĆŻznĂ© uĆŸitečnĂ©zpĆŻsoby, kterĂ© jsou jako takovĂ© pouĆŸitelnĂ©pro selektivnĂ­ ochranu hydroxyskupiny. ProselektivnĂ­ ochranu některĂœch vybranĂœch a-minoskupin z mnoĆŸstvĂ­ aminoskupin, kterĂ©jsou v aminoglykosidovĂ©m antibiotiku, jsouvĆĄak tyto· znĂĄmĂ© zpĆŻsoby buď tÄ›ĆŸko prove-ditelnĂ©, nebo vyĆŸadujĂ­ některĂ© sloĆŸitĂ© ope-race. To je zpĆŻsobeno tĂ­m, ĆŸe vĆĄechny ami-noskupiny v aminoglykosidovĂ©m antibiotiku 261853 281853 '' Ί nemajĂ­ větĆĄĂ­ rozdĂ­l ve svĂ© reaktivnosti. Cha-rakteristickĂœm pƙíkladem Je 6‘-aminosku-pina kanamycinu A, avĆĄak takovĂĄ amino-nebo methylaminoskupina, kterĂĄ je vĂĄzĂĄnana určitĂœ atom uhlĂ­ku, kterĂœ je naopak vĂĄ-zĂĄn na pouze jeden atom uhlĂ­ku v amino-glykosidovĂ© molekule, vytváƙí vyĆĄĆĄĂ­ reaktiv-nost neĆŸ takovĂĄ amino- nebo methylamino-skupina, kterĂĄ je vĂĄzĂĄna na atom uhlĂ­ku,kterĂœ je vĂĄzĂĄn na dva nebo vĂ­ce atomĆŻ uh-lĂ­ku v tĂ©to aminogrykosidovĂ© molekule. Ztohoto dĆŻvodu prvnĂ­ zmĂ­něnĂœ typ amino-nebo methylaminoskupiny je mnohem vĂ­ceschopen reagovat s acylačnĂ­m činidlem, kte-rĂ© obsahuje acylovou skupinu určenou prozavedenĂ­ jako amino-ochrannou skupinu,neĆŸ druhĂœ zmĂ­něnĂœ typ amino- nebo methyl-aminoskupiny, takĆŸe N-chrĂĄněnĂœ derivĂĄt,kterĂœ mĂĄ prvnĂ­ typ amino- nebo methyla-minoskupiny pƙednostně chrĂĄněnĂœ acylovouskupinou, mĆŻĆŸe bĂœt vyrĂĄběn s vyĆĄĆĄĂ­m vĂœ-tÄ›ĆŸkem neĆŸ jinak N-chrĂĄněnĂ© derivĂĄty. Pƙed několika lety někteƙí z autorĆŻ toho-to vynĂĄlezu zjistili, ĆŸe kdyĆŸ aminoskupinaa hydroxyskupina jsou navzĂĄjem v soused-nĂ­ch polohĂĄch v pĂĄru ve sterickĂ© konfigu-raci molekuly aminoglykosidovĂ©ho antibio-tika, mĆŻĆŸe bĂœt tato aminoskupina a hydro-xyskupina navzĂĄjem selektivně sloučena dotvaru cyklickĂ©ho karbamĂĄtu reakcĂ­ s hyd-ridem sodnĂœm, takĆŸe pĂĄr sestĂĄvajĂ­cĂ­ z ami-noskupiny a hydroxyskupiny mĆŻĆŸe bĂœt vcyklickĂ©m karbamĂĄtu chrĂĄněn současně bezblokovĂĄnĂ­ jinĂœch aminoskupin pƙítomnĂœchv tĂ©ĆŸe molekule [viz „Journal of Antibiotics“25, 12, 741—742 [1972], a dĂĄle US paten-ty č. 3 925 354 a 3 965 0B9],

NedĂĄvno Nagabhushan a kol. zjistili, ĆŸekdyĆŸ se sĆŻl dvojmocnĂ©ho pƙechodnĂ©ho ko-vu (M+ + J zvolenĂ©ho ze souboru zahrnujĂ­-cĂ­ho dvojmocnou měď, nikl, kobalt a kad-mium nechĂĄ v inertnĂ­m organickĂ©m roz-pouĆĄtědle reagovat s aminoglykosidovĂœmantibiotikem ze souboru zahrnujĂ­cĂ­ho 4-0-- (aminoglykosyl) -6-0- [ aminoglykosyl )-2-de-oxystreptamin, pƙedstavovanĂœ kanamyciny,gentamiciny a sisomicinem, tento dvojmoc-nĂœ kation pƙechodnĂ©ho kovu je komplexo-vĂĄn s dvojicĂ­ sestĂĄvajĂ­cĂ­ z aminoskupiny ahydroxyskupiny, kterĂ© jsou zvlĂĄĆĄtě ve vici-nĂĄlnĂ­m uspoƙádĂĄnĂ­ v molekule aminoglyko-sidu, čímĆŸ je vytvoƙen kationtovĂœ komplexaminoglykosidovĂ©ho antibiotika s pƙechod-nĂœm kovem (japonskĂœ zveƙejněnĂœ spis č.Sho-52-153 944 a US patent č. 4 136 254, u-dělenĂœ dne 23. ledna 1979 J. V tomto kationtovĂ©m komplexu amino-glykosidovĂ©ho antibiotika s transitnĂ­m ko-vem je komplexovanĂĄ aminoskupina chrĂĄ-něna kationtem dvojmocnĂ©ho pƙechodnĂ©hokovu. KdyĆŸ se potom tento komplex nechĂĄreagovat s některĂœm acylačnĂ­m činidlem ob-sahujĂ­cĂ­m acylovou skupinu, mohou bĂœt vkovovĂ©m komplexu acylovĂĄny pouze ne-skomplexovanĂ© aminoskupiny, kterĂ© nejsouchrĂĄněny kationtem dvojmocnĂ©ho kovu, tak-ĆŸe se dosĂĄhne selektivnĂ­ N-ochrany acylo- vou skupinou. To je ukĂĄzĂĄno dĂĄle s odvolĂĄ-nĂ­m na kanamycin A jako pƙíklad. Je-li te-dy kation dvojmocnĂ©ho pƙechodnĂ©ho kovu(M+ + ) zvolenĂœ ze souboru zahrnujĂ­cĂ­hodvojmocnou měď, nikl, kobalt a kadmiumuveden do reakce s kanamycinem A, kom-plexačnĂ­ reakce kationtu dvojmocnĂ©ho ko-vu (M+ + J nastane mezi 1-aminoskupinou a2“-hydroxyskupinou a mezi 3“-aminoskupi-nou a 4“-hydroxyskupinou molekuly kana-mycinu A, jak znĂĄzorƈuje vzorec Γ:

Ve vĂœĆĄe uvedenĂ© komplexačnĂ­ reakci jetudĂ­ĆŸ zƙejmĂ©, ĆŸe je tƙeba alespoƈ 2 molĆŻ so-li pƙechodnĂ©ho kovu na 1 mol kanamycinuA. Ve vĂœslednĂ©m kovovĂ©m komplexu jsou1-amino- a 3“-aminoskupiny blokovĂĄny sou-časně. KdyĆŸ se tento komplex vzorce I*zpracuje s acylačnĂ­m činidlem obsahujĂ­cĂ­macylovou skupinu, kterĂĄ je vhodnĂĄ jakoskupina pro ochranu aminoskupiny, znĂĄmĂĄpƙi obvyklĂ© syntĂ©ze polypeptidĆŻ, jsou acy-lovĂĄny pouze nezkomplexovanĂ© 3-amino- a6‘-aminoskupiny, čímĆŸ se dostane 3,6‘-di-N--acylovanĂœ derivĂĄt [„Journal of AmericanChemical Society“, 100, 5 253—5254 [1978J],

Autoƙi tohoto vynĂĄlezu vzali v Ășvahu vĂœ-ĆĄe uvedenou skutečnost, avĆĄak provedli dal-ĆĄĂ­ vlastnĂ­ vĂœzkumy interakce jinĂœch rozlič-nĂœch kationtĆŻ kovĆŻ s aminoglykosidovĂœmiantibiotiky jako je kanamycin A a kanamy-cin B, jakoĆŸ i s polosyntetickĂœmi derivĂĄtyaminoglykosidovĂœch antibiotik. Jako vĂœsle-dek zjistili, ĆŸe ačkoliv kation dvojmocnĂ©hozinku vykazuje chovĂĄnĂ­ podstatně odliĆĄnĂ©od kationtĆŻ z vĂœĆĄe uvedenĂ©ho souboru za-hrnujĂ­cĂ­ho dvojmocnĂ© kationty niklu, kobal-tu, mědi a kadmia, je kation zinku schopnĂœsilně vytváƙet komplex a chrĂĄnit jak 1-ami-no- nebo 1-alkylaminoskupinu, tak 3“-ami-no- nebo 3“-alkylaminoskupinu aminogly-kosidovĂ© sloučeniny, napƙíklad kanamycinuA, B nebo C, kterĂĄ obsahuje deoxystrepta- 261853 minovou část zahrnujĂ­cĂ­ 3“-aminoglykosy-lovou skupinu nebo 3“-alkylaminoglykosy-lovou skupinu pƙipojenou k 6-hydroxysku-pině zmĂ­něnĂ© deoxystreptaminovĂ© části.

Podle Nagabhushana a kol. by bylo moĆŸ-no očekĂĄvat, ĆŸe kdyĆŸ se nechĂĄ reagovat ka-tion dvojmocnĂ©ho niklu, dvojmocnĂ©ho ko-baltu, dvojmccnĂ© mědi nebo dvojmocnĂ©hokadmia napƙíklad s kanamycinem. B, mělaby se vytvoƙit kovovĂĄ koplexnĂ­ sĆŻl kana-mycinu B vzorce II

Tento pƙedpoklad je moĆŸno podepƙít po-jednĂĄnĂ­m Nagabhushana a kol. ve vĂœĆĄe u-vedenĂ©m „Journal cf American ChemicalSociety“, podle kterĂ©ho pĂĄry vicinĂĄlnĂ­ch a-mincihydroxyskupin by mohly vytváƙet re-versibilnĂ­ komplexy s kationty dvojmocnĂœchpƙechodnĂœch kovĆŻ vzhledem ke skutečnos-ti, ĆŸe kauamyciu B obsahuje tƙi pĂĄry vici-nĂĄlnĂ­ch aminohydroxyskupin mezi poloha-mi 1 a 2“, mezi polohami 2‘ a 3‘ a mezi po-lohami 2“ a 3“ molekuly kanamycinu B.

NicmĂ©ně bylo nynĂ­ zjiĆĄtěno, ĆŸe kdyĆŸ sekanamycin B nechĂĄ reagovat se zinečnatĂœmkationtem, potom vytvoƙenĂœ komplex kana-mycinu B se zinečnatou solĂ­ obsahuje volnĂ©2‘-amino- a 3‘-hydroxyskupiny, kterĂ© nejsoublok' vĂĄny kationtem zinku, coĆŸ je protikla-dem k pƙedpokladu Nagabhushana a kol. IkdyĆŸ nastane komplexctvornĂĄ reakce zineč-natĂ©ho kationtu s 2‘-amino- a 3‘-hydroxy-skupinou, sĂ­la vytváƙenĂ­ komplexu je velminĂ­zkĂĄ, takĆŸe v praxi nenĂ­ 2‘-amino- a 3‘-hyd-roxyskupina blokovĂĄna. KdyĆŸ se tedy kom-plex kanamycinu B se zinečnatĂœm kationtemacyluje napƙíklad reakcĂ­ s N-benzyloxykar-bonyloxysukcinimidem k zavedenĂ­ benzylo-xykarbonylovĂ© skupiny jako acylovĂ© skupi-ny chrĂĄnĂ­cĂ­ aminoskupinu, vytvoƙí se tri--3,2‘,6‘-N-acylovanĂœ derivĂĄt, ve kterĂ©m tƙiaminoskupiny, 3-, 2‘- a 6‘-aminoskupina by-ly acylovĂĄny, a to ve skutečnosti pƙi vyĆĄ-ĆĄĂ­m vĂœtÄ›ĆŸku neĆŸ u jinak N-acylovanĂœch de-rivĂĄtĆŻ, avĆĄak potom nemĆŻĆŸe bĂœt ve skuteč-nosti zĂ­skĂĄn 3,6‘-di-N-acylovanĂœ derivĂĄt (vizdĂĄle uvedenĂœ pƙíklad 19 J. Tato experimen- tĂĄlnĂ­ skutečnost ukazuje, ĆŸe zinečnatĂœ ka-tion mĂĄ jinĂ© chovĂĄnĂ­ neĆŸ vĂœĆĄe uvedenĂ© ka-tionty čtyƙ pƙechodnĂœch kovĆŻ, zejmĂ©na vtom směru, ĆŸe zinečnatĂœ kation nevytváƙíkomplexy s vicinĂĄlnĂ­m pĂĄrem 2‘-aminc- a3‘-hydroxyskupiny.

Jako dalĆĄĂ­ pƙíklad se uvĂĄdĂ­, ĆŸe se kdyĆŸkanamycin A nechĂĄ reagovat s zinečnatĂœmkationtem s nĂĄsledujĂ­cĂ­ acylacĂ­ benzyloxy-karbonylovou skupinou (vztahuje se k vĂœĆĄeuvedenĂ©mu vzorci T], pozoruje se, ĆŸe jakohlavnĂ­ produkt acylace se vytvoƙí 3,6‘-di-N--benzyloxykarbonylkanamycin A v pƙípadě,ĆŸe zinečnatĂœ kation je pƙítomen v mnoĆŸstvĂ­nepatrně vyĆĄĆĄĂ­m neĆŸ 1 mol na 1 mol kana-mycinu A. V tomto pƙípadě je tƙeba pozna-menat, ĆŸe tato acylačnĂ­ reakce vytváƙí 1,3,-6‘,3“-tetra-N-benzyloxakarbonylovĂœ derivĂĄtkanamycinu A a dĂĄle současně v jistĂ©m roz-sahu neacylovanĂœ, počátečnĂ­ kanamycin A,avĆĄak vytváƙí tri-N-benzyloxykarbnnylovĂœderivĂĄt kanamycinu A pouze s nĂ­zkĂœm vĂœ-tÄ›ĆŸkem, ačkoliv podle vysvětlenĂ­ mechanis-mu reakce podle Nagabhushana a kol. byse očekĂĄvalo, ĆŸe tri-N-benzyloxykarbonylo-vĂœ derivĂĄt se vytvoƙí s vyĆĄĆĄĂ­m vĂœtÄ›ĆŸkem neĆŸjinĂ© N-acylovanĂ© derivĂĄty (viz pƙíklad 7 u-vedenĂœ dĂĄle). V popise a zejmĂ©na v bodě 4nĂĄrokĆŻ US patentu č. 4 136 254 Nagabhu-sahan a kol. uvedli k tomuto jevu, ĆŸe sĆŻldvojmocnĂ©ho pƙechodnĂ©ho kovu, napƙíkladmědi, niklu, kobaltu atd. je nutno pouĆŸĂ­t vcelkovĂ©m mnoĆŸstvĂ­ alespoƈ 2 molĆŻ na 1mol kanamycinu A pro vytvoƙenĂ­ komplex-nĂ­ soli kanamycinu A s pƙechodnĂœm kovem,jak je zƙejmĂ© z vĂœĆĄe uvedenĂ©ho vzorce I*.

Pokus autorĆŻ tohoto vynĂĄlezu ukĂĄzal, ĆŸena rozdĂ­l od katioatĆŻ čtyƙ uvedenĂœch pƙe-chodnĂœch kovĆŻ je zinečnatĂœ kation scho-pen dosĂĄhnout blokovĂĄnĂ­ 1-amino- a 3“-ami-noskupiny kanamycinu A, kdyĆŸ se kationpouĆŸije v celkovĂ©m mnoĆŸstvĂ­ alespoƈ 1 mo-lu na 1 mol kanamycinu A. Podle zkouĆĄkydĂĄle bylo zjiĆĄtěno, ĆŸe kdyĆŸ se k reakci po-uĆŸije nikelnatĂ© soli v mnoĆŸstvĂ­ nepatrněvyĆĄĆĄĂ­m neĆŸ 1 mol na 1 mol kanamycinu A,s nĂĄsledujĂ­cĂ­ acylacĂ­ vĂœslednĂ© komplexnĂ­soli kanamycinu A s niklem benzyloxykar-bonylovou skupinou, zĂ­skĂĄ se pouze velminĂ­zkĂœ vĂœtÄ›ĆŸek 3,6‘-di-N-benzyloxykarbonyl-kanamycinu A, kterouĆŸto· sloučeninu by by-lo moĆŸnĂ© zĂ­skat s vĂœznamnĂœm vĂœtÄ›ĆŸkem a-cylacĂ­ komplexnĂ­ soli kanamycinu A se zin-kem (viz pƙíklad 7 uvedenĂœ dĂĄle). Z vĂœĆĄeuvedenĂœch skutečnostĂ­ bylo vyvozeno, ĆŸezinečnatĂœ kation vytváƙí mechanismus vznikukrmplexu s některĂœm aminoglykosidem, kte-rĂœ je odliĆĄnĂœ cd mechanismu vytváƙenĂ­ kom-plexu s kationtem dvojmocnĂ©ho niklu, ko-baltu, mědi a kadmia a ĆŸe kationtovĂœ kom-plex aminoglykosidu se zinkem mĂĄ stabilitukomplexu, kterĂĄ je odliĆĄnĂĄ od stability ka-tlontovĂ©ho komplexu aminoglykosidu sdvojmocnĂœm niklem, kobaltem, mědĂ­ nebokadmiem. Pro komplexaci zinečnatĂ©ho ka-tiontu s aminoglykosidovĂœm antibiotikem 261853 7 mĆŻĆŸe bĂœt zinečnatĂœ kation pouĆŸit ve formězinečnatĂ© soli, kterĂĄ mĂĄ vĂœhodu, ĆŸe je lev-nĂĄ a pravděpodobně nenĂ­ zdrojem znečiĆĄ-těnĂ­ okolnĂ­ho prostƙedĂ­.

Autoƙi tohoto vynĂĄlezu tudĂ­ĆŸ zjistili, ĆŸekdyĆŸ se zinečnatĂœ kationt nechĂĄ reagovatv inertnĂ­m organickĂ©m rozpouĆĄtědle s ami-noglykosidovĂœm antibiotikem, kterĂ© obsa-huje deoxystreptaminovou část zahrnujĂ­cĂ­ 3--aminoglykosylovou nebo 3-alkylaminogly-kosylovou skupinu spojenou s 6-hydroxy-skupinou deoxystreptaminovĂ© části a pƙí-padně zahrnujĂ­cĂ­ aminoglykosylovou skupi-nu spojenou se 4-hydroxyskupinou deoxy-streptaminovĂ© části, zinečnatĂœ kation vytvĂĄ-ƙí komplex s pĂĄry aminohydroxylovĂœch sku-pin umĂ­stěnĂœch v určitĂœch polohĂĄch, kterĂ©mohou bĂœt rozličnĂ© v zĂĄvislosti na vlast-nostech aminoglykosidovĂ©ho antibiotika, aĆŸe kdyĆŸ takto vytvoƙenĂœ kationtovĂœ kom-plex aminoglykosidovĂ©ho antibiotika sezinkem se nechĂĄ reagovat s acylačnĂ­m či-nidlem obsahujĂ­cĂ­m acylovou skupinu po-uĆŸĂ­vanou obvykle pro zavedenĂ­ ochrannĂ©aminoskupiny pƙi syntĂ©ze polypeptidĆŻ, totoacylačnĂ­ činidlo acyluje alespoƈ jednu ztakovĂœch aminoskupin v aminoglykosidovĂ©mantibiotiku, kterĂ© nevytváƙejĂ­ komplex atedy nejsou blokovĂĄny zinečnatĂœm kation-tem, takĆŸe takto acylovanĂĄ aminoskupinaje chrĂĄněna, a dĂĄle, ĆŸe kdyĆŸ vĂœslednĂœ pro-dukt acylace, tj. kationtovĂœ komplex ami-noglykosidovĂ©ho antibiotika se zinkem ob-sahujĂ­cĂ­ acylovanou aminoskupinu nebo acy-lovanĂ© aminoskupiny se nechĂĄ reagovat svhodnĂœm činidlem, kterĂ© odstranĂ­ zinečna-tĂœ kation z tohoto produktu acylace, kom-plex zinku se rozruĆĄĂ­, coĆŸ poskytne selek-tivně chrĂĄněnĂœ N-acylovanĂœ derivĂĄt amino-glykosidovĂ©ho antibiotika, u kterĂ©ho pĆŻvod-ně se zinkem nekomplexovanĂĄ aminoskupi-na nebo aminoskupiny byly selektivně chrĂĄ-něny acylskupinou.

VynĂĄlez tedy ƙeĆĄĂ­ zpĆŻsob vĂœroby selektiv-ně acylovanĂ©ho N-chrĂĄněnĂ©ho derivĂĄtu ami-noglykosidovĂ©ho antibiotika.

Pƙedmětem vynĂĄlezu je zpĆŻsob vĂœroby se-lektivně acylovanĂ©ho N-chrĂĄněnĂ©ho derivĂĄ-tu aminoglykosidovĂ©ho antibiotika obsahu-jĂ­cĂ­ho· 4-0- (aminoglykosyl j -6-0- (3“-amino-nebo 3“-methylamino-3“-deoxyglykosyl) -2--deoxystreptamin, ve kterĂ©m 1-amino- a 3“--aminoskupiny jsou nechrĂĄněny, avĆĄakvĆĄechny ostatnĂ­ aminoskupiny jsou chrĂĄně-ny amino-ochrannou acylskupinou, obecnĂ©-ho vzorce I kde R‘ znamenĂĄ atom vodĂ­ku nebo ethylovouskupinu, G znamenĂĄ formyl, alkanoyl se 2 aĆŸ 5atomy uhlĂ­ku, trifluoroalkanoyl se 2 aĆŸ 5atomy uhlĂ­ku, alkoxykarbonyl s 1 aĆŸ 4 ato-my uhlĂ­ku v alkoxylovĂ© části, fenoxykarbo-nyl, fenylalkyloxykarbonyl s 1 aĆŸ 4 atomyuhlĂ­ku v alkylovĂ© části nebo p-methoxyfe-nylalkoxykarbonyl s 1 aĆŸ 4 atomy uhlĂ­ku valkoxylovĂ© části, Q1 znamenĂĄ N-chrĂĄněnou aminoglykosy-lovou skupinu obecnĂ©ho vzorce Ila

W znamenĂĄ hydroxyskupinu nebo N-chrĂĄ-něnou aminoskupinu vzorce —NHG, kde G mĂĄ vĂœznam definovanĂœ vĂœĆĄe, X znamenĂĄ atom vodĂ­ku nebo hydroxy-skupinu, Y znamenĂĄ atom vodĂ­ku nebo hydroxy-skupinu, Z‘ znamenĂĄ atom vodĂ­ku, hydroxyskupi-nu, N-chrĂĄněnou aminoskupinu vzorce—NHG nebo N-chrĂĄněnou alkylaminosku-pinu vzorce R“ /

—N \

G ve kterĂœch G mĂĄ vĂœznam definovanĂœ vĂœĆĄe a R“ znamenĂĄ methyl, Z“ znamenĂĄ atom vodĂ­ku nebo methylo-vou skupinu, nebo QL znamenĂĄ N-chrĂĄněnou 3‘,4'-dideoxy-3‘--eno-aminoglykosylovou skupinu obecnĂ©hovzorce lila

261833 10 ve kterĂ©m G mĂĄ vĂœznam definovanĂœ vĂœĆĄe, neboQ1 znamenĂĄ N-chrĂĄněnou 3‘,4‘-dideoxy-4‘- -eno-aminoglykosylovou skupinu obecnĂ©hovzorce IVa

R"-CH-NHG

ve kterĂ©m R‘ ‘ znamenĂĄ atom vodĂ­ku nebo methylo-vou skupinu a G mĂĄ vĂœznam definovanĂœ vĂœĆĄe, znamenĂĄ 3“-amino-3“-deoxy dykosylo- vou skupinu obecnĂ©ho vzorce Va

ve kterĂ©m M znamenĂĄ hydroxyskupinu nebo atomvodĂ­ku a M; znamenĂĄ hydroxyskupinu nebo atomvodĂ­ku, nebo· Q2 znamenĂĄ 3“-methylamino-3“-deoxygly-kosyiovou skupinu obecnĂ©ho vzorce Via

ve kterém

R““ znamenĂĄ atom vodĂ­ku nebo methylo-vou skupinu, kterĂœ spočívĂĄ v tom, ĆŸe sesĆŻl zinečnatĂ©ho katiĂłntu s anorganickou ne-bo organickou kyselinou nechĂĄ reagovat saminoglykotsidovĂœm antiblotikem obecnĂ©hovzorce VII kde R‘ znamenĂĄ atom vodĂ­ku nebo ethylovouskupinu, Q3 znamenĂĄ aminoglykosylovou skupinuobecnĂ©ho vzorce lib

kde W‘ znamenĂĄ hydroxyskupinu nebo amino-skupinu, X znamenĂĄ atom vodĂ­ku nebo hydroxy-skupinu, Y znamenĂĄ atom vodĂ­ku nebo hydroxy-skupinu, Z“‘ znamenĂĄ atom vodĂ­ku, hydroxyskupi-nu, aminoskupinu nebo methylaminoskupi-nu obecnĂ©ho vzorce —NHR“, kde R“ znamenĂĄ methylovou skupinu, Z“ znamenĂĄ atom vodĂ­ku nebo· methylo-vou skupinu nebo Q3 znamenĂĄ 3‘,4‘-dideoxy-3‘-eno-aminogly-kosylovou skupinu vzorce Illb

nebo' Q3 znamenĂĄ 3‘,4‘-dideoxy-4‘-eno-aminogly- kosylovou skupinu obecnĂ©ho vzorce IVb 261853 11

kde R“‘ znamenĂĄ atom vodĂ­ku nebo methylo-vou skupinu a Q4 znamenĂĄ 3“-amino-3“-deoxyglykosylo-vou skupinu nebo 3“-methylamino-3“-deoxy-glykosylovou skupinu shodnou s vĂœĆĄe uve-denou skupinou Q2 obecnĂ©ho vzorce Va ne-bo Via, v molĂĄrnĂ­m poměru alespoƈ 1 dĂ­-lu molĂĄrnĂ­ho, s vĂœhodou 2 aĆŸ 6 dĂ­lĆŻ molĂĄr-nĂ­ch soli zinečnatĂ©ho kationtu s anorganic-kou nebo organickou kyselinou na 1 dĂ­lmolĂĄrnĂ­ aminoglykosidovĂ©ho antibiotika o-becnĂ©ho vzorce VII za teploty mezi —10 a100 °C v inertnĂ­m organickĂ©m rozpouĆĄtědlezvolenĂ©m ze souboru zahrnujĂ­cĂ­ho dime-thylsulfoxid, vodnĂœ dimethylsulfoxid, dime-thylformamid, vodnĂœ dimethylformamid,směs dimethylsulfoxidu a dimethylformami-du, tetrahydrofuranu, vodnĂœ tetrahydrofu-ran, methynol, vodnĂœ methancl, ethanol avodnĂœ ethanol, popƙípadě v pƙítomnosti oc-tanu sodnĂ©ho, za vzniku kationtovĂ©ho kom-plexu aminoglykosidovĂ©ho antibiotika sezinkem, potĂ© se tento kationtovĂœ komplexaminoglykosidovĂ©ho antibiotika se zinkemnechĂĄ reagovat s acylačnĂ­m činidlem zvo-lenĂœm ze souboru zahrnujĂ­cĂ­ho karboxylo-vou kyselinu obecnĂ©ho vzorce IVa RRCOOH (IVa) kde R5 znamenĂĄ atom vodĂ­ku, alkylovou sku-pinu s 1 aĆŸ 4 atomy uhlĂ­ku, trifluoralkylo-vou skupinu s 1 aĆŸ 4 atomy uhlĂ­ku, nebos halogenidem, anhydridem nebo aktivnĂ­mesterem vĂœĆĄe uvedenĂ© karboxylovĂ© kyseli-ny obecnĂ©ho vzorce IVa, chloroformiĂĄt o-becnĂ©hO’ vzorce IVb R6O—CO—Cl (IVb) p-nitrofenylkarbonĂĄt obecnĂ©ho vzorce IVcRfiO—CO—O—C6H5—p—NO·, (IVc) aktivnĂ­ N-hydroxysukcinimidester obecnĂ©ho vzorce IVd 12 0 0 (IVd) a azidoformiĂĄt obecnĂ©ho vzorce IVeReO—CO—N3 (IVe) v kterĂœchĆŸto vzorcĂ­ch

Rr> mĂĄ vĂœĆĄe uvedenĂœ vĂœznam a R6 znamenĂĄ alkylovou skupinu s 1 aĆŸ 4atomy uhlĂ­ku, fenylovou skupinu, fenylal-kylovou skupinu s 1 aĆŸ 4 atomy v alkylovĂ©ÄĂĄsti uhlĂ­ku nebo p-methoxyfenylalkylovouskupinu s 1 aĆŸ 4 atomy uhlĂ­ku, za teplotyod —20 do 100 °C, pro acylaci nezkomple-xovanĂœch aminoskupin pƙítomnĂœch v ka-tiontovĂ©m komplexu aminoglykosidovĂ©ho·antibiotika se zinkem a tedy pro vytvoƙenĂ­kationtovĂ©ho· komplexu N-acylovanĂ©ho ami-noglykosidovĂ©ho antibiotika se zinkem apotom se kationtovĂœ komplex N-acylovanĂ©-ho aminoglykosidovĂ©ho antibiotika se zin-kem nechĂĄ reagovat s vodou nebo s vod-nĂœm nebo bezvodĂœm polĂĄrnĂ­m organickĂœmrozpouĆĄtědlem zvolenĂœm ze souboru zahr-nujĂ­cĂ­ho methanol, ethanol, kapalnĂœ amo-niak, ethylamin a triethylamin, nebo· se si-rovodĂ­kem, sirnĂ­kem alkalickĂ©ho kovu nebosirnĂ­kem kovu alkalickĂ© zeminy nebo shydroxidem amonnĂœm ve vodě nebo· ka-tiontoměničovou pryskyƙicĂ­ obsahujĂ­cĂ­ funk-ce karboxylovĂ© nebo sulfonovĂ© kyseliny, ne-bo s aniontoměničovou pryskyƙicĂ­ obsahujĂ­-cĂ­ amoniovĂ© funkce, nebo chelatoměničovoupryskyƙicĂ­ obsahujĂ­cĂ­ kovovĂ© chelatizačnĂ­funkce nebo s chitinem nebo chitosanem ja-ko ve vodě nerozpustnĂœm vyĆĄĆĄĂ­m polyme-rem obsahujĂ­cĂ­m funkce schopnĂ© sloučenĂ­ skovem, za teploty mezi —10 a 100 °C, proodstraněnĂ­ zinečnatĂœch kationtĆŻ z komple-xu a pro vytvoƙenĂ­ N-acylovanĂ©ho amino-glykosidovĂ©ho antibiotika obecnĂ©ho vzorceI.

ZpĆŻsob podle vynĂĄlezu je vhodnĂœ pro vĂœ-robu selektivně acylovanĂ©ho N-chrĂĄněnĂ©hoderivĂĄtu aminoglykosidovĂ©ho antibiotika a-cylacĂ­ některĂœch aminoskupin, jinĂœch neĆŸjsou 1- a 3“-aminoskupiny vĂœchozĂ­ho· ami-noglykosidovĂ©ho antibiotika, a takovĂœ se-lektivně N-chrĂĄněnĂœ derivĂĄt je vhodnĂœ prochemickou syntĂ©zu 1-N-aminoacylovanĂœchderivĂĄtĆŻ aminoglykosidovĂœch antibiotik,napƙíklad kanamycinC^, včetně amikacinu(„Journal of Antibiotics“ 25, 695—708 (1972)], o kterĂ©m bylo v minulĂœch letech 261853 13 11 dokĂĄzĂĄno, ĆŸe je ĂșčinnĂœm antibakteriĂĄlnĂ­mlĂ©Äivem. Tyto 1-N-aminoacylovanĂ© derivĂĄtyaminoglykosidovĂœch antibiotik zahrnujĂ­ iderivĂĄty odvozenĂ© od početnĂ©ho druhu aroi-noglykosidĂș, jako jsou kanamycin A, kana-mycin B, kanamycin C, gentamiciny, siso-micin a jinĂ©, jakoĆŸ i jejich rozličnĂ© deoxy-derivĂĄty, avĆĄak vĆĄechny se shodujĂ­ v tem,ĆŸe jejich J-aminoskupina je acylovĂĄna ně-kterou «-hydroxy-w-aminoalkanoylovou sku-pinou (viz US patenty č. 3 781 268, 3 939 143,3 940 382 a 4 001 208). Vlivem tĂ©to 1-N-ami-noacylace dostĂĄvajĂ­ aminoglykosidovĂĄ an-tibiotika antibakteriĂĄlnĂ­ aktivitu vƯči odol-nĂœm bakteriĂ­m, proti kterĂœm současnĂĄ an-tibiotika nejsou ĂșčinnĂĄ, a tato aminoglyko-sidovĂĄ antibiotika takĂ© zĂ­skĂĄvajĂ­ zlepĆĄenouantibakteriĂĄlnĂ­ aktivitu proti ĆĄirĆĄĂ­ oblastikmenĆŻ bakteriĂ­ ve srovnĂĄnĂ­ s dosavadnĂ­miaminoglykosidovĂœmi antibiotiky.

NynĂ­ bude podrobněji popsĂĄno provĂĄděnĂ­zpĆŻsobu podle pƙedloĆŸenĂ©ho vynĂĄlezu.

AminoglykosidovĂ© antibiotikum, kterĂ© mĂĄbĂœt uvedeno do reakce s kationtem zinku kvytvoƙenĂ­ komplexu zinku, kterĂœ mĆŻĆŸe bĂœtrovnÄ›ĆŸ označen jako komplexnĂ­ sĆŻl zinku,podle pƙedloĆŸenĂ©ho vynĂĄlezu, zahrnuje ta-kovĂĄ aminoglykosidovĂĄ antibiotika obsahu-jĂ­cĂ­ deoxy-streptaminovou strukturou, jejĂ­ĆŸ6-liydroxyskupina je substituovĂĄna 3-amino-glykosylovou nebo 3-alkylaminoglykosy-lovou skupinou, a jejĂ­ĆŸ 4-hydroxy-skupinamĆŻĆŸe bĂœt pƙípadně substituovĂĄna některouaminoglykosylovou skupinou. Pƙesněji ƙečeno, aminoglykosidovĂ© anti-biotikum pouĆŸitĂ© v pƙedloĆŸenĂ©m vynĂĄlezupro vytvoƙenĂ­ komplexu zinkovĂ©ho kation-tu mĆŻĆŸe bĂœt definovĂĄno jako takovĂ©, kterĂ©obsahuje 6-O-(3“-amino- nebo 3“-alkylami-no-3“-deoxyglykosyl j -2-dcoxystreptamin ma-jĂ­cĂ­ podle volby 4-0-(amino-glykosyl)-ovouskupinu. Kromě toho· aminoglykosidovĂ© an-tibiotikum mĆŻĆŸe bĂœt některĂœ 1-N-al.kylamĂ­-noglykosid, napƙíklad netilmicin. Jako pƙí-klady aminoglykosidovĂœch antibiotik tƙídypouĆŸitelnĂ© v pƙedloĆŸenĂ©m vynĂĄlezu mohoubĂœt uvedeny skupina antibiotik kanamycinuA, jako samotnĂœ kanamycin A, 6*-N-alkyl-kanamycin A, zvlĂĄĆĄtě 6‘-N-methylkanamy-crn A, 3‘-deoxykanamycin A, 6‘-N-methyl-3‘-deoxykanamycin A, 4‘-deoxykanamycin A,6‘-N-methyl-4‘-deoxykanamycin A, 3‘,4‘-dide-oxykanamyciu A (viz japonskou pat. pƙihl.č. 11 402/79), a 6“-deoxy- nebo 4“,6“-dide-oxykanamycin A (viz japonskou pat. pƙihl.č. 34 733/79), skupina antibiotik kanamyci-nu B, to je kanamycin B samotnĂœ, 3‘-deoxy-kanamycin B (to je tobramycin), 4‘-deoxy-kanamycin B, 3‘,4‘-dideoxykanamycin B (toje dibekacin), 3‘,4‘-dideoxy-3‘-eno-kanamy-cin B. 6‘-N-mcthyl-3‘,4‘-dideoxykanamycin B,skupina antibiotik kanamycinu C, to je sa-motnĂœ kanamycin C, 3‘-deoxykanaraycin C,3‘,4‘-dideoxykanamycin C, gentamiciny A,B a C, verdamicin, sisomicin a netilmicin(to je 1-N-ethylsisomycin), jakoĆŸ i jinĂ© znĂĄ-mĂ© aminoglykosidy.

ZpĆŻsob podle prvnĂ­ myĆĄlenky pƙedloĆŸenĂ©-ho· vynĂĄlezu je pouĆŸitelnĂœ nejen na takovĂĄnovĂĄ aminoglykosidovĂĄ antibiotika, kterĂĄdnes jeĆĄtě nejsou znĂĄma a budou objevenav budoucnosti, nĂœbrĆŸ i na novĂ© semisynte-tickĂ© derivĂĄty aminoglykosidovĂœch antibio-tik, kterĂ© budou v budoucnosti vyrĂĄběnychemickou transformacĂ­ znĂĄmĂœch amino-glykosidovĂœch antibiotik.

TypickĂ© pƙíklady aminoglykosidovĂœch an-tibiotik, na kterĂ© je pouĆŸitelnĂœ pƙedloĆŸenĂœvynĂĄlez, jsou kanamycin A, kanamycin B,kanamycin C, deoxy-derivĂĄty těchto kana-mycinĆŻ jakoĆŸ i jejich 6‘-N-alkyl-derivĂĄty,kterĂ© jsou definovĂĄny tĂ­mto obecnĂœm vzor-

kde R1 je hydroxyskupina nebo aminoskupina,R2 a R3 jsou kaĆŸdĂœ buď atom vodĂ­ku, ne-bo hydroxyskupina, a R4 je hydroxyskupinanebo aminoskupina nebo alkylaminoskupi-na obsahujĂ­cĂ­ alkyl s 1 aĆŸ 4 atomy uhlĂ­ku,zejmĂ©na methylaminoskupina.

Pro vytvoƙenĂ­ komplexu aminoglykosido-vĂ©ho antibiotika se zinkovĂœm kationtem re-akcĂ­ aminoglykosidovĂ©ho antibiotika se zin-kovĂœm kationtem podle pƙedloĆŸenĂ©ho· vy-nĂĄlezu se pƙísluĆĄnĂ© aminoglykosidovĂ© an-tibiotikum, buď ve formě volnĂ© bĂĄze, nebove formě jeho aditivnĂ­ soli s kyselinou roz-pustĂ­ nebo suspenduje ve vhodnĂ©m orga-nickĂ©m rozpouĆĄtědle a vĂœslednĂ©mu roztokunebo suspenzi se pƙidĂĄ vhodnĂĄ sĆŻl zinkuv mnoĆŸstvĂ­ alespoƈ 1 molu na 1 mol pou-ĆŸitĂ©ho aminoglykosidovĂ©ho antibiotika. Protento Ășčel mĆŻĆŸe bĂœt pouĆŸito kterĂ©koli obvyk-lĂ© organickĂ© rozpouĆĄtědlo, pokud zinkovĂœkomplex vytvoƙenĂœ po pƙidĂĄnĂ­ soli zinku jealespoƈ částečně v něm rozpustnĂœ. Pƙed-nostně by vĆĄak mělo bĂœt vyloučeno· pouĆŸitĂ­velkĂ©ho objemu polĂĄrnĂ­ho organickĂ©ho roz-pouĆĄtědla a zejmĂ©na větĆĄĂ­ho objemu vody,neboĆ„ pƙítomnost polĂĄrnĂ­ho organickĂ©horozpouĆĄtědla a vody by sniĆŸovala stabilituvytvoƙenĂ©ho vĂœslednĂ©ho komplexu amino-glykosidovĂ©ho antibiotika a kationtu zinku,takĆŸe nĂĄsledujĂ­cĂ­ acylačnĂ­ reakce k zavede- 261853 13 16 nĂ­ ochrannĂ© aminoskupiny by mohla dĂĄtneuspokojivĂœ vĂœsledek.

Je tedy ĆŸĂĄdoucĂ­ pouĆŸĂ­t organickĂ© roz-pouĆĄtědlo s velkou schopnostĂ­ rozpouĆĄtěcĂ­,napƙíklad dimethyl-sulfoxid jako rozpouĆĄ-tědlo, ve kterĂ©m mĂĄ bĂœt vytvoƙen zinkovĂœkomplex, je vĆĄak moĆŸnĂ© pouĆŸĂ­t i vodnĂœ di-methlsulfoxid, dimethylformamid, vodnĂœ di-methylformamid, směs dimethylsiĂ­lfoxidu adimethylformamidu, tetrahydrofuran, vodnĂœtetrahydrofuran, a takĂ© niĆŸĆĄĂ­ alkanol jakomethanol, ethanol a vodnĂœ methanol.

Kationt zinku mĆŻĆŸe bĂœt pƙidĂĄn ve forměsoli zinku do systĂ©mu, ve kterĂ©m se vytváƙízinkovĂœ komplex. Pro tento Ășčel v pƙedlo-ĆŸenĂ©m vynĂĄlezu mĆŻĆŸe bĂœt pouĆŸita některĂĄsĆŻl zinku vytvoƙenĂĄ reakcĂ­ zinkovĂ©ho ka-tiontu s obvyklou organickou nebo· anorga-nickou kyselinou. Obecně je vĆĄak vĂœhodnĂ©pouĆŸĂ­t zinkovou sĆŻl některĂ© slabĂ© kyseliny,napƙíklad octan zinečnatĂœ, neboĆ„ je obvyk-lĂ©, ĆŸe mezi komplexy kovĆŻ obsahujĂ­cĂ­mi a-minoskupinu je komplex nekvartĂ©rnĂ­ ami-noskupiny se solĂ­ kovu stabilnějĆĄĂ­ neĆŸ kom-plex aminu amoniovĂ©ho typu se solĂ­ kovu,a ĆŸe pouĆŸitĂ­ soli zinku a slabĂ© kyseliny nor-mĂĄlně nevede k vytvoƙenĂ­ poměrně nesta-bilnĂ­ho komplexu kovu obsahujĂ­cĂ­ho aminamoniovĂ©ho typu. PouĆŸije-li se sĆŻl zinku asolnĂ© kyseliny, napƙíklad chlorid zinečnatĂœ,mĆŻĆŸe bĂœt takĂ© vytvoƙen ĆŸĂĄdanĂœ komplexzinku, je vĆĄak vĂœhodnĂ© pƙidat slabě alka-lickou sĆŻl, napƙíklad octan sodnĂœ k solizinku pro neutralizaci prostƙedĂ­ reakce. Po-dobně je ĆŸĂĄdoucĂ­ pƙidat určitĂ© mnoĆŸstvĂ­ oc-tanu sodnĂ©ho nebo hydroxidu sodnĂ©ho jakoneutralizačnĂ­ho činidla, kdyĆŸ vĂœchozĂ­ ami-noglykosidovĂ© antibiotikum je pouĆŸito veformě jeho aditivnĂ­ soli se silnou kyselinou,napƙíklad kyselinou chlorovodĂ­kovou. V tom-to pƙípadě je tƙeba zamezit pouĆŸitĂ­ neuĆŸi-tečnĂ©ho pƙebytku neutralizačnĂ­ho činidla,neboĆ„ jinak by doĆĄlo ke sraĆŸenĂ­ hydroxiduzinečnatĂ©ho a tĂ­m naruĆĄenĂ­ vytvoƙenĂ­ kom-plexu. Napƙíklad kdyĆŸ se pouĆŸije tetrahyd-rochlorid aminoglykoeidovĂ©ho antibiotikapro vytvoƙenĂ­ komplexu, pƙidajĂ­ se vĂœhod-ně 4 moly hydroxidu sodnĂ©ho pro neutrali-zaci reakčnĂ­ směsi.

Pokud je celkovĂ© molĂĄrnĂ­ mnoĆŸstvĂ­ uĆŸitĂ©soli zinku alespoƈ rovno molĂĄrnĂ­mu mnoĆŸ-stvĂ­ aminoglykosidovĂ©ho antibiotika, reak-ce k vytvoƙenĂ­ komplexu mĆŻĆŸe probĂ­hat.NicmĂ©ně je vĂœhodnĂ© pouĆŸĂ­t soli zinku vmnoĆŸstvĂ­ podstatně vyĆĄĆĄĂ­m neĆŸ 1 mol na 1mol aminoglykosidovĂ©ho antibiotika, takĆŸerovnovĂĄha reakce k vytvoƙenĂ­ komplexu jeposunuta ve prospěch vytváƙenĂ­ komplexu. PƙíznivĂœ vĂœtÄ›ĆŸek komplexu zinku mĆŻĆŸe bĂœtzĂ­skĂĄn pƙi uĆŸitĂ­ soli zinku v mnoĆŸstvĂ­ 2,3aĆŸ 6 molĆŻ na 1 mol aminoglykosidu, v pra-xi je vĆĄak nejvhodnějĆĄĂ­ pouĆŸĂ­t soli zinku vmnoĆŸstvĂ­ 4 aĆŸ 5 molĆŻ na 1 mol aminoglyko-sidu. Čas potƙebnĂœ pro Ășplnou reakci provytvoƙenĂ­ komplexu po pƙidĂĄnĂ­ soli zinkuse mĆŻĆŸe měnit v zĂĄvislosti na pouĆŸitĂ©m or-ganickĂ©m rozpouĆĄtědle a mĆŻĆŸe bĂœt v roz- mezĂ­ „okamĆŸitĂœâ€œ (pƙi pouĆŸitĂ­ vodnĂ©ho orga-nickĂ©ho rozpouĆĄtědla) aĆŸ do 20 hodin. Re-akce pro vytvoƙenĂ­ komplexu mĆŻĆŸe normĂĄl-ně probĂ­hat pƙi teplotě mĂ­stnosti, mĆŻĆŸe vĆĄakbĂœt provĂĄděno zahƙívĂĄnĂ­ nebo ochlazovĂĄnĂ­.

Touto cestou se pƙipravĂ­ roztok nebo sus-penze obsahujĂ­cĂ­ komplex zinku a amino-glykosidovĂ©ho antibiotika, ke kterĂ©mu sepotom pƙidĂĄ acylačnĂ­ činidlo majĂ­cĂ­ acyl-skupinu pro zavedenĂ­ do komplexu jako·ochrannĂĄ aminoskupina.

AcylačnĂ­ činidlo pouĆŸitĂ© pƙi zpĆŻsobu po-dle pƙedloĆŸenĂ©ho vynĂĄlezu mĆŻĆŸe bĂœt ob-vyklĂ© činidlo pro ochranu aminoskupiny,a pouĆŸije se proto, aby volnĂ©, komplex ne-tvoƙícĂ­ aminoskupiny ve vĂœslednĂ©m kom-plexu aminoglykosidovĂ©ho antibiotika a ka-tiontu zinku byly acylovĂĄny a blokovĂĄny a-cylskupinou acylačnĂ­ho činidla.

AcylačnĂ­ skupina mĆŻĆŸe bĂœt alka-noylovĂĄ skupina, aroylovĂĄ skupina, alko-xykarbonylovĂĄ skupina, aralalkoxykarbony-lovĂĄ skupina, aryloxykarbonylovĂĄ skupina,alkylsulfonylovĂĄ skupina, aralalkylsulfony-lovĂĄ skupina nebo arylsulfonyovĂĄ skupina,coĆŸ jsou vĆĄechno obvykĂ© skupiny pro och-ranu aminoskupiny.

AcylačnĂ­ činidlo pouĆŸitelnĂ© pro tento ƙi-čel mĆŻĆŸe takĂ© bĂœt karbonovĂĄ kyselina toho-to obecnĂ©ho vzorce (IVa): R5COOH (IVa) kde R5 je atom vodĂ­ku, alkylskupina, zejmĂ©naalkylskupina s 1 aĆŸ 6 atomy uhlĂ­ku, arylsku-pina, zejmĂ©na fenyl, nebo aralkylskupina,zejmĂ©na benzyl, a tyto skupiny jsou pƙípad-ně dĂĄle substituovĂĄny, nebo některĂœ halid,anbydrid nebo aktivnĂ­ ester zmĂ­něnĂ© karbo-novĂ© kyseliny vzorce (IVa), nebo chloro-formĂĄt tohoto obecnĂ©ho vzorce (IVb): R5O —CO—-Cl (IVb) nebo p-nitrcfenylkarbonĂĄt tohoto obecnĂ©hovzorce (IVc): R5O_CO—O—CGHv-p--NO., (IVc) nebo aktivnĂ­ N-hydroxysukcinimidester to-hoto vzorce (IVd):

O il o (IVd) nebo azidomravenčan tohoto vzorce (IVe):R5O—CO—N9 (IVe) 261853 17 18 kde R' mĂĄ vĂœznam definovanĂœ vĂœĆĄe, nebo sul-fonovĂĄ. kyselina tohoto obecnĂ©ho vzorce(IVf):

Rhsn-ii (ivf) kde R,; jo a hnu vodĂ­ku, alkylsknpina. zejmĂ©naalkyl skupina s i aĆŸ 6 atomy uhlĂ­ku, aryl-skupion. zejmĂ©na fenyl, nebo aralkylskupi-na, zejmĂ©na fenylalkylskupina, napƙíkladbenzyi, a tyto skupiny mohou bĂœt pƙípadnědĂĄle substituovĂĄny, nebo halogenid, anhyd-rid nebo aktivnĂ­ ester tĂ©to sulfonovĂ© kyse-liny. je tudĂ­ĆŸ zƙejmĂ©, ĆŸe acylačnĂ­ reakcepro ochranu aminoskupin podle pƙedloĆŸe-nĂ©ho vynĂĄlezu je acylace v ĆĄirokĂ©m smys-lu, zahrnujĂ­cĂ­ napƙíklad formylaci, acetyla-ci, propionylaci, trifluoracetylaci, benzyl-oxykarbonylaci, p-methoxybenzyloxykarbci-nylrci, t-butoxykarbonylaci, fenexykarbony-laci, tosylaci, mesylaci a jinĂ© ekvivalentnĂ­reakce.

ZvlĂĄĆĄtnĂ­ pƙíklady pouĆŸitelnĂ©ho acylačnĂ­-bo činidla jsou acetoxyformyl, p-nitrofenyl-formiĂĄt, anhydrid octovĂœ, acetylchlorid, an-hydrid propionovĂœ, p-nitrofenolester kyseli-ny trifluoroctovĂ©, ester kyseliny trifluoroc-tevĂ©, N-benzyloxykarbnnybmkcinjmid (vĂœ-znamnĂœ aktivnĂ­ ester j, N-benzyloxykarbo-nyloxyftalimid, benzyloxykarbonylchlorid,p-methoxybenzyloxykarbonyloxy-p-nitrofe-nyl, t-butoxykarbonylazid, fenoxykarbonyl-chlorid, tosylchlorid, mesylchlorid a jinĂ©,

AcylačnĂ­ činidlo, buď jako takovĂ©, nebojako roztok v rozpouĆĄtědle, napƙíklad te-trahydrofuranu nebo dimothylsulfoxidu ne-bo jejich směsi, mĆŻĆŸe bĂœt pƙidĂĄno do roz-toku nebo suspenze, kterĂ© obsahujĂ­ kom-plex aminodykosidovĂ©ho antibiotika a zin-ku. M dĂĄrnĂ­ mnoĆŸstvĂ­ acylačnĂ­bo činidlamĆŻĆŸe bĂœt obvykle rovno nebo s mĂ­rnĂœmpƙebytkem vyĆĄĆĄĂ­ neĆŸ jo počet nezkranplexo-vanĂœch aminoskupin, se kterĂœmi mĂĄ acylač-nĂ­ činidlo reagovat. NicmĂ©ně v některĂœchpƙípadech mnoĆŸstvĂ­ pƙidanĂ©ho acylačnĂ­bočinidla mĆŻĆŸe bĂœt od molĂĄrnĂ­ho mnoĆŸstvĂ­ asitƙikrĂĄt vyĆĄĆĄĂ­, neĆŸ je p ?čet nezkcmplexova-nĂœch aminoskupin.

AcylačnĂ­ činidlo mĆŻĆŸe bĂœt pƙidĂĄno, buďnajednou, nebo v dĂĄvkĂĄch během asi 2 aĆŸ3 hodin, ačkoliv obvykle mĆŻĆŸe bĂœt pƙidĂĄnoběhem 30 minut aĆŸ jednĂ© hodiny. AcylacemĂĄ bĂœt provĂĄděna pƙi teplotě od —20 °Cdo 100 °C, mĆŻĆŸe vĆĄak bĂœt normĂĄlně provĂĄ-děna pƙi teplotě v rozmezĂ­ od 0 °C do tep-loty mĂ­stnosti. V některĂœch pƙípadech tep-lota reakce mĆŻĆŸe bĂœt udrĆŸovĂĄna nĂ­zkĂĄ vdobě pƙidĂĄnĂ­ acylačnĂ­ho Činidla a potom po-stupně zvyĆĄovĂĄna jak probĂ­hĂĄ acylace. Nor-mĂĄlně mĆŻĆŸe bĂœt acylačnĂ­ rekce provĂĄděnain sĂ­tu v organickĂ©m rozpouĆĄtědle, ve kte-rĂ©m byl vytvoƙen komplex aminoglykosido-vĂ©ho antibiotika se zinkovĂœm kationtem.

Tato acylace zinkovĂ©ho komplexu vytvoƙíN-acylcvanĂœ zinkovĂœ komplex, to je kom-plex zinkovĂœch kationtĆŻ se selektivně N-acy-lovanĂœm derivĂĄtem cminoglykosidovĂ©ho an-tibiotika.

Podle zpĆŻsobu podle prvnĂ­ myĆĄlenky pƙed-loĆŸenĂ©ho vynĂĄlezu acylace komplexu ami-noglykosidovĂ©ho antibiotika se zinkovĂœmkationtem je nĂĄsledovĂĄna krokem, pƙi kte-rĂ©m se odstranĂ­ zinkovĂœ kationt z N-acylo-vanĂ©ho zinkovĂ©ho komplexu, jmenovitě zin-kovĂœ komplex se rozloĆŸĂ­, aby se zĂ­skal se-lektivně chrĂĄněnĂœ N-acylovanĂœ derivĂĄt ami-noglykcsidovĂ©ho antibiotika, kterĂœ je pros-tĂœ zinkovĂœch kationtĆŻ.

Pro odstraněnĂ­ zinkovĂ©ho kationtĆŻ z N--acylovanĂ©ho zinkovĂ©ho komplexu je nutnĂ©nechat reagovat N-acylovanĂœ zinkovĂœ kom-plex s vhodnĂœm činidlem, kterĂ© odstranĂ­ zin-kovĂœ kationt ze zmĂ­něnĂ©ho ' N-acvlovanĂ©hozinkovĂ©ho komplexu. Pro tento Ășčel jsou kpouĆŸitĂ­ mnohĂ© zpĆŻsoby. PrvnĂ­ zpĆŻsob spo-čívĂĄ v reakci činidla srĂĄĆŸejĂ­cĂ­ho zinek, kte-rĂ© je schopnĂ© pƙeměnit zinkovĂœ kationt nasloučeninu zinku ve vodě rozpustnou, na-pƙíklad na sirnĂ­k zinečnatĂœ, hydroxid zineč-natĂœ nebo uhličitan zinečnatĂœ, zatĂ­mco N--acvlovanĂœ zinkovĂœ komplex stĂĄle zĆŻstĂĄvĂĄrozpuĆĄtěn ve směsi pro acylačnĂ­ reakce,kde byl acylovĂĄn komplex aminoglykosido-vĂ©ho antibiotika se zinkovĂœm kationtem,nebo po jeho pƙenesenĂ­ do novĂ©ho roztokuv čerstvĂ©m objemu organickĂ©ho, rozpouĆĄtěd-la ze zmĂ­něnĂ© směsi pro acylačnĂ­ reakci. Činidlo pro srĂĄĆŸenĂ­ zinku pouĆŸitelnĂ© vprvnĂ­m zpĆŻsobu mĆŻĆŸe bĂœt sirovodĂ­k, někte-rĂœ sirnĂ­k alkalickĂ©ho kovu, sirnĂ­k amonnĂœ,sirnĂ­k některĂ© alkalickĂ© zeminy, napƙíkladsirnĂ­k vĂĄpenatĂœ a uhličitan alkalickĂ©ho ko-vu, napƙíklad uhličitan sodnĂœ, nebo takĂ©hydroxid amonnĂœ. V některĂœch pƙípadechmĆŻĆŸe bĂœt odstraněnĂ­ zinkovĂœch kationtĆŻ zN-acylovanĂ©ho zinkovĂ©ho komplexu prove-deno pouze pƙidĂĄnĂ­m vody. Podle tohotoprvnĂ­ho zpĆŻsobu pƙidĂĄnĂ­ činidla pro srĂĄĆŸe-nĂ­ zinku k roztoku N-acylovanĂ©ho zinkovĂ©-ho komplexu zpĆŻsobĂ­ poměrně rychlĂ© sra-ĆŸenĂ­ nerozpustnĂ© sloučeniny zinku vytvo-ƙenĂ© ze zinkovĂœch kationtĆŻ a sraĆŸenina mĆŻ-ĆŸe bĂœt odstraněna filtracĂ­. N-acylovanĂœ de-rivĂĄt aminoiglykosidovĂ©ho antibiotika, kte-rĂœ potom zĆŻstane v roztoku filtrĂĄtu mĆŻĆŸebĂœt zĂ­skĂĄn koncentracĂ­ roztoku nebo ex-trakcĂ­ z roztoku, a je-li tƙeba, mĆŻĆŸe bĂœt po-tom vyčiĆĄtěn. Pro vyčistěnĂ­ je napƙíkladmoĆŸno pouĆŸĂ­t chromatografii ve sloupci sesilikagelem. DruhĂœ zpĆŻsob spočívĂĄ v tom,ĆŸe vĂœĆĄe zmĂ­něnĂĄ směs pro acylačnĂ­ reakcise (i) zkonceutruje nebo zkoncentruje dosucha odpaƙenĂ­m rozpouĆĄtědla nebo (ii) serozƙedĂ­ kapalnĂœm ƙedidlem, coĆŸ je takĂ© moĆŸ-no provĂ©st s novĂœm roztokem N-acylovanĂ©-ho zinkovĂ©ho komplexu pƙenesenĂ©ho dočerstvĂ©ho objemu organickĂ©ho rozpouĆĄtědla,takĆŸe se zĂ­skĂĄ olejovitĂĄ nebo pevnĂĄ usaze-nina, koncentrĂĄt nebo zbytek, načeĆŸ se z 261853 19 tohoto nějakĂœm zpĆŻsobem zĂ­skĂĄ ĆŸĂĄdanĂœ N--acylovanĂœ derivĂĄt aminoglykosidovĂ©ho an-tibiotika. KapalnĂ© ƙedidlo pouĆŸitelnĂ© pƙitomto druhĂ©m zpĆŻsobu je voda nebo tako-vĂĄ organickĂĄ kapalina, ve kterĂ© buď N--acylovanĂœ zinkovĂœ komplex jako celek, ne-bo struktura N-acylovanĂ©ho derivĂĄtu ami-noglykosidovĂ©ho antibiotika zmĂ­něnĂ©ho N--acylovanĂ©ho zinkovĂ©ho komplexu nejevĂ­ĆŸĂĄdnou nebo jevĂ­ jen malou rozpustnost.

Podle vĂœĆĄe uvedenĂ©ho druhĂ©ho zpĆŻsobuse pƙedně směs pro acylačnĂ­ reakci obsa-hujĂ­cĂ­ N-acylovanĂœ zinkovĂœ komplex (nebonovĂœ roztok N-acylovanĂ©ho zinkovĂ©ho kom-plexu pƙevedenĂœ do nějakĂ©ho organickĂ©horozpouĆĄtědla) zkoncentruje nebo zkoncen-truje do sucha k zĂ­skĂĄnĂ­ olejovitĂ© nebo pev-nĂ© usazeniny nebo zbytku. PouĆŸije-li se ja-ko prostƙedĂ­ pro reakci obtĂ­ĆŸně odpaƙitelnĂ©organickĂ© rozpouĆĄtědlo, napƙíklad dime-thylsulfoxid atd. pro N-acylaci zinkovĂ©hokomplexu, je moĆŸnĂ©, ĆŸe reakčnĂ­ směs proacylaci, obsahujĂ­cĂ­ N-acylovanĂœ zinkovĂœkomplex, se smĂ­chĂĄ s organickĂœm kapal-nĂœm ƙedidlem, napƙíklad ethylĂ©terem, tak-ĆŸe tÄ›ĆŸko odpaƙitelnĂ© organickĂ© rozpouĆĄtěd-lo je rozpuĆĄtěno v nebo zƙeděno tĂ­mto ƙe-didlem, čímĆŸ se z něho usadĂ­ pevnĂĄ lĂĄtkanebo olej obsahujĂ­cĂ­ N-acylovanĂœ zinkovĂœkomplex. TĂ­mto zpĆŻsobem se zĂ­skĂĄ olejovi-tĂĄ nebo pevnĂĄ usazenina, coĆŸ je normĂĄlněsměs sestĂĄvajĂ­cĂ­ z (i) N-acylovanĂ©ho zin-kovĂ©ho komplexu, to je komplexu zinko-vĂœch kationtĆŻ s N-acylovanĂœm derivĂĄtem a-minoglykosidovĂ©ho antibiotika, (ii) z N-acy-lovanĂ©ho derivĂĄtu aminoglykosidovĂ©ho an-tibiotika zbavenĂ©ho rozloĆŸenĂ­m komplexo-tvornĂ©ho spojenĂ­ v části N-acylovanĂ©ho zin-kovĂ©ho komplexu vlivem podstatnĂ© nepƙí-tomnosti prostƙedĂ­ organickĂ©ho rozpouĆĄtěd-la, (iii) z určitĂ©ho mnoĆŸstvĂ­ anorganickĂ© so-li zinku vytvoƙenĂ© rozleĆŸenĂ­m komplexo-tvornĂ©ho spojenĂ­ v části N-acylovanĂ©ho zin-kovĂ©ho komplexu, (iv) z určitĂ©ho mnoĆŸstvĂ­soli zinku, kterĂĄ byla pƙidĂĄna na začátkujako pƙebytek a zĆŻstala nezreagovĂĄna pƙireakci vytváƙenĂ­ komplexu, a moĆŸnĂĄ (v) zezbytkovĂ©ho mnoĆŸstvĂ­ organickĂ©ho rozpouĆĄ-tědla pouĆŸitĂ©ho v pƙedchozĂ­ch operacĂ­ch. VĂœĆĄe uvedenĂĄ olejovitĂĄ nebo pevnĂĄ usa-zenina nebo zbytek (vĂœĆĄe zmĂ­něnĂĄ směs)mĆŻĆŸe bĂœt potom zpracovĂĄna některĂœm z po-stupĆŻ (a), (b) a (c) uvedenĂœch dĂĄle. (a) OlejovitĂĄ nebo pevnĂĄ usazenina nebozbytek (vĂœĆĄe zmĂ­něnĂĄ směs) se smĂ­chĂĄ svodou nebo takovĂœm druhem polĂĄrnĂ­ho or-ganickĂ©ho rozpouĆĄtědla, vodnĂ©ho polĂĄrnĂ­-ho organickĂ©ho rozpouĆĄtědla nebo směsĂ­polĂĄrnĂ­ch organickĂœch rozpouĆĄtědel, kterĂ© jepolĂĄrnĂ­ organickou kapalinou pĆŻsobĂ­cĂ­ roz-loĆŸenĂ­ komplexotvornĂ©ho spojenĂ­ zinkovĂœchkationtĆŻ v N-acylovanĂ©m zinkovĂ©m kom-plexu pƙítomnĂ©m ve zmĂ­něnĂ© usazenině ne-bo zbytku, a ve kterĂ© podĂ­ly soli zinku u-volněnĂ© a zezačátku nezreagovanĂ© jsourozpustnĂ©, avĆĄak ve kterĂ© je ĆŸĂĄdanĂœ N-acy-lovanĂœ derivĂĄt aminoglykosidovĂ©ho antibio- 2Θ tikĂĄ nerozpustnĂœ. TĂ­mto zpĆŻsobem se roz-loĆŸĂ­ N-acylovanĂœ zinkovĂœ komplex k uvol-něnĂ­ zinkovĂœch kaientĆŻ z něho, k umoĆŸněnĂ­rozpuĆĄtěnĂ­ zinkovĂœch kationtĆŻ a jejich ex-trakci jako zinkovĂ© soli vodou nebo vodnĂœmorganickĂœm rozpouĆĄtědlem a k ponechĂĄnĂ­ĆŸĂĄdanĂ©ho N-acylovanĂ©ho derivĂĄtu amino-glykosidovĂ©ho antibiotika ve formě neroz-pustnĂ©ho zbytku, kterĂœ mĂĄ bĂœt zĂ­skĂĄn. Ten-to zbytek mĆŻĆŸe bĂœt podle volby vyčiĆĄtěn o-pětnĂœm rozpuĆĄtěnĂ­m v některĂ©m organic-kĂ©m rozpouĆĄtědle. PolĂĄrnĂ­ organickĂ© roz-pouĆĄtědlo pouĆŸitelnĂ© v tomto postupu (a)je napƙíklad methanol, ethanol, kapalnĂœÄpavek, ethylamin a triethylamin. Tato po-lĂĄrnĂ­ organickĂĄ rozpouĆĄtědla a voda slou-ĆŸĂ­ jako činidlo k odejmutĂ­ zinkovĂ©ho ka-tiontu. (b) Alternativně se olejovitĂĄ nebo pevnĂĄusazenina (vĂœĆĄe zmĂ­něnĂĄ směs) smĂ­chĂĄ stakovĂœm jinĂœm druhem polĂĄrnĂ­ho' organic-kĂ©ho rozpouĆĄtědla, buď bezvodĂ©ho, nebovodnĂ©ho, kterĂ© rozklĂĄdĂĄ komplexotvornĂ©spojenĂ­ zinkovĂœch kationtĆŻ v N-acylovanĂ©mzinkovĂ©m komplexu pƙítomnĂ©m ve zmĂ­něnĂ©usazenině nebo zbytku, a ve kterĂ©m uvolně-nĂĄ sĆŻl zinku nenĂ­ rozpustnĂĄ, ale ĆŸĂĄdanĂœ N--acytovanĂœ derivĂĄt aminoglykosidovĂ©ho an-tibiotika je rozpustnĂœ, takĆŸe N-acylovanĂœzinkovĂœ komplex je rozloĆŸen k uvolněnĂ­N-acylovanĂ©ho derivĂĄtu aminoglykosidovĂ©-ho antibiotika z něho a k umoĆŸněnĂ­ jehorozpuĆĄtěnĂ­ a extrakci zmĂ­něnĂœm polĂĄrnĂ­morganickĂœm rozpouĆĄtědlem a tedy oddělenĂ­od soli zinku, kterĂĄ je uvolněna avĆĄak zĆŻs-tĂĄvĂĄ nerozpuĆĄtěna ve zmĂ­něnĂ©m polĂĄrnĂ­morganickĂ©m rozpouĆĄtědle. TĂ­mto zpĆŻsobemse zĂ­skĂĄ roztok ĆŸĂĄdanĂ©ho N-acylovanĂ©hoderivĂĄtu aminoglykosidovĂ©ho antibiotika vpolĂĄrnĂ­m organickĂ©m rozpouĆĄtědle a je-liĆŸĂĄdĂĄno, mĆŻĆŸe bĂœt vyčiĆĄtěn napƙíklad chro-matograficky s nĂĄsledujĂ­cĂ­ koncentracĂ­ vy-čiĆĄtěnĂ©ho roztoku pro oddělenĂ­ ĆŸĂĄdanĂ©hoN-acylovanĂ©ho produktu. (c) Podle dalĆĄĂ­ alternativy olejovitĂĄ ne-bo pevnĂĄ usazenina nebo zbytek (vĂœĆĄe zmĂ­-něnĂĄ směs) zĂ­skanĂĄ ve vĂœĆĄe uvedenĂ©m dru-hĂ©m zpĆŻsobu mĆŻĆŸe bĂœt opět rozpuĆĄtěna ja-ko celek ve vhodnĂ©m organickĂ©m rozpouĆĄ-tědle obsahujĂ­cĂ­m podĂ­l vody, kdyĆŸ je celĂĄusazenina nebo zbytek rozpustnĂĄ nebo pod-statně rozpustnĂĄ ve vodě. Takto zĂ­skanĂœ roz-tok mĆŻĆŸe bĂœt potom podroben chromatogra-fickĂ©mu procesu, pƙi kterĂ©m mohou bĂœt u-volněnĂĄ sĆŻl zinku a uvolněnĂœ N-acylovanĂœderivĂĄt aminoglykosidovĂ©ho antibiotika zĂ­s-kĂĄny odděleně z roztoku. PĆŻvodci pƙedlo-ĆŸenĂ©ho vynĂĄlezu zjistili, ĆŸe pro tento chro-matografickĂœ proces jsou uĆŸitečnĂ© rozličnĂ©druhy iontoměnnĂœch pryskyƙic pro vĂœměnukationtĆŻ, vĂœměnu aniontĆŻ a vĂœměnu chelĂĄ-tĆŻ a ve vodě nerozpustnĂ© vysokĂ© polymeryobsahujĂ­cĂ­ funkčnĂ­ skupiny schopnĂ© kombi-nace s kovem, napƙíklad chitin nebo chito-san. VhodnĂ© stupně pryskyƙice pro vĂœmě-nu kationtĆŻ pro tento Ășčel jsou ty, kterĂ© ob- 261853 21 22 sĂĄhujĂ­ karboxyskupiny ( —COOHj jako vĂœ-měnnĂ© funkce, a ty, kterĂ© obsahujĂ­ sulfo-nylovĂ© skupiny (—SO:iHj jako vĂœměnnĂ©funkce. PouĆŸijĂ­-li se pryskyƙice pro vĂœmě-nu kationtĆŻ obsahujĂ­cĂ­ karkoxylovĂ© funkcepro vĂœĆĄe uvedenĂœ chromatografickĂœ proces,vĂœĆĄe uvedenĂĄ olejovitĂĄ nebo pevnĂĄ usazeni-na nebo zbytek (vĂœĆĄe zmĂ­něnĂĄ směs] serozpustĂ­ ve vhodnĂ©m vodnĂ©m organickĂ©mrozpouĆĄtědle, napƙíklad ve směsi vody amethanolu obsahujĂ­cĂ­ podle volby 10 % aĆŸ90 % objemovĂœch vody, nebo směsi vody adioxann obsahujĂ­cĂ­ podle volby 10 % aĆŸ 90proč. objemovĂœch vody, a vĂœslednĂœ roztokse zavede do sloupce zmĂ­něnĂ© pryskyƙicepro vĂœměnu kationtĆŻ. Sloupec se potom pro-myje dalĆĄĂ­m mnoĆŸstvĂ­m vĂœĆĄe uvedenĂ©hovodnĂ©ho organickĂ©ho rozpouĆĄtědla, načeĆŸnĂĄsleduje vyvolĂĄnĂ­, pƙi kterĂ©m se jako e-luent pouĆŸije mnoĆŸstvĂ­ vĂœĆĄe uvedenĂ©ho vod-nĂ©ho organickĂ©ho rozpouĆĄtědla obsahujĂ­cĂ­-ho dĂĄle jistĂ© mnoĆŸstvĂ­ kyseliny nebo zĂĄsa-dy. Jako kyselina se mĆŻĆŸe pouĆŸĂ­t slabĂĄ or-ganickĂĄ kyselina, napƙíklad kyselina octo-vĂĄ, nebo zƙeděnĂĄ anorganickĂĄ kyselina, na-pƙíklad zƙeděnĂĄ kyselina chlorovodĂ­kovĂĄ.

Jako zĂĄsada se mĆŻĆŸe pouĆŸĂ­t hydroxid a-inonnĂœ pro větĆĄinu pƙípadĆŻ. Koncentrace ky-seliny nebo zĂĄsady ve vyvĂ­jecĂ­m rozpouĆĄ-tědle (eluentuj mĆŻĆŸe bĂœt s vĂœhodou 0,01 aĆŸ5 % hmot. vyvĂ­jecĂ­ho roztoku. ĆœĂĄdanĂœ N--acylovanĂœ derivĂĄt aminoglykosidovĂ©ho an-tibiotika mĆŻĆŸe bĂœt oddělen od komplexotvor-nĂœch kationtĆŻ zinku během procesu vyvĂ­-jenĂ­, protoĆŸe pouĆŸitĂĄ pryskyƙice pro vĂœměnukationtĆŻ mĂĄ rozličnĂ© adsorpčnĂ­ afinityvzhledem k ĆŸĂĄdanĂ©mu N-acylovanĂ©mu ami-noglykosidu a k zinkovĂœm kationtĆŻm, takĆŸesila prvnĂ­bo pro spojenĂ­ s pryskyƙicĂ­ jeodliĆĄnĂĄ od sĂ­ly druhĂ©ho pro spojenĂ­ s prys-kyƙicĂ­. TĂ­mto- zpĆŻsobem mĆŻĆŸe bĂœt eluĂĄtshromĂĄĆŸděn ve frakcĂ­ch obsahujĂ­cĂ­ch ĆŸĂĄ-danĂœ N-acylovanĂœ aminoglykosid prostĂœ so-li zinku, kterĂœ mĆŻĆŸe bĂœt potom zkoncentro-vĂĄn k zĂ­skĂĄnĂ­ ĆŸĂĄdanĂ©ho N-acylovanĂ©ho de-rivĂĄtu aminoglykosidovĂ©ho antibiotika.

PouzĂ­ je-li se pryskyƙice pro vĂœměnu ka-tiontĆŻ obsahujĂ­cĂ­ sulfonylovĂ© funkce provĂœĆĄe uvedenĂœ chromatografickĂœ proces, od-dělenĂ­ a vytÄ›ĆŸenĂ­ ĆŸĂĄdanĂ©ho N-acylovanĂ©hoderivĂĄtu aminoglykosidovĂ©ho antibiotikamĆŻĆŸe bĂœt provedeno stejnĂœm zpĆŻsobem jakove vĂœĆĄe uvedenĂ©m pƙípadě, protoĆŸe k oddě-lenĂ­ N-acylovanĂ©ho aminoglykosidu cd kom-plexotvornĂœch zinkovĂœch kationtĆŻ je prove-den stejnĂœ mechanismus. Na druhĂ© straně,pouĆŸije-11 se slabě nebo silně zĂĄsaditĂĄ prys-kyƙice pro vĂœměnu aniontĆŻ pro chromatc-grafickĂœ proces, podĂ­l N-acylovanĂ©ho ami-noglykosidu v N-acylovanĂ©m zinkovĂ©m kom-plexu, kterĂœ obsahuje jednu nebo několikneacylovanĂœch aminoskupin, nenĂ­ normĂĄl-ně adsorbovĂĄn slabě nebo silně zĂĄsaditoupryskyƙicĂ­ pro vĂœměru aniontĆŻ vlivem io-nĂ­ckĂ©ho odpuzovĂĄnĂ­ mezi nimi, takĆŸe vyvĂ­-jenĂ­ sloupce pryskyƙice pro vĂœměnu anion-tĆŻ vhodnĂœm vodnĂœm organickĂœm rozpouĆĄ- tědlem umoĆŸĆˆuje eluci N-acylovanĂ©ho deri-vĂĄtu aminoglykosidovĂ©ho antibiotika zesloupce, zatĂ­mco zinkovĂ© kationty zĆŻstanouve sloupci.

ProvĂĄdĂ­-ii se chromatografickĂœ proces spouĆŸitĂ­m pryskyƙice pro vĂœměnu chelĂĄtĆŻ,kterĂĄ je schopnĂĄ kombinace se zinkovĂœmikationty, zavede se roztok vĂœĆĄe uvedenĂ© o-lejevitĂ© nebo pevnĂ© usazeniny nebo zbytku(vĂœĆĄe zmĂ­něnĂ© směsi) ve vodnĂ©m organic-kĂ©m rozpouĆĄtědle do sloupce pryskyƙice provĂœměnu chelĂĄtĆŻ, kterĂĄ se potom vyvinevhodnĂœm vyvĂ­jecĂ­m rozpouĆĄtědlem, aby ĆŸĂĄ-danĂœ N-ecylovanĂœ amino Tykosid byl eluo-vĂĄn pƙednostně ze sloupce, zatĂ­mco zinko-vĂ© katio-nty zĆŻstanou vĂĄzĂĄny v pryskyƙicipro vĂœměnu chelĂĄtĆŻ. Ve vodě rozpustnĂœ vy-sokĂœ polymer obsahujĂ­cĂ­ funkce schopnĂ©kombinace s kovy, napƙíklad chitin a chito-san, mĆŻĆŸe bĂœt pouĆŸit stejnĂœm zpĆŻsobem, ja-ko kdyĆŸ se pouĆŸije pryskyƙice pro vĂœměnuchelĂĄtĆŻ. (dj DĂĄle je moĆŸnĂœ tƙeli postup, pƙi kte-rĂ©m vĂœĆĄe uvedenĂĄ acylačnĂ­ reakčnĂ­ směs,ve kterĂ© se provĂĄděla acylace zinkovĂ©hokomplexu pro ochranu aminoskupin, sepƙímo zavede do sloupce pryskyƙice pro vĂœ-měnu kationtĆŻ nebo vĂœměnu aniontĆŻ, che-lĂĄtĆŻ, nebo ve vodě nerozpustnĂ©ho vysokĂ©-ho polymeru majĂ­cĂ­ho funkce kombinace skovy, takĆŸe N-acylovanĂœ zinkovĂœ komplexje adsorbovĂĄn pryskyƙicĂ­ nebo· vysokĂœm po-lymerem. Sloupec mĆŻĆŸe bĂœt potom promytvodnĂœm organickĂœm rozpouĆĄtědlem obsa-hujĂ­cĂ­m nebo neobsahujĂ­cĂ­m kyselinu nebozĂĄsadu, jak uvedeno v postupu (cj, načeĆŸse provedou podobnĂ© operace jako v po-stupu (c), čímĆŸ se dosĂĄhne odstraněnĂ­ zin-kovĂœch kationtĆŻ z N-acylovanĂ©ho zinko-vĂ©ho komplexu, jakoĆŸ i vytÄ›ĆŸenĂ­ ĆŸĂĄdanĂ©hoN-acylovanĂ©ho derivĂĄtu aminoglykosidovĂ©-ho antibiotika. (ej DĂĄle je moĆŸnĂœ čtvrtĂœ postup pro vy-tÄ›ĆŸenĂ­ ĆŸĂĄdanĂ©ho N-acylovanĂ©ho derivĂĄtu a-minoglykosidovĂ©ho antibiotika, pƙi kterĂ©mse vĂœĆĄe uvedenĂĄ směs pro acylačnĂ­ reakciobsahujĂ­cĂ­ N-acylovanĂœ zinkovĂœ komplexzpracuje bezprostƙedně vodou pƙidĂĄnĂ­m vo-dy, v pƙípadě, ĆŸe ĆŸĂĄdanĂœ N-acylovanĂœ deri-vĂĄt aminoglykosidovĂ©ho antibiotika je ne-rozpustnĂœ ve vodě.

Jako pƙíklad N-acylovanĂ©ho derivĂĄtu a-minoglykcsidovĂ©ho antibiotika, kterĂœ je vpodstatě nerozpustnĂœ ve vodě, mĆŻĆŸe bĂœtuveden 3,2‘,6‘-tri-N-benzyloxykarboinyldibe-kacin. V tomto pƙípadě, kdyĆŸ směs pro acy-lačnĂ­ reakci obsahujĂ­cĂ­ N-acylovanĂœ zinko-vĂœ komplex obsahujĂ­cĂ­ N-acylovanĂœ derivĂĄtaminoglykosidu v podstatě nerozpustnĂœ vevodě, se bezprostƙedně smĂ­chĂĄ s vodou,rozruĆĄĂ­ se komplexotvornĂ© spojenĂ­ v N-a-cylovanĂ©m zinkovĂ©m komplexu a N-acylo-vanĂœ derivĂĄt aminoglykosidu se srazĂ­ jakopevnĂĄ lĂĄtka, zatĂ­mco sĆŻl zinku vytvoƙenĂĄ zuvolněnĂœch zinkovĂœch kationtĆŻ zĆŻstĂĄvĂĄ vroztoku, takĆŸe ĆŸĂĄdanĂœ N-acylovanĂœ derivĂĄt 281853 24 23 aminoglykosidovĂ©ho antibiotika jako v pod-statě čistĂœ produkt mĆŻĆŸe bĂœt vytÄ›ĆŸen oddě-leně od soli zinku.

Jak bylo uvedeno vĂœĆĄe, N-acylace, jme-novitě reakce k ochraně aminoskupin, seprovĂĄdĂ­ se zinkovĂœm komplexem aminogly-kosidovĂ©ho antibiotika v souhlase se zpĆŻso-bem podle prvnĂ­ myĆĄlenky pƙedloĆŸenĂ©ho vy-nĂĄlezu a komplex kattontĆŻ zinku s mono-,di-, tri- nebo poly-N-acylovanĂœm derivĂĄtemaminoglykosidu takto vytvoƙenĂœm je tako-vĂœ, ve kterĂ©m pouĆŸitĂ© zinkovĂ© kationty jsoukomplexově sdruĆŸeny se strukturou N-acy-lovanĂ©ho derivĂĄtu aminoglykosidu. Je-li te-dy ĆŸĂĄdanĂœ N-acylovanĂœ derivĂĄt aminogly-kosidu nerozpustnĂœ nebo mĂĄlo rozpustnĂœ vevodě, zpĆŻsobĂ­ prostĂ© pƙidĂĄnĂ­ vody ke směsipro acylačnĂ­ reakci obsahujĂ­cĂ­ N-acylovanĂœzinkovĂœ komplex, ĆŸe ve vodě nerozpustnĂœN-acylovanĂœ derivĂĄt aminoglykosidu se vy-srĂĄĆŸĂ­ jako pevnĂĄ lĂĄtka, zatĂ­mco uvolněnĂ©zinkovĂ© kationty se ze směsi odstranĂ­ roz-puĆĄtěnĂ­m ve vodě jako v pƙípadě čtvrtĂ©hopostupu popsanĂ©ho v pƙedchozĂ­m odstavci(ej. Takto zĂ­skanĂĄ sraĆŸenina, kterĂĄ je ne-rozpustnĂĄ ve vodě, mĆŻĆŸe bĂœt bezprostƙed-ně pouĆŸita jako vĂœchozĂ­ lĂĄtka pro nĂĄsledu-jĂ­cĂ­ reakce pro semisyntetickou pƙípravuĆŸĂĄdanĂ©ho konečnĂ©ho produktu. Obecněji ƙe-čeno, i kdyĆŸ N-acylovanĂœ derivĂĄt aminogly-kosidovĂ©ho antibiotika je někdy rozpustnĂœnebo částečně rozpustnĂœ ve vodě, a tudĂ­ĆŸN-acylovanĂœ derivĂĄt aminoglykosidu mĆŻĆŸebĂœt vytÄ›ĆŸen pouze pƙi podstatně snĂ­ĆŸenĂ©mvĂœtÄ›ĆŸku, pouĆŸije-li se jednoduchĂœ postup spƙidĂĄnĂ­m vody bezprostƙedně do směsi proacylačnĂ­ reakci. Z tohoto dĆŻvodu mĆŻĆŸe bĂœtzĂ­skĂĄn lepĆĄĂ­ vĂœsledek, pouĆŸije-li se buď ně-kterĂœ z vĂœĆĄe uvedenĂœch postupĆŻ (bj a (cj,pƙi kterĂœch se N-acylovanĂœ komplex zinku,to je komplex zinkovĂœch kationtĆŻ s N-acy-lovanĂœm derivĂĄtem aminoglykosidovĂ©ho an-tibiotika vytvoƙenĂœ v N-acylačnĂ­ reakci, nej-prve oddělĂ­ od směsi pro acylačnĂ­ reakci,N-acylovanĂœ zinkovĂœ komplex takto odděle-nĂœ se potom rozpustĂ­ ve vodě nebo v ně-kterĂ©m vodnĂ©m organickĂ©m rozpouĆĄtědle avĂœslednĂœ roztok se dĂĄle zpracuje pro od-straněnĂ­ zinkovĂœch kationtĆŻ z něho. Jeden zjednoduchĂœch zpĆŻsobĆŻ odstraněnĂ­ zinkovĂœchkationtĆŻ, kterĂœ je obecně pouĆŸitelnĂœ, je ten,pƙi kterĂ©m se sirovodĂ­k nebo sirnĂ­k někte-rĂ©ho alkalickĂ©ho kovu nechĂĄ reagovat ja-koĆŸto srĂĄĆŸecĂ­ činidlo se zinkovĂœmi kation-ty, aby se tyto vysrĂĄĆŸely jako sirnĂ­k zineč-natĂœ, coĆŸ je jeden zpĆŻsob prvnĂ­ho postupupopsanĂ©ho vĂœĆĄe v odstavci (a). NicmĂ©něsirnĂ­k zinečnatĂœ se někdy vysrĂĄĆŸĂ­ jako ko-loidnĂ­ usazenina, kterĂĄ se velmi nesnadnofiltruje a kromě toho sirovodĂ­k i sirnĂ­kyalkalickĂœch kovĆŻ majĂ­ nepƙíjemnĂœ zĂĄpacha nejsou vhodnĂ© pro pouĆŸitĂ­ pƙi komerčnĂ­mvyuĆŸitĂ­ tohoto postupu. PĆŻvodci pƙedloĆŸe-nĂ©ho vynĂĄlezu tudĂ­ĆŸ provedli rozsĂĄhlĂœ vĂœ-zkum za Ășčelem vytvoƙenĂ­ praktickĂ©ho· zpĆŻ-sobu k odstraněnĂ­ zinkovĂœch kationtĆŻ zezinkovĂ©ho komplexu bez pouĆŸitĂ­ sirnĂ­kĆŻ, a podaƙilo se jim vyvinout ĂșčinnĂœ a snadnĂœzpĆŻsob odstraněnĂ­ zinkovĂœch kationtĆŻ pou-ĆŸitĂ­m vĂœĆĄe uvedenĂœch pryskyƙic pro vĂœmě-nu iontĆŻ nebo jinĂ©ho polymerovĂ©ho mate-riĂĄlu, jako v postupech (c) a (d) popsanĂœchvĂœĆĄe. Tyto postupy (cj a (dj jsou komerčněvelmi vĂœhodnĂ© a hodnotnĂ©, neboĆ„ jsou snad-no proveditelnĂ©, dĂĄvajĂ­ vysokou ĂșčinnostodstraněnĂ­ zinkovĂœch kationtĆŻ a dĂĄvajĂ­ vy-sokĂœ vĂœtÄ›ĆŸek ĆŸĂĄdanĂ©ho N-acylovanĂ©ho de-rivĂĄtu aminoglykosidovĂ©ho antibiotika.

Na zĂĄvěr mohou bĂœt vĂœĆĄe popsanĂ© zpĆŻ-soby a postupy pro zpracovĂĄnĂ­ N-acylova-nĂ©ho zinkovĂ©ho· komplexu činidlem pro od-straněnĂ­ zinkovĂœch kationtĆŻ shrnuty takto: (i) Komplex zinkovĂœch kationtĆŻ se selek-tivně N-acylovanĂœm derivĂĄtem aminoglyko-sidovĂ©ho antibiotika se oddělĂ­ ze směsi proacylačnĂ­ reakci pƙed tĂ­m, neĆŸ se nechĂĄ rea-govat s některĂœm činidlem pro odstraněnĂ­zinkovĂœch kationtĆŻ z tohoto komplexu. (ii) Komplex zinkovĂœch kattontĆŻ se selek-tivně N-acylovanĂœm derivĂĄtem aminoglyko-sidovĂ©ho· antibiotika se oddělĂ­ ze směsi pro·acylačnĂ­ reakci extrakcĂ­ některĂœm organic-kĂœm rozpouĆĄtědlem, odpaƙenĂ­m organickĂ©-ho rozpouĆĄtědla ze směsi pro acylačnĂ­ re-akci nebo zƙeděnĂ­m směsi pro acylpčnĂ­ re-akci ƙedidlem organickĂ©ho rozpouĆĄtědlapƙed tĂ­m, neĆŸ se nechĂĄ reagovat s činidlempro odstraněnĂ­ zinkovĂœch kationtĆŻ.· i(iii) Komplex zinkovĂœch kationtĆŻ se se-lektivně N-acylovanĂœm derivĂĄtem amino-glykosidovĂ©ho antibiotika jednou oddělenĂœse smĂ­chĂĄ s vodotu nebo· některĂœm polĂĄrnĂ­morganickĂœm rozpouĆĄtědlem, buď bĂ©zvodĂœm,nebo vodnĂœm, kterĂ© slouĆŸĂ­ jako činidlo proodstraněnĂ­ zinkovĂœch kationtĆŻ. Toto polĂĄr-nĂ­ organickĂ© rozpouĆĄtědlo je bud takovĂ©, vekterĂ©m je sĆŻl zinku rozpustnĂĄ, ve kterĂ©m jevĆĄak N-acylovanĂœ derivĂĄt aminoglykosido-vĂ©ho antibiotika nerozpustnĂœ, nebo takovĂ©,ve kterĂ©m je sĆŻl zinku nerozpustnĂĄ, ve kte-rĂ©m je vĆĄak N-acylovanĂœ derivĂĄt aminogly-kosidovĂ©ho antibiotika rozpustnĂœ. ‱JĂ­v) Komplex zinkovĂœch kationtĆŻ s N-acy-lovanĂœm derivĂĄtem aminoglykosidovĂ©ho an-tibiotika jedrvou oddělenĂœ se opět rozpustĂ­Ășplně v některĂ©m organickĂ©m rozpouĆĄtědleobsahujĂ­cĂ­m určitĂœ podĂ­l vody a vĂœslednĂœroztok se podrobĂ­ chromatografickĂ©mu pro-cesu s pouĆŸitĂ­m pryskyƙice pro vĂœměnu ka-tiontĆŻ, vĂœměnu aniontĆŻ, vĂœměnu chalĂĄtĆŻnebo se pouĆŸije ve vodě nerozpustnĂ©ho po-lymeru obsahujĂ­cĂ­ho funkčnĂ­ skupiny schop-nĂ© kombinace s kovem, slouĆŸĂ­cĂ­ho jako či-nidlo· k odstraněnĂ­ zinkovĂœch kationtĆŻ. (v) Směs pro acylačnĂ­ reakci se pƙímonechĂĄ projĂ­t sloupcem pryskyƙice pro vĂœ-měnu kationtĆŻ, vĂœměnu aniontĆŻ, vĂœměnuchelĂĄtĆŻ nebo ve vodě nerozpustnĂ©ho poly-meru obsahujĂ­cĂ­ho funkce schopnĂ© kombi-nace s kovem pro adsorpci komplexu zinko-vĂœch kationtĆŻ s N-acylovanĂœm derivĂĄtem a-minoglykosidovĂ©ho antibiotika, a sloupec sepotom vyvine některĂœm vodnĂœm organickĂœm 261853 25 28 rozpouĆĄtědlem obsahujĂ­cĂ­m nebo neobsahu-jĂ­cĂ­m podĂ­l kyseliny nebo zĂĄsady, a eluĂĄtse shromĂĄĆŸdĂ­ ve frakcĂ­ch, načeĆŸ se vytÄ›ĆŸĂ­frakce obsahujĂ­cĂ­ ĆŸĂĄdanĂœ selektivně N-acy-lovanĂœ derivĂĄt amino dykosid aĂłIio antibio-tika avĆĄak neobsahujĂ­cĂ­ ĆŸĂĄdnĂ© zinkovĂ© ka-tionty. (vij Je-li ĆŸĂĄdanĂœ N-acylovanĂœ derivĂĄt a-mlnoglykosidovĂ©ho antibiotika nerozpustnĂœnebo v podstatě nerozpustnĂœ ve vodě, směspro acylačnĂ­ reakci se pƙímo smĂ­chĂĄ s vo-dou, takĆŸ;: zmĂ­něnĂœ derivĂĄt se srazĂ­ oddě-leně cd soli. zinku, kterĂĄ zĆŻstane rozpuĆĄ-těna ve vodě. (vii) Směs pro acylačnĂ­ reakci se bez-prostƙedně nechĂĄ reagovat se sirovodĂ­kem,sirnĂ­kem alkalickĂ©ho kovu nebo sirnĂ­kemkovu alkalickĂ© zeminy, čímĆŸ se srazĂ­ zin-kovĂ© kalionly jako sirnĂ­k zinečnatĂœ, nebos hydroxidem amonnĂœm, čímĆŸ se srazĂ­ zin-kovĂ© kationty jako· hydroxid zinečnatĂœ. V zinkovĂ©m komplexu uvedenĂ©m ve zpĆŻ-sobu podle prvnĂ­ myĆĄlenky vynĂĄlezu jsouzinkovĂ© kaĂ­icnty principiĂĄlně spojeny dokomplexu s 1-amino a 3“-aminoskupinamiaminoglykosidovĂ©ho antibiotika a tudĂ­ĆŸ N--acylace komplexu aminoglykosidovĂ©ho an-tibiotika se zinkovĂœm kationtem nĂĄsledova-nĂĄ odstraněnĂ­m zinkovĂœch kationtĆŻ z něhodĂĄvĂĄ normĂĄlně N-acylovanĂœ derivĂĄt amino-glykosidovĂ©ho antibiotika, ve kterĂ©m ami-no u/nebo alkylaminoskupiny ji Ă© neĆŸ 1--aniino a 3“-aminoskupiuy jsou chrĂĄněnyacyl skupinou.

KdyĆŸ se takto zĂ­skanĂœ N-acylovanĂœ deri-vĂĄt aminoglykosidovĂ©ho antibiotika zpĆŻso-bem podle prvnĂ­ myĆĄlenky pƙedloĆŸenĂ©hovynĂĄlezu potem Ί.-Ν acyluje některou «-hyd-roxy-w-aminoalkanovcu kyselinou znĂĄmĂœmzpĆŻsobem popsanĂœm v patentovĂœch spisechSpojenĂœch stĂĄtĆŻ americkĂœch č. 3 781 268 ač. 3 939 143, načeĆŸ nĂĄsleduje odstraněnĂ­zbĂœvajĂ­cĂ­ch ochrannĂœch skupin chrĂĄnĂ­cĂ­chamineskupiny z vĂœslednĂ©ho 1-N-acylovanĂ©-ho produktu a zĂ­skĂĄ se semlsyntetickĂ© 1-N--acylovanĂ© aminuglykosidovĂ© antibiotikum,kterĂ© je znĂĄmĂ© jako uĆŸitečnĂ© antibakteriĂĄl-nĂ­ činidlo.

SyntĂ©za 1-N-acylov'anĂœch aminoglykosido-vĂœch antibiotik jo nynĂ­ popsĂĄna s odkazemna pƙíkladnĂ© pouĆŸitĂ­ kanaraycinu A jakovĂœchozĂ­ lĂĄtky. PouĆŸije-li se kanamycin A ja-ko vĂœchozĂ­ lĂĄtka pƙi zpĆŻsobu podle prvnĂ­myĆĄlenky vynĂĄlezu, zpočátku se blokujĂ­ 1--amino- a 3“-amlnoskuplny komplexacĂ­ sezinkovĂœmi kationty po vytvoƙenĂ­ jeho zin-kovĂ©ho komplexu. Je-li tedy komplex kanamycinu A se zinkovĂœm kationtem acylo-vĂĄn vhodnĂœm acylačnĂ­m činidlem podlepƙedloĆŸenĂ©ho vynĂĄlezu nebo· jinĂœm činid-lem pro blokovĂĄnĂ­ aminoskupin, nezkom-plexovanĂ© 3-amino- a 6‘-aminoskupiny mo-lekuly kanamyemu A mohou bĂœt chrĂĄněnyacylskupinou pouĆŸitĂ©ho acylačnĂ­ho činidlanebo jinĂœm druhem skupiny blokujĂ­cĂ­ ami-noskupltiu. Po nĂĄsledujĂ­cĂ­m odstraněnĂ­ kom-plexotvornĂœch zinkovĂœch kationtĆŻ z komple- xu N-acylovanĂ©hO' kanamycinu A se zinko-vĂœm kationtem se vĂœslednĂœ N-acylovanĂœ de-rivĂĄt kanamycinu A nechĂĄ reagovat s acy-lačnĂ­m činidlem majĂ­cĂ­m acylskupinu prozavedenĂ­ do 1-amin;skupiny molekuly ka-namycinu A. Tato· acylskuplna potom rea-guje pouze s neblokovanĂœmi 1-amino- a 3“--aminoskupinami kanamycinu A. V tĂ©to do-bě je 1-aminoskupina normĂĄlně poněkud re-aktivnějĆĄĂ­ neĆŸ 3“-aminoskupina, takĆŸe po-ĆŸadovanĂœ 1-N-acylovanĂœ derivĂĄt kanamyci-nu A mĆŻĆŸe bĂœt zĂ­skĂĄn s poněkud vyĆĄĆĄĂ­mvĂœtÄ›ĆŸkem neĆŸ 3“-N-acy] ovĂĄnĂœ derivĂĄt kana-mycinu A. NĂĄsledujĂ­cĂ­ zruĆĄenĂ­ N-ochrany1-N-acylovanĂ©ho derivĂĄtu kanamycinu Atakto zĂ­skanĂ©ho dĂĄvĂĄ 1-N-acylovanĂœ kana-mycin A jako ĆŸĂĄdanĂœ konečnĂœ produkt. Po-uĆŸije-li se tady zpĆŻsob podle prvnĂ­ myĆĄlen-ky pƙedloĆŸenĂ©ho vynĂĄlezu, je zƙejmĂ©, ĆŸe ĆŸĂĄ-danĂœ 1-N-acylkanamycin A mĆŻĆŸe bĂœt zĂ­s-kĂĄn pƙi vyĆĄĆĄĂ­m vĂœtÄ›ĆŸku, ve srovnĂĄnĂ­ s pƙí-padem, kdy nechrĂĄněnĂœ kanamycin A nebo6‘-N-chrĂĄněnĂœ kanamycin A je pƙímo uve-den do reakce s některĂœm acylačnĂ­m činid-lem za Ășčelem 1-N-acylace kanamycinu A.NechĂĄ-li se reagovat kanamycin bez jakĂ©-koli N-ochrany s některĂœm 1-N-acylačnĂ­mčinidlem, zjistĂ­ se, ĆŸe se v tomto pƙípaděvytvoƙí smĂ­ĆĄenĂ© N-acylovanĂ© produkty ob-sahujĂ­cĂ­ velmi malĂœ podĂ­l, obvykle od 1 %do několika mĂĄlo % hmot. ĆŸĂĄdanĂ©ho 1-N-a-cyl .vanoho produktu.

PouĆŸije-li se zpĆŻsob podle prvnĂ­ myĆĄlenkypƙedloĆŸenĂ©ho vynĂĄlezu na kanamycin vĂœ-ĆĄe uvedenĂ©ho obecnĂ©ho vzorce (III), jsouchrĂĄněny některĂ© nebo vĆĄechny aminosku-piny jinĂ© neĆŸ 1-amino- a 3“-aminoskupinytohoto· pouĆŸitĂ©ho kanamycinu, coĆŸ dĂĄvĂĄ N--acylovanĂœ derivĂĄt kanamycinu odpovĂ­dajĂ­-cĂ­ tomuto obecnĂ©mu vzorci (V):

kde

Rfa je hydroxyskupina, aminoskupina (—NHj), skupina —NHCOR5, nebo skupina —NHCO.OR5 nebo skupina —NHSO2R6, R< je hydroxyskupina, skupina —NHCOƘ5, sku- pina 261853 2? 28 R8 /

—N \ COR5 skupina — NHCO.OR5, skupinaR8 /

—N \ CO—OR5 skupina —NHSO2Rfi nebo skupinaR8 /

—N \ SO2R° R3 a R:! majĂ­ vĂœznam definovanĂœ vĂœĆĄe vsouvislosti s obecnĂœm vzorcem (III), R7 jeskupina —COR5, skupina — CO.OR5 neboskupina —SO2R6, R5 a RG majĂ­ vĂœznam defi-novanĂœ vĂœĆĄe v souvislosti se vzorci (IVa)aĆŸ (IVf), a R8 je alkylskupina, zejmĂ©na al-kylskupina s 1 aĆŸ 4 atomy uhlĂ­ku. V pƙípadě, ĆŸe se zpĆŻsob podle prvnĂ­ myĆĄ-lenky pƙedloĆŸenĂ©ho vynĂĄlezu pouĆŸije na ně-kterĂœ kanamycin, zĂ­skĂĄ se obvykle N-chrĂĄ-něnĂœ derivĂĄt kanamycinu vzorce (V), vekterĂ©m vĆĄechny aminoskupiny jinĂ© neĆŸ ami-no- a/nebo alkylaminoekupiny pƙítomnĂ© vpolohĂĄch 1- a 3“-molekuly kanamycinu jsoublokovĂĄny.

KdyĆŸ vĆĄak acylskupina, kterĂĄ mĂĄ bĂœt za-vedena jako skupina blokujĂ­cĂ­ aminoskupl-nu, je poměrně ĆĄirokĂĄ ve svĂ© sfĂ©rickĂ© veli-kosti, napƙíklad t-butoxykarbonylskupina,nebo kdyĆŸ molĂĄrnĂ­ mnoĆŸstvĂ­ acylačnĂ­ho či-nidla pouĆŸitĂ© v reakci je menĆĄĂ­ neĆŸ mnoĆŸ-stvĂ­ stechiometricky ĆŸĂĄdanĂ© pro acylacivĆĄech aminoskupin netvoƙícĂ­ch komplex vmolekule kanamycinu, i kdyĆŸ acylskupinaacylačnĂ­ho činidla je obvyklĂ© velikosti, ne-bo kdyĆŸ acylačnĂ­ reakce je zastavena na me-zistupni, zĂ­skĂĄ se takovĂœ N-chrĂĄněnĂœ deri-vĂĄt kanamycinu, ve kterĂ©m počet acylova-nĂœch aminoskupin v molekule kanamycinu je menĆĄĂ­ neĆŸ ve vĂœĆĄe uvedenĂ©m pƙípadě, apotom ve zvlĂĄĆĄtnĂ­ch pƙípadech se zĂ­skĂĄ ta-kovĂœ omezeně N-acylovanĂœ derivĂĄt kanamy-cinu, ve kterĂ©m 6‘-amino- nebo 6‘-alkylami-noskupina je vĂœjimečně acylovĂĄna, vlivemtoho, ĆŸe 6‘-amino- nebo 6‘-alkylaminosku-pina je reaktivnějĆĄĂ­ neĆŸ jinĂ© aminoskupinyv molekule kanamycinu. N-acylovanĂœ derivĂĄt kanamycinu obecnĂ©-ho vzorce (V) je vĂœznamnĂœ meziprodukt po-uĆŸitelnĂœ v semisyntetickĂ© pƙípravě rĆŻznĂœchdruhĆŻ derivĂĄtĆŻ kanamycinu. Sloučeninavzorce (V) mĂĄ zvĂœĆĄenou hodnotu jako me-ziprodukt pro chemickou syntĂ©zu napƙíkladkdyĆŸ se zavede do postupu k pƙípravě se-misyntetickĂĄ 1-N-acylovanĂĄ aminoglykosido-vĂĄ antibiotika aktivnĂ­ proti bakteriĂ­m odol-nĂœm vƯči kanamycinu ,acylaci 1-aminosku-piny sloučeniny vzorce (V) některou a--hydroxy-w-aminoalkanoickou kyselinou anĂĄsledujĂ­cĂ­m odstraněnĂ­m ochrannĂœch sku-pin z blokovanĂœch amino- a/nebo alkylami-noskupin vĂœslednĂ©ho 1-N-acylovanĂ©ho pro-duktu. MĂĄ-li napƙíklad bĂœt pƙechodnĂĄ sloučeni-na vzorce (V) acylovĂĄna některou acylsku-pinou, napƙíklad (S)-4-benzyloxykarbonyl-amino-2-hydroxybutyrylskupinou, sloučeni-na vzorce (5) mĆŻĆŸe bĂœt ve vhodnĂ©m roz-pouĆĄtědle, napƙíklad vodnĂ©m tetrahydrofu-ranu, uvedena do reakce s pƙísluĆĄně substi-tuovanou kyselinou mĂĄselnou nebo někte-rĂœm jejĂ­m ekvivalentnĂ­m reaktivnĂ­m deri-vĂĄtem, napƙíklad aktivnĂ­m esterem, napƙí-klad N-hydroxysukcinimidesterem. N-hydro-xyftalimidesterem nebo p-nitrofenolesterem,čímĆŸ se vytvoƙí produkt 1-N-acylace. NĂĄsle-dujĂ­cĂ­ odstraněnĂ­ benzyloxykarbonylskupinya ochrannĂ© skupiny (R7) ve vzorci (V) zproduktu 1-N-acylace mĆŻĆŸe bĂœt provedenoobvyklou technikou zruĆĄenĂ­ N-ochrany, na-pƙíklad buď hydrolĂœzou s kyselinou nebozĂĄsadou, nebo redukcĂ­ s redukčnĂ­m kovem,nebo katalytickou hydrogenolĂœzou s vodĂ­-kem, nebo redukcĂ­ radikĂĄlu sodĂ­kem v ka-palnĂ©m čpavku, čímĆŸ se zĂ­skĂĄ semisyntetic-kĂœ derivĂĄt kanamycinu majĂ­cĂ­ (S)-4-amino--2-hydroxybutyrylskupinu vĂĄzanou na 1-a-minoskupinu kanamycinu a aktivnĂ­ proti o-dolnĂœm bakteriĂ­m, odpovĂ­dajĂ­cĂ­ tomuto o-becnĂ©mu vzorci (VI): " ·.

261853 29 30 kde R1, R“, R:i a R'· majĂ­ vĂœznam definovanĂœvĂœĆĄe v souvislosti se vzorcem (III). Ve vĂœĆĄeuvedenĂ©m zpĆŻsobu mĆŻĆŸe bĂœt pouĆŸit obecněN-chrĂĄněnĂœ derivĂĄt některĂ© «-hydroxy-w-a-minoalkanoickĂ© kyseliny vzorce (VII): HOOCCH(CH2.)„NHa

OH (VII) kde n je rovno 1, 2 nebo 3, mĂ­sto (S) -4-ben zylnxykat’bonylainino-2-hydroxyinĂĄselnĂ© ky-seliny, čímĆŸ se zĂ­skĂĄ některĂœ derivĂĄt 1-N-··( (S)-w hydroxy-w-aminoalkynoylj-kana-mycinu.

ZpĆŻsob podle vynĂĄlezu umoĆŸĆˆuje pƙi vy-sokĂ©m vĂœtÄ›ĆŸku pƙipravit 1-N-acylovanĂ© aini-nogiykosidovĂ© antibiotikum, kterĂ© je znĂĄmĂ©jako polosyntetlckĂœ antibakteriĂĄlnĂ­ prostƙe-dek. Tento vynĂĄlez tedy dĂĄle umoĆŸĆˆuje zpĆŻ-sob vĂœroby l-N-(a-hydroxy-w-aminoalka-noylj aminoglykosidovĂ©ho antibiotika, pƙikterĂ©m se vychĂĄzĂ­ ze znĂĄmĂ©ho aimnoglyko-sidovĂ©ho antibiotika, pƙičemĆŸ tento zpĆŻsobspočívĂĄ v tom, ĆŸe se nejprve vĂœĆĄe zmĂ­něnĂœmpostupem vyrobĂ­ kationtovĂœ komplex amino-glykosidovĂ©h-o antibiotika se zinkem, tedyčástečně chrĂĄněnĂœ N-acylovanĂœ derivĂĄt a-minoglykosidovĂ©ho antibiotika, ve kterĂ©m1-amino- a 3“-amino- nebo 3“-alkylamino-skupiny nejsou chrĂĄněny a vĆĄechny jinĂ© a-minoskupiny jsou chrĂĄněny, načeĆŸ se pƙi-pravĂ­ 1-N-nochrĂĄněnĂœ a jinak N-plně chrĂĄ-něnĂœ derivĂĄt selektivnĂ­m 3“-acyIačnĂ­m po-stupem popsanĂœm v čs. patentu č. 261 859a pohnu se 1-aminoskupina 1-N-nechrĂĄně-nĂłbo a jinak N-plně chrĂĄněnĂ©ho derivĂĄtuzĂ­skanĂ©ho v pƙedchozĂ­m stupni 3“-N-acy-lace, acyiuje a-hydroxy-fz>-aminoalkanovoukyselinou, zejmĂ©na 3-amino-2-hydroxypro-pionovou kyselinou (isoserin) nebo 4-ami-no-2-hydroxymĂĄsclnou kyselinou, a konečněse tak odstranĂ­ chrĂĄnĂ­cĂ­ skupiny z l-N-acy-levanĂ©ho produktu.

ZpĆŻsob vĂœroby l-N-(ty-hydroxy-<y-amino-alkynoyljovĂ©ho derivĂĄtu aminoglykosidovĂ©-ho antibiotika obsahujĂ­cĂ­ho 6-0-(3“-amino-nebo 3“-alkylamino-3“-deoxyglykosyl)-2--deoxystreptaminovou část, popƙípadě obsa-hujĂ­cĂ­ 4-O-aminoglykosylovou skupinu, seprovĂĄdĂ­ zpĆŻsobem, jehoĆŸ podstata je v tom,ĆŸe (aj zinkovĂ© kationty se nechajĂ­ reagovats aminoglykosidovĂœm antibiotikem v inert-nĂ­m organickĂ©m rozpouĆĄtědle k vytvoƙenĂ­komplexu zinkovĂœch kationtĆŻ s aminoglyko-sidovĂœm antibiotikem, (bj s komplexem zinkovĂœch kationtĆŻ s aminoglykosidovĂœm antibiotikem, kterĂœ byl vytvoƙen ve vĂœĆĄe popsanĂ©m kroku (a), se nechĂĄ reagovat in ĆĄitu v inertnĂ­m organic- kĂ©m rozpouĆĄtědle acylačnĂ­ činidlo majĂ­cĂ­ acylskupinu k zavedenĂ­ jako skupinu proochranu amineskupin, k vytvoƙenĂ­ komple-xu zinkovĂœch kationtĆŻ se selektivně N-acy-lovanĂœm derivĂĄtem aminoglykosidovĂ©ho an-tibiotika majĂ­cĂ­m pĆŻvodně nezkomplexova-nĂ© aminoskupiny acylovĂĄny, (c) komplex selektivně N-acylovanĂ©ho de-rivĂĄtu aminoglykosidovĂ©ho antibiotika sezinkovĂœm kaĂ­iontem zĂ­skanĂœ ve vĂœĆĄe popsa-nĂ©m kroku (bj se nechĂĄ reagovat s činid-lem, kterĂ© odstranĂ­ zinkovĂ© kationty z N--acylovanĂ©ho· zinkovĂ©ho komplexu, k vytvo-ƙenĂ­ částečně a selektivně chrĂĄněnĂ©ho N--acylovanĂ©ho derivĂĄtu aminoglykosidovĂ©hoantibiotika, kterĂœ je prostĂœ zinkovĂœch ka-tiontĆŻ a ve kterĂ©m 1-amino- a 3“-amino- ne-bo 3“-alkylaminoskupiny jsou nechrĂĄněny,ale vĆĄechny jinĂ© aminoskupiny aminoglyko-sidovĂ© molekuly jsou chrĂĄněny acylskupi-nou, (dj částečně a selektivně chrĂĄněnĂœ N-a-cylovanĂœ derivĂĄt zĂ­skanĂœ ve vĂœĆĄe popsanĂ©mkroku (cj se nechĂĄ reagovat s esterem ně-kterĂ© alkanoickĂ© kyseliny, kterĂœ odpovĂ­dĂĄvzorci (Vlil):

Ra—C—RbII o (VIII) ve kterĂ©m

Ra je atom vodĂ­ku nebo dihaloalkyl nebo·trihaloalkylskupina s 1 aĆŸ 6 atomy uhlĂ­ku aRb je alkyloxyskupina s 1 aĆŸ 6 atomy uhlĂ­-ku, zejmĂ©na benzyloxyskupina nebo některĂĄaryloxyskupina, zejmĂ©na fenoxyskupina, ne-bo N-formylimidazol, jakoĆŸto acylačnĂ­m či-nidlem, v inertnĂ­m organickĂ©m rozpouĆĄtěd-le k selektivnĂ­ acylaci 3“-amino- nebo 3“--alkylaminoskupiny acylskupinou RaCO—zmĂ­něnĂ©ho acylačnĂ­ho činidla k vytvoƙenĂ­1-N-nechrĂĄněnĂ©ho a jinĂ©ho N-plně chrĂĄně-nĂ©ho derivĂĄtu aminoglykosidovĂ©ho' antibio-tika, ve kterĂ©m vĆĄechny aminoskupiny jinĂ©neĆŸ 1-aminoskupina jsou chrĂĄněny acylsku-pinou, (e) 1-N-nechrĂĄněnĂœ a jinĂœ N-chrĂĄněnĂœderivĂĄt zĂ­skanĂœ ve vĂœĆĄe popsanĂ©m kroku(dj se nechĂĄ reagovat s některou a-hydro-xy-w-aminoalkanovou kyselinou vzorce (IX j: HOOC—CH(CH2jinNH2

OH (IX) kde m je rovno 1 nebo 2, nebo s ekvivalent-nĂ­m reaktivnĂ­m derivĂĄtem tĂ©to kyseliny, je-hoĆŸ aminoskupina je bud1 nechrĂĄněna, nebochrĂĄněna, k acylaci 1-aniinoskupiny zmĂ­ně-nĂ©ho 1-N-nechrĂĄněnĂ©ho derivĂĄtu, (f) načeĆŸ se odstranĂ­ zbĂœvajĂ­cĂ­ skupiny 261853 31 32 chrĂĄnĂ­cĂ­ aminoskupiny z produktu 1-N-acy-lace zĂ­skanĂ©ho ve vĂœĆĄe popsanĂ©m kroku(ej obvyklĂœm zpĆŻsobem pro zruĆĄenĂ­ ochra-ny. DĂĄle bude podrobněji popsĂĄno provĂĄdě-nĂ­ zpĆŻsobu podle tƙetĂ­ myĆĄlenky pƙedloĆŸe-nĂ©ho vynĂĄlezu.

AminoglykosidovĂĄ antibiotika, kterĂĄ jsouvhodnĂĄ jako vĂœchozĂ­ lĂĄtka pro prvnĂ­ krok(a) tohoto zpĆŻsobu jsou stejnĂĄ jako anti-biotika popsanĂĄ vĂœĆĄe pƙi zpĆŻsobu podle prv-nĂ­ myĆĄlenky vynĂĄlezu. Reakce komplexo-tvornĂœch zinkovĂœch kationtĆŻ s aminoglyko-sidovĂœm antibiotikem se provĂĄdĂ­ stejnĂœmzpĆŻsobem, jak bylo popsĂĄno vĂœĆĄe. Acylacekomplexu aminoglykosidovĂ©ho antibiotikase zinkovĂœm kationtem zĂ­skanĂ©ho v prvnĂ­mkroku (aj mĆŻĆŸe bĂœt ve druhĂ©m kroku (bjprovedena stejnĂœm zpĆŻsobem, jak bylo po-psĂĄno vĂœĆĄe u zpĆŻsobu podle prvnĂ­ myĆĄlen-ky vynĂĄlezu. OdstraněnĂ­ zinkovĂœch kation-tĆŻ ze selektivně N-acylovanĂ©ho komplexuaminoglykosidovĂ©ho antibiotika a zinkovĂ©-ho kationtĆŻ takto zĂ­skanĂ©ho mĆŻĆŸe bĂœt vetƙetĂ­m kroku (c) tohoto zpĆŻsobu provedenorozličnĂœmi postupy, jak bylo popsĂĄno vĂœĆĄe,čímĆŸ se zĂ­skĂĄ částečně a selektivně chrĂĄně-nĂœ N-acylovanĂœ derivĂĄt aminoglykosidovĂ©hoantibiotika, kterĂœ je prostĂœ zinkovĂœch ka-tiontĆŻ, a ve kterĂ©m 1-amino- a 3“-amino-nebo 3“-alkylaminoskupiny jsou nechrĂĄně-ny, avĆĄak vĆĄechny jinĂ© aminoskupiny v mo-lekule aminoglykosidu jsou blokovĂĄny acyl-skupinou acylaČnĂ­ho činidla pouĆŸitĂ©ho vkroku (bj tohoto zpĆŻsobu. Tento částečněa selektivně chrĂĄněnĂœ N-acylovanĂœ derivĂĄtaminoglykosidovĂ©ho antibiotika se potomnechĂĄ reagovat v kroku (dj tohoto zpĆŻsobus esterem některĂ© alkanoickĂ© kyseliny vzor-ce (VIII j nebo s N-formimidazolem stej-nĂœm zpĆŻsobem jak bylo popsĂĄno vĂœĆĄe pƙizpĆŻsobu podle druhĂ© myĆĄlenky vynĂĄlezu kzĂ­skĂĄnĂ­ selektivnĂ­ 3“-N-acylace částečně N--chrĂĄněnĂ©ho derivĂĄtu aminoglykosidovĂ©hoantibiotika bez acylace jeho 1-aminoskupi-ny. V pĂĄtĂ©m kroku (ej tohoto zpĆŻsobu 1-N--nechrĂĄněnĂœ a jinĂœ N-plně chrĂĄněnĂœ deri-vĂĄt aminoglykosidovĂ©ho antibiotika zĂ­ska-nĂœ v pƙedeĆĄlĂ©m kroku (dj tohoto zpĆŻsobuse nechĂĄ reagovat s některou a-hydroxy-ω--aminoalkanoickou kyselinou vzorce (X),zejmĂ©na s 3-amino-2-hydroxypropionovoukyselinou (DL-isoserin, D-isoserin nebo L--isoserinj, nebo s L-4-amino-2-hydroxymĂĄ-selnou kyselinou k acylaci 1-aminoskupinyaminoglykosidovĂ©ho antibiotika 3-amino-2--hydroxypropionyl- nebo 4-amino-2-hydroxy-butyrylskupinou.

Tato 1-N-acylace mĆŻĆŸe bĂœt provĂĄděna o-becně zpĆŻsobem popsanĂœm v britskĂ©m pa-tentovĂ©m spise č. 1 426 908 nebo v patento-vĂ©m spise Sp. st. am. č. 4 001 208 podle kte-rĂ©hokoli znĂĄmĂ©ho zpĆŻsobu syntĂ©zy amidĆŻreakcĂ­ chrĂĄněnĂ©ho derivĂĄtu aminoglykosi-dovĂ©ho antibiotika s některĂœm isoserinemnebo s L-4-amino-2-hydroxymĂĄselnou kyseli- nou, buď v jejĂ­ volnĂ© formě kyseliny, nebove formě jejĂ­ho. reaktivnĂ­ho ekvivalentu, na-pƙíklad aktivnĂ­ho esteru, napƙíklad dicyk-lohexylkarbodimidesteru, smĂ­ĆĄenĂ©ho anhyd-ridu kyseliny, azidu kyseliny, v některĂ©m i-nertnĂ­m organickĂ©m rozpouĆĄtědle, napƙí-klad dioxanu, dimethoxyethanu, dimethyl-formamidu, tetrahydrofuranu nebo vodnĂ©formě těchto rozpouĆĄtědel. Isoserin a L-4--amino-2-hydroxymĂĄselnĂĄ kyselina mohoubĂœt ty lĂĄtky, jejichĆŸ aminoskupiny byly blo-kovĂĄny skupinou pro ochranu aminoskupin.VhodnĂ© skupiny pro ochranu aminoskupinpro tento Ășčel mohou bĂœt stejnĂ© nebo od-liĆĄnĂ© od těch, kterĂ© byly pouĆŸity v 1-N--nechrĂĄněnĂ©m, ale jinĂ©m N-chrĂĄněnĂ©m de-rivĂĄtu aminoglykosidovĂ©ho antibiotika, kte-rĂœ mĂĄ bĂœt 1-N-acylovĂĄn. VĂœhodnĂĄ skupinapro ochranu aminoskupin je t-butoxykarbo-nylskupina, neboĆ„ je pƙímo odstranitelnĂĄ re-akcĂ­ se zƙeděnou kyselinou, napƙíklad s vod-nou kyselinou trifluoroctovou, vodnou kyse-linou octovou a zƙeděnou kyselinou chlo-rovodĂ­kovou.

Jako skupiny pro ochranu aminoskupinyjsou dĂĄle vhodnĂ© benzyloxykarbonylskupi-na, kterĂĄ se odstranĂ­ obvyklou hydrogeno-lĂœzou na palladiovĂ©m nebo platinovĂ©m oxi-dovĂ©m katalyzĂĄtoru, jakoĆŸ i ftaloylskupina,kterĂĄ se snadno odstranĂ­ hydrolĂœzou s hyd-razĂ­nem.

AcylačnĂ­ reakce kroku 1-N-acylace (ejpƙi zpĆŻsobu podle čtvrtĂ© myĆĄlenky pƙedlo-ĆŸenĂ©ho vynĂĄlezu mĆŻĆŸe bĂœt vĂœhodně provĂĄ-děna v některĂ©m vodnĂ©m organickĂ©m roz-pouĆĄtědle s pouĆŸitĂ­m některĂ©ho aktivnĂ­hoesteru «-hydroxy-w-aminoalkanoickĂ© kyseli-ny vzorce (Xj. VhodnĂœ aktivnĂ­ ester mĆŻĆŸebĂœt N-hydroxysukcinimidester isoserinu ne-bo L-4-benzyloxykarbonylamino-2-hydroxy-mĂĄselnĂĄ kyselina, a tento aktivnĂ­ ester mĆŻ-ĆŸe bĂœt pouĆŸit v mnoĆŸstvĂ­ od 1 do 2 molĆŻ,vĂœhodně cd 1 do 1,5 molu na 1 mol ami-noglykosidu, kterĂœ mĂĄ bĂœt 1-N-acylovĂĄn. Svodou mĂ­sitelnĂ© organickĂ© rozpouĆĄtědlo po-uĆŸitĂ© v reakčnĂ­m prostƙedĂ­ mĆŻĆŸe bĂœt s vĂœ-hodou dioxan, dimethoxyethan, dimethyl-formamid nebo tetrahydrofuran.

Po kroku (ej se provede krok (f) toho-to zpĆŻsobu k odstraněnĂ­ ochrany, to je kodstraněnĂ­ vĆĄech zbĂœvajĂ­cĂ­ch skupin chrĂĄ-nĂ­cĂ­ch aminoskupiny z produktu 1-N-acyla-ce zĂ­skanĂ©ho v pƙedeĆĄlĂ©m kroku (ej tohotozpĆŻsobu. OdstraněnĂ­ zbĂœvajĂ­cĂ­ch skupin proochranu aminoskupin se mĆŻĆŸe provĂ©st ob-vyklou technikou. TakovĂĄ zbĂœvajĂ­cĂ­ skupi-na chrĂĄnĂ­cĂ­ aminoskupiny, kterĂĄ je alkoxy-karbonylovĂ©ho typu, mĆŻĆŸe bĂœt odstraněnahydrolĂœzou s vodnĂœm roztokem kyseliny tri-fluoroctovĂ© nebo. kyseliny octovĂ© nebo zƙe-děnĂœm roztokem kyseliny, napƙíklad zƙe-děnou kyselinou chlorovodĂ­kovou. TakovĂĄzbĂœvajĂ­cĂ­ skupina pro ochranu aminoekupl-ny, kterĂĄ je aralkylkarbonylovĂ©ho typu, na-pƙíklad benzyloxykarbonyl, se odstranĂ­ pƙí-mo katalytickou hydrogenolĂœzou. KdyĆŸ se 261853 33 34 odstranĂ­ vĆĄechny zbĂœvajĂ­cĂ­ skupiny pro och-ranu aminoskupin z produktu 1-N-acylace zkroku (e] tohoto zpĆŻsobu, zĂ­skĂĄ se s vy-sokĂœm vĂœtÄ›ĆŸkem ĆŸĂĄdanĂ© l-N-(2-hydroxy-3-aminoprcpionyl j- nebo l-N-(2-hydroxy-4-a-minobutyryl) aminoglykosidovĂ© antibioti-kum. Pƙíklady 1-N- {a-hydroxy-w-aminoalkanc-ylj-aminoglykosidovĂ©ho antibiotika pƙipra-venĂ©ho zpĆŻsobem podle čtvrtĂ© myĆĄlenkypƙedloĆŸenĂ©ho vynĂĄlezu jsou uvedeny dĂĄle.

(1 ] 1-N- (L-4-amino-2-hydroxybutyryl) --kanamycin A

(2) 1-N- (L-4-amino-2-hydroxybutyryl) --3‘-deoxykanamycin A

(3 ] 1-N- (L-4-amino-2-hydroxybutyryl) --3‘,4‘-dideoxykanamycin A (4) 1-N- (L-4-amino-2-hydroxybutyryl) --tobramycin (5 j 1-N- (L-4-amino-2-hydroxybutyryl j -dibekacin (6) l-N-(3-amino-2-hydroxypropionylj--dibekacin jinĂ© pouĆŸitĂ­ zpĆŻsobĆŻ podle prvnĂ­ a druhĂ©myĆĄlenky pƙedloĆŸenĂ©ho vynĂĄlezu spočívĂĄ vpƙípravě l-N-alkylaminoglykosidovĂ©ho an-tibiotika ze vĆĄech N-acylovanĂœch aminogly-kosidovĂœch derivĂĄtĆŻ obsahujĂ­cĂ­ch nechrĂĄ-něnou 1-aminoskupinu, a pƙíkladem tohotopouĆŸitĂ­ mĆŻĆŸe bĂœt pƙíprava netilmycinu ne-bo jeho 1-N-alkylanalogĆŻ ze sisomycinu ai-kylacĂ­ s niĆŸĆĄĂ­m alifatickĂœm aldehydem akyanborohydridem.

Vynález bude dále osvětlen avơak niko-liv omezen těmito pƙíklady. Pƙíklad 1

Pƙíprava 3,6‘-di-N-benzyloxykarbonylkana-mycinu A (i) 2,0 g, 4,13 mM kanamycinu A jako vol-nĂ© bĂĄze bylo suspendovĂĄno ve směsi 50 mldimetylsulfoxidu a 20 ml tetrahydrofuranua k suspenzi bylo pƙidĂĄno 4 g, 18,1 mM oc-tanu zinečnatĂ©ho dihydrĂĄtu, načeĆŸ byla re-akčnĂ­ směs protrepĂĄvĂĄna pƙi teplotě mĂ­st-nosti aĆŸ do vytvoƙenĂ­ homogennĂ­ho rozto-ku. VytvoƙenĂ­ a rozpuĆĄtěnĂ­ zinečnatĂ©ho kom-plexu kanamycinu A trvalo asi 4—5 hodin.VĂœslednĂœ roztok byl pak ochlazen na 0 °Ca k němu byl pak pƙidĂĄvĂĄn po jednu hodi-nu 0 °C chladnĂœ roztok 2,37 g, 9,5 mM N--benzyloxykarbonyloxysukcinimidu,

O c&amp;H5CH&amp;OCOO~N/] rozpuĆĄtěnĂ©ho ve směsi 40 ml tetrahydrofu-ran-dimethylsulfoxid 1 : 1 obj. ReakčnĂ­ roz-tok byl ponechĂĄn stĂĄt pƙi teplotě okolĂ­ po4 hodiny, během nichĆŸ byl zinečnatĂœ kom-plex kanamycinu A benzyloxykarbonylovĂĄn,coĆŸ pƙedstavuje acylaci podle prvnĂ­ho hle-diska vynĂĄlezu.

Vzorek odebranĂœ z takto zĂ­skanĂ© reakčnĂ­směsi byl chromatografovĂĄn na tenkĂ© vrst-vě silikagelu, pƙičemĆŸ jako vyvolĂĄvacĂ­horoztoku bylo, pouĆŸito spodnĂ­ kapalnĂ© fĂĄzesměsi chloroform — metanol — 28% vodnĂœÄpavek v obj. poměru 1 : 1 : 1, a pƙi chro-matografli dĂĄval hlavnĂ­ skvrnu ĆŸĂĄdanĂ©hoproduktu pƙi R( = 0,23 a dvě nebo tƙi men-ĆĄĂ­ skvrny, nĂĄleĆŸejĂ­cĂ­ vedlejĆĄĂ­m produktĆŻm,ve vyĆĄĆĄĂ­ch bodech. (ii) VĂœĆĄe uvedenĂœ reakčnĂ­ roztok byl vlitdo 500 ml etylĂ©teru a oddělenĂœ olej byl ně-kolikrĂĄt promyt dalĆĄĂ­mi objemy etylĂ©teru,čímĆŸ se zĂ­skalo 8,8 g hustĂ© sirupovitĂ© lĂĄt-ky. (iii] OdstraněnĂ­ kationu zinku ze sirupo-vitĂ© lĂĄtky,, obsahujĂ­cĂ­ pƙevĂĄĆŸně zinečnatĂœkomplex, bylo provedeno některĂœm z těch-to rĆŻznĂœch postupĆŻ: (A) Postup pouĆŸĂ­vajĂ­cĂ­ slabě kyselou ka-texovou iontoměničovu pryskyƙici nesoucĂ­karboxylovou skupinu —COOH jako funkčnĂ­skupinu, komerčně dostupnou pod nĂĄzvem„Amberlite“ CG 50 pryskyƙice (HH forma]od. Rohm and Haas Co., (Sp. st. a.]. 60 ml pryskyƙice Amber lit CG 50 H+ for-my bylo- pƙedem dĆŻkladně nasycenou smě-sĂ­ voda — dioxan (2 : 1) a pak naplněno,do kolony. Roztok 1 g sirupovitĂ© lĂĄtky roz-puĆĄtěnĂ© v 20 ml směsi voda — dioxan (1 :: 1) byl ponechĂĄn projĂ­t kolonou, kterĂĄ by-la pak vyvolĂĄna směsĂ­ voda — dioxan (2 : : 1] obsahujĂ­cĂ­ 1% kyselinu octovou. EluĂĄtbyl pak sbĂ­rĂĄn ve frakcĂ­ch. ĆœĂĄdanĂœ 3,6‘-di--N-benzyloxykarbonylkanamycin A, kterĂœ bylpozitivnĂ­ v niuhydrinovĂ© reakci byl eluo-vĂĄn jako prvnĂ­ z kolony a octan zinečnatĂœ,kterĂœ byl senzitivnĂ­ na zbarvenĂ­ difenyl-karbazidern, byl eluovĂĄn aĆŸ po něm. FrakceobsahujĂ­cĂ­ ĆŸĂĄdanĂœ produkt byly spojeny azakoncentrovĂĄny do, sucha. Zbytek byl pakpromyt etylĂ©terem, čímĆŸ se vytÄ›ĆŸilo 340 mgtj. 81 % 3,6‘-di-N-benzylGxvkarbonylkana-mycinu A ve formě bezbarvĂ© pevnĂ© lĂĄtky.

[ajn25 +76° (c 1, voda — dimetylformamid, 1 : 2).

ElementĂĄrnĂ­ analĂœza

Vypočteno pro C-y,HwN4O15 . 2 CH-tCO-,H—H-,O: 51,23 % C, 6,56 % H, 6,29 % N,

Nalezeno: 51,02 % C, 6,71 % H, 6,22 % N. (B) ZpĆŻsob pouĆŸĂ­vajĂ­cĂ­ slabou katexovou 33

Iontoměničovou pryskyƙici nesoucĂ­ karbo-xylanovou skupinu jako funkčnĂ­ skupinu,obchodně dostupnou jako ,,Amberiite“ CG50 pryskyƙice, ƇH// forma od Rohm andHaas Co. 1 g sirupovitĂ© lĂĄtky zĂ­skanĂ© vĂœĆĄe v pƙí-kladu 1 (ii) byl rozpuĆĄtěn vc 20 ml směsivoda — dioxan (1 : 1) a roztok byl nechĂĄnprojĂ­t kolonou 60 ml pryskyƙice AmberlitCG 50, NIL·/ forma a byl eluovĂĄn lineĂĄr-nĂ­m gradientem směsi voda — dioxan 1. : 1obsahujĂ­cĂ­ aĆŸ 0,1 N čpavek. Nebyl eluovĂĄnĆŸĂĄdnĂœ kation zinku ale pouze ĆŸĂĄdanĂœ pro-dukt, 3,6‘-di-N-benzyloxykarbonylkanauiy-cin A. Frakce eluĂĄiu obsahujĂ­cĂ­ ĆŸĂĄdanĂ© ben-zyloxykarbouylovanĂ© produkty byly koncentrovĂĄny do sucha pƙičemĆŸ bylo zĂ­skĂĄno323 g, tj. 89 % ĆŸĂĄdanĂ©ho- produktu ve forměbezbarvĂ© pevnĂ© lĂĄtky.

[ajir5 =-- +86° (c 1, voda - dinietylforma-mld, 1:2).

ElementĂĄrnĂ­ analĂœza

Vypočteno pro C-wH^Nz.Ur,. W 1-1-,0(.).: 52,87 % C, 6,30 % II, 7,15 % N,

Nalezeno: 52,50 % C, 6,50 % H, 7,00 % N. (C) ZpĆŻsob vyuĆŸĂ­vajĂ­cĂ­ katexovou ionto-měničovou pryskyƙici nesoucĂ­ silně kyseloufunkčnĂ­ skupinu —SO-.,Η, komerčně dostup-nou jako- „Dovex“ 50 W X 2 nd Dox Chemi-cal Co. 30 ml pryskyƙice Dowex 50 W X2-H+ forma ve směsi voda — dioxan 2 : 1bylo naplněno do kolony, kterou pak pro-chĂĄzel roztok 1 g sirupovitĂ© lĂĄtky zĂ­skanĂ©v pƙíkladu 1 [ii) v 20 ml směsi voda — di-oxan 2 : 1. Kolona pak byla promĂœvĂĄna smě-sĂ­ voda — dioxan 2 : 1 aĆŸ směs vy Ă©kajĂ­cĂ­ zkolony byla neutrĂĄlnĂ­ a pak byla provede-na eluce lineĂĄrnĂ­m gradientem směsi vo-da — dioxan 2 : 1 obsahujĂ­cĂ­ 0 aĆŸ 1 N čpa-vek. EluovanĂ© frakce obsahujĂ­cĂ­ ĆŸĂĄdanĂœ3,6‘-di-N-benzyloxykarbonylkanamycin A by-ly koncentrovĂĄny do sucha za snĂ­ĆŸenĂ©ho tla-ku, čímĆŸ sc: zĂ­skalo 311 mg ti, 84 % bĂ­lĂ©pevnĂ© lĂĄtky, jeĆŸ byla shodnĂĄ lĂĄtkou zĂ­s-kanou v pƙíkladu 1 (iii 1 [ B). (D) AlternativnĂ­ postup pouĆŸĂ­vajĂ­cĂ­ Do-wex 50W X 2

Roztok 1 g sirupovitĂ© lĂĄtky zĂ­skanĂ© v pƙí-kladu 1 (ii) ve 20 ml směsi voda - meta-nol 3 : 1 byl nanesen na kolonu 30 ml Do-wexu 50W X 2 v H+ formě pƙedem smoče-nou směsĂ­ voda — metanol 3 : 1. Kolona pakbyla dobƙe promyta směsĂ­ voda - metanol3 : 1, a pak byla elucvĂĄna gradientem smě-si voda — metanol 3 : 1 obsahujĂ­cĂ­ 0 aĆŸ 6 Nkyselinu chlorovodĂ­kovou. AktivnĂ­ frakce ob-sahujĂ­cĂ­ ĆŸĂĄdanĂœ 3,6‘-di-N-benzyloxykarhonyI-kanamycin A byly sebrĂĄny a smĂ­chĂĄny se 36 silně zĂĄsaditou anexovou iontoměničovoupryskyƙicĂ­ Dowex 1 X 2 v OH formě v mnoĆŸ-stvĂ­, jeĆŸ bylo schopnĂ© pƙíměs mĂ­rně okyse-lit.

Směs byla zfiltrovĂĄna a filtrĂĄt byl za-koncentrovĂĄn do sucha, čímĆŸ se zĂ­skalo286 mg, tj. 72 % ĆŸĂĄdanĂ©ho produktu veformě dihydrochloridu.

[ce]jj35 — +79° (c 1, voda — dimetylforma-xnid, 1 : 2). (E) ZpĆŻsob pouĆŸĂ­vajĂ­cĂ­ anexovou ionto-měničovou pryskyƙici nesoucĂ­ silně bazic-kĂ© funkčnĂ­ kvartĂ©rnĂ­ amoniovĂ© skupiny,komerčně' dostupnĂœ jako Dowex 1X2cd. Dow Chemical Co.

Roztok 1 g sirupovitĂ© lĂĄtky zĂ­skanĂœ v pƙí-kladu Ă­ (ii) ve směsi voda — dioxan (1 : : 1) byl nanesen na kolonu 30 ml prysky-ƙice Dowex 1 X 2 v OH formě pƙedem pro-mytĂ© směsĂ­ voda — dioxan 1 : 1, a pak by-la kolona vyvolĂĄna směsĂ­ voda — dioxan 1 : : 1 poměrně vysokou rychlostĂ­. EluovanĂ©frakce obsahujĂ­cĂ­ ĆŸĂĄdanĂœ produkt byly sbĂ­-rĂĄny a zakoncentrovĂĄny do sucha, čímĆŸ sezĂ­skalo 305 mg, tj. 84 % bezbarvĂ© pevnĂ©lĂĄtky totoĆŸnĂ© s lĂĄtkou z pƙíkladu 1 (iii) (B). (F) Postup pouĆŸĂ­vajĂ­cĂ­ anexovou ionto-měničovou pryskyƙici se slabě bazickĂœmifunkčnĂ­mi skupinami, komerčně dostup-nou jako Dowex WGR, vĂœrobek fy DowChemical Co. 1 g sirupovitĂ© lĂĄtky zĂ­skanĂ© v pƙíkladu1. (ii.) byl rozpuĆĄtěn v 20 ml směsi voda — - dioxan 2:1a roztok se nechal protĂ©cikolonou 50 ml Dowexu WGR v bazickĂ© for-irě pƙedem vysycenou směsĂ­ voda —· dio-xan 2:1a puk byla provedena eluce směsĂ­voda - dloxí· i 2 : 1. ĆœĂĄdanĂœ 3,6‘-di-N-ben-zyloxykarbc.nyikanamycin A byl eluovĂĄn vněkterĂœch frakcĂ­ch spolu se stopami zineč-eaĂ­Ăœch kationtĆŻ. Tyto frakce byly spojeny azakoncentrovĂĄny do sucha, čímĆŸ se zĂ­skalo450 mg bezbarvĂ© pevnĂ© lĂĄtky. fG) Postup pouĆŸĂ­vajĂ­cĂ­ chelĂĄtovou ionto-měničovou pryskyƙici nesoucĂ­ slabě ky-selĂ© funkčnĂ­ skupiny, komerčně dostup-nou jako Dowex A 1, vĂœrobek fy Dow Che-mical Co., Sp. st. a.

Roztok 1 g sirupovitĂ© lĂĄtky zĂ­skanĂ© v pƙí-kladu 1 (ii) ve směsi voda — dioxan 1 :: 1 byl nanesen na kolonu 50 ml DowexuAI, kterĂĄ byla vysycena směsĂ­ voda — dio-xan 1 : 1 obsahujĂ­cĂ­ 1% amoniak a pak nĂĄ-sledovala eluce gradientem směsi voda — - dioxan 1 : 1 obsahujĂ­cĂ­ 0 aĆŸ 1 N amoniak.Frakce obsahujĂ­cĂ­ ĆŸĂĄdanĂœ 3,6‘-di-N-benzylo-xykarbonylkanamycin A, kterĂ© byly eluovĂĄ-ny pouze v pozdějĆĄĂ­ fĂĄzi, byly spojeny a za-huĆĄtěny do sucha, čímĆŸ vzniklo 272 mg tj. 261853 37 74 % ĆŸĂĄdanĂ©ho' produktu ve formě pevnĂ©bĂ­lĂ© lĂĄtky. (H) Postup pouĆŸĂ­vajĂ­cĂ­ Chitosan, ve voděnerozpustnĂœ polymer obsahujĂ­cĂ­ funkčnĂ­skupiny schopnĂ© vazby s kovem, komerč-ně dostupnĂœ jako vĂœrobek fy Toko KaseiKoyo Co., Ltd. Japonsko'. 100 ml Chitosanu byla dĆŻkladně nasyce-no směsĂ­ voda — metanol 3:1a naplněno-do kolony, kterou se nechal protĂ©ci roztok1 g sirupovitĂ© lĂĄtky zĂ­skanĂ© v pƙíkladu 1(ii) ve směsi voda — metanol (3 : 1). Ko-lona pak byla vyvolĂĄna směsĂ­ voda — me-tanol 3 : 1, pƙičemĆŸ ĆŸĂĄdanĂœ 3,6‘-di-N-ben-zyloxykarbonylkanamycin A byl eluovĂĄn ja-ko prvnĂ­ a oct-an zinečnatĂœ mnohem poz-ději. Frakce obsahujĂ­cĂ­ ĆŸĂĄdanou lĂĄtku bylyspoijeny a zakoncentrovĂĄny do sucha, čímĆŸvznikl zbytek, kterĂœ byl rozpuĆĄtěn ve smě-si voda — dioxan 1:1a roztok byl nane-sen na kolonu Amber litu CG 50 v NH4+formě pƙedem proimytou směsĂ­ voda — dio-xan 1 : 1. Kolona byla dĆŻkladně promytasměsĂ­ voda — dioxan 1:1a pak byla eluo-vĂĄna gradientem směsi voda — dioxan 1 : 1obsahujĂ­cĂ­ 0 aĆŸ 0,1 N amoniak. Tyto frakcecitlivĂ© k ninhydrinovĂ© reakci byly spojenya zakoncentrovĂĄny do sucha, čímĆŸ se zĂ­ska-lo 301 mg, tj. 82 °/o bezbarvĂ© pevnĂ© lĂĄtkyshodnĂ© s lĂĄtkou zĂ­skanou v pƙíkladu 1 (iii)(B). (I) Postup pouĆŸĂ­vajĂ­cĂ­ vysokĂ©ho polymerunesoucĂ­ho karboxylovĂ© funkčnĂ­ skupiny,obchodně dostupnĂ©ho jako ,,CM-Sepha-dex“ C—25, kterĂœ je iontoměničem i lĂĄt-kou pro gelovou filtraci a je vytvoƙen zkarboxymetyl-substituovanĂ© dextranovĂ©-ho gelu, vĂœrobek fy Pharmacia Fine Che-mical Co., Ć vĂ©dsko1.

Roztok 1 g sirupovitĂ© lĂĄtky zĂ­skanĂ© v pƙí-kladu 1 (ii) ve směsi voda — dioxan 1 : 1se nechal protĂ©ci kolonou 40 ml CM-Sepha-dexu C—25 v NH4+ formě, dĆŻkladně nasy-cenĂ©ho směsĂ­ voda — dioxan 1 : 1. Kolonabyla promyta 200 ml směsi voda — dioxan1:1a pak eluovĂĄna gradientem směsi vo-da — dioxan 1 : 1 obsahujĂ­cĂ­ 0 aĆŸ 0,1 N a-moniak. Z kolony nebyly eluovĂĄny ĆŸĂĄdnĂ©kationty zinku, ale pouze ĆŸĂĄdanĂœ 3,6‘-di-N--benzyloxykarbonylkanamycin A. EluĂĄt bylkoncentrovĂĄn do sucha, čímĆŸ vzniklo 303miligramĆŻ, tj. 82 % bezbarvĂ© pevnĂ© lĂĄtkyshodnĂ© s lĂĄtkou v pƙíkladu 1 (iii) (BJ. ()) Postup pouĆŸĂ­vajĂ­cĂ­ sirovodĂ­k jako lĂĄt-ku precipitujĂ­cĂ­ zinek. 1 g sirupovitĂ© lĂĄtky zĂ­skanĂ© v pƙíkladu 1(ii) byl rozpuĆĄtěn ve 20 ml směsi voda —-— metanol 1 : 1, a k tomuto roztoku bylpak pƙidĂĄn vodnĂœ amoniak a potĂ© bylo za-vedeno dostatečnĂ© mnoĆŸstvĂ­ sirovodĂ­ku. Re-akěnĂ­ směs obsahujĂ­cĂ­ sraĆŸeninu sirnĂ­ku zi- 38 nečnatĂ©ho, kterĂœ se vytvoƙil, byla zfiltrovĂĄ-na na skleněnĂ©m filtru s celitovou vloĆŸkoua filtrĂĄt byl zahuĆĄtěn za snĂ­ĆŸenĂ©ho tlaku,čímĆŸ vznikla sirupovitĂĄ lĂĄtka, ze kterĂ© popromytĂ­ etylĂ©terem vznikl pevnĂœ zbytek. Ten-to zbytek byl rozpuĆĄtěn ve směsi voda —— dioxan 1:1a roztok byl chromatogra-fovĂĄn na koloně 30 ml Amberlitu IRA 900,coĆŸ je silně bazickĂĄ pryskyƙice, vĂœrobek fyRohm and Haas Co., v OH formě, za pouĆŸi-tĂ­ směsi voda — dioxan 1 : 1 jako vyvolĂĄ-vacĂ­ho rozpouĆĄtědla. EluĂĄt byl shromaĆŸÄovĂĄnve frakcĂ­ch a frakce obsahujĂ­cĂ­ 3,6‘-di-N--benzyloxykarbonylkanamycin A byly spoje-ny a zahuĆĄtěny do sucha, čímĆŸ se zĂ­skalo235 mg, tj. 64 % bezbarvĂ© pevnĂ© lĂĄtky shod-nĂ© s lĂĄtkou v pƙíkladu 1 (iii) (B). Pƙíklad 2

Pƙíprava 3,6-di-N-benzyloxykarbonylkana-mycinu A 500 mg, tj. 1,03 mM kanamycinu A veformě volnĂ© bĂĄze bylo suspendovĂĄno v 15mililitrech dimetylsulfoxidu a potĂ© bylo- pƙi-dĂĄno 420 mg, tj. 3,09 mM chloridu zinečna-tĂ©ho a 840 mg, tj. 6,18 mM octanu sodnĂ©hotrihydrĂĄtu. Po desetihodinovĂ©m mĂ­chĂĄnĂ­směsi pƙi okolnĂ­ teplotě, byl ke směsi ob-sahujĂ­cĂ­ vytvoƙenĂœ komplex kanamycin A--zinek pƙidĂĄvĂĄn pomalu asi po jednu hodi-nu roztok 675 mg, tj. 2,27 mM N-benzyloxy-karbanyloxyftalimidu

rozpuĆĄtěnĂ©ho v 10 ml dimetylsulfoxidu. VĂœ-slednĂĄ směs byla ponechĂĄna stĂĄt pƙi tep-lotě mĂ­stnosti 4 hodiny. DĂĄle byla reakčnĂ­ směs zpracovĂĄna stej-nĂœm zpĆŻsobem, jak bylo popsĂĄno v pƙíkla-du 1 (iij a (iii) (I), čímĆŸ se zĂ­skalo 598miligramĆŻ, tj. 74 °/o 3,6‘-di-N-benzyloxykar-bonylkanamycinu A ve formě bezbarvĂ© pev-nĂ© lĂĄtky. Pƙíklad 3

Pƙíprava 3,6‘-di-N-benzyloxykarbcnylkana-mycinu A 600 mg, tj. 0,95 mM kanamycinu A tetra-hydrochloridu a 150 mg, tj. 3,8 mM hydro-xidu sodnĂ©ho v 15 ml dimetylsulfoxidu by-lo tƙepĂĄno jednu hodinu a pak bylo pƙidĂĄno'1 g, tj. 4,55 mM octanu zinečnatĂ©ho dihyd-rĂĄtu, a v tƙepĂĄnĂ­ bylo pokračovĂĄno dalĆĄĂ­ch5 hodin. Ke směsi obsahujĂ­cĂ­ vytvoƙenĂœ kom-plex kanamycinu A-zinek byl pƙidĂĄn během 261853 39 40 30 minut roztok 545 mg, tj. 2,2 mM N-ben-zyloxykarbonyloxysukcinimidu rozpuĆĄtěnĂ©hov 5 ml směsi dimetylsulfoxidtetrahydrofu-ran 1 : .1. Po protƙepĂĄnĂ­ vĂœslednĂ© směsi pƙiokolnĂ­ teplotě pƙes noc byl pƙidĂĄn etylĂĄ-ter, aby se oddělil N-acylovanĂœ zinečnatĂœkomplex jako precipitĂĄt. PrecipitĂĄt byl pakzpracovĂĄn stejnĂœm zpĆŻsobem jak bylo po-psĂĄno v pƙíkladu 1 (iiij (H), čímĆŸ se zĂ­s-kalo 581 mg, tj. 78 % bezbarvĂ© pevnĂ© lĂĄtky.Pƙíklad 4 Pƙíprava 3.6‘-di-N-benzyloxykarbonylkana-

mycinu A (i] 500 mg, tj. 1,03 mM kanamycinu A veformě volnĂ© bĂĄze bylo rozpuĆĄtěno v 20 mlsměsi voda — dimetylsulfoxid 1 : 9, pakbylo pƙidĂĄno 1 g, tj. 4,55 mM octanu zineč-natĂ©bo dihydrĂĄtu a potom 590 mg, tj. 2,4mM N-benzyloxykarbon.yloxysukcinimidu.

Směs se nechala stĂĄt pƙi okolnĂ­ teplotěpƙes noc a ke směsi bylo pƙidĂĄno velkĂ©mnoĆŸstvĂ­ etylĂ©teru, čímĆŸ se oddělila vodnĂĄsirupovitĂĄ vrstva, kterĂĄ byla promyta ně-kolikrĂĄt etylĂ©terem, čímĆŸ se zĂ­skala hustĂĄsirupovitĂĄ vrstva. (ii) Takto zĂ­skanĂĄ sirupovitĂĄ lĂĄtka bylarozpuĆĄtěna ve směsi voda --- metanol 3 : Ia roztok se nechal projĂ­t kolonou 200 mlChitosanu. Kolona byla eluovĂĄna směsĂ­ vo-da - metanol 3 : 1 a eluĂĄt byl jĂ­mĂĄn vefrakcĂ­ch. Frakce pozitivnĂ­ k ninhydrhmvĂ©reakci byly spojeny a zahuĆĄtěny do malĂ©-ho objemu. KoncentrĂĄt byl nanesen na ko-lonu Amberlitu CG 50 v NII+ formě a kolo-na byla dĆŻkladně promyta směsĂ­ voda - di-oxan 1 : 1 a pak eluovĂĄna gradientem smě-si voda — dioxan 1 : 1 obsahujĂ­cĂ­ 0 aĆŸ 0,1 Nčpavek.

EluovanĂ© frakce obsahujĂ­cĂ­ ĆŸĂĄdanĂœ pro-dukt byly spojeny a zakoncentrovĂĄny do su-cha, čímĆŸ se zĂ­skalo 494 mg, tj. 6J % bez-barvĂ© pevnĂ© lĂĄtky, shodnĂ© s lĂĄtkou zĂ­ska-nou v pƙíkladu 1 (iiij (B). P ƙ Ă­ k la d 5

Pƙíprava 3,6‘-di-N-benzytoxykarbonyl-kanamycinu A 500 mg, tj. 1,03 mM kanamycinu A ve for-mě volnĂ© bĂĄze bylo rozpuĆĄtěno ve 20 mlsměsi voda — tetrahydrofuran 1 : 3, a ktomu byl pak pƙidĂĄn 1 g, tj. 4,55 mM octa-nu zlnečnatĂ©ho dihydrĂĄtu a pak bylo pƙi-dĂĄno 590 mg, tj. 2,4 mM N-benzyloxykarbo-nyloxysukcinimidu. Směs byla ponechĂĄnastĂĄt pƙi teplotě okolĂ­ pƙes noc a reakčnĂ­roztok takto zĂ­skanĂœ byl zahuĆĄtěn za snĂ­ĆŸe-nĂ©ho tlaku. Zbytek se nechal protĂ©ci kolo-nou s 200 ml Chitosanu a eluĂĄt byl zpraco-vĂĄn stejnĂœm zpĆŻsobem jako v pƙíkladu 4(iij, čímĆŸ se zĂ­skalo 414 mg, tj. 51 % bez-barvĂ© pevnĂ© lĂĄtky ĆŸĂĄdanĂ© sloučeniny. Pƙíklad 6'

Pƙíprava 3,6‘-di-N-benzyloxykarbonyl-kanamycinu A jij 500 mg, tj. 1,03 mM kanamycinu A veformě volnĂ© bĂĄze bylo rozpuĆĄtěno v 15 mlsměsi voda — metanol 1 : 7, a k tomu by-lo pak pƙidĂĄno· 1,5 g, tj. 6,8 mM octanu zi-nečnatĂ©ho dihydrĂĄtu a pak bylo pƙidĂĄno 590miligramĆŻ, tj. 2,4 mM N-benzyloxykarbonyl-oxysukcinimidu v 7 ml tetrahydrofuranu.Směs byla ponechĂĄua stĂĄt pƙi teplotě okolĂ­pƙes noc a reakčnĂ­ roztok takto zĂ­skanĂœ bylzahuĆĄtěn za snĂ­ĆŸenĂ©ho tlaku. Zbytek se paknechal projĂ­t kolonou 200 ml Chitosanu aeluĂĄt vychĂĄzejĂ­cĂ­ z kolony byl pak zpraco-vĂĄn stejnĂœm zpĆŻsobem jako v pƙíkladu 4(iij, čímĆŸ se zĂ­skalo· 442 mg, tj. 55 % bez-barvĂ© pevnĂ© lĂĄtky ĆŸĂĄdanĂ© sloučeniny. Pƙíklad 7

Pƙíprava 3,6‘-di-N-benzyloxykarbonyl-kanamyciiiu A 500 mg, tj. 1,03 mM kanamycinu A ve for-mě volnĂ© bĂĄze bylo suspendovĂĄno v 20 mldimetylsulfoxidu a 272 mg, tj. 1,24 mM oc-tanu zinečnatĂ©ho dihydrĂĄtu bylo k tĂ©tosměsi pƙidĂĄno. Směs byla mĂ­chĂĄna pƙi tep-lotě mĂ­stnosti 10 hodin, pƙičemĆŸ se vytvoƙiltĂ©měƙ čirĂœ roztok, ke kterĂ©mu pak bylo pƙi-dĂĄvĂĄno po malĂœch částech po asi dvě hodi-ny 540 mg, tj. 2,17 mM N-benzyloxykarbo-nyloxysukcinimidu.

Pak se nechala vĂœslednĂĄ směs stĂĄt pƙiteplotě okolĂ­ pƙes noc, byl pƙidĂĄn velkĂœ ob-jem etylĂ©teru a oddělenĂĄ oiejovitĂĄ lĂĄtka by-la odebrĂĄna a promyta několikrĂĄt etylĂ©te-rem, čímĆŸ vznikla hustĂĄ sirupovitĂĄ lĂĄtka.

PomocĂ­ chromatografie na tenkĂ© vrstvěsilikagelu se ve vzorku odebranĂ©m ze si-rupovitĂ© lĂĄtky, pƙi pouĆŸitĂ­ směsi chloro-form — metanol — 28% vodnĂœ čpavek 1 : : 1 : 1, dolnĂ­ fĂĄze, jako vyvolĂĄvacĂ­ho roz-pouĆĄtědla podaƙilo určit tyto skvrny: — menĆĄĂ­ skvrna o R, 0,4—1,3 6‘,3“-tetra~N--benzyloxykarbonylkanamycin A, kde sevyvĂ­jelo zabarvenĂ­ po postƙiku kyselinousĂ­rovou a nĂĄsledovnĂ©m zahƙátĂ­; — slabĂĄ skvrna o Rt 0,28; — hlavnĂ­ skvrna o R( 0,23 — ĆŸĂĄdanĂœ pro-dukt, 3,6‘-di-N-benzyloxykarbonylkana-mycin A; — menĆĄĂ­ skvrna o Rf 0,12 6‘-N-benzyloxy-karbonyl-kanamycin A; a — velmi slabĂĄ skvrna o Rf 0 — nezreago-vanĂœ kanamycin A.

Nebyla pozorovĂĄna skvrna odpovĂ­dajĂ­cĂ­ tri-N-benzyloxykarbonylkanamycinu A, kte- rĂĄ by se niěla objevit pƙi RÂŁ 0,28 aĆŸ 0,4. VĂœĆĄe uvedenĂĄ sirupovitĂĄ lĂĄtka byla roz- puĆĄtěna ve směsi voda — dioxan 1:1a roz- 261853 41 42 tok byl nechĂĄn, projĂ­t kolonou se 100 mlCM-Sephadexu C—25 v NH4+ formě, pƙedempromytou směsĂ­ voda — dioxan 1 : 1. Pakbyla kolona eluovĂĄna stejnĂœm postupem jakbylo popsĂĄno v pƙíkladu 1 (iii) (I), pƙičemĆŸbyly odstraněny kationty zinku a ĆŸĂĄdanĂœprodukt byl oddělen od jinĂœch produktĆŻ,čímĆŸ se zĂ­skalo, 412 mg, tj. 51 % ĆŸĂĄdanĂ©sloučeniny ve formě bezbarvĂ© pevnĂ© lĂĄtky.

Pro srovnĂĄnĂ­ byl tento postup opakovĂĄns tĂ­m rozdĂ­lem, ĆŸe byl octan zinečnatĂœ di-hydrĂĄt nahrazen 308 g, tj, 1,24 mM octanunikelnatĂ©ho tetrahydrĂĄtu, s tĂ­m vĂœsledkem,ĆŸe ĆŸĂĄdanĂœ 3,6‘-di-N-benzyloxykarbonylkana-mycin A byl zĂ­skĂĄn jako bezbarvĂĄ pevnĂĄlĂĄtka pouze s vĂœtÄ›ĆŸkem 59 mg, tj. 7,3 %. Pƙíklad 8

Pƙíprava 3,6‘-di-N-(p-metoxybenzyloxykar-bonyl) kanamycinu A 500 mg, tj. 1,03 mM kanamycinu A veformě volnĂ© bĂĄze bylo suspendovĂĄno ve 12mililitrech dimetylsulfoxidu a k suspenzi bylpƙidĂĄn 1 g, tj. 4,55 mM octanu zinečnatĂ©hodihydrĂĄtu. Směs byla mĂ­chĂĄna pƙi teplotěmĂ­stnosti aĆŸ do vytvoƙenĂ­ homogennĂ­ho roz-toku, k němuĆŸ pak byl pƙidĂĄn během 30minut roztok 789 mg, tj. 2,6 mM p-met?xy-karbobenzoxy-p-nitrofenylesteru(p—CHaOCfiH^CH^OCOOCoH^p—NO2) rozpuĆĄ-těnĂ©ho v dimetylsulfoxidu. VĂœslednĂĄ směs se nechala stĂĄt pƙi tep-lotě okolĂ­ pƙes noc a pak byla zpracovĂĄnastejnĂœm zpĆŻsobem jako v pƙíkladu 1 (ii) a (iii) (B), čímĆŸ se zĂ­skalo 722 mg, tj. 83 %bezbarvĂ© pevnĂ© lĂĄtky ĆŸĂĄdanĂ© sloučeniny.

[a]n25 +87° (c 1, voda — dimetylformamid, 1 : 2).

ElementĂĄrnĂ­ analĂœza

Vypočteno pro C^jH^N-iOiy . V2 H„CO·,: 51,95 % C, 6,33 % H, 6,64 % N,

Nalezeno: 51,56 % C, 6,41 % H, 6,53 % N.Pƙíklad 9

Pƙíprava 6‘-N- (t-butoxykarbonyl jkanamy-cin A

StejnĂœm postupem jako bylo popsĂĄno vpƙíkladu 8, s tĂ­m rozdĂ­lem, ĆŸe p-metoxykar-bobenzoxy-p-nitrofenylester byl nahraĆŸen220 mg, tj. 1,54 mM t-butoxykarbonylazidu,byla zĂ­skĂĄna ĆŸĂĄdanĂĄ sloučenina ve forměbezbarvĂ© pevnĂ© lĂĄtky. VĂœtÄ›ĆŸek činil 627miligramĆŻ.

[«Id25 = +96° (c 1, voda — dimetylforma- mid, 1 : 2), Pƙíklad 10

Pƙíprava 3,6‘-di-N-trifluoroacetylkanamyci-nu A 500 mg, tj. 1,03 mM kanamycinu A veformě volnĂ© bĂĄze bylo suspendovĂĄno ve 12mililitrech dimetylsulfoxidu a k suspenzi bylpƙidĂĄn 1 g, tj. 4,55 mM octanu zinečnatĂ©hodihydrĂĄtu. Směs byla mĂ­chĂĄna pƙi teplotěmĂ­stnosti aĆŸ do vytvoƙenĂ­ homogennĂ­ho roz-toku, ke kterĂ©mu pak byl pƙidĂĄn roztok 1,2 g, tj. 5,1 mM p-nitrofenolesteru kyseli-ny trifluoroctovĂ© rozpuĆĄtěnĂ© v 10 ml dime-tylsulfcxidu. VĂœslednĂĄ směs byla ponechĂĄ-na stĂĄt pƙes noc pƙi teplotě okolĂ­ a pakbyla zpracovĂĄna s etylĂ©terem stejně jako vpƙíkladu 1 (ii). V Ă©teru nerozpustnĂœ siru-povitĂœ materiĂĄl byl dĂĄle zpracovĂĄn stejnĂœmzpĆŻsobem jako v pƙíkladu 1 (iii) (A), čímĆŸse zĂ­skalo 590 mg (70%) ĆŸĂĄdanĂ© sloučeniny ve formě bezbarvĂ© pevnĂ© lĂĄtky.

[Îż?]υ25 +81° (c 1, voda — dimetylformamid, 1 : 2).

ElementĂĄrnĂ­ analĂœza

Vypočteno pro C^H^NíOriF,!. 2 CH iCO-H . H-,0: 38,33 % C, 5,44 % H, 6,88 % N,13,99 % F,

Nalezeno^: 33,03 % C, 5,48 % H, 6,54 % N. Pƙíklad 11

Pƙíprava 3,6‘-di-N-fenoxykarbonylkanamy-cinu A 500 mg, tj. 1,03 mM kanamycinu A veformě volnĂ© bĂĄze bylo· suspendovĂĄno· vesměsi dimetylsulfoxidu, 15 ml a 5 ml tetra-hydrofuranu a k suspenzi byl pƙidĂĄn 1 g,tj. 4,55 mM octanu zinečnatĂ©ho dihydrĂĄtu apotĂ© byla směs mĂ­chĂĄna pƙi teplotě mĂ­st-nosti aĆŸ do vytvoƙenĂ­ homogennĂ­ho, rozto-ku. VĂœslednĂœ roztek byl pak ochlazen na0 CC a k tomu byl pak pomalu pƙidĂĄvĂĄnchladnĂœ roztok 0 °C 400 mg, tj. 2,55 mM fe-noxykarbonylchloridu C(iH-,OCOCl ve 3 mltetrahydrofuranu. ReakčnĂ­ směs byla pƙe-nesena do teploty mĂ­stnosti za jednu hodi-nu a pak byla nechĂĄna stĂĄt pƙi tĂ©to tep-lotě 3 hodiny. Potom byla reakčnĂ­ směs zpra-covĂĄna s etylĂ©terem stejně jako, v pƙíkladu1 (ii) a v Ă©teru nerozpustnĂĄ sirupovitĂĄ lĂĄt-ka byla dĂĄle zpracovĂĄna stejnĂœm zpĆŻsobemjako v pƙíkladu 1 (iii) (A), čímĆŸ se zĂ­ska-lo 625 mg, tj. 70 % ĆŸĂĄdanĂ© sloučeniny veformě bezbarvĂ© pevnĂ© lĂĄtky.

[ajD25 +73° (c 1, voda — dimetylformamid, 1:2).

ElementĂĄrnĂ­ analĂœza

Vypočteno: pro C^H^N^O,-, . 2 CH-CO-Jl . Η·,Ο: 50,11 % C, 6,31 % II, 6,49 % N,

Nalezeno·: 49,77 % (1, 6,60 % H, 6,11 % N. Pƙíklad 12

Pƙíprava 3,6‘-di-N-acetylkanainycinu A

ReakčnĂ­ směs zĂ­skanĂĄ stejnĂœm postupemjako v pƙíkladu 8, s vĂœjimkou, ĆŸe bylo pou-ĆŸito 260 mg, tj. 2,6 mM acetanhydridu mĂ­sto p-metoxykarbobenzoxy-p-nitrofeny] este-ru, byla zpracovĂĄna stejnĂœm zpĆŻsobem ja-ko v pƙíkladu 1 (iii) (A). Takto bylo pƙi-praveno 525 mg, tj. 72 % ĆŸĂĄdanĂ© sloučeni-ny ve formě bezbarvĂ© pevnĂ© lĂĄtky.

[«]„¼ - I 93 (cmid, 1 : 2). AnalĂœza Vypočteno 1, voda — dimetylfurma pro C%HWN,.O|:,. 2 Cll.;CĂ­),l I.. 11,0: 44,19 % C, 7,13 % II, 7,63 % N, Nalezeno: 44,20 % C, Pƙíklad 13 7,07 % H, 7,85 % N.

Pƙíprava 3,6‘-di-N-lorruylkanarnycinu A 500 rng, tj. 1,03 mM kanamyciuu A veformě volnĂ© bĂĄze bylo suspendovĂĄno ve 12mililitrech dimetylsulfoxidu a k tĂ©to sus-penzi by] pƙidĂĄn 1 g, tj. 4,55 mM octa nu zi-nečnatĂ©ho dihydrĂĄtu. Směs byla mĂ­chĂĄnapƙi teploto mĂ­stnosti aĆŸ do vytvoƙenĂ­ homo-gennĂ­ho roztoku, ke kterĂ©mu pak bylo pƙi-dĂĄno 690 mg, tj. 4,12 mM p-nitrofenylformĂĄ-tu OHCOD(iH5- -p -NO·,. VĂœslednĂĄ směs by-la ponechĂĄna stĂĄt pƙes noc pƙí teplotě oko-lĂ­ a pak byla zpracovĂĄna stejbiĂœm zpĆŻsobemjako v pƙíkladu 1 (iii] (H).

Frakce pozitivnĂ­ k uinlivdriuovĂ© reakcibyly spojeny, probuldĂĄny plynnĂœm oxidemuhličitĂœm a pak zahuĆĄtěny do sucha. Tak-to se zĂ­skalo 430 mg, tj. 67 % ĆŸĂĄdanĂ© slou-čeniny ve formě bezbarvĂ© lĂĄtky. fajir5 |101° (c 1, voda).

AnalĂœza

Vypočteno pro . H9CO·, .11,0: 40,64 % C, "6,50 % H, 9,03 % N,

Nalezeno: 40,43 % C, 6,47 % H 8,83 % N. 44 Pƙíklad 14

Pƙíprava 3,6‘-di-N-tosylkanamycinu A 500 mg, tj. 1,03 mM kanamycinu A veformě volnĂ© bĂĄze bylo* suspendovĂĄno v 15mililitrech dimetylsulfoxidu a k suspenzi bylpƙidĂĄn 1 g, tj. 4,55 mM octanu zinečnatĂ©hodihydrĂĄtu. Směs byla mĂ­chĂĄna pƙi teplotěmĂ­stnosti aĆŸ do vytvoƙenĂ­ homogennĂ­ho1 roz-toku, k němuĆŸ pak byl pomalu pƙidĂĄn roz-tok 400 mg, tj. 2,1 mM tosylchloridu v 7 mltetrahydrofuranu. VĂœslednĂĄ směs se nechala stĂĄt pƙi teplo-tě okolĂ­ jednu hodinu, a pak bylo pƙidĂĄno200 mg tosylchloridu rozpuĆĄtěnĂ©ho ve 3,5mililitrech tetrahydrofuranu. ReakčnĂ­ směsbyla ponechĂĄna dalĆĄĂ­ dvě hodiny v klidu apak byla zpracovĂĄna postupem stejnĂœm ja-ko v pƙíkladu 1 (iij a (iii) (Aj, pƙičemĆŸ sezĂ­skalo 270 mg, tj. 28 % bezbarvĂ© pevnĂ©lĂĄtky, pƙedstavujĂ­cĂ­ ĆŸĂĄdanou sloučeninu. (α]ÎŻ,25 +68° (c 1, voda — dimetylformamid, 1 : 2).

Ana lĂœzaVypočteno pro C39H48N,,Or>S3 . 2 CH3CO2H . Η,Ο: 46,44 % C, 6,28 % H, 6,02 % N, 6,89 % S,Nalezeno: 46,31 % C, 5,98 % H, 6,31 % N, 6,55 % S. Pƙí provĂĄděnĂ­ vĂœĆĄe uvedenĂ©ho reakčnĂ­hopostupu bez octanu zinečnatĂ©ho, se nepoda-ƙilo zĂ­skat větĆĄĂ­ mnoĆŸstvĂ­ bezbarvĂ© pevnĂ©lĂĄtky. P ƙ Ă­ k 1 a d 1 5

Pƙíprava 3,6'-di-N-benzyloxykarbonyl-6‘-N-- m et y 1 k a n a ru yc i n u A 500 mg, tj. t,0 mM 6'-N-nietyl-kanamyci-nu A ve hƙme volnĂ© bĂĄze bylo suspendo-vĂĄno ve 12 ml dimetylsulfoxidu a k sus-penzi byl pƙidĂĄn 1 g, tj. 4,55 mM octanu zi-ncčuatĂ©ho dihydrĂĄtu. Směs byla mĂ­chĂĄnaoƙi teplotě mĂ­stnosti aĆŸ do vytvoƙenĂ­ homo-gennĂ­ho roztoku, ke kterĂ©mu byl během 30minut pƙidĂĄn roztok 550 mg, ti. 2,2 mM N--benzyloxykarbonyloxysukcinimidu rozpuĆĄ-těnĂ©ho v 5 ml dimetylsulfoxidu tetrahydro-furanu 1:1. VĂœslednĂĄ směs byla ponechĂĄna v klidupƙes noc pƙi teplotě okolĂ­ a pak byla zpra-covĂĄna stejně jako v pƙíkladu 1 (iij a (iii)(A), čímĆŸ se zĂ­skalo 720 mg, tj. 79% ĆŸĂĄda-nĂ© sloučeniny ve formě bezbarvĂ© lĂĄtky.

[oí],j-5 -1-74° (c 1, voda — dimetylformamid, 1 : 2).

DalĆĄĂ­m zpracovĂĄnĂ­m takto pƙipravenĂ© 261853 45 sloučeniny postupem podobnĂœm jako v pƙí-kladu 31 uvedenĂ©m nĂ­ĆŸe, se zĂ­skal 1-N-[(S)--4-amino-2-hydroxybutyryl]-6‘-N-metylka-namycin A. Pƙíklad 16

Pƙíprava 3,6‘-di-N-benzyloxykarbonyl-3‘-deoxykanamycinu A

Tato sloučenina ve formě bezbarvĂ© pevnĂ©lĂĄtky byla zĂ­skĂĄna s vĂœtÄ›ĆŸkem 765 mg, tj.82 % opakovĂĄnĂ­m stejnĂ©ho postupu jako vpƙíkladu 15, avĆĄak s tĂ­m rozdĂ­lem, ĆŸe vĂœ-chozĂ­ lĂĄtkou bylo 500 mg, tj. 1,07 mM 3‘-de-oxykanamycinu A ve formě volnĂ© bĂĄze a by-lo pouĆŸito 610 mg, tj. 2,45 mM N-benzyloxy-karboinyloxysukcinimidu.

[a]D25 — +76° (c 1, voda — dimetylforma-mid, 1:2).

AnalĂœza

Vypočteno pro C-hI-V^Oh . 2 CH.,CO2iH . H..O: 52,16 % C, 6,68 % H, 6,40 % N,

Nalezeno: 51,99 % C, 6,75 % H, 6,20 % N.

DalĆĄĂ­m zpracovĂĄnĂ­m takto pƙipravenĂ©sloučeniny postupem podobnĂœm jako v pƙí-kladu 31 se zĂ­skal l-N-[ (S)-4-amino-2-hyd-roixybutyrylj-3‘-deoxykanamycin A.Pƙíklad 17

Pƙíprava 3,6‘-di-N-benzyloxykarbonyl-3‘-de-oxy-6‘-N-metylkanamycinu A ĆœĂĄdanĂĄ sloučenina byla zĂ­skĂĄna s vĂœtÄ›ĆŸ-kem 737 mg, tj. 80 % opakovĂĄnĂ­m stejnĂ©-ho' postupu jako v pƙíkladu 15 s tĂ­m rozdĂ­-lem, ĆŸe se vychĂĄzelo z 500 mg, tj. 1,04 mM3‘-deoxy-6‘-N-metylkanamycinu A ve forměvolnĂ© bĂĄze a bylo pouĆŸito 595 mg, tj. 2,4mM N-benzyloxykarbonyloxysukcinimidu.

[a]035 +73° (c 1, voda — dimetylformamid, 1 : 2).

DalĆĄĂ­m zpracovĂĄnĂ­m takto pƙipravenĂ©sloučeniny se zĂ­skal l-N-[ (S)-4-amino-2-hyd-roxybutyryl ] -3‘-deoxy-6‘-N-metyl-kanamy-cin A. Pƙíklad 18

Pƙíprava 3,6‘-di-N-beinzytoxykarbonyl-4‘-de-oxykanamycinu A

VychĂĄzeje z 500 mg, tj. 1,07 mM 4‘-deoxy- kanamycinu A ve formě volnĂ© bĂĄze [viz „Journal of Antibiotics“, Vol. 27, pp. 838— 46 —849 (1974); „Bulletin of the Chemical So-ciety of Japan,“, Vol. 50, str. 2 362—2 368(1977)], byla zĂ­skĂĄna ĆŸĂĄdanĂĄ sloučenina veformě bezbarvĂ© pevnĂ© lĂĄtky s vĂœtÄ›ĆŸkem 666miligramĆŻ, tj. 71% stejnĂœm postupem jakov pƙíkladu 15, pouze s tĂ­m rozdĂ­lem, ĆŸe 580miligramĆŻ, tj. 2,3 mM N-benzyloxykarbonyl-oxysukcinimidu rozpuĆĄtěnĂ©ho ve 4 ml di-metylsulfoxidu bylo pomalu pƙidĂĄvĂĄno podĂ©le neĆŸ jednu hodinu k homogennĂ­mu roz-toku.

[a]u25 = +77° (c 1, voda — dimetylíorm-amid, 1 : 2).

AnalĂœza

Vypočteno pro Cb^HĂ­sNĂ­Ois . 2 CH3lCO ,,H . Η·>Ο: 52,16 Ξ/Îż C, 6,68 % H, 6,40 % N,Nalezeno: 51,77 % C, 6,79 % H, 6,31 % N.Pƙíklad 19

Pƙíprava 3,2*,6‘-tri-N-benzyloxykarbonyl-kanamycinu B 500 mg, tj. 1,03 mM kanamycinu B veformě volnĂ© bĂĄze bylo suspendovĂĄno vesměsi 12 ml dimetylsulfoxidu a 4 ml tetra-hydrofuranu a k suspenzi byl pƙidĂĄn 1 g —tj. 4,55 mM octanu zinečnatĂ©ho dihydrĂĄtu.Směs byla mĂ­chĂĄna pƙi teplotě mĂ­stnosti aĆŸdo vytvoƙenĂ­ homogennĂ­ho roztoku a pakochlazena na 0 °C. Ke chladnĂ©mu roztokubyl pomalu pƙidĂĄvĂĄn dĂ©le neĆŸ jednu hodi--benzytoxykarbonyloxysukcinimidu rozpuĆĄ-nu chladnĂœ roztok 825 mg, tj. 3,3 mM N-těnĂ©ho v 10 ml tetrahydrofuranu — dime-tylsulfoxidu 1 : 1. VĂœslednĂĄ směs byla po-nechĂĄna v klidu pƙi 0 °C po dvě hodiny apak pƙi teplotě okolĂ­ pƙes noc, načeĆŸ bylasměs zpracovĂĄna stejnĂœm zpĆŻsobem jako vpƙíkladu 1 (ii) a (iii) (A), pƙičemĆŸ se zĂ­skalo 740 mg, tj. 70 % ĆŸĂĄdanĂ© sloučeninyve formě bezbarvĂ© pevnĂ© lĂĄtky.

[a]n25 — +63° (c 1, voda dimetyl — for-mamid 1:2).

AnalĂœza

Vypočteno pro C42H.-,5N.-,O|6 . 2 CHjCCCH . H,O: 53,95 % C, 6,40 % h, 6,84 % N,

Nalezeno: 53,66 % C, 6,67 % H, 6,63 % N.

DalĆĄĂ­m zpracovĂĄnĂ­m takto pƙipravenĂ© sloučeniny postupem podobnĂœm jako v pƙí- kladu 31 byl zĂ­skĂĄn l-N-[ (S)-4-amiiuo-2-hyd- roxybutyryljkanamycin B. 261853 47 48 Pƙíklad 20 Pƙíprava 3,2‘,6‘ tri N bonzyk)<xykƙirl>i mylto-bramycinu 480 mg, tj. 1,03 mM tobramycinu v» for-mě volnĂ© bĂĄze bylo suspendovĂĄno ve 12 mldlmetylsulfoxidu a k suspenzi byl pak pƙi-dĂĄn 1 g, tj. 4,55 mM octanu zinečnatĂ©ho di-hydrĂĄtu. Směs byla mĂ­chĂĄna pƙi teplotěmĂ­stnosti po jednu hodinu do vytvoƙenĂ­ ho-mogennĂ­ho roztoku, ke kterĂ©mu byl pakpƙidĂĄvĂĄn po asi jednu hodinu roztok 850miligramĆŻ, tj. 3,4 mM N-bcnzyloxykarbo-nyloxysukeinimidu, rozpuĆĄtěnĂ©ho v 10 mlsměsi tetrahydrofuran-dimetylsulfoxid 1 : 1.Směs byla ponechĂĄna v klidu pƙes noc pƙiteplotě okolĂ­, a takto, zĂ­skanĂœ reakčnĂ­ roztokbyl zpracovĂĄn s velkĂœm objemem etylĂ©terustejně jako v pƙíkladu 1 (ii j pƙičemĆŸ vznik-la hustĂĄ sirupovitĂĄ lĂĄtka.

SirupovitĂĄ lĂĄtka byla dĂĄle zpracovĂĄnastejnĂœm zpĆŻsobem jako v pƙíkladu 1 (iiij(A), avĆĄak za pouĆŸitĂ­ směsi voda — dioxan1 : 2 mĂ­sto 2 : 1, pƙičemĆŸ se zĂ­skalo 810 mg,tj. 78 % ĆŸĂĄdanĂ© lĂĄtky ve formě bezbarvĂ©pevnĂ© lĂĄtky.

[a]u25 = 1-65° je 1, voda — dimetylEorma-mid, 1:2].

AnalĂœza VĂœpočtem» pro CĂł,HrĂłN ,Or, . 2 CH-CO-dl . H-.O: 54,81 o/o C, 6,50 % II, 6,0> % N,

Nalezeno: 54,77 % C, 6,71 % II, 6,88 % N.

Takto zĂ­skanĂĄ sloučenina muĆŸe bĂœt dĂĄlezpracovĂĄna postupem podobnĂœm jako vpƙíkladu 31 za vzniku l-N-[(S)-4-amino-2--hydroxybutyryl ] -tobramycinu. Pƙíklad 21 PƙipravĂ­! 3,2‘,6‘-tri-N -benzyloxykarbonyl-G1--N-metyltobramycinu ĆœĂĄdanĂĄ sloučenina ve formě bezbarvĂ©pevnĂ© lĂĄtky byla zĂ­skĂĄna s vĂœtÄ›ĆŸkem 890miligramĆŻ, tj. 84 % stejnĂœm postupem jakov pƙíkladu 20 s tĂ­m rozdĂ­lem, ĆŸe se vychĂĄ-zelo z 500 mg, tj. 1,04 mM B‘-N-metyltobra-mycinu ve formě volnĂ© bĂĄze.

[a]D25 ~ -I 63° (c 1, voda -- dimetylforma·mid, 1 : 2). Pƙíklad 22

Pƙíprava 3,2‘,6‘-tri-N-benzyloxykarbonyI-4‘--deoxykanamycinu B

VychĂĄzeje z 480 mg, tj. 1,03 mM 4-deoxy- kanamycinu B ve formě volnĂ© bĂĄze [viz „Bulletin of the Chemical Society of Japan“,Vol. 50, pp. 2 362--2 368 (1977)], byla zĂ­s-kĂĄna ĆŸĂĄdanĂĄ sloučenina ve formě bezbar-vĂ© pevnĂ© lĂĄtky s vĂœtÄ›ĆŸkem 815 mg, tj. 79proč., stejnĂœm postupem jako, v pƙíkladu20.

[«]i,-5 463° (c 1, voda — dimetyiformamiĂș, 1 : 2], Pƙíklad 23 Pƙíprava 3,2‘,6‘-tri-N-benzyloxykarbonyl-dibekacin 000 mg, tj. 1,33 mM dibekacinu (3‘,4‘-di-deoxykanamycinu B] ve formě volnĂ© bĂĄzebylo suspendovĂĄno v 15 ml dimetylsulfoxi-du a suspenze byla mĂ­chĂĄna aĆŸ do- vytvoƙe-nĂ­ roztoku, ke kterĂ©mu bylo pƙidĂĄno 1,4 g,tj. 6,4 mM dihydrĂĄtu octanu zinečnatĂ©ho,načeĆŸ se v mĂ­chĂĄnĂ­ pokračovalo. K vĂœsled-nĂ©mu roztoku se pomalu pƙidĂĄval po asijednu hodinu roztok 1,1 g, tj. 4,4 mM N--benzylnxykarbonyloxysukcinimidu ve 12 mldimetylsulfoxidu a směs byla ponechĂĄna vklidu pƙi teplotě okolĂ­ pƙes noc. Pak byl sreakčnĂ­m roztokem smĂ­chĂĄn velkĂœ objemetylĂ©teru, aby se oddělila olejovitĂĄ sedlina,obsahujĂ­cĂ­ zejmĂ©na N-benzyloxykarbonylo-vanĂœ zinečnatĂœ komplex jako ĆŸĂĄdanĂœ pro-dukt a část dimetylsulfoxidu, a pak bylapromyta etyiĂ©terem, čímĆŸ se zĂ­skal sirupo-vitĂœ materiĂĄl.

Tato sirupovitĂĄ lĂĄtka byl opakovaně pro-myta vodou, čímĆŸ se rozpadl N-acylovanĂœzinečnatĂœ komplex a volnĂ© kationty zinkubyly odstraněny spolu s pĆŻvodně existujĂ­-cĂ­m nadbytkem c-ctanu zinečnatĂ©ho. Taktobylo zĂ­skĂĄno 1,1 g ve vodě nerozpustnĂ© pev-nĂ© lĂĄtky, pƙedstavujĂ­cĂ­ N-acylovanĂœ dibeka-cin. PevnĂĄ lĂĄtka byla chromatograf ovĂĄnana tenkĂ© vrstvě silikagelu za pouĆŸitĂ­ směsichloroform — etanol — 18% vodnĂœ čpa-vek 1:1:1, spodnĂ­ fĂĄze, jako vyvĂ­jecĂ­horozpouĆĄtědla, pƙičemĆŸ se vytvoƙila jedinĂĄskvrna pƙi Rf 0,3, coĆŸ znamenĂĄ, ĆŸe pevnĂĄlĂĄtka byla tvoƙena pƙevĂĄĆŸně 3,2‘,6‘-tri-N--benzyloxykarbonyldibekacinem se stopouzinku.

DalĆĄĂ­m zpracovĂĄnĂ­m ĆŸĂĄdanĂ© sloučeninypostupem podobnĂœm jako v pƙíkladu 31 sezĂ­skal l-N-[[S)-4-amino-2-hydroxybutyryl]--dibekacin.

DalĆĄĂ­ purifikace surovĂ©ho produktu zĂ­s-kanĂ©ho- postupem uvedenĂœm vĂœĆĄe, byla pro-vĂĄděna tak, ĆŸe sloučenina byla promĂœvĂĄnaroztokem 3 M čpavku, čímĆŸ se zĂ­skal pro-dukt neobsahujĂ­cĂ­ pƙíměsi iontĆŻ zinku.

[q:]d25 +71° (c 1, voda — dimetylformamid, 1 : 2). Pƙíklad 24 Pƙíprava 3,2‘,6‘-trl-N-benzyloxykarbonyl-6‘- -N-metyldibekacinu 267033 49 500 mg, tj. 1,07 mM 6‘-N-metyldibekacinuve formě volnĂ© bĂĄze a 1,2 g, tj. 5,45 mM di-hydrĂĄtu octanu zinečnatĂ©ho bylo rozpuĆĄtě-no! ve 20 ml dimetylsulfoxldu, a k tomu by-lo pomalu pƙidĂĄvĂĄno po asi 30 minut 910miligramĆŻ, tj. 3,6 mM N-benzyloxykarbonyl-oxysukcinimidu. ReakčnĂ­ roztok byl pone-chĂĄn stĂĄt v klidu pƙi teplotě okolĂ­ pƙes noca pak byl zpracovĂĄn stejnĂœm zpĆŻsobem ja-ko v pƙíkladu 23, čímĆŸ se zĂ­skalo 910 mg ĆŸĂĄ-danĂ© sloučeniny, jeĆŸ byla v podstatě čistĂĄ.

DalĆĄĂ­m zpracovĂĄnĂ­m takto zĂ­skanĂ© slou-čeniny se zĂ­skal l-N-[ (S j-4-amino-2-hydro-xybutyryl ] -6‘-N-metyldibekacin. Pƙíklad 25

Pƙíprava 3,2‘-di-N-benzyloxykarbonylkana-mycinu C ĆœĂĄdanĂĄ sloučenina ve formě zbarvenĂ©pevnĂ© lĂĄtky byla zĂ­skĂĄna s vĂœtÄ›ĆŸkem 730miligramĆŻ, tj. 79 % stejnĂœm postupem ja-ko v pƙíkladu 1 (i), (ii) a (iiij (A), s tĂ­mrozdĂ­lem, ĆŸe se vychĂĄzelo z 500 mg, tj. 1,03mM kanamycinu C ve formě volnĂ© bĂĄze.

[«ji,-5 +75° (c 1, voda — dimetylformamid, 1 : 2). DĂĄle byla takto zĂ­skanĂĄ sloučenina zpra-covĂĄna, pƙičemĆŸ byl zĂ­skĂĄn l-N-[(Sj-4-ami-no-2-hydroxybutyryl]-kanamycin C.Pƙíklad 26

Pƙíprava 6‘-N-benzyloxykarbonylkanamyci-nu A 500 mg, tj. 1,03 mM kanamycinu A ve for-mě volnĂ© bĂĄze bylo suspendovĂĄno ve 20 mldimetylsulfoxidu a k suspenzi bylo, pƙidĂĄ-no 0,5 g, tj. 2,3 mM octanu zinečnatĂ©ho di-hydrĂĄtu. Směs byla mĂ­chĂĄna pƙi teplotěmĂ­stnosti aĆŸ do vytvoƙenĂ­ homogennĂ­ho roz-toku, ke kterĂ©mu pak bylo pƙidĂĄno 283 mg,tj. 1,13 mM N-benzyloxykarbonytoxysukcin-imidu. VĂœslednĂĄ směs byla ponechĂĄna v kli-du pƙes noc pƙi teplotě okolĂ­ a pak bylazpracovĂĄna stejnĂœm zpĆŻsobem jako v pƙí-kladu 1 (ii) a (iiij (Ij čímĆŸ se zĂ­skalo 556miligramĆŻ ĆŸĂĄdanĂ© sloučeniny ve formě bez-barvĂ© pevnĂ© lĂĄtky.

[a]D2R =, +g2« (C 1, voda). Pƙíklad 27 Pƙíprava 6‘-N-benzyloxykarbonyldibekacinu

StejnĂœm postupem jako v pƙíkladu 26, bylo zĂ­skĂĄno 382 mg ĆŸĂĄdanĂ© sloučeniny za 80 pouĆŸitĂ­ 500 mg dibekacinu ve formě volnĂ©bĂĄze, 12 ml dimethylsulfoxidu, 0,7 g octanuzinečnatĂ©ho dihydrĂĄtu a 305 mg N-benzyl-oxykarbonyloxysukcinimidu.

[ ce]D25 +105° (c 0,5, voda). Pƙíklad 28

Pƙíprava 3,2‘,6‘-tri-N-benzyloxykarbonyl--3‘,4‘-dideoxy-3‘-enokanamycinu B 500 mg, tj. 1,11 mM 3‘,4‘-dideoxy-3‘-eno-kanamycinu B ve formě volnĂ© bĂĄze (viz„Bulletin of the Chemical Society of Ja-pan“, Vol. 50, ppd 1 580—1 583 (1977)] by-lo rozpuĆĄtěno· ve 12 ml dimetylsulfoxidu ak roztoku byl pƙidĂĄn 1 g, tj. 4,55 mM di-hydrĂĄtu octanu zinečnatĂ©ho, a roztok bylmĂ­chĂĄn po jednu hodinu. K vĂœslednĂ©mu roz-toku bylo pƙidĂĄvĂĄno pomalu pƙes 30 minut870 mg, tj. 3,49 mM N-benzylotxykarbonyl-oxysukcinimidu. Směs byla ponechĂĄna v kli-du pƙes noc pƙi teplotě okolĂ­ a reakčnĂ­ roz-tok takto zĂ­skanĂœ byl zpracovĂĄn s velkĂœmobjemem etyléíeru stejně jako v pƙíkladu 1(ii) pƙičemĆŸ se zĂ­skala hustĂĄ sirupovitĂĄ lĂĄt-ka.

SirupovitĂĄ lĂĄtka byla dĂĄle zpracovĂĄnastejně jako v pƙíkladu 1 (iiij (Bj, avĆĄak zapouĆŸitĂ­ směsi voda — dioxan 1 : 2 mĂ­sto·2 : 1, čímĆŸ se zĂ­skalo· 784 mg ĆŸĂĄdanĂ© slou-čeniny ve formě bezbarvĂ© pevnĂ© lĂĄtky.

[a]D25 + 30° (c 1, voda — dimetylformamid, 1 : 2). Pƙíklad 29 Pƙíprava 3,2‘,6‘-tri-N-benzyloxy-karbonylsi-somicinu ĆœĂĄdanĂĄ sloučenina ve formě bezbarvĂ©pevnĂ© lĂĄtky byla zĂ­skĂĄna s vĂœtÄ›ĆŸkem 780miligramĆŻ stejnĂœm postupem jako v pƙíkla-du 28, avĆĄak s tĂ­m rozdĂ­lem, ĆŸe se vychĂĄze-lo z 500 mg, tj. 1,12 mM sisomicinu ve for-mě volnĂ© bĂĄze.

[ ofjir5 = +110’ (c 1, voda — diraetylforma-mid, 1:2). Pƙíklad 30 Pƙíprava 3,2‘,6‘-tri-N-benzyloxykarbonyl-gentamicinĆŻ 787 mg ĆŸĂĄdanĂ© sloučeniny bylo zĂ­skĂĄnove formě bezbarvĂ© pevnĂ© lĂĄtky stejnĂœmpostupem jako v pƙíkladu 28, s tĂ­m rozdĂ­-lem, ĆŸe se vychĂĄzelo z 500 mg směsi genta-micinĆŻ C, Cla, C2 atd.

CZECHOSLOVAK SOCIALISTIC

(19)

DESCRIPTION OF THE INVENTION

PATENT 261853 (Π) (B2)

INVENTORY OFFICE DISCOVERY (22) Enrolled 12 11 79 (21) (PV 7711-79) (32) (31) (33) Priority 11 11 78 (138402) Japan (51) Int. Cl.4C 07 H 15/234 (40) Published 15 06 88 (45) Published 15 07 89 (72)

The author of UMEZAWA HAMAO, UMEZAWA SUMIO, TOKIO, TSUCHIYA TSUTOMU, TAKAGI YASUSHI, JIKIHARA ΀ΟΜΟ, KANAGAWA (Japan) (73)

Patent holder ZAIDAN HOJIN BISEIBUTSU KAGAKU KENKYU KAI, TOKIO (Japan) (54) Method for the production of selectively acylated N-targeted derivative of aminoglycoside antibiotic 1

The present invention relates to a process for the preparation of a selectively acylated N-protected derivative of aminoglycoside antibiotic.

In particular, the present invention relates to a novel process for the production of a selectively protected N-acyl derivative aminoglycoside dibiotic, in which some amino acids or alkylamino groups in certain positions. aminoglycoside molecules are selectively protected or blocked by an acyl group. The invention therefore relates to a novel method for the selective protection of certain amino or alkylamino groups at certain positions of the aminoglycosidic anti-biotics and finds a major use in the manufacture of a selectively protected N-acylated aminoglycoside derivative having a deoxystreptamine structure comprising 3 ' an aminoglycosyl moiety linked to the 6-hydroxy group of the deoxystreptamine moiety in the aminoglycoside molecule.

The aminoglycoside antibiotic useful in the present invention can be precisely defined as an aminoglycoside anti-biotic consisting of 6-O- (3 "-amino- or 3" -alkylamino-3 "-deoxyglycosyl) -2-deoxy-streptainine, which may optionally contain a 4-O- (6'-aminoglycosyl) substituent. Typical examples are kanamycins, gent-2 amicins, sisomicin, netilmicin and verdamycin.

It is known that aminoglycoside antibiotics, such as kanamycins, are substances containing several amino and hydroxy groups that have a relatively high and different degree of reactivity. Many types of polysynthetic aminoglycoside antibiotics that are derived from the original aminoglycoside antibiotics have been synthetically synthesized. In the semisynthesis of these derivatives, it is often necessary or advantageous to ensure that some amino groups and / or some hydroxy groups in the starting aryoglycoside antibiotic are selectively protected by at least one suitable protecting group.

Various useful methods have been developed for the selective protection of amino and / or hydroxy groups in the aminoglycosideantibiotic, which as such are useful for the selective protection of the hydroxy group. However, the pro-selective protection of some selected amino groups from a number of amino groups that are in the aminoglycoside antibiotic, these known methods are either difficult to perform or require some complex operations. This is due to the fact that all amino groups in the aminoglycoside antibiotic 261853 281853 '' rozdĂ­l do not have a larger difference in reactivity. A typical example is the 6'-amino group of kanamycin A, but such an amino- or methylamino group that is bound to a particular carbon atom, which in turn is bound to only one carbon atom in the amino-glycoside molecule, produces a higher reactivity than an amino- or methylamino-group that is bonded to a carbon atom that is bonded to two or more carbons in that amino-glycoside molecule. For this reason, the first type of amino- or methylamino group is much more capable of reacting with an acylating agent that contains an acyl group intended to be introduced as an amino-protecting group than the latter type of amino- or methyl-amino group so that the N-protected derivative having the first type of amino- or methylamino group preferably protected by an acyl group may be produced with a higher yield than otherwise N-protected derivatives. A few years ago, some of the inventors of the present invention have found that when amino and hydroxy groups are adjacent to each other in pairs in the steric configuration of the aminoglycoside antibiotic molecule, the amino and hydroxy groups may be selectively combined with each other to form a cyclic carbamate by reaction with sodium hydride so that a pair consisting of an amino group and a hydroxy group can be protected simultaneously in the cyclic carbamate by the non-blocking of other amino groups present in the same molecule [see Journal of Antibiotics 25, 12, 741-742 [1972], -ts Nos. 3 925 354 and 3 965 0B9],

Recently, Nagabhushan et al. found that when a divalent transition metal salt (M + + J selected from divalent copper, nickel, cobalt, and cadmium is reacted with an aminoglycoside antibiotic in the 4-0-- (aminoglycosyl) group in an inert organic solvent) ) -6-O- [aminoglycosyl) -2-deoxystreptamine, represented by kanamycins, gentamicins and sisomicin, this divalent transition metal cation is complexed with a pair consisting of an amino group and a hydroxy group, which are especially in the conjugate configuration in an aminoglycoside molecule thereby forming a transition metal cationic complexaminoglycoside antibiotic (Japanese Patent Publication No. Ser-52-153 944 and US Patent No. 4,136,254, issued Jan. 23, 1979 J. In this cationic with the transition metal complex of the amino-glycoside antibiotic, the complexed amino group is protected by a divalent transition cation. with an acyl-containing acylating agent, only non-complexed amino groups which are not protected by the divalent metal cation can be acylated to the complex, so that a selective N-protection with an acyl group is achieved. This is shown below with reference to kanamycin A as an example. If the divalent transition metal cation (M + +) is selected from the group consisting of bivalent copper, nickel, cobalt and cadmium, it is reacted with kanamycin A, the complexation reaction of the divalent co-cation (M + + J occurs between the 1-amino group of a 2) "-Hydroxy group and between the 3" -amino group and the 4 "-hydroxy group of the canancin A molecule, as shown by formula ec:

Thus, in the above-mentioned complexation reaction, it is clear that at least 2 moles of the transition metal per 1 mol of kanamycin A are required. In the resulting metal complex, the 1-amino and 3 ' -amino groups are blocked simultaneously. When this complex of formula I * is treated with an acylating agent containing a macyl group which is suitable for protecting an amino group, in the usual synthesis of polypeptides, only the uncomplexed 3-amino- and 6'-amino groups are acylated to give 3,6 &apos; di-N-acylated derivative [Journal of American Chemical Society, 100, 5 253-5254 [1978J],

The present inventors have taken into account the above, but have conducted further in-house investigations of the interaction of other diverse metal cations with aminoglycoside antibiotics such as kanamycin A and kanamycin B, as well as semi-synthetic derivatives of aminoglycoside antibiotics. As a result, although the cation of divalent zinc exhibits substantially different cationic behavior from the above set comprising divalent cations of nickel, cobalt, copper and cadmium, the zinc cation is capable of complex complexing and protecting both the 1-amino-or 1-alkylamino and 3 "-amino or 3" -alkylamino group of aminoglycoside compounds, for example kanamycin A, B or C, which contains a deoxystrepta-261853 mine moiety comprising a 3 "-aminoglycosyl group or a 3" -alkylaminoglycosyl moiety a group attached to the 6-hydroxy group of said deoxystreptamine moiety.

According to Nagabhushan et al. one would expect that when the cation of divalent nickel, divalent cobalt, divalent copper or divalent cadmium is reacted with kanamycin, for example. B, a metal complex salt of cannabin B of formula II should be formed

This assumption can be underpinned by Nagabhushana et al. in the above-mentioned "American ChemicalSociety Journal", according to which pairs of vicinal amino-hydroxy groups could form versatile complexes with divalent transition cations due to the fact that kauamycin B contains three pairs of initial aminohydroxy groups between position-mi 1 and 2 ", between the positions 2 'and 3' and between the positions 2" and 3 "of the kanamycin B molecule.

However, it has now been found that when secanamycin B is reacted with a zinc cation, the cananamin B complex formed with the zinc salt contains free 2'-amino- and 3'-hydroxy groups which are not blocked by the zinc cation, as opposed to the assumption Nagabhushana et al. Although the complexing reaction of the zinc cation with the 2'-amino- and 3'-hydroxy group occurs, the complex formation force is great, so that in practice the 2'-amino- and 3'-hydroxy groups are not blocked. Thus, when the kanamycin B complex with zinc cation is acylated by reaction with N-benzyloxycarbonyloxy succinimide to introduce a benzyloxycarbonyl group as an amino-protecting acyl group, a tri-3,2 ', 6'-N-acylated derivative is formed in which the 3-amino, 3-, 2'- and 6'-amino groups have been acylated, in fact at a higher yield than the otherwise N-acylated derivatives, but can then in fact not be obtained 3 , 6'-di-N-acylated derivative (see Example 19J below. This experimental fact shows that zinc cation has a different behavior to the above-mentioned cations of the four transition metals, especially in that zinc cation does not form complexes) with the vicinal pair of the 2'-amine- and the 3'-hydroxy group.

As another example, when kanamycin A is reacted with a zinc cation followed by acylation with a benzyloxycarbonyl group (referring to formula T above), the major acylation product is observed to form 3,6'-di-N-benzyloxycarbonylkanamycin And, if the zinc cation is present in an amount slightly above 1 mole per mole of cancanine A. In this case, it is noted that this acylation reaction produces 1,3, -6 ', 3 "-tetra- N-benzyloxacarbonyl derivative alkamycin A and, at the same time, non-acylated starting kanamycin A but at the same time producing a tri-N-benzyloxycarbonylene derivative of kanamycin A with only a low yield, although the mechanism of reaction of Nagabhushan et al. that the tri-N-benzyloxycarbonyl derivative is formed with a higher yield than other N-acylated derivatives (see Example 7 below). U.S. Pat. No. 4,136,254 to Nagabhu-sahan et al. Have reported that the divalent divalent transition metal, e.g., copper, nickel, cobalt, etc., must be used in a total amount of at least 2 moles per mole of kanamycin A to form a complex kanamycin salt A with a transition metal as shown in Formula I * above.

The present inventors have shown that a woman, in contrast to the cationic metals of the four transition metals, is able to achieve the blocking of the 1-amino- and 3 &apos; -amino group of kanamycin when the cation is used in a total amount of at least 1 molar per 1 mole of kanamycin A. It was further found that when a nickel salt was used in the reaction at a rate of less than 1 mole per mole of kanamycin A, followed by acylation of the resulting complex of the kanamycin A salt with nickel by a benzyloxycarbonyl group, only a very small amount yielding 3,6'-di-N-benzyloxycarbonyl-kanamycin A, which compound could be obtained with significant yield of cyanide complex of kanamycin A with zinc (see Example 7 below). From the foregoing, it has been concluded that the cesium cation creates a mechanism for the formation of a complex with some aminoglycoside, which is a different mechanism of complex formation with the divalent nickel, cobalt, copper and cadmium complex and that the cationic complex of the zinc zinc aminoglycoside has a stabilizing complex, which is different from the stability of the aminoglycoside caustic complex with divalent nickel, cobalt, copper or cadmium. For complexation of the zinc cation with the aminoglycoside antibiotic 261853 7, the zinc cation may be used in the form of a zinc salt which has the advantage of being inexpensive and probably not a source of environmental pollution.

Therefore, the present inventors have found that when the zinc cation is reacted in an inert organic solvent with an aminoglycoside antibiotic containing a deoxystreptamine moiety comprising a 3-aminoglycosyl or 3-alkylaminoglycosyl moiety linked to the 6-hydroxy group of the deoxystreptamine moiety optionally comprising an aminoglycosyl group linked to the 4-hydroxy group of the deoxy-streptamine moiety, the zinc cation forms a complex with aminohydroxyl group pairs located at certain positions, depending on the properties of the aminoglycoside antibiotic, when the cationic complex of the aminoglycoside antibiotic with seasoning is reacted with an acylating agent containing an acyl group usually used to introduce a protective amino group in the synthesis of the polypeptides, the acylating agent acylating at least one of the amino amino groups in the aminoglycosides mantibiotics that do not form a complex and are therefore not blocked by the zinc cation so that the acylated amino group is protected, and further that when the resulting acylation product, i.e., the cationic complex of the aminoglycoside antibiotic with zinc containing the acylated amino or acylated amino groups is reacted with a suitable zinc cation removing agent from this acylation product, the zinc complex is disrupted to provide a selectively protected N-acylated amino-glycoside derivative of the zinc-uncomplexed amino group or amino groups have been selectively protected with an acyl group.

The invention thus provides a process for the preparation of a selectively acylated N-protected derivative of an aminoglycoside antibiotic.

The present invention provides a process for the production of a selectively acylated N-protected derivative of an aminoglycoside antibiotic comprising 4-O- (aminoglycosyl) -6-O- (3 "-amino-or 3" -methylamino-3 "-deoxyglycosyl) -2-deoxystreptamine in which the 1-amino- and 3-amino groups are unprotected, but all other amino groups are protected with an amino-protecting acyl group of formula I wherein R 'is hydrogen or ethyl, G is formyl , C 2 -C 5 alkanoyl, C 2 -C 5 trifluoroalkanoyl, C 1 -C 4 alkoxycarbonyl, 1 to 4 carbon phenyloxycarbonyl, 1 to 4 carbonyl phenylalkyloxycarbonyl or C 1 -C 4 methoxyphenylalkoxycarbonyl groups. 4 carbon atoms of alkoxy, Q 1 represents an N-protected aminoglycosyl group of the formula IIIa

W is hydroxy or N-protected amino -NHG wherein G is as defined above, X is hydrogen or hydroxy, Y is hydrogen or hydroxy, Z 'is hydrogen, hydroxy, N -protected amino group of formula -NHG or N-protected alkylamino group of formula R '

—N

G in which G is as defined above and R 'is methyl, Z' is a hydrogen atom or a methyl group, or QL is an N-protected 3 ', 4'-dideoxy-3' - eno-aminoglycosyl group of the general formula IIIa

261833 10 wherein G is as defined above, or Q 1 is an N-protected 3 ', 4'-dideoxy-4'-one-aminoglycosyl group of the general formula IVa

R "-CH-NHG

wherein R '' is a hydrogen atom or a methyl group and G is as defined above, is a 3 "-amino-3" -deoxy dycosyl group of the formula Va

wherein M is hydroxy or hydrogen and M; is hydroxy or hydrogen, or Q2 is a 3 &apos; -methylamino-3 &apos; -deoxyglycosyloxy group of the formula VIa.

in which

R 'represents a hydrogen atom or a methyl group, wherein the zinc cation salt with an inorganic or organic acid is reacted with a self-glycotsid antiblotics of formula VII wherein R' is hydrogen or ethyl, Q 3 is an aminoglycosyl group of general formula IIb

wherein W 'is hydroxy or amino, X is hydrogen or hydroxy, Y is hydrogen or hydroxy, Z''is hydrogen, hydroxy, amino or methylamino of the formula --NHR, wherein R 'is methyl, Z' is hydrogen or methyl or Q 3 is 3 ', 4'-dideoxy-3'-eno-aminoglycosyl group IIIb

or 'Q3 is a 3', 4'-dideoxy-4'-eno-aminoglycosyl group of formula IVb 261853 11

wherein R '' represents a hydrogen atom or a methyl group and Q 4 represents a 3 "-amino-3" -deoxyglycosyl group or a 3 "-methylamino-3" -deoxy-glycosyl group identical to the above-mentioned group Q 2 of the general formula And / or V1 at a molar ratio of at least 1 part molar, preferably 2 to 6 parts molar zinc cation salt with an inorganic or organic acid per 1 molar aminoglycoside antibiotic of formula VII at a temperature between -10 ° C. and 100 ° C in an inert organic solvent selected from dimethyl sulfoxide, aqueous dimethyl sulfoxide, dimethylformamide, aqueous dimethylformamide, a mixture of dimethylsulfoxide and dimethylformamide, tetrahydrofuran, aqueous tetrahydrofuran, methylene, aqueous methanol, ethanol and ethanol, optionally in the presence of sodium acetate to form the cationic complex of the aminoglycoside antibiotic with the seed, then the cationic complexaminoglycoside antibiotic is zinc it may be reacted with an acylating agent selected from the group consisting of the carboxylic acid of the formula IVa RRCOOH (IVa) wherein R5 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a trifluoroalkyl group having 1 to 4 carbon atoms, or with the halide, anhydride or active ester of the aforementioned carboxylic acid of formula IVa, the chloroformate of formula IVb R6O-CO-Cl (IVb) p-nitrophenyl carbonate of formula IVc RfO-CO-O-C6H5-p-NO ·, ( IVc) active N-hydroxysuccinimide ester of formula IVd 12 0 0 (IVd) and azidoformiate of formula IVeReO — CO — N 3 (IVe) in which samples

R 6 is as defined above and R 6 is C 1 -C 4 alkyl, phenyl, C 1 -C 4 alkyl, or C 1 -C 4 p-methoxyphenylalkyl; C, for the acylation of uncomplexed amino groups present in the cationic complex of the aminoglycoside antibiotic with zinc and thus to form a cationic complex of the N-acylated aminoglycoside antibiotic with zinc, and the zinc cationic complex of the N-acylated aminoglycoside antibiotic is then left with water or with an aqueous or non-aqueous polar organic solvent selected from methanol, ethanol, liquid ammonia, ethylamine and triethylamine, or with hydrogen, alkali metal sulfide or alkaline earth metal or water ammonium hydroxide or cation exchange resin containing carboxylic or sulfonic acid functions or an anion exchange resin containing ammonium functions, or a chelating agent containing metal chelating functions or with chitin or chitosan as a water-insoluble higher polymer comprising a compound capable of combining, at a temperature between -10 and 100 ° C, removing the zinc cations from the complex and forming an N-acylated amino glycoside antibiotic of formula I.

The process of the invention is suitable for the production of a selectively acylated N-protected aminoglycoside antibiotic derivative of cyano of some amino groups other than the 1- and 3 &apos; -amino groups of the starting aminoglycoside antibiotic, and such selectively N-protected derivative is a suitable prochemical the synthesis of 1-N-amino acylated derivatives of aminoglycoside antibiotics, for example kanamycin C 1, including amikacin ("Journal of Antibiotics" 25, 695-708 (1972)], which has been shown to be an effective antibacterial drug in recent years 261853 13 11. N-aminoacylated derivatives of aminoglycoside antibiotics include numerous derivatives of aroinoglycosides, such as kanamycin A, cananycin B, kanamycin C, gentamicins, sisicin, and others, as well as their various deoxy derivatives, but all of which are consistent with that their J-amino group is acylated with some -hydroxy-ω-aminoalkanoyl group (see U.S. Pat. Nos. 3,781,268, 3,939,143.3,940,382, and 4,001,208). Due to this 1-N-aminocacylation, aminoglycoside antibiotics receive antibacterial activity against resistant bacteria against which the current antibiotics are not effective and these aminoglycoside antibiotics also obtain improved antibacterial activity against broader bacterial areas compared to existing aminoglycoside antibiotics.

The method of the present invention will now be described in more detail.

The aminoglycoside antibiotic to be reacted with a zinc cation to form a zinc complex, which may also be referred to as the zinc complex salt of the present invention, includes such aminoglycoside antibiotics containing a deoxy-streptamine structure whose 6-hydroxy group is substituted with 3-amino -glycosyl or 3-alkylaminoglycosyl group, and whose 4-hydroxy group may be optionally substituted with one of the aminoglycosyl groups. More specifically, the aminoglycoside anti-biotic used in the present invention to form a zinc cation complex may be defined as containing 6-O- (3 "-amino- or 3" -alkylamino-3 "-deoxyglycosyl j -2- In addition, the aminoglycoside antibiotic may be any 1-N-alkylaminoglycoside, for example netilmicin, as examples of aminoglycoside antibiotics useful in the present invention. of the invention can be mentioned a group of kanamycin A antibiotics, such as kanamycin A, 6 * -N-alkyl-kanamycin A, especially 6'-N-methylkanamycin A, 3'-deoxycanamycin A, 6'-N-methyl-3'-deoxycanamycin A, 4'-deoxycanamycin A, 6'-N-methyl-4'-deoxycanamycin A, 3 ', 4'-dide-oxycanamycin A (see Japanese Patent Application Nos. 11 402/79), and 6 "- deoxy- or 4 ", 6" -dide-oxycanamycin A (see Japanese Patent Application No. 34 733/79), a group of kanamycin B antibiotics, i.e. kanamycin B alone 3'-deoxy-kanamycin B (i.e. tobramycin), 4'-deoxy-kanamycin B, 3 ', 4'-dideoxycanamycin B (i.e. dibecacin), 3', 4'-dideoxy-3'-eno-kanamate -cin B. 6'-N-methyl-3 ', 4'-dideoxycanamycin B, a group of kanamycin C antibiotics, that is, kanamycin C, 3'-deoxycanaraycin C, 3', 4'-dideoxycanamycin C, gentamicins A , B and C, verdamicin, sisomicin and netilmicin (i.e., 1-N-ethylsisomycin), as well as other known aminoglycosides.

The method of the first idea of the present invention is applicable not only to so-called aminoglycoside antibiotics, which are not yet known and will be discovered in the future, but also to novel semisynthetic aminoglycoside derivatives of antibiotics which will in future be manufactured by chemical transformation of known amino-glycoside antibiotics .

Typical examples of aminoglycoside antibiotics for use in the present invention are kanamycin A, kanamycin B, kanamycin C, deoxy derivatives of such cancers, and their 6'-N-alkyl derivatives, which are defined by this general formula.

wherein R 1 is hydroxy or amino, R 2 and R 3 are each hydrogen or hydroxy, and R 4 is hydroxy or amino or alkylamino containing alkyl of 1 to 4 carbon atoms, especially methylamino.

In order to form the zinc cation aminoglycoside antibiotic complex by reacting the zinc cation aminoglycoside antibiotic of the present invention, the corresponding aminoglycoside antibiotic, either in the form of its free base or in the form of its acid addition salt, is dissolved or suspending in a suitable organic solvent and adding the appropriate zinc salt to at least 1 mole per mole of the aminoglycoside antibiotic used. Any conventional organic solvent may be used if the zinc complex formed after the addition of the zinc salt is at least partially soluble therein. Preferably, however, the large volume of polar organic solvent and, in particular, the larger volume of water should be avoided since the presence of a polar organic solvent and water would reduce the stability of the resulting complex of the amino-glycoside antibiotic and zinc cation so that the subsequent acylation reaction would introduce 261853 13 The protective amino group could give a disappointing result.

Thus, it is desirable to use an organic solvent having a high solubility, for example dimethyl sulfoxide as the solvent in which the zinc complex is to be formed, but it is also possible to use aqueous dimethyl sulfoxide, dimethylformamide, aqueous dimethylformamide, a mixture of dimethylsulfoxide and dimethylformamide, tetrahydrofuran, aqueous tetrahydrofuran, as well as lower alkanol as methanol, ethanol and aqueous methanol.

The zinc cation may be added in the form of a zinc salt to the system in which the complex is formed. For this purpose, a zinc salt formed by the reaction of zinc cation with a conventional organic or inorganic acid can be used in the present invention. However, it is generally preferred to use a zinc salt of some weak acid, for example zinc acetate, since it is common that among the metal complexes containing an amino group, the non-quaternary amine group complex with the metal salt is more stable than the ammonium-type complex of the metal salt, and that the use of a zinc salt and a weak acid does not normally result in the formation of a relatively unstable complex of aminammonium-containing metal. If a zinc salt of an acid, such as zinc chloride, is used, the desired complexzinc can also be formed, but it is preferable to add a weakly alkali salt, for example sodium acetate, to the salt to neutralize the reaction medium. Similarly, it is desirable to add a certain amount of sodium acetate or sodium hydroxide as a neutralizing agent when the starting aminoglycoside antibiotic is used in the form of its additive salt with a strong acid, for example hydrochloric acid. In this case, the use of an unnecessary excess of neutralizing agent should be avoided, as otherwise the precipitation of the hydroxybenzoate will be impaired, thereby compromising the formation of the complex. For example, when the aminoglycoeide antibiotic tetrahydrochloride is used to form a complex, preferably 4 moles of sodium hydroxide are added to neutralize the reaction mixture.

If the total molar amount of zinc used is at least equal to the molar amount of the aminoglycoside antibiotic, the complex formation reaction can take place. However, it is preferred to use zinc salts in a quantity substantially greater than 1 mole per 1 mol of aminoglycoside antibiotic, so that the reaction to form the complex is shifted in favor of complex creation. A favorable yield of zinc complex can be obtained by using zinc salt in an amount of 2.3 to 6 moles per mole of aminoglycoside, but in the case of zinc salts 4 to 5 moles per mole of aminoglycoside is most preferred. The time required for the complete complex formation reaction after the addition of the zinc salt can vary depending on the organic solvent used and can be "instantaneous" (using an aqueous organic solvent) up to 20 hours. The complex formation reaction may normally take place at room temperature, but heating or cooling may be performed.

In this way, a solution or suspension containing a zinc complex and an amino-glycoside antibiotic is prepared to which an acylating agent having an acyl group for addition to the complex is added as a protective amino group.

The acylating agent used in the process of the present invention may be a conventional amino protecting agent, and is used to allow free, complex non-forming amino groups in the resulting complex of aminoglycoside antibiotic and zinc cation to be acylated and blocked and acyl group acyl group.

The acylating group may be an alkanoyl group, an aroyl group, an alkoxycarbonyl group, an aralalkoxycarbonyl group, an aryloxycarbonyl group, an alkylsulfonyl group, an arylalkylsulfonyl group, or an arylsulfonyl group, which are all common amino protecting groups.

The acylating agent useful for this radical may also be a carboxylic acid of formula (IVa): R 5 COOH (IVa) wherein R 5 is hydrogen, alkyl, especially C 1-6 alkyl, aryl, especially phenyl, or aralkyl, especially benzyl, and optionally further substituted, or any halide, anhydride or active ester of said carboxylic acid of formula (IVa), or a chloro-format of this general formula (IVb): R 5 O —CO — Cl (IVb) or p-nitrophenyl carbonate of this general formula (IVc): R 50 -CO-O-CGHv-p-NO., (IVc) or the active N-hydroxysuccinimide ester of this formula (IVd):

Or ild (IVd) or azidoformate of the formula (IVe): R 50 -CO-N 9 (IVe) 261853 17 18 wherein R 'is as defined above, or sulfonic. an acid of the formula (IVf):

Rhsn-ii (ivf) wherein R 1; yeah and hydrogen, alkylnpine. in particular, an alkyl group having from 6 to 6 carbon atoms, an aryl group. in particular phenyl, or aralkyl, in particular phenylalkyl, for example benzyl, and these may be optionally substituted, or the halide, anhydride or active ester of the sulfonic acid. it is therefore clear that the acylation reaction protection of amino groups according to the present invention is acylation in a broad sense, including, for example, formylation, acetylation, propionylation, trifluoroacetylation, benzyl oxycarbonylation, p-methoxybenzyloxycarbonylation, t-butoxycarbonylation, phenexycarbony- tosylation, mesylation and other equivalent reactions.

Particular examples of useful acylating agents are acetoxyformyl, p-nitrophenyl formate, acetic anhydride, acetyl chloride, propionic anhydride, trifluoroacetic acid p-nitrophenol ester, trifluoroacetic acid ester, N-benzyloxycarbonylaminocide (a significant active ester). , N-benzyloxycarbonyloxyphthalimide, benzyloxycarbonyl chloride, p-methoxybenzyloxycarbonyloxy-p-nitrophenyl, t-butoxycarbonylazide, phenoxycarbonyl chloride, tosyl chloride, mesyl chloride and others,

The acylating agent, either as such or as a solution in a solvent such as tetrahydrofuran or dimethyl sulfoxide or a mixture thereof, may be added to the solution or suspension containing the aminodycoside antibiotic complex and zinc. Typically, the amount of acylating agent may be greater than or equal to the excess of the number of unexploded amino groups with which the acylating agent is to react. However, in some cases, the amount of acylating agent added may be from about a molar amount and about three times higher than the number of uncomplexed amino groups.

The acylating agent may be added, either at once or in portions over about 2-3 hours, although it may usually be added within 30 minutes to one hour. The acylation may be carried out at a temperature of from -20 ° C to 100 ° C, but may normally be carried out at a temperature in the range of 0 ° C to room temperature. In some cases, the temperature of the reaction may be kept low during the addition of the acylating agent and then gradually increased as the acylation proceeds. Normally, the acylation reaction may be carried out in a sieve in an organic solvent in which an aminoglycoside antibiotic complex with a zinc cation is formed.

This acylation of the zinc complex forms an N-acylated zinc complex, i.e. a complex of zinc cations with a selectively N-acylated derivative of cminoglycoside antibiotic.

According to the method of the first idea of the present invention, the acylation of the zinc cation complex of the aminoglycoside antibiotic is followed by a step of removing the zinc cation from the N-acylated zinc complex, namely, the zinc complex is decomposed to obtain an actively protected N-acylated derivative of an aminoglyccside antibiotic which is zinc cations.

To remove zinc cations from the N-acylated zinc complex, it is necessary to react N-acylated zinc complex with a suitable reagent that removes the zinc cation from said N-acylated zinc complex. There are many ways to use this. The first method consists in reacting the zinc precipitating agent capable of converting the zinc cation to a zinc compound water-soluble, for example zinc sulfide, zinc hydroxide or zinc carbonate, while the N-acylated zinc complex remains dissolved in mixtures for acylation reactions where the zinc cation complex of the aminoglycoside antibiotic was acylated, or after being transferred to a new solution in fresh organic solvent from said mixture for the acylation reaction. The zinc precipitating agent useful in the first process may be hydrogen sulfide, some alkali metal sulfide, ammonium sulfide, some alkaline earth sulfide, for example, calcium sulfide, and alkali metal carbonate, for example sodium carbonate, or ammonium hydroxide. In some cases, the removal of zinc cations from the N-acylated zinc complex can only be accomplished by the addition of water. According to the first method of adding a zinc precipitating agent to a solution of the N-acylated zinc complex, precipitation of the insoluble zinc compound formed from the zinc cations is relatively rapid and the precipitate can be removed by filtration. The N-acylated derivative of the amino-glycoside antibiotic, which then remains in the filtrate solution, can be obtained by concentration of the solution or extraction from the solution, and if necessary can be purified. For example, chromatography in a column of silica gel can be used for purification. The second method is to complete the above-mentioned mixture for acylation reaction (i) by concentrating or concentrating it to dryness by evaporating the solvent, or (ii) diluting with a liquid diluent, which may also be carried out with a new solution of the N-acylated zinc complex of the transferred fresh volume an organic solvent such that an oily or solid sediment, concentrate or residue is obtained, whereupon the desired N-acylated aminoglycoside derivative is obtained in some way from 261853 19. The liquid diluent useful in this second method is water or such an organic liquid in which either the N-acylated zinc complex or the structure of the N-acylated derivative of the aminoglycoside antibiotic of said N-acylated zinc complex is only or only low solubility.

First of all, according to the aforementioned second method, the acylation reaction mixture comprising an N-acylated zinc complex (non-ionic solution of N-acylated zinc complex transferred to an organic solvent) is concentrated or concentrated to dryness to give an oily or solid deposit or residue. . When an inorganic solvent, such as dimethylsulfoxide, etc., is difficult to evaporate for the reaction environment, for the N-acylation of the zinc complex, it is possible that the reaction mixture proacylation containing the N-acylated zinc complex is mixed with the organic liquid diluent, e.g. with an ethyl ether such that the hardly volatile organic solvent is dissolved in or diluted with this diluent, whereby a solid or oil containing N-acylated zinc complex is deposited therefrom. In this way, an oily or solid deposit is obtained which is normally a mixture consisting of (i) an N-acylated zinc complex, i.e. a zinc cation complex with an N-acylated α-minoglycoside antibiotic derivative, (ii) N- an acylated derivative of aminoglycoside antibiotic deprived of decomposition of the complex-forming linkage in a portion of the N-acylated zinc complex due to the substantial absence of an organic solvent environment; (iii) from a certain amount of inorganic zinc formed by complex-forming digestion coupling in a portion of the N-acylated zinc complex, (iv) from a certain amount of zinc salt that has been added initially as excess and has remained unreacted by the formation of the complex, and possibly (v) the residual amount of organic solvent used in previous operations. The above-mentioned oily or solid residue (the aforementioned mixture) may then be treated by any of the processes (a), (b) and (c) below. (a) The oily or solid deposit or the abovementioned mixture is mixed with or by a polar organic solvent, an aqueous polar organic solvent or a mixture of polar organic solvents, which is a polar organic liquid disintegrating complex of the zinc cations in the N- the acylated zinc complex present in said deposit or residue, and wherein the portions of the zinc salt liberated and initially unreacted are soluble but in which the desired N-acylated aminoglycoside derivative antibiotic is insoluble. In this way, the N-acylated zinc complex is broken down to release the zinc compounds therefrom, allowing the zinc cations to dissolve and extract as zinc salt with water or aqueous inorganic solvent, and leaving the desired N-acylated amino glycoside antibiotic derivative in a non-zinc salt. residual to be recovered. The residue may optionally be purified by redissolving it in an organic solvent. The polar organic solvent useful in this process (a) is, for example, methanol, ethanol, liquid ammonia, ethylamine and triethylamine. These polar organic solvents and water serve as a zinc removal agent. (b) Alternatively, the oily or solid composition (the aforementioned mixture) is blended with a different kind of polar organic solvent, either anhydrous or aqueous, to decompose the zinc cation complex formation in the N-acylated zinc complex present in said soil or residue and in which the zinc salt is not soluble, but the desired N-acylated aminoglycoside derivative is soluble so that the N-acylated zinc complex is decomposed to release the N-acylated aminoglycoside antibiotic derivative therefrom to allow dissolution and extraction by said polar organic solvent and thus salt separation. zinc which is released but remains undissolved in said polar organic solvent. In this way, a solution of the desired N-acylated aminoglycoside antibiotic derivative in a polar organic solvent is obtained and collected, it can be purified, for example, chromatographically with the following concentration of purified solution to separate the desired N-acylated product. (c) According to a further alternative, the oily or solid deposit or residue (the aforementioned mixture) obtained in the aforementioned second method can be redissolved as a whole in a suitable organic solvent containing a proportion of water when the whole residue is or a water-soluble or substantially water-soluble residue. The solution thus obtained can then be subjected to a chromatographic process in which the liberated zinc salt and the released N-acylated aminoglycoside antibiotic derivative can be recovered separately from the solution. The present inventors have found that various types of ion-exchange resins, anion exchange and chelating and water-insoluble high polymers containing combinations capable of combining with metal, such as chitin or chito-san, are useful for this chromatographic process. . Suitable cation exchange resin grades for this purpose are those which carry carboxy groups (—COOH 1 as interchange functions, and those containing sulfonyl groups (—SO: iH as exchange functions. in which the cation exchange resin containing the carboxyl functions for the above-mentioned chromatographic process, the above-mentioned oily or solid residue or residue (the aforementioned mixture) is dissolved in a suitable aqueous organic solvent, for example 10% to 90% by volume of water and ethanol. water, or a mixture of water and an dioxane containing from 10% to 90% by volume of water, and the resulting solution is introduced into a column of said cation exchange resin, and the column is then washed with an additional amount of the above-mentioned organic solvent, followed by induction of e- The eluent uses the amount of the above aqueous organic As the acid, a weak organic acid, for example, acetic acid, or a dilute inorganic acid, such as dilute hydrochloric acid, may be used.

As a base, α-inorganic hydroxide can be used for most cases. The concentration of the acid or base in the developing solvent (the eluent may preferably be from 0.01 to 5% by weight of the developing solution. The desired N-acylated aminoglycoside derivative may be separated from the complexing zinc cations during the process of development). Since the resin used for the exchangers has different adsorption affinities with respect to the desired N-acylated aminoglycoside and zinc cations, it is firstly different from that of the other for bonding with the resin for bonding with the resin. zinc-free N-acylated aminoglycoside which can then be concentrated to obtain the desired N-acylated aminoglycoside antibiotic derivative.

If the cation exchange resin containing the sulfonyl functions is mentioned above, the separation and extraction of the desired N-acylated aminoglycoside antibiotic agent can be accomplished in the same manner as above, since to separate the N-acylated aminoglycoside cd com -Plexing Zinc Cations is the same mechanism. On the other hand, a weakly or strongly alkaline anion exchange resin is used for the chromatin-graphical process, the proportion of N-acylated aminoglycoside in the N-acylated zinc complex which contains one or more non-acylated amino groups is not normal they are adsorbed weakly or strongly by base-resins for the anion exchange due to ionic repulsion between them, so that the development of an anion exchange resin column with a suitable aqueous organic solvent allows the N-acylated aminoglycoside antibiotic derivative to elute while the zinc cations remain column.

Performing the chromatographic process using a chelate exchange resin capable of combining with zinc cation, a solution of the above-mentioned solid or solid residue or residue (above) in an aqueous organic solvent is introduced into the resin column of the chelate exchange the developing solvent is then eluted from the column, while the zinc cations remain bound in the resin to exchange the chelates. The water-soluble high polymer containing metal-combining functions, such as chitin and chitonil, can be used in the same manner as when using a resin to exchange chelates. (dj Furthermore, a process in which the aforementioned acylation reaction mixture in which zinc complex acylation was performed to protect amino groups is directly introduced into a column of cation exchange resin or anion exchange, chelating agent, or water insoluble exchange) a high polymer having a combination function of the combination so that the N-acylated zinc complex is adsorbed by the resin or by the high polymer, which may then be a washbasin organic solvent containing or not containing acid or base as indicated in process (cj, followed by similar operations) as in process (c), thereby removing zinc cations from the N-acylated zinc complex, as well as extracting the desired N-acylated aminoglycoside antibiotic derivative. The N-acylated derivative of the α-minoglycoside antibiotic of the above-mentioned acylation with reakciobsahující N-acylated zinc komplexzpracuje immediately adding water as dy, if the desired N-acyl-derivative of derivatization of the aminoglycoside antibiotic is not soluble in water.

An example of an N-acylated derivative of an α-minoglyccside antibiotic which is substantially insoluble in water may be 3,2 ', 6'-tri-N-benzyloxycarboinyldibecacin. In this case, when the acylation reaction mixture containing the N-acylated zinc complex containing the N-acylated derivative of the aminoglycoside substantially insoluble in the water is immediately mixed with water, the complexing bonding in the Na-linked zinc complex and the N-acyl- the aminoglycoside derivative is precipitated as a solid while the zinc salt formed from the released zinc cations remains in solution so that the desired N-acylated derivative of the 281853 24 23 aminoglycoside antibiotic as a substantially pure product can be recovered separately from the zinc salt.

As mentioned above, the N-acylation, namely the reaction to protect amino groups, is carried out with the zinc complex of the aminoglycoside antibiotic in accordance with the first idea of the present invention and the complex of zinc zinc mono-, di-, tri- or the poly-N-acylated derivative of aminoglycoside thus formed is one in which the zinc cations used are complexed to the structure of the N-acylated aminoglycoside derivative. If the desired N-acylated aminoglycoside derivative is insoluble or poorly soluble in the water, simply adding water to the mixture causes an N-acylated zinc complex containing acylation reaction such that the water-insoluble N-acylated aminoglycoside derivative precipitates as a solid, whereas the release cations are removed from the mixture by dissolution in water as in the fourth process described in the preceding paragraph (ej). The precipitate thus obtained, which is insoluble in water, can be used immediately as starting material for the following reactions for More generally, although the N-acylated aminoglycoside antibiotic derivative is sometimes soluble or partially soluble in water, and therefore the N-acylated aminoglycoside derivative can be recovered only at a substantially reduced yield if a simple water addition process is used immediately Therefore, a better result can be obtained by using either of the above procedures (bj and (cj, in which the N-acylated zinc complex, that is, the zinc cation complex with N-acy The separated aminoglycoside derivative formed in the N-acylation reaction is first separated from the acylation reaction mixture, the N-acylated zinc complex thus separated is then dissolved in water or some aqueous organic solvent and the resulting solution is further dissolved. processed to remove zinc cations therefrom. One simple method of removing zinc cations that is generally applicable is that in which the hydrogen sulfide or alkali metal sulfide is reacted as a zinc cation precipitating agent to precipitate it as zinc sulfide, which is one method of the first procedure described in (a) above. However, the zinc sulfide sometimes precipitates as a colloidal deposit, which is not very filtered and, in addition, hydrogen sulfide and sulfide alkali metals have an unpleasant odor not suitable for use in commercial use of the process. Therefore, the present inventors have conducted extensive research to create a practical way to remove zinc cations from the zinc complex without the use of sulfides, and have succeeded in developing an efficient and easy way to remove zinc cations by using the above-mentioned exchange resins. ions or other polymeric material, such as in processes (c) and (d) described above. These processes (cj and dj are commercially advantageous and valuable since they are easy to perform, give high zinc deprotection efficiency and give a high yield of the desired N-acylated aminoglycoside antibiotic derivative.

Finally, the methods and procedures described above for treating the N-acylated zinc complex can be summarized as follows: (i) A zinc cation complex with a selectively N-acylated aminoglycoside antibiotic derivative; separating the pro-acylation reaction from the mixture before reacting with one zinc removal cation reagent from the complex. (ii) The zinc cathode complex with a selectively N-acylated aminoglycoside derivative antibiotic is separated from the mixture for acylation by extraction with an organic solvent, evaporation of the organic solvent from the acylation re-mixture or dilution of the mixture for (iii) The zinc cation complex is mixed selectively with N-acylated amino-glycoside derivative antibiotic once with water or some polar organic solvent; either anhydrous or aqueous to serve as a zinc cation removal agent. This polar organic solvent is either one of which the zinc salt is soluble, but in which the N-acylated aminoglycoside antibiotic derivative is insoluble or one in which the zinc salt is insoluble but in which the N-acylated derivative is aminogly -coside antibiotic soluble. NIV: The zinc cation complex with the N-acylated aminoglycoside derivative of the edible antibiotic is again dissolved in an organic solvent containing some water, and the resulting solution is subjected to a chromatographic process using a cation exchange resin, anion exchange, exchange or a water-insoluble polymer containing functional groups capable of being combined with a metal serving as a zinc cation removal agent. (v) The acylation reaction mixture is passed through a column of cation exchange resin, anion exchange, exchanges, or a water insoluble polymer comprising a metal-combining function to adsorb the zinc cation complex with the N-acylated derivative; the minoglycoside antibiotic, and the column is then developed with some aqueous organic 261853 25 28 solvent containing or not containing an acid or base, and the eluate is collected in fractions, followed by extraction of the fraction containing the desired selectively N-acylated amino dykoside derivative; containing no zinc cations. (vij If the desired N-acylated α-aminoglycoside antibiotic derivative is insoluble or substantially insoluble in water, the acylation reaction is directly mixed with the water so that said derivative precipitates out of the zinc salt which remains dissolved. (vii) The acylation reaction mixture is reacted immediately with hydrogen sulfide, alkali metal sulfide, or alkaline earth sulfide to precipitate zinc calions such as zinc sulfide or ammonium hydroxide to precipitate zinc sulfates. In the zinc complex mentioned in the first idea of the invention, the zinc salts are principally linked to the 1-amino and 3 &apos; -amino-aminoglycoside antibiotic complex and hence the N-acylation of the aminoglycoside antibiotic complex with the zinc cation followed by by removing the zinc cations, normally the N-acylated amino-glycoside derivative is preferred antibiotics wherein the amino or alkylamino groups other than the 1-amino and the 3-amino groups are protected by an alkyl group.

When the N-acylated derivative of the aminoglycoside antibiotic thus obtained is acylated according to the first idea of the present invention with an .alpha.-hydroxy-.alpha.-aminoalkanic acid according to the method described in U.S. Pat. No. 3,939,143, followed by removal of the remaining protecting groups by protecting the amino groups from the resulting 1-N-acylated product to provide a semi-synthetic 1-N-acylated amine glycoside antibiotic known as a useful antibacterial agent.

The synthesis of 1-N-acylated aminoglycoside antibiotics is now described with reference to the exemplary use of canaraycin A as a goat. When kanamycin A is used as the starting material in the process of the invention, it is initially blocked by 1-amino- and 3-amino-complexes by complexation with seasoning cations upon formation of its zinc complex. Thus, if the kanamycin A complex with the zinc cation is acylated with a suitable acylating agent of the present invention or another amino blocking agent, the non-complexed 3-amino- and 6'-amino groups of the kanamyl A moiety can be protected by the acyl group used. agents or other species of α-nosculitis blocking group. Subsequent removal of the complexing zinc cations from the zinc cation N-acylated 10 'kanamycin A complex, the resulting N-acylated kanamycin A derivative is reacted with an acylating agent having an acyl group to be introduced into the 1-amine; This acyl fill then only reacts with the unblocked 1-amino- and 3-amino groups of kanamycin A. In this context, the 1-amino group is normally somewhat re-more active than the 3-amino group, so The desired 1-N-acylated derivative of kanamycin A can be obtained with a slightly higher yield than the 3 "-N-acylated cananycin A derivative. Subsequent cancellation of the N-protection of the 1-N-acylated kanamycin derivative of Atakto obtained by 1-N acylated cannabinic A as a desired end product. When using the process according to the first idea of the present invention, it can be seen that the desired 1-N-acylkanamycin A can be obtained at a higher yield compared to the case where unprotected kanamycin A or 6 The N-protected kanamycin A is reacted directly with an acylating agent for 1-N-acylation of kanamycin A. If no N-protecting kanamycin is reacted with any 1-N-acylating agent it is found that mixed N-acylated products comprising a very small proportion, usually from 1% to a few% by weight, are found in this case. the desired 1-na-cyano product.

When using the method of the first aspect of the present invention for kanamycin of the above general formula (III), some or all of the amino acids other than the 1-amino- and 3-amino-amino groups of the used kanamycin are protected, giving the N-acylated derivative kanamycin corresponding to this general formula (V):

where

Rfa is hydroxy, amino (—NH 1), —NHCOR 5, or —NHCO · OR 5, —NHSO 2 R 6, R <is hydroxy, —NHCO3, group 261853 2? 28 R8 /

—N COR5 group - NHCO.OR5, group R8 /

—NC — OR5 —NHSO2Rfi or R8 /

SO2R ° R3 and R! are as defined above in relation to formula (III), R 7 is —COR 5, - CO.OR 5 or —SO 2 R 6, R 5 and R G are as defined above for formulas (IVa) to (IVf), and R 8 is an alkyl group, especially an alkyl group having 1 to 4 carbon atoms. When the method of the first aspect of the present invention is applied to some kanamycin, a N-protected derivative of kanamycin of formula (V) is usually obtained, wherein all amino groups other than the amino and / or alkylamino groups present in the positions 1- and 3-kanamycin molecules are blocked.

However, when the acyl group to be introduced as an amino blocking group is relatively broad in its spherical size, for example t-butoxycarbonyl, or when the molar amount of acylating agent used in the reaction is less than the stoichiometric amount desirable for the acylation of non-complexing amino groups in the kanamycin molecule, although the acyl group acylating agent is customary in size, or when the acylation reaction is stopped on the scale, an N-protected derivative of kanamycin is obtained in which the number of acylated amino groups in the molecule kanamycin is smaller than in the above case, and then in particular cases such a limited N-acylated derivative of kanamycin is obtained, in which the 6'-amino- or 6'-alkylamino group is exceptionally acylated, by that of 6 ' the amino- or 6'-alkylamino group is more reactive than the other amino group in the kanamycin molecule. The N-acylated derivative of kanamycin of general formula (V) is a significant intermediate useful in the semi-synthetic preparation of various kinds of kanamycin derivatives. The compound of formula (V) has an increased value as the intermediate for chemical synthesis, for example, when a 1-N-acylated aminoglycoside antibiotic active against kanamycin-resistant bacteria is introduced into the process, acylation of the 1-amino-group of the compound of formula (V) any α-hydroxy-ω-aminoalkanoic acid followed by deprotection of the blocked amino and / or alkylamino groups of the resulting 1-N-acylated product. For example, if the intermediate compound of formula (V) is to be acylated with an acyl group, for example (S) -4-benzyloxycarbonyl-amino-2-hydroxybutyryl, the compound of formula (5) may be in a suitable solvent, e.g. aqueous tetrahydrofuran, reacted with an appropriately substituted butyric acid or an equivalent reactive derivative thereof, for example an active ester, for example N-hydroxysuccinimide ester. N-hydroxyphthalimide ester or p-nitrophenol ester to form the 1-N-acylation product. The subsequent removal of the benzyloxycarbonyl and protecting group (R 7) in formula (V) from the 1-N-acylation product can be accomplished by the conventional N-deprotection technique, for example, either by hydrolysis with acid or base, or by reduction with a reducing metal, or by catalytic hydrogenolysis with water. by reducing the sodium radical in the liquid ammonia to obtain a semisynthetic derivative of kanamycin having a (S) -4-amino-2-hydroxybutyryl group linked to the 1-amino group of kanamycin and active against the lower bacteria, corresponding to this general formula (VI): ".

Wherein R 1, R 2, R 2, and R 3 'are as defined above in relation to formula (III). In the above method, a generally N-protected derivative of some N -hydroxy-w-aminoalkanoic acid of formula (VII): HOOCCH (CH 2) can be used.

OH (VII) wherein n is equal to 1, 2 or 3, instead of (S) -4-benzylcarbonylbonylainino-2-hydroxybutyric acid, thereby obtaining a derivative of 1-N- (R) -w hydroxy-.alpha.-aminoalkynoyl-.beta.-cyanine.

The process according to the invention makes it possible to prepare a 1-N-acylated aminogycoside antibiotic which is known as a semi-synthetic antibacterial composition in high yield. Accordingly, the present invention further provides a process for the preparation of 1N- (α-hydroxy-ω-aminoalkanoyl aminoglycoside antibiotic starting from a known aminoglycoside antibiotic, wherein the amino-cationic complex is initially produced by the above process). zinc glycoside antibiotics, a partially protected N-acylated α-minoglycoside antibiotic derivative in which the 1-amino- and 3 3-amino- or 3--alkylamino groups are not protected and all other amino groups are protected, whereupon the 1-N-unprotected and otherwise N-fully protected derivative by the selective 3'-acylation process described in US Patent No. 261,859 and moves the 1-amino group of the 1-N-unprotected and otherwise N-fully the protected derivative obtained in the preceding step 3 "-N-acylation, acylating with α-hydroxy-ÎČ-amino amino acid, in particular 3-amino-2-hydroxypropionic acid (isoserine) or 4-amino-2-hydroxybutyric acid finally, protecting groups from the N-acy-left product are removed.

Method of production lN- (thihydroxy- Îł-amino-alkynoyl derivative of aminoglycoside antibiotic containing 6-O- (3 "-amino-or 3" -alkylamino-3 "-deoxyglycosyl) -2-deoxystreptamine moiety, optionally containing a 4-O-aminoglycosyl group is carried out in a manner that (also zinc cations are reacted with an aminoglycoside antibiotic in an inert organic solvent to form a zinc cation complex with an aminoglycoside antibiotic, (bj with a zinc cation complex with an aminoglycoside antibiotic that has been formed in The above-described step (a) is reacted in situ in an inert organic solvent with an acylating agent having an acyl group to be introduced as an amine protecting group to form a complex of zinc cations with a selectively N-acylated aminoglycoside derivative of the antibiotic originally uncomplexed amino groups acylated; (c) selectively N-acylated aminoglyc derivative the osidic antibiotic with the seasoning cation obtained in the above-described step (bj is reacted with a reagent to remove zinc cations from the N-acylated zinc complex, to form partially and selectively protected N-acylated aminoglycoside derivative antibiotics which is free of zinc cations and wherein the 1-amino- and 3-amino- or 3'-alkylamino groups are unprotected, but all other amino groups of the aminoglycoside molecule are protected by an acyl group, (d i partially and selectively protected by Na) the -cylated derivative obtained in the above-described step (cj is reacted with an ester of some alkanoic acid which corresponds to (VIIIa):

Ra — C — RbII o (VIII) in which

R a is hydrogen or dihaloalkyl or (C 1 -C 6) trihaloalkyl and R b is (C 1 -C 6) alkyloxy, especially benzyloxy or an aryloxy group, especially phenoxy or N-formylimidazole, as an inert acylating agent an organic solvent to selectively acylate the 3 "-amino- or 3" -alkylamino group with an acyl group of RCO-said acylating agent to form a 1-N-unprotected and other N-fully protected aminoglycoside derivative of antibiotic, in which all amino groups other than The 1-amino group is acyl protected, (e) 1-N-unprotected and the other N-protected derivative obtained in the above-described step (dj is reacted with some α-hydroxy-ω-aminoalkanoic acid of formula (IX j: HOOC) -CH (CH2-NH2

OH (IX) wherein m is 1 or 2, or with an equivalent reactive derivative of this acid, the amino group of which is either unprotected or protected, to acylate the 1-amino group of said 1-N-unprotected derivative, (f) whereupon the remaining amino-protecting groups 261853 31 32 are removed from the 1-N-acylation product obtained in the above-described step (s) in a conventional manner for deprotection. Next, the implementation of the method according to the third idea of the present invention will be described in more detail.

Aminoglycoside antibiotics that are suitable as a starting material for the first step (a) of this process are the same as the anti-biotics described above in the method of the first invention. The reaction of the complexing zinc cations with the aminoglycoside antibiotic is carried out in the same manner as described above. The acylation of the aminoglycoside antibiotic complex with the zinc cation obtained in the first step (i may be in the second step (as described above for the method of the first invention. Removal of zinc cations from selectively N-acylated complex aminoglycoside antibiotic and zinc) The cations thus obtained can be the third step (c) of this process by various methods, as described above, thereby obtaining a partially and selectively protected zinc cation-free N-acylated aminoglycoside derivative and wherein the 1-amino - and the 3 "-amino-or 3" -alkylamino groups are unprotected, but all other amino groups in the aminoglycoside molecule are blocked by the acyl group of the acylating agent used in the step (bj of this process. This partially selectively protected N-acylated derivative of aminoglycoside antibiotic is descendants react in step (dj of this process with an ester of some alkanoic acid (VIII j or with N-formimidazole in the same manner as described above adapted according to the second idea of the invention to obtain a selective 3 '-N-acylation of a partially N-protected aminoglycoside derivative without acylation) its 1-amino group. In the fifth step (ej of this process 1-N - unprotected and another N-fully protected aminoglycoside antibiotic derivative obtained in the previous step (dj of this method is reacted with some α-hydroxy-ω-aminoalkanoic acid of formula (X ), in particular with 3-amino-2-hydroxypropionic acid (DL-isoserine, D-isoserine or L-isoserinj, or with L-4-amino-2-hydroxy-acid to acylate 1-amino-aminoglycoside antibiotic 3-amino-2 - hydroxypropionyl- or 4-amino-2-hydroxy-butyryl.

This 1-N-acylation can be carried out generally as described in British Patent Specification 1 426 908 or in the patent application Sp. st. am. No. 4,001,208, according to any known method for the synthesis of amides by reacting a protected aminoglycoside antibiotic derivative with an isoserine or with L-4-amino-2-hydroxybutyric acid, either in its free acid form or in its form. a reactive equivalent, for example an active ester, for example a dicyclohexylcarbodimide ester, a mixed acid anhydride, an acid azide, in an inert organic solvent, for example dioxane, dimethoxyethane, dimethylformamide, tetrahydrofuran or an aqueous form of these solvents. Isoserine and L-4-amino-2-hydroxybutyric acid may be those whose amino groups have been blocked by an amino protecting group. Suitable amino protecting groups for this purpose may be the same or different from those used in 1 -N-unprotected but another N-protected aminoglycoside antibiotic derivative to be 1-N-acylated. A preferred group for protecting amino groups is t-butoxycarbonyl, since it is directly removable by reaction with dilute acid, for example aqueous trifluoroacetic acid, aqueous acetic acid, and dilute hydrochloric acid.

Furthermore, benzyloxycarbonyl groups, which are removed by conventional hydrogenolysis on palladium or platinum oxide catalysts, as well as phthaloyl groups which are readily removed by hydrolysis with hydrazine, are suitable as amino protecting groups.

The acylation reaction of step 1-N-acylation (according to the method of the fourth idea of the present invention may advantageously be carried out in an aqueous organic solvent using any active ester of the? -Hydroxy? -Aminoalkanoic acid formula (Xj. the active ester may be an isoserine N-hydroxysuccinimide ester or L-4-benzyloxycarbonylamino-2-hydroxy-butyric acid, and the active ester may be used in an amount of from 1 to 2 moles, preferably from 1 to 1.5 moles per 1 The water miscible organic solvent used in the reaction medium can preferably be dioxane, dimethoxyethane, dimethylformamide or tetrahydrofuran.

After step (f) of this process is carried out to remove the protection, i.e., the removal of all remaining amino protecting groups from the 1-N-acylation product obtained in the previous step (removal of the remaining amino protecting groups) The remaining amino protecting group, which is an alkoxycarbonyl type, can be removed by hydrolysis with an aqueous solution of trifluoroacetic acid or acetic acid or dilute acid solution, for example dilute hydrochloric acid. The so-called aminoalkyl protecting group, which is an aralkylcarbonyl type, for example benzyloxycarbonyl, is removed directly by catalytic hydrogenolysis When all of the remaining amino protecting groups from the 1-N-acylation product of the step are removed by 261853 33 34 ( e] of this process, the desired 1N- (2-hydroxy-3-aminoprcpion) is obtained in high yield. Examples of 1-N- {α-hydroxy-ω-aminoalkanecyl] -aminoglycoside antibiotic prepared by the method of the fourth embodiment of the present invention are given below. further.

(1] 1-N- (L-4-amino-2-hydroxybutyryl) -kanamycin A

(2) 1-N- (L-4-amino-2-hydroxybutyryl) -3'-deoxycanamycin A

(3) 1-N- (L-4-amino-2-hydroxybutyryl) -3 &apos;, 4 &apos; -dideoxycanamycin A (4) 1-N- (L-4-amino-2-hydroxybutyryl) -tobramycin ( 5 1-N- (L-4-amino-2-hydroxybutyryl-1-dibecacin (6) 1 N- (3-amino-2-hydroxypropionyl) dibecacin other uses of the methods of the first and second embodiments of the present invention reside in the preparation of an N-alkylaminoglycoside an antibiotics from all N-acylated aminoglycoside derivatives containing an unprotected 1-amino group, and examples of this may be the preparation of netilmycin or its 1-N-alkylanalogs from sisomycin by ligation with a lower aliphatic aldehyde and cyanoborohydride.

The invention will be further illustrated by the following examples. Example 1

Preparation of 3,6'-di-N-benzyloxycarbonylcanancin A (i) 2.0 g, 4.13 mM of kanamycin A as the free base was suspended in a mixture of 50 billion dimethyl sulfoxide and 20 ml tetrahydrofuran and 4 g was added to the suspension, 18.1 mM zinc acetate, dihydrate, whereupon the reaction mixture was shaken at room temperature until a homogeneous solution was formed. The formation and dissolution of the zinc complex of kanamycin A lasted for about 4-5 hours. The resulting solution was then cooled to 0 ° C and a cold solution of 2.37 g, 9.5 mM N was added thereto for one hour. - benzyloxycarbonyloxysuccinimide,

H5CH &amp; OCOO-N / O dissolved in a mixture of 40 ml of tetrahydrofuran-dimethyl sulfoxide 1: 1 by volume The reaction solution was allowed to stand at ambient temperature for 4 hours, during which time the zinc complex of kanamycin A was benzyloxycarbonyl, represents acylation according to the first aspect of the invention.

The sample obtained from the reaction mixture thus obtained was chromatographed on a thin layer of silica gel, using a lower liquid phase of chloroform-methanol-28% aqueous ammonia in a ratio of 1: 1: 1 as the starting solution, giving a major spot of the desired product during chromatography. at R (= 0.23 and two or three smaller spots belonging to by-products at higher points. (ii) The above reaction solution was poured into 500 ml of ethyl ether and the separated oil was washed several times with additional volumes of ethyl ether, thereby (iii) Removal of the zinc cation from a predominantly zinc-containing syrup was carried out by any of the following various procedures: (A) A procedure using a weakly acidic cation exchange resin carboxyl group -COOH as a functional group, commercially available under the name "Amberlite" CG 50 resin (HH form 60 ml of Amber lit CG 50 H + formate was pre-saturated with a water-dioxane mixture (2: 1) and then filled into columns. A solution of 1 g of the syrupy substance dissolved in 20 ml of water-dioxane (1: 1) was passed through a column which was then induced with water-dioxane (2: 1) containing 1% acetic acid. The desired 3,6'-di-N-benzyloxycarbonylkanamycin A, which was positive in the hydrine reaction, was eluted first from the column and zinc acetate sensitive to diphenylcarbazidene was eluted after it. The fractions containing the desired product were combined and concentrated to dryness, then the residue was washed with ethyl ether to yield 340 mg (81%) of 3,6 &apos; -di-N-benzyl &lt; / RTI &gt;

[α] 25 D + 76 ° (c 1, water-dimethylformamide, 1: 2).

Elementary analysis

Calculated for Cy, HwN4O15. 2 CH-C0-, H-H-, O: 51.23% C, 6.56% H, 6.29% N,

Found: 51.02% C, 6.71% H, 6.22% N. (B) Weak Cation Exchange Method 33

Ion exchange resin carrying a carboxy group as a functional group, commercially available as "Amberite" CG50 resin, HH // form from Rohm and Haas Co. 1 g of the syrupy substance obtained above in Example 1 (ii) was dissolved in 20 ml of a 1: 1 mixture of water-dioxane and the solution was passed through a column of 60 ml of AmberlitCG 50 resin, NIL · / form, and eluted with a linear mixture gradient water-dioxane 1.: 1 containing up to 0.1 N ammonia. No zinc cation was eluted but only the desired product, 3,6'-di-N-benzyloxycarbonylcanoic acid A. The elution fractions containing the desired benzyloxycarbonylated products were concentrated to dryness to yield 333 g, i.e. 89% of the desired product in in the form of a colorless solid.

[.alpha.] D @ 20 = + 86 DEG (c 1, water-dinethylformamide, 1: 2).

Elementary analysis

Calculated for C-wH ^Nz.Ur ,. W 1-1-, 0 (.): 52.87% C, 6.30% II, 7.15% N,

Found: 52.50% C, 6.50% H, 7.00% N. (C) A method using a cation-exchange ion exchange resin bearing a strongly acid-functional group -SO-, Η, commercially available as "Dovex" 50 WX 2 nd Dox Chemi-cal Co. Ltd 30 ml of Dowex 50 W X2-H + form in water-dioxane 2: 1 was charged to the column, followed by a solution of 1 g of syrupy substance obtained in Example 1 [ii] in 20 ml of water-di-oxane 2: 1 The column was then washed with a 2: 1 mixture of water-dioxane until the column mixture was neutral and then eluted with a linear gradient of 2: 1 v / v -dioxane containing 0 to 1 N particles. The eluted fractions containing the desired 3, 6 &apos; -di-N-benzyloxycarbonylkanamycin A were concentrated to dryness under reduced pressure to give 311 mg of the white solid which was identical to that obtained in Example 1 (84%). iii 1 [B]. (D) Alternative procedure using Do-wex 50W X 2

A solution of 1 g of the syrupy substance obtained in Example 1 (ii) in 20 ml of water-methanol 3: 1 was applied to a column of 30 ml of Dowex 50W X 2 in H + form with a pre-wetted mixture of water-methanol 3 The column was then washed well with a water-methanol 3: 1 mixture and then eluted with a water-methanol gradient of 3: 1 containing 0 to 6 N hydrochloric acid. The active fractions containing the desired 3,6'-di-N-benzyloxycarbonyl-kanamycin A were collected and mixed with 36 strongly basic anion exchange ion exchange resin Dowex 1 X 2 in an OH form in an amount which was able to acidify slightly.

The mixture was filtered and the filtrate was concentrated to dryness to give 286 mg, i.e. 72% of the desired product as the dihydrochloride.

[α] D 25 - + 79 ° (c 1, water-dimethylformamide, 1: 2). (E) A method using an anion exchange ion exchange resin bearing strongly basic functional quaternary ammonium groups, commercially available as Dowex 1X2cd. Dow Chemical Co.

A solution of 1 g of the syrupy substance obtained in Example I (ii) in a water-dioxane (1: 1) mixture was applied to a column of 30 ml of Dowex 1 X 2 resin in an OH form of a pre-washed water-dioxane 1 mixture. : 1, and then the column was induced with a 1: 1 water-dioxane mixture at a relatively high rate. The eluted fractions containing the desired product were collected and concentrated to dryness to give 305 mg, i.e. 84% colorless solid identical to Example 1 (iii) (B). (F) Procedure using anion exchange ion exchange resin with weakly basic functional groups, commercially available as Dowex WGR, manufactured by DowChemical Co. 1 g of the syrupy substance obtained in Example 1. (ii.) was dissolved in 20 ml of a water-dioxane 2: 1 mixture and the solution was left with a counter-column of 50 ml of Dowex WGR in a basic pre-soaked water-dio-xane mixture 2: 1 and the puck was eluted with a water-oxalic mixture. 2: 1. The desired 3,6'-di-N-benzyloxycarbonynyanamycin A was eluted in some fractions along with traces of zinc cations. These fractions were combined and concentrated to dryness to give 450 mg of a colorless solid. fG) A process using a chelate ion exchange resin bearing weakly acidic functionalities, commercially available as Dowex A 1, manufactured by Dow Chemical Co., Sp. st. and.

A solution of 1 g of the syrupy substance obtained in Example 1 (ii) in a 1: 1 water-dioxane mixture was loaded onto a 50 ml DowexAI column, which was saturated with a 1: 1 water-dioxane mixture containing 1% ammonia and then followed by elution with a 1: 1 water-dioxane gradient containing 0 to 1 N ammonia. The fractions containing the desired 3,6'-di-N-benzyloxycarbonylkanamycin A which were eluted at a later stage were pooled and - thickened to dryness to give 272 mg, i.e. 261853 37, 74% of the desired product as a white solid. (H) A Chitosan process, a water-insoluble metal-binding functional group polymer, commercially available as a Toko KaseiKoyo Co., Ltd. product. Japan'. 100 ml of Chitosan was thoroughly saturated with water-methanol 3: 1 and charged to the column, which was passed through a solution of 1 g of the syrupy substance obtained in Example 1 (ii) in a water-methanol (3: 1) mixture. The column was then induced with a 3: 1 water-methanol mixture, with the desired 3,6'-di-N-benzyloxycarbonylkanamycin A being eluted first and zinc acetate much later. The fractions containing the desired substance were combined and concentrated to dryness to give a residue which was dissolved in a 1: 1 mixture of water-dioxane and the solution was loaded onto a column of Amber lithium CG 50 in NH4 + form prewashed with water-dioxane 1 1. Wash the column thoroughly with 1: 1 water-dioxane and then elute with a 1: 1 water-dioxane gradient containing 0 to 0.1 N ammonia. These fractionated to ninhydrin reactions were combined and concentrated to dryness to give 301 mg, i.e. 82%, of a colorless solid, consistent with the compound obtained in Example 1 (iii) (B). (I) A process employing a high polymeric carboxyl functional group, commercially available as "CM-Sephondex" C-25, which is both an ion exchanger and a gel filtration material and is formed by a carboxymethyl-substituted dextran gel, manufactured by Pharmacia. Fine Chemical Co., Sweden1.

A solution of 1 g of the syrupy substance obtained in Example 1 (ii) in a 1: 1 mixture of water-dioxane was passed through a column of 40 ml of CM-Sephadex C-25 in NH 4 + form, thoroughly saturated with water-dioxane 1: 1 The column was washed with 200 mL of water-dioxane 1: 1 and then eluted with a gradient of 1: 1 v / v dioxane containing 0 to 0.1 N α-mono. No zinc cations were eluted from the column, but only the desired 3,6'-di-N-benzyloxycarbonylkanamycin A was eluted. The eluate was concentrated to dryness to give 303 milligrams, ie 82% of a colorless solid identical to Example 1 (iii) (BJ). ()) Procedure using hydrogen sulfide as a zinc precipitating substance. 1 g of the syrup-like material obtained in Example 1 (ii) was dissolved in 20 ml of water-methanol 1: 1 and aqueous ammonia was added thereto, followed by sufficient hydrogen sulfide. The reaction mixture containing the zinc sulphide precipitate that was formed was filtered on a celite pad filter, and the filtrate was concentrated under reduced pressure to give a syrupy solid from which the ethyl ether was washed with a solid residue. This residue was dissolved in a 1: 1 water-dioxane solution and the solution was chromatographed on a 30 ml Amberlite IRA 900 column, a strongly basic resin, using fyRohm and Haas Co., in the OH form, using water-dioxane 1: 1 as the developing solvent. The eluate was collected and fractions containing 3,6'-di-N-benzyloxycarbonylkanamycin A were pooled and concentrated to dryness to give 235 mg, i.e. 64% of a colorless solid identical to that of Example 1 (iii) ) (B). Example 2

Preparation of 3,6-di-N-benzyloxycarbonylcananine A 500 mg, i.e. 1.03 mM of kanamycin A free base form was suspended in 15 ml of dimethyl sulfoxide followed by addition of 420 mg, i.e. 3.09 mM of zinc chloride and 840 mg, i.e. 6.18 mM sodium acetate tetrahydrate. After stirring the mixture for 10 hours at room temperature, a solution of 675 mg, i.e. 2.27 mM N-benzyloxycarbanyloxyphthalimide, was slowly added to the mixture containing the formed kanamycin A-zinc complex for about one hour.

dissolved in 10 ml of dimethyl sulfoxide. The resulting mixture was allowed to stand at room temperature for 4 hours. Next, the reaction mixture was treated in the same manner as described in Example 1 (iij and (iii) (I) to give 598 mg, i.e. 74 °, of 3,6'-di-N-benzyloxycarbone. of bonkancanamycin A as a colorless solid Example 3

Preparation of 3,6'-di-N-benzyloxycarbonylaminoanine A 600 mg, i.e. 0.95 mM kanamycin A tetrahydrochloride and 150 mg, i.e. 3.8 mM sodium hydroxide in 15 ml dimethyl sulfoxide was shaken one hour, and then 1 g, i.e., 4.55 mM zinc acetate dihydrate, was added and shaking was continued for another 5 hours. A solution of 545 mg, i.e. 2.2 mM of N-benzyloxycarbonyloxy-succinimide dissolved in 5 ml of a dimethylsulfoxidetrahydrofuran 1: 1 mixture was added to the mixture containing the formed kanamycin A-zinc complex during 261853. After shaking the resulting mixture at ambient temperature overnight, ethyl acetate was added to separate the N-acylated zinc complex as a precipitate. The precipitate was then treated in the same manner as described in Example 1 (iiij (H)) to give 581 mg, i.e. 78% of a colorless solid. Example 4 Preparation of 3,6'-di-N-benzyloxycarbonylcanoate

mycine A (i) 500 mg, i.e. 1.03 mM kanamycin A free base form was dissolved in 20 ml of water-dimethylsulfoxide 1: 9, 1 g, i.e. 4.55 mM zinc acetate dihydrate and then 590 g was added mg, i.e. 2.4 mM N-benzyloxycarbonyl-oxysuccinimide.

The mixture was allowed to stand at room temperature overnight and a large amount of ethyl ether was added to the mixture to separate the aqueous sulfurous layer, which was washed several times with ethyl ether, to obtain a thick-layered layer. (ii) The syrup thus obtained was dissolved in water-methanol 3: The solution was passed through a 200 ml Chitosan column. The column was eluted with 3: 1 methanol / methanol and the eluate collected in fractions. The neat hydrotreatment fractions were pooled and concentrated to a small volume. The concentrate was loaded onto a Amberlite CG 50 column in NII + form and the column was washed thoroughly with a 1: 1 water-dioxane mixture and then eluted with a 1: 1 mixture of water-dioxane containing 0 to 0.1 ammonia.

The eluted fractions containing the desired product were combined and concentrated to dryness to give 494 mg, i.e. 6%, of a colorless solid, identical to that of Example 1 (iiij (B)). la la 5

Preparation of 3,6'-di-N-benzyloxycarbonyl-kanamycin A 500 mg, i.e. 1.03 mM of kanamycin A in the free base form, was dissolved in 20 ml of a 1: 3 mixture of water-tetrahydrofuran and 1 g was added. 4.55 mM of the magnesium dihydrate acetate, and then 590 mg, i.e. 2.4 mM of N-benzyloxycarbonyl oxysuccinimide, were added. The mixture was left to stand at room temperature overnight and the reaction solution was concentrated under reduced pressure. The residue was passed through a pad of 200 ml of Chitosan and the eluate was treated in the same manner as in Example 4 (iij to give 414 mg, i.e. 51% of the colorless solid of the desired compound.

Preparation of 3,6'-di-N-benzyloxycarbonyl-kanamycin A is 500 mg, i.e. 1.03 mM kanamycin A, the free base form was dissolved in 15 ml of water-methanol 1: 7 mixture and then added. 5 g, i.e. 6.8 mM of zinc acetate dihydrate, and then 590 ”l, i.e. 2.4 mM of N-benzyloxycarbonyl-oxysuccinimide in 7 ml of tetrahydrofuran was added. The mixture was allowed to stand at ambient temperature over night and the reaction solution thus obtained it was concentrated under reduced pressure. The residue was passed through a column of 200 ml of Chitosan column-eluting eluate then treated in the same manner as in Example 4 (iij to give 442 mg, i.e. 55% of the colorless solid of the title compound).

Preparation of 3,6'-di-N-benzyloxycarbonyl-kanamycin A 500 mg, i.e. 1.03 mM kanamycin A in the free base form was suspended in 20 billion dimethyl sulfoxide and 272 mg, i.e. 1.24 mM zinc acetate. dihydrate was added to the mixture. The mixture was stirred at room temperature for 10 hours, whereupon a clear solution was formed which was then added in small portions for about two hours to 540 mg, i.e. 2.17 mM N-benzyloxycarbonyl oxysuccinimide.

The resulting mixture was then allowed to warm to ambient temperature overnight, large ethyl ether was added and the separated oily substance was collected and washed several times with ethyl ether to give a thick syrup.

Thin-layer chromatography on silica gel, using chloroform-methanol-28% aqueous ammonia 1: 1: 1, lower phase, as the developing solvent, was used to determine the following spots: - smaller R, 0.4-1.3 6 ', 3 "-tetra-N-benzyloxycarbonylkanamycin A stain, where coloring develops after spraying with acid and subsequent heating; Weak spot Rt 0.28; - the main spot of R (0.23 - the desired product, 3,6'-di-N-benzyloxycarbonylcanoate A; - the minor spot of Rf 0.12 6'-N-benzyloxycarbonyl-kanamycin A; - very weak Rf 0 spot - unreacted kanamycin A.

No spot corresponding to tri-N-benzyloxycarbonylkanamycin A was observed which would appear at R 0,2 0.28 to 0.4. The above syrup was dissolved in a 1: 1 water-dioxane mixture and allowed to pass through the column with 100 ml of CM-Sephadex C-25 in NH 4 + form, pre-washed with 1: 1 water-dioxane. eluted by the same procedure as described in Example 1 (iii) (I), removing zinc cations and separating the desired product from other products to give 412 mg, i.e. 51% of the desired compound as a colorless solid.

For comparison, this procedure was repeated except that the zinc acetate di-hydrate was replaced with 308 g, ie, 1.24 mM octanecarbonate tetrahydrate, with the result that the desired 3,6'-di-N-benzyloxycarbonylcanoate mycine A was obtained as a colorless solid only with a yield of 59 mg, i.e. 7.3%. Example 8

Preparation of 3,6'-di-N- (p-methoxybenzyloxycarbonyl) kanamycin A 500 mg, i.e. 1.03 mM kanamycin A free base form was suspended in 12 ml dimethyl sulfoxide and 1 g, 4.55 mM, was added to the suspension. zinc acetate hydrate. The mixture was stirred at room temperature until a homogeneous solution was formed to which a solution of 789 mg (2.6 mM p-methylcarbobenzoxy-p-nitrophenyl ester) was added over 30 minutes (p-CH 2 OC 1 H 2 CH 2 OCOOCOCl 3). p-NO 2) dissolved in dimethyl sulfoxide. The resulting mixture was allowed to stand at ambient temperature overnight and then treated in the same manner as in Example 1 (ii) and (iii) (B) to give 722 mg, i.e. 83% of the colorless solid of the title compound.

[α] 25 D + 87 ° (c 1, water-dimethylformamide, 1: 2).

Elementary analysis

Calculated for C ^ jH ^ NN -Oiyi. H 2 CO ": 51.95% C, 6.33% H, 6.64% N,

Found: 51.56% C, 6.41% H, 6.53% N. Example 9

Preparation of 6'-N- (t-butoxycarbonylkanamycin A

In the same manner as described in Example 8, except that the p-methoxycarbobenzoxy-p-nitrophenyl ester was replaced by 220 mg, i.e. 1.54 mM t-butoxycarbonylazide, the desired compound was obtained as a colorless solid. The yield was 627 milligrams.

[Α] 25 D = + 96 ° (c 1, water - dimethylformamide, 1: 2), Example 10

Preparation of 3,6'-di-N-trifluoroacetylkanamycin A 500 mg, i.e. 1.03 mM of kanamycin A free base form was suspended in 12 ml of dimethylsulfoxide and 1 g of 4.55 mM zinc acetate hydrate was added to the suspension. The mixture was stirred at room temperature until a homogeneous solution was formed, to which a solution of 1.2 g, i.e. 5.1 mM, of p-nitrophenol trifluoroacetic acid ester dissolved in 10 ml of dimethylsulfoxide was added. The resulting mixture was left to stand overnight at ambient temperature and then treated with ethyl ether as in Example 1 (ii). The ether-insoluble sulfurous material was further treated in the same manner as in Example 1 (iii) (A) to give 590 mg (70%) of the desired compound as a colorless solid.

[α] D 25 + 81 ° (c 1, water-dimethylformamide, 1: 2).

Elementary analysis

Calculated for C ^ HH ^ NNĂ­OriFF,.. 2 CHCO-H. % H, 5.44;% N, 6.88;

Found: C, 33.03; H, 5.48; N, 6.54. Example 11

Preparation of 3,6'-di-N-phenoxycarbonylkanamycin A 500 mg, i.e. 1.03 mM kanamycin A free base form, was suspended in a total of dimethyl sulfoxide, 15 ml and 5 ml of tetrahydrofuran and 1 g was added to the suspension, i.e. 4.55 mM zinc acetate dihydrate and then the mixture was stirred at room temperature until a homogeneous solution was formed. The resulting solution was then cooled to 0 ° C and then a cold 0 ° C solution of 400 mg, i.e., 2.55 mM phenoxycarbonyl chloride C (1 H-, OCOCl in 3 mL tetrahydrofuran) was slowly added. The reaction mixture was treated with ethyl ether as in Example 1 (ii) and the ether-insoluble syrup was further treated in the same manner as in Example 1 (Example 1). iii) (A) to give 625 mg, i.e. 70% of the desired compound in the form of a colorless solid.

[α] D 25 + 73 ° (c 1, water-dimethylformamide, 1: 2).

Elementary analysis

Calculated for C ^ HH ^ NN ^O, ·. 2 CH-CO-J1. Η ·, Ο: 50,11% C, 6,31% II, 6,49% N,

Found: 49.77% (1, 6.60% H, 6.11% N. Example 12)

Preparation of 3,6'-di-N-acetylkanainycin A

The reaction mixture obtained in the same manner as in Example 8 except that 260 mg, i.e. 2.6 mM acetic anhydride was used in place of p-methoxycarbobenzoxy-p-nitrophenylether, was treated in the same manner as in Example 1 (iii) (A). 525 mg (72%) of the desired compound is thus obtained as a colorless solid.

[I] - Âź 93 (cmid, 1: 2). Analysis Calculated 1, water - dimethylfurma for C% HWN, .O | 11.0: 44.19% C, 7.13% II, 7.63% N, Found: 44.20% C, Example 13 7.07% H, 7 , 85% N

Preparation of 3,6'-di-N-lorruylcanarnycine A 500 rng, i.e. 1.03 mM kanamycin A free base form was suspended in 12 ml dimethylsulfoxide and 1 g, i.e. 4.55 mM octae nu added to this sus-pension. zinc dihydrate. The mixture was stirred at room temperature until a homogeneous solution was formed, to which was added 690 mg, i.e. 4.12 mM, p-nitrophenylformate OHCOD (1H5-ÎČ-NO ·). left to stand overnight at room temperature and then treated in the same manner as in Example 1 (iii) (H).

Fractions positive for ulylivdrius reaction were pooled, gassed with gaseous carbon dioxide, and then concentrated to dryness. This gave 430 mg, i.e. 67% of the desired compound as a colorless substance. fajir 5 101 ° (c 1, water).

Analysis

Calculated for. H9CO · .11.0: C, 40.64; H, 6.50; N, 9.03.

Found: 40.43% C, 6.47% H 8.83% N. 44 Example 14

Preparation of 3,6'-di-N-tosylkanamycin A 500 mg, i.e. 1.03 mM of kanamycin A free base form was suspended in 15 ml of dimethyl sulfoxide and 1 g of 4.55 mM zinc acetate hydrate was added to the suspension. The mixture was stirred at room temperature until a homogeneous solution was formed, to which was slowly added a 400 mg solution, i.e. 2.1 mM tosyl chloride in 7 ml tetrahydrofuran. The resulting mixture was allowed to stand at ambient temperature for one hour, and 200 mg of tosyl chloride dissolved in 3.5 ml of tetrahydrofuran was added. The reaction mixture was allowed to stand for a further two hours and was then worked up in the same manner as in Example 1 (iij and (iii) (Aj, obtaining 270 mg, i.e. 28% colorless solid, representing the desired compound). + 68 ° (c 1, water-dimethylformamide, 1: 2).

Analysis Calculated for C39H48N ,, Or> S3. 2 CH3CO2H. H, 6.28; N, 6.02; N, 6.89. Found: C, 46.31; H, 5.98; N, 6.31. 55% S. In the above-mentioned zinc acetate-free reaction procedure, a large amount of colorless solid was not obtained. Example 1 5

Preparation of 3,6 &apos; -di-N-benzyloxycarbonyl-6 &apos; -N &apos; -methylanine A 500 mg, i.e. 0.1 mM 6 &apos; -N-methyl-kanamycin A in the loose the base was suspended in 12 ml of dimethyl sulfoxide and 1 g, i.e. 4.55 mM of zinc acetate dihydrate was added to the suspension. The mixture was stirred at room temperature until a homogenous solution was formed to which a 550 mg solution was added over 30 minutes. 2.2 mM N-benzyloxycarbonyloxy-succinimide dissolved in 5 ml of tetrahydrofuran 1: 1 dimethyl sulfoxide. The resulting mixture was allowed to stand overnight at ambient temperature and then treated as in Example 1 (iij and (iii) (A) to yield 720 mg, i.e. 79% of the desired compound as a colorless substance.

[α] D 25 -1-74 ° (c 1, water-dimethylformamide, 1: 2).

Further treatment of the thus prepared 261853 45 compound by a procedure similar to that described in Example 31 below gave 1-N - [(S) -4-amino-2-hydroxybutyryl] -6'-N-methylkamycin A. 16

Preparation of 3,6'-di-N-benzyloxycarbonyl-3'-deoxycanamycin A

This compound as a colorless solid was obtained in a yield of 765 mg, i.e. 82% by repeating the same procedure as in Example 15, except that the starting material was 500 mg, i.e. 1.07 mM 3'-oxycanamycin A in free base form and 610 mg, ie 2.45 mM N-benzyloxycarboinyloxysuccinimide was used.

[α] D 25 - + 76 ° (c 1, water-dimethylformamide, 1: 2).

Analysis

Calculated for C-hI-V ^ Oh. 2 CH 2 CO 2 H. % H, 6.68;% N, 6.40.

Found: 51.99% C, 6.75% H, 6.20% N.

Further work-up of the compound thus prepared by a procedure similar to Example 31 afforded 1 'N - [(S) -4-amino-2-hydroxy-butyryl] -3'-deoxycanamycin A. Example 17

Preparation of 3,6'-di-N-benzyloxycarbonyl-3'-deoxy-6'-N-methylkanamycin A The desired compound was obtained with a yield of 737 mg, i.e. 80% by repeating the same procedure as in the example. 15, except that starting from 500 mg, i.e. 1.04 mM 3'-deoxy-6'-N-methylkanamycin A in the form of the free base, 595 mg, i.e. 2.4 mM N-benzyloxycarbonyloxy succinimide, was used.

[α] 035 + 73 ° (c 1, water-dimethylformamide, 1: 2).

Further treatment of the thus prepared compound gave 1N - [(S) -4-amino-2-hydroxybutyryl] -3'-deoxy-6'-N-methyl-kanamycin A. Example 18

Preparation of 3,6'-di-N-beyloxycarbonyl-4'-deoxycanamycin A

Starting from 500 mg, ie 1.07 mM 4'-deoxy-kanamycin A in free base form [see Journal of Antibiotics, Vol. 27, s. 838-46-849 (1974); Bulletin of the Chemical So-ciety of Japan, Vol. 50, pp. 2,362-2,368 (1977)], the desired compound was obtained in the form of a colorless solid with a yield of 666 mg, i.e. 71% by the same procedure as in Example 15, except that 580 mg, i.e. 2.3 mM N-benzyloxycarbonyl-oxysuccinimide dissolved in 4 ml of dimethyl sulfoxide was added slowly over a period of more than one hour to a homogeneous solution.

[α] D 25 = + 77 ° (c 1, water-dimethylformamide, 1: 2).

Analysis

Calculated for Cb ^HĂ­sNNĂ­Ois. 2 CH 3 CO 2 H. %: 52.16% C, 6.68% H, 6.40% N, Found: 51.77% C, 6.79% H, 6.31% N. Example 19

Preparation of 3.2 *, 6'-tri-N-benzyloxycarbonyl-kanamycin B 500 mg, i.e. 1.03 mM kanamycin B free base, was suspended in all 12 ml of dimethyl sulfoxide and 4 ml of tetrahydrofuran and 1 g was added to the suspension. i.e. 4.55 mM zinc acetate dihydrate. The mixture was stirred at room temperature until a homogeneous solution was formed and cooled to 0 ° C. To a cold solution, a cold solution of 825 mg, i.e. 3.3 mM N-thion in 10 ml of tetrahydrofuran-dimethylsulfoxide 1: 1 was slowly added over more than one hour benzyloxycarbonyloxy succinimide. 0 ° C for two hours and then at ambient temperature overnight, then treated in the same manner as in Example 1 (ii) and (iii) (A) to obtain 740 mg, i.e. 70% of the desired compound in the form of a colorless solid.

[α] 25 25 + 63 ° (c 1, water dimethylformamide 1: 2).

Analysis

Calculated for C 42 H 56 N 3 O 6. 2 CH 3 CCCH. H, O: 53.95% C, 6.40% H, 6.84% N,

Found: 53.66% C, 6.67% H, 6.63% N.

Further treatment of the compound thus prepared by a procedure similar to that described in Example 31 gave 1N- [(S) -4-amino-2-hydroxy-butyryl] -canamycin B. 261853 47 48 Example 20 Preparation of 3.2 ', 6' tri N bonzyk) The microcrystalline 480 mg, i.e. 1.03 mM tobramycin in the free base was suspended in 12 ml of methyl sulfoxide and 1 g, i.e. 4.55 mM of zinc acetate dihydrate was added to the suspension. . The mixture was stirred at room temperature for one hour to form a homogeneous solution to which was then added for about one hour a solution of 850 milligrams, i.e. 3.4 mM of N-benzyloxycarbonyl oxysuineimide dissolved in 10 ml of tetrahydrofuran-dimethylsulphoxide 1: 1 mixture. The reaction solution was treated with a large volume of ethyl ether as in Example 1 (dense syrupy material).

The syrup was further processed in the same manner as in Example 1 (iiij (A) but using water-dioxane 1: 2 instead of 2: 1 to obtain 810 mg, i.e. 78% of the desired substance as a colorless solid).

[α] 25 D = 1-65 ° is 1, water-dimethylformamide, 1: 2].

Calculation Analysis »for Có, HróN, Or,. 2 CH-CO-d1. H-O: 54.81 o / o C, 6.50% II, 6.0>% N,

Found: 54.77% C, 6.71% II, 6.88% N.

The compound thus obtained can be further processed by a process similar to that of Example 31 to give 1N - [(S) -4-amino-2-hydroxybutyryl] -tobramycin. Example 21 Prepare! 3,2 ', 6'-tri-N-benzyloxycarbonyl-G1-N-methyltobramycin The desired compound in the form of a colorless solid was obtained in a yield of 890 mg, i.e. 84% by the same procedure as in Example 20 except that from 500 mg, i.e. 1.04 mM B'-N-methylbutabycin free base.

[α] D 25 -I 63 ° (c 1, water-dimethylformamide, 1: 2). Example 22

Preparation of 3,2 ', 6'-tri-N-benzyloxycarbonyl-4' - deoxycanamycin B

Starting from 480 mg, ie 1.03 mM 4-deoxy-kanamycin B free base [see Bulletin of the Chemical Society of Japan, Vol. 50, s. 2 362-2 368 (1977)], the desired compound was obtained as a colorless solid in a yield of 815 mg, i.e. 79% by the same procedure as in Example 20.

[Α] D -5 463 ° (c 1, water-dimethylformamide, 1: 2), Example 23 Preparation of 3,2 ', 6'-tri-N-benzyloxycarbonyl-dibecacin 000 mg, ie 1.33 mM dibecacin Free base (3 ', 4'-deoxycanamycin B) was suspended in 15 ml of dimethylsulfoxide and the suspension was stirred until a solution was added to which 1.4 g, ie 6.4 mM, was added zinc dihydrate dihydrate was added and a solution of 1.1 g, i.e. 4.4 mM of N-benzylcarbonylcarbonyl succinimide in 12 ml of dimethylsulfoxide was slowly added to the resulting solution for one hour, and the mixture was allowed to rest at ambient temperature overnight. Then, a large volume of ethyl ether was mixed with the reaction solution to separate the oily sediment containing, in particular, the N-benzyloxycarbonylated zinc complex as the desired product and a portion of the dimethyl sulfoxide, and then washed with ethyl ether to give a syrupy material.

This syrup was repeatedly washed with water to disintegrate the N-acylated zinc complex, and the free zinc cations were removed along with the initially existing zinc c-ct. In this way, 1.1 g of a water-insoluble solid was obtained, representing N-acylated dibecin. The solid was chromatographed on a thin layer silica gel using chloroform-ethanol-18% aqueous 1: 1: 1 low-phase solvent as the solvent to form a single spot at Rf 0.3, indicating that the solid was predominantly 3,2 ', 6'-tri-N-benzyloxycarbonyldibecacin is stopped.

Further treatment of the desired compound with a procedure similar to Example 31 yielded 1N - [[S] -4-amino-2-hydroxybutyryl] -dibecacin.

Further purification of the crude product obtained as described above was carried out by washing the compound with a 3 M ammonia solution to give a product free of zinc ions.

[α] D 25 + 71 ° (c 1, water-dimethylformamide, 1: 2). Example 24 Preparation of 3,2 ', 6'-tr-N-benzyloxycarbonyl-6'-N-methyldibecacin 267033 49 500 mg, ie 1.07 mM 6'-N-methyldibecacin in free base form and 1.2 g, i.e., 5.45 mM of zinc acetate dihydrate was dissolved! in 20 ml of dimethylsulfoxide, while slowly adding 910 mg, i.e. 3.6 mM of N-benzyloxycarbonyl-oxysuccinimide, for about 30 minutes. The reaction solution was allowed to stand at ambient temperature overnight and then treated in the same manner as in Example 23 to give 910 mg of the desired compound, which was essentially pure.

Further treatment of the compound so obtained gave 1N- [(S-4-amino-2-hydroxybutyryl] -6'-N-methyldibecacin).

Preparation of 3,2'-di-N-benzyloxycarbonylcanolamine C The desired compound in the form of a colored solid was obtained in a yield of 730 mg, i.e. 79% by the same procedure as in Example 1 (i), (ii) and (iiij (A)). ), but starting from 500 mg, ie 1.03 mM kanamycin C free base.

[Α] D = + 75 ° (c 1, water-dimethylformamide, 1: 2). Next, the compound thus obtained was worked up to obtain 1N - [(S-4-amino-2-hydroxybutyryl] -kanamycin C. Example 26).

Preparation of 6'-N-benzyloxycarbonylkanamycin A 500 mg, i.e. 1.03 mM kanamycin A in the free base form, was suspended in 20 billion dimethyl sulfoxide and 0.5 g, i.e. 2.3 mM, was added to the suspension. zinc acetate dihydrate. The mixture was stirred at room temperature until a homogeneous solution was formed, to which was then added 283 mg, i. 1.13 mM N-benzyloxycarbonyloxy-succinimide. The resulting mixture was allowed to cool overnight at ambient temperature and then treated in the same manner as in Example 1 (ii) and (iiij (1j) to give 556 mg of the desired compound as a colorless solid).

[a] D 2 R =, + g 2 «(C 1, water). Example 27 Preparation of 6'-N-benzyloxycarbonyldibecacin

In the same manner as in Example 26, 382 mg of the desired compound was obtained in 80 using 500 mg of dibecacin free base, 12 ml of dimethylsulfoxide, 0.7 g of acetic acid dihydrate and 305 mg of N-benzyloxycarbonyloxy succinimide.

[α] D 25 + 105 ° (c 0.5, water). Example 28

Preparation of 3,2 ', 6'-tri-N-benzyloxycarbonyl-3', 4'-dideoxy-3'-enocannamycin B 500 mg, ie 1.11 mM 3 ', 4'-dideoxy-3'-eno -kanamycin B free base (see "Bulletin of the Chemical Society of Ja-pan", Vol. 50, ppd 1,580-1,583 (1977)] was dissolved in 12 ml of dimethyl sulfoxide and 1 g was added to the solution. i.e., 4.55 mM of zinc acetate dihydrate, and the solution was stirred for one hour, followed by the slow addition of 870 mg, ie 3.49 mM N-benzyl-oxycarbonyl-oxysuccinimide, over 30 minutes to the resulting solution. overnight at ambient temperature and the reaction solution thus obtained was treated with a large volume of ethyl ether as in Example 1 (ii) to obtain a thick syrupy substance.

The syrup was further processed as in Example 1 (iiij (Bj but using water-dioxane 1: 2 instead of 2: 1 to give 784 mg of the desired compound as a colorless solid).

[α] D 25 + 30 ° (c 1, water-dimethylformamide, 1: 2). Example 29 Preparation of 3,2 ', 6'-tri-N-benzyloxycarbonylsomycin The desired compound as a colorless solid was obtained in a yield of 780 milligrams in the same manner as in Example 28 but with the difference that from 500 mg, i.e. 1.12 mM sisomicin free base.

[.alpha.] D @ 20 = + 110 DEG (c 1, water-diethylformamide, 1: 2). Example 30 Preparation of 3,2 ', 6'-tri-N-benzyloxycarbonyl-gentamicins 787 mg of the desired compound was obtained as a colorless solid in the same manner as in Example 28, except that 500 mg of genta-micine mixture was used C, Cla, C2 etc.

Claims (14)

*? "3 Η» 51 52 PREDMET ZpĆŻsob vĂœroby selektivně acylovanĂ©hoNechrĂĄněnĂ©ho derivĂĄtu aminoglykosidovĂ©hoantibiotika obsahujĂ­cĂ­ho d-O-taminopJykc-syl)-6-0-(3“-ami no- nebo 3“-rnethylaraino--3“-deoxyglykosyl j-2-deoxystreptamin, vekterĂ©m 1-amino a 3“-aminnskupiny jsounechrĂĄněny, avĆĄak vĆĄechny ostatnĂ­ amino-skupiny jsou chrĂĄněny aminoochrannou a-cylskupinou obecnĂ©ho vzorce I VYNALEZU G mĂĄ vĂœznam definovanĂœ vĂœĆĄe a R“ znamenĂĄ methyl, Z‘‘ znamenĂĄ atom vodĂ­ku nebo methylo-vou skupinu, nebo Q1 znamenĂĄ N-chrĂĄněnou 3‘,4‘-dideoxy-3‘--eno-aminoglykosylovou skupinu obecnĂ©hovzorce lila*? "51 51 51 52 SUBJECT Method for the production of a selectively acylated, unprotected aminoglycoside derivative of dio-taminopycycyl-6-O- (3" -amino or 3 "-methylaraine-3" -deoxyglycosyl j-2-deoxystreptamine, all The 1-amino and the 3 &apos; -amino groups are protected, but all other amino groups are protected with an amino-protecting acyl group of formula I EMBODIMENT G is as defined above and R &apos; is methyl, Z &apos; is hydrogen or methyl, or Q 1 is an N-protected 3 ', 4'-dideoxy-3' - eno-aminoglycosyl group of the general formula IIIa 5' NHG kde R‘ znamenĂĄ atom vodĂ­ku noho ethylovouskupinu, G znamenĂĄ formyl, alkanoyl se ? aĆŸ batomy uhlĂ­ku, triĂ­Juoralkanoyl se 2, aĆŸ 5atomy uhlĂ­ku, alkoxykarbonyl s 1 aĆŸ 4 ato-my uhlĂ­ku v alkoxylovĂ© části, fouozykarbn·nyl, fenylalkykixykarbonyl s 1 aĆŸ 4 atomyuhlĂ­ku v alkvlovĂ© části nebo p-methoxyĆ„e-nylalkoxykarbonyi s 1 aĆŸ 4 atomy uhlĂ­ku valkoxylovĂ© části, Q1 znamenĂĄ N-cbrĂĄněnĂłu aminoglykosy-lovou skupinu obecnĂ©ho vzorce Ha cHz y 3 iw (Ila.) ve kterĂ©m ve kterĂ©m Ci mĂĄ. vĂœznam definovanĂœ vĂœĆĄe, neboq1 znamenĂĄ N-chrĂĄněnou 3‘,4‘-dideoxy-4‘- -oQo-aminoglykosylovou skupinu obecnĂ©hovzorce IVa5 'NHG where R ‘represents a hydrogen atom and an ethyl group, G represents a formyl, alkanoyl group? up to carbon atoms, tri-fluoroalkanoyl having 2 to 5 carbon atoms, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy moiety, fouozycarbonyl, phenylalkyloxycarbonyl having 1 to 4 carbon atoms in the alkyl moiety, or p-methoxy-ethynyloxycarbonyl having 1 to 4 carbon atoms the alkoxy moiety, Q 1 represents an N-bromo aminoglycosyl moiety of the formula IIa in which C 1 is C 1 - y 3 i (IIa). the meaning defined above, or q1 is an N-protected 3 &apos;, 4 &apos; -dideoxy-4 &apos; -o-O-aminoglycosyl group of the general formula IVa ve kterĂ©m R“‘ znamenĂĄ atom vodĂ­ku nebo methylo-vou skupiiu a G mĂĄ vĂœznam definovanĂœ vĂœĆĄe,q2 znamenĂĄ 3“-aminor3“-deoxyglykosylo- voli skupinu obecnĂ©ho vzorce Va W znamenĂĄ hydroxyski.ipiu.n nebo N-elirĂĄ-něnou aminoskupinu vzorce - -NHG, kde G mĂĄ vĂœznam definovmiĂœ vĂœĆĄe. X znamenĂĄ atom vodĂ­ku nebo hydroxy·skupinu, Y znamenĂĄ atom vodĂ­ku nebo hydroxyskupinu, Z‘ znamenĂĄ atom vodĂ­ku, liydroxyskupi-nu, N-chrĂĄněnou aminoskupinu vzorce-—NHG noho N-chrĂĄněnou alkylaminoskn-pinu vzorce ve kterĂ©m CĂ­l.M NH Ό. M z'1 OH ÍVaJ ve kterĂœch R“ M znamenĂĄ hydroxyskupinu nebo atom / vodĂ­ku, a —N M* znamenĂĄ hydroxyskupinu nebo atom \ vodĂ­ku, nebo G q2 znamenĂĄ 3“-methylamino-3“-deoxygly- kosylovou skupinu obecnĂ©ho vzorce Via 261853 54 53wherein R '' is a hydrogen atom or a methyl group and G is as defined above, q2 is a 3 "-amino3" -deoxyglycosyl moiety of the formula Va is a hydroxy group or an N-eluted amino group of the formula -NHG, where G is as defined above. X represents a hydrogen atom or a hydroxyl group, Y represents a hydrogen atom or a hydroxy group, Z represents a hydrogen atom, a hydroxy group, an N-protected amino group of the formula - NHG of an N-protected alkylaminosulfon of the formula wherein NH is. M z'1 OH iVaJ in which R 'M is hydroxy or hydrogen, and -NM * is hydroxy or hydrogen, or G q2 is 3'-methylamino-3' -deoxyglycosyl of the formula Via 261853 54 53 ve kterĂ©m R““ znamenĂĄ atom vodĂ­ku nebo methylo-vou skupinu, vyznačujĂ­cĂ­ se tĂ­m, ĆŸe se sĆŻlzinečnatĂ©ho katlontu s anorganickou neboorganickou kyselinou nechĂĄ reagovat s a-minoglykosidovĂœm antibiotikem obecnĂ©howherein R 'is a hydrogen atom or a methyl group, characterized in that the salt-zinc catalyst with the inorganic or organic acid is reacted with an α-minoglycoside antibiotic of the general formula kde R‘ znamenĂĄ atom vodĂ­ku nebo ethylovouskupinu, Q3 znamenĂĄ aminoglykosylovou skupinuobecnĂ©ho vzorce libwherein R‘ represents a hydrogen atom or an ethyl group, Q3 represents an aminoglycosyl group of the general formula IIb kde W‘ znamenĂĄ hydroxyskupinu nebo ami-noekupĂ­nu, X znamenĂĄ atom vodĂ­ku nebo hydroxysku-pinu, Y znamenĂĄ atom vodĂ­ku nebo hydroxy-skupinu, Z“‘ znamenĂĄ atom vodĂ­ku, hydroxyskupi-nu, aminoskupinu nebo methylaminoskupi-nu obecnĂ©ho' vzorce —NHR“, kde R“ znamenĂĄ methylovou skupinu, Z“ znamenĂĄ atom vodĂ­ku nebo methylovou skupinu nebo Q3 znamenĂĄ 3‘,4‘-dideoxy-3‘-eno-aminogly- kosylovou skupinu vzorce Illb nebo Q3 znamenĂĄ 3‘,4‘-dideoxy-4‘-eno-aminogly-kosylovo-u skupinu obecnĂ©ho vzorce IVb 3' I (IVb) kde R“‘ znamenĂĄ atom vodĂ­ku nebo methylo-vou skupinu a Qz’ znamenĂĄ 3“-amino-3“-deoxyglykosylo-vou skupinu nebo 3“-methylamino-3“-deoxy-glykosylovoti skupinu shodnou s vĂœĆĄe uve-denou skupinou Q2 obecnĂ©ho vzorce Vanebo Via, v molĂĄrnĂ­m poměru alespoƈ 1dĂ­lu molĂĄrnĂ­ho, s vĂœhodou 2 aĆŸ 6 dĂ­lĆŻ mo-lĂĄrnĂ­ch soli zinečnatĂ©ho kationtu s anor-ganickou nebo organickou kyselinou na 1dĂ­l molĂĄrnĂ­ aminoglykosidovĂ©ho antibiotikaobecnĂ©ho vzorce VII za teploty mezi —10 a100 °C v inertnĂ­m organickĂ©m rozpouĆĄtědlezvolenĂ©m ze souboru zahrnujĂ­cĂ­ho dime-thylsulfoxid, vodnĂœ dimethylsulfoxid, dime-thylformamid, vcdnĂœ dimethylformamid,směs dimethylsulfoxidu a dimethylformami-du, tetrahydrofuran, vodnĂœ tetrahydrofu-ran, methanol, vodnĂœ methanol, ethanol avodnĂœ ethanol, popƙípadě v pƙítomnosti oc-tanu sodnĂ©ho1 za vzniku kationtovĂ©ho kom-plexu aminoglykosidovĂ©ho- antibiotika sezinkem, potĂ© se tento kationtovĂœ komplexaminoglykosidovĂ©ho antibiotika se zinkemnechĂĄ reagovat s acylačnĂ­m činidlem zvo-lenĂœm ze souboru zahrnujĂ­cĂ­ho karboxylo-vou kyselinu obecnĂ©ho vzorce IVa RƈCOOH (IVa) kde R5 znamenĂĄ atom vodĂ­ku, alkylovou sku- pinu s 1 aĆŸ 4 atomy uhlĂ­ku, trifluoralkylo- vou skupinu s 1 aĆŸ 4 atomy uhlĂ­ku, nebo s halogenidem, anhydridem nebo aktivnĂ­m es- 261853 55 58 terein vĂœĆĄe uvedenĂ© karboxylovĂ© kyselinyobecnĂ©ho vzorce IVa, chloroformiĂĄt obec-nĂ©ho vzorce IVb R(i0—CO -Cl (IVb) p-nitrofenylkarbuuĂĄt obecnĂ©ho vzorce IVc R°O—CO O -CfiH,—p -NO·, (IVc) aktivnĂ­ N-hydroxysukcininiidester obecnĂ©hovzorce IVd O s K R O-CQ-fĂ­-tf Ă­ yJ 0 (ivd) a azidoforniiĂĄt obecnĂ©ho vzorce IVe R6O--CO--N·»v kterĂœchĆŸto vzorcĂ­ch (IVe Rr> mĂĄ vĂœĆĄe uvedenĂœ vĂœznam aRG znamenĂĄ alkylovou skupinu s 1 aĆŸ 4 atomy uhlĂ­ku, fenylovnu skupinu, fnnylal-kytovou skupinu s i aĆŸ 4 atomy uhlĂ­k” v -d-kylovĂ© části nebo p-methoxyfenvi· u -.jnvo”skupinu s 1 aĆŸ 4 atomy uhlĂ­ku v aU- hnĂ©ÄĂĄsti, za teploty od —20 do 100 "C, piv·' a-cylaci nezkomplexovanĂœch aminoskupin pƙítomnĂœch v kationtovĂ©m komplexu amino-glykosidovĂ©ho antibiotika se zinkem a te-dy pro vytvoƙenĂ­ kationtovĂ©ho komplexu. M--acylovanĂ©ho aminoglykosidovĂ©ho antibio-tika. se zinkem a potom se kationtovĂœ kom-plex N-acylovanĂ©ho aminoglykosidovĂ©ho an-tibiotika se zinkem nechĂĄ reagovat s vo-dou nebo s vodnĂœm nebo bezvodĂœm polĂĄr-nĂ­m organickĂœm rozpouĆĄtědlem zvolenĂœmze souboru zahrnujĂ­cĂ­ho methanol. ethanu],kapalnĂœ amoniak, ethylamin a triethylamin,nebo se sirovodĂ­kem, sirnĂ­kem alkalickĂ©hokovu nebo sirnĂ­kem kovu alkalickĂ© zeminy,nebo s hydroxidem amonnĂœm ve vodě ne-bo kationtoměničovou pryskyƙicĂ­ obsahujĂ­-cĂ­ funkce karboxylovĂ© nebo snlfonovĂ© kyse-liny, nebo s aniontoměničevou pryskyƙicĂ­obsahujĂ­cĂ­ amoniovĂ© funkce, nebo s chela-toměničovou pryskyƙicĂ­ obsahujĂ­cĂ­ kovovĂ©chelatizačnĂ­ funkce, nebo s chitinem nebochitosanem jako ve vodě nerozpustnĂœmvyĆĄĆĄĂ­m polymerem obsahujĂ­cĂ­m funkceschopnĂ© sloučeni s kovem, za teploty mezi—10 a 100 °C, pro odstraněnĂ­ zinečnatĂœchkationtĆŻ z komplexu a pro vytvoƙenĂ­ N-a-cylovanĂ©ho aminoglykosidovĂ©ho antibiotikaobecnĂ©ho vzorce I.where W 'is hydroxy or amino, X is hydrogen or hydroxy, Y is hydrogen or hydroxy, Z' is hydrogen, hydroxy, amino or methylamino of the formula -NHR ' where R 'is methyl, Z' is hydrogen or methyl or Q3 is 3 ', 4'-dideoxy-3'-eno-aminoglycosyl of formula IIIb or Q3 is 3', 4'-dideoxy-4 -eno-aminoglycosyl group IVb 3 'I (IVb) wherein R' 'is hydrogen or methyl and Q 2' is 3 "-amino-3" -deoxyglycosyl or 3 " -methylamino-3 &apos; -deoxy-glycosyl group having a moiety of at least 1 part molar, preferably 2 to 6 parts, of an inorganic or organic acid molar salt of a zinc cation with an inorganic or organic acid molar ratio, 1 molar portion of the aminoglycoside antibiotic VII at a temperature between -10 and 100 ° C in an inert organic solvent selected from dimethyl sulfoxide, aqueous dimethyl sulfoxide, dimethylformamide, dimethylformamide, dimethylsulfoxide / dimethylformamide, tetrahydrofuran, aqueous tetrahydrofuran, methanol, aqueous methanol, ethanol and aqueous ethanol, optionally in the presence of sodium acetate 1 to form the cationic complex aminoglycoside antibiotic by seasoning, then the cationic complexaminoglycoside antibiotic is reacted with the acylating agent selected from the group consisting of carboxylic acid of formula IVa ROOCOOH (IVa) wherein R 5 is hydrogen, C 1 -C 4 alkyl, C 1 -C 4 trifluoroalkyl, or halide, anhydride or active ester 261853 55 58 terein of the above carboxylic acid of general formula IVa, chloroform of formula (IVb) R (10-CO-Cl (IVb) p-nitrophen) ylcarbuuate of formula IVc R 0 -O-CO-C 1-6 H, -P-NO ·, (IVc) active N-hydroxysuccininide ester of general formula IVd O with KR O-C 6-10 -phenyl (IVd) and azidoforonate of formula IVe R 6 O In which formulas (IVe R &lt; r &gt; is as defined above and R &lt; 4 &gt; is C1-4 alkyl, phenyl, phenylalkyl having up to 4 carbon atoms or &quot; carbonyl &quot; p-methoxyphenvinyl is a group having 1 to 4 carbon atoms in the α-part, at a temperature of 2020 to 100 ° C, of α-cyclization of the uncomplexed amino groups present in the cationic complex of the amino-glycoside antibiotic with zinc; to form a cationic complex. M-acylated aminoglycoside antibiotic. with zinc and then the cationic complex of the N-acylated aminoglycoside antibiotic is reacted with zinc with water or with an aqueous or anhydrous polar organic solvent selected from the group consisting of methanol. ethane], liquid ammonia, ethylamine and triethylamine, or with hydrogen sulfide, alkali metal sulfide or alkaline earth metal sulfide, or with ammonium hydroxide in water or a cation exchange resin containing carboxyl or sulfonic acid functions, or with anion exchange resin containing ammonium functions , or with a chelator resin containing metal chelating functions, or with chitin or chitosan as a water-insoluble metal-containing polymer, at a temperature between -10 and 100 ° C, to remove zinc cations from the complex and to form an Nacetylated aminoglycoside antibiotic formula AND. 2. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ se tĂ­m, ĆŸe se jako vĂœchozĂ­ lĂĄtky pouĆŸije amino- glykosidovĂ©ho antibiotika obecnĂ©ho vzorceVII zvolenĂ©ho ze souboru zahrnujĂ­cĂ­ho kanamycin A, tery sloučeninu obecnĂ©hovzorce VII, kde R‘ je vodĂ­k, Q3 je amino-glykosyl vzorce lib, ve kterĂ©m W‘, X a Yjsou hydroxyskupina, Z“‘ pe aminoskupinaa Z“ je vodĂ­k, a Q4 je 3“-amino-3“-deoxy-glykosyl obecnĂ©ho· vzorce Va, ve kterĂ©m Ma M‘ jsou hydroxyskupina, 6‘-N-alkylkanamycin A, tedy sloučeninuobecnĂ©ho' vzorce VII, kde R‘ je vodĂ­k, Q:|je aminoglykosyl obecnĂ©ho vzorce lib, vekterĂ©m W‘, X a Y jsou hydroxyskupina, Z“‘je aminoskupina obecnĂ©ho vzorce —NHR“a Z“ je vodĂ­k, a Q4 je 3“-amino-3“-deoxy-glykosyl obecnĂ©ho vzorce Va, ve kterĂ©m Ma M' jsou hydrofxyskupiny, 3‘-deoxykanamycin A, tedy sloučeninu o-becnĂ©ho vzorce VII, kde R‘ je vodĂ­k, Q3 jeaminoglykoxyl obecnĂ©ho vzorce lib, ve kte-rĂ©m W‘ a Y jsou hydroxyskupina, X a Z“jsou vodĂ­k, a Z“‘ je aminoskupina, a Q4 je3“-amino-3“-deoxyglykosyl obecnĂ©ho vzorceVa, ve kterĂ©m M a M‘ jsou hydroxyskupina, 6‘-N-methyl-3‘-deoxykanamycin A, tedysloučeninu obecnĂ©ho vzorce VII, kde R‘ jevodĂ­k, O3 je aminoglykosyl obecnĂ©ho vzor-ce lib, ve kterĂ©m W‘ a Y jsou hydroxysku-pina, X a Z“ jsou vodĂ­k a Z“‘ je methylami-noskupina a O4 je 3“-amino-3“-deoxyglyko-syl obecnĂ©ho vzorce Va, ve kterĂ©m M aM‘ jsou hydroxyskupina, 4‘dnoxykanainycin A, tedy sloučeninu o-becnĂ©bo vzorce VII, kde R‘ je vodĂ­k, Q3 jeaminoglykosyl obecnĂ©ho vzorce lib, ve kte-rĂ©m W‘ a X jsou hydroxyskupina, Y a Z“jsou vodĂ­k a Z“‘ je aminoskupina, a Q4 je3“-amino-3“-deoxyglykosyl obecnĂ©ho vzor-ce Va, ve kterĂ©m M a M‘ jsou hydroxyskupi-na. 6‘-N-methvl-4‘-deoxykanamycin A, tedysloučeninu obecnĂ©ho vzorce VII, kde R‘ jevodĂ­k, Q3 je aminoglykosyl obecnĂ©ho vzor-ce lib. ve kterĂ©m W‘ i X jsou hydroxyskupi-na. X a Z“ jsou vodĂ­k a Z“‘ je methylami-noskupina, a Q4 je 3“-amino-3“-deoxyglyko-syl obecnĂ©ho· vzorce Va, ve kterĂ©m M a M*jsou hydroxyskupina, 3‘,4‘-dideoxykanamycin A. tedy slouče-ninu obecnĂ©ho vzorce VII, ve kterĂ©m R‘ jevodĂ­k, Q3 je aminoglykosyl obecnĂ©ho vzor-ce lib. ve kterĂ©m W‘ je hydroxyskupina, X,Y a Z“ jsou vodĂ­k a Z“‘ je aminoskupina aQ4 je 3“-amino-3“-deoxyglykosyl obecnĂ©hovzorce Va, ve kterĂ©m M a M‘ jsou hydro-xyskupina, 6“-deoxykanamycin A, tedy sloučeninu o-becnĂ©ho vzorce VII, kde R‘ je vodĂ­k, Q3 jeaminoglykosyl obecnĂ©ho vzorce lib, ve kte-rĂ©m W‘, X a Y jsou hydroxyskupina, Z“‘ jeaminoskupina a Z“ je vodĂ­k, a Q4 je 3“-a-mino 3“-deoxyglykosyl obecnĂ©ho: vzorce Va,ve kterĂ©m M je vodĂ­k a M‘ je hydroxysku-pina, 4“,6“-dideoxykanamycin A, tedy slouče- 261833 37 ninu obecnĂ©ho vzorce VII, kde R‘ je vodĂ­kQ3 je aminoglykosyl obecnĂ©ho vzorce lib,ve kterĂ©m W‘, X a Y jsou hydroxyskupina,Z“‘ je aminoskupina a Z“ je vodĂ­k, a Q4 je3“-amino-3“-deoxyglykosyl obecnĂ©ho vzor-ce Va, ve kterĂ©m M a M‘ jsou vodĂ­k, kanamycin B, tedy sloučeninu obecnĂ©hovzorce VII, kde R* je vodĂ­k, Q3 je aminogly-kosyl obecnĂ©ho' vzorce lib, ve kterĂ©m W'a Z* jsou aminoskupina, X a Y jsou hydro-xyskupina a Z“ je vodĂ­k, a Q4 je 3“-amino--3“-deoxyglykoxyl obecnĂ©ho vzorce Va, vekterĂ©m M a M‘ jsou hydroxyskupina, 3‘-deoxykanamycin B, tedy sloučeninu o-becnĂ©ho- vzorce VII, kde R‘ je vodĂ­k, Q3je aminoglykosyl obecnĂ©ho vzorce lib, vekterĂ©m W‘ a Z“‘ jsou aminoskupina, X a Z“jsou vodĂ­k a Y je hydroxyskupina, a Q4 je3“-amino-3“-deoxyglykosyl obecnĂ©ho vzorceVa, ve kterĂ©m M a M‘ jsou hydroxyskupina, 4‘-deoxykanamycin B, tedy sloučeninu o-becnĂ©ho vzorce VII, kde R‘ je vodĂ­k, Q3 jeaminoglykosyl obecnĂ©ho vzorce lib, kde W*a Z“‘ jsou aminoskupina, X je hydroxysku-pina, Y a Z“ jsou vodĂ­k, a Q4 je 3“-amino--3“-deoxyglykosyl obecnĂ©ho vzorce Va, vekterĂ©m M i M‘ jsou hydroxyskupina, 3‘,4‘-dideoxykanamycin B, tedy sloučeni-nu obecnĂ©ho vzorce VII, kde R‘ je vodĂ­k,Q3 je aminoglykosyl obecnĂ©ho vzorce lib,ve kterĂ©m W‘ a Z“‘ jsou aminoskupina a X, Y a Z“ jsou vodĂ­k, a Q4 je 3“-amino-3“-de-oxyglykosyl obecnĂ©ho vzorce Va, ve kte-rĂ©m M a M‘ jsou hydroxyskupina, 3‘,4‘-dideoxy-3‘-eno-kanamycin B, tedysloučeninu obecnĂ©ho vzorce VII, kde R‘ jevodĂ­k, Q3 je 3,4‘-dĂ­deoixy-3‘-eno-aminogly-kosyl vzorce Illb, a Q4 je 3“-amino-3“-de-oxyglykosyl obecnĂ©ho vzorce Va, ve kterĂ©mM a M‘ jsou hydroxyskupina, 6‘-N-methyl-3‘,4‘-dideoxykanamycin B, te-dy sloučeninu obecnĂ©ho vzorce VII, kde R‘je vodĂ­k, Q3 je aminoglykosyl obecnĂ©ho·vzorce lib, ve kterĂ©m W‘ je aminoskupina,X, Y a Z“ jsou vodĂ­k a Z“‘ je methylamino-skupina, a Q2 je 3“-amino-3“-deoxyglykosylobecnĂ©ho vzorce Va, ve kterĂ©m M i M* jsouhydroxyskupina, kanamycin C, tedy sloučeninu obecnĂ©hovzorce VII, kde R‘ je vodĂ­k, Q3 je amino-glykosyl obecnĂ©ho vzorce lib, ve kterĂ©mW‘, X, Y a Z“‘ jsou hydroxyskupina a Z“ jevodĂ­k, a Q4 je 3“-amino-3“-deoxyglykoxylobecnĂ©ho vzorce Va, ve kterĂ©m M a M‘ jsouhydroxyskupina, 3‘-deoxykanamycin C, tedy sloučeninu o-becnĂ©ho vzorce VII, kde R‘ je vodĂ­k, Q3 jeaminoglykosyl obecnĂ©ho vzorce lib, ve kte-rĂ©m W‘, Y a Z“‘ jsou hydroxyskupina a Xa Z“ jsou vodĂ­k, a Q4 je 3“-amino-3“-deoxy-glykosyl obecnĂ©ho vzorce Va, ve kterĂ©mM a M‘ jsou hydroxyskupina, 3‘,4‘-dideoxykanamycin C, tedy sloučeninuobecnĂ©ho vzorce VII, kde R‘ je vodĂ­k, Q3je aminoglykosyl obecnĂ©ho vzorce lib, vekterĂ©m W‘ a Z“‘ jsou hydroxyskupina a X, Y a Z“ jsou vodĂ­k, a Q4 je 3“-amino-3“-de- 58 oxyglykosyl obecnĂ©ho vzorce Va, ve kterĂ©mM a M‘ jsou hydroxyskupina, gentamicin A, tedy sloučeninu obecnĂ©hovzorce VII, kde R‘ je vodĂ­k, Q3 je aminogly-kosyl obecnĂ©ho vzorce lib, ve kterĂ©m W‘ jeaminoskupina, X, Y a Z“‘ jsou hydroxyskupi-na a Z“ je vodĂ­k a Q4 je 3“-alkylamino-3‘‘--deoxyglykosyl obecnĂ©ho vzorce Via, ve kte-rĂ©m R““ je vodĂ­k, gentamicin B, tedy sloučeninu obecnĂ©hovzorce VII, kde R* je vodĂ­k, Q3 je aminogly-kosyl obecnĂ©ho vzorce lib, ve kterĂ©m W‘ aY jsou hydroxyskupina, Z“‘ je aminoskupi-na a Z“ je vodĂ­k, a Q4 je 3“-alkylamino-3“--deoxyglykosyl obecnĂ©ho vzorce Via, ve kte-rĂ©m R““ je vodĂ­k, gentamicin C, tedy sloučeninu obecnĂ©hovzorce VII, kde R‘ je vodĂ­k, Q3 je aminogly-kosyl obecnĂ©ho vzorce 11b, ve kterĂ©m W‘ jeaminoskupina, X a Y jsou vodĂ­k a bud' Z‘“je methylaminoskupina a Z“ je methyl, toznamenĂĄ gentamicin Cl; nebo Z“‘ je amino-skupina a Z“ je vodĂ­k, to znamenĂĄ genta-micin Ci„, nebo Z1“ je aminoskupina a Z“je methyl, to znamenĂĄ gentamicin Cb neboC^a, a Q4 je 3“-alkylamino-3“-deoxyglykosylobecnĂ©ho vzorce Via, ve kterĂ©m R““ je me-thyl, verdamicin, tedy sloučeninu obecnĂ©hovzorce VII, kde R‘ je vodĂ­k, Q3 je 3‘,4‘-di-deoxy-4‘-eno-aminoglykcsyl obecnĂ©ho vzorceIVb, ve kterĂ©m R“‘ je methyl, a Q4 je 3“-al-kylamino-3“-deoxyglykosyl obecnĂ©ho vzorceVia, ve kterĂ©m R““ je methyl, sisomlcin, tedy sloučeninu obecnĂ©ho vzor-ce VII, kde R‘ je vodĂ­k, Q3 je 3‘,4‘-dideoxy--4‘-eno-aminoglykosyl obecnĂ©ho vzorce IVb,ve kterĂ©m R“‘ je vodĂ­k, a Q4 je 3“-alkyl-amino-3“-deo,xyglykosyl obecnĂ©ho vzorceVia, ve kterĂ©m R““ je methyl, a netilmicin, tedy sloučeninu obecnĂ©hovzorce Vil, kde R‘ je ethyl, Q3 je 3‘,4‘-dide-oxy-4‘-eno-aminoglykoxyl obecnĂ©ho vzorceIVb, ve kterĂ©m R“‘ je vodĂ­k, a Q4 je 3“-al-kylamino-3“-deoxyglykosyl obecnĂ©ho vzor-ce Via, ve kterĂ©m R““ je methyl.2. A process according to claim 1 wherein the amino-glycoside antibiotic of formula (VII) is selected from the group consisting of kanamycin A, teryl of formula VII wherein R 'is hydrogen, Q3 is an amino-glycosyl of formula IIb, in wherein W ', X and Y are hydroxy, Z' 'p is amino and Z' is hydrogen, and Q 4 is 3 "-amino-3" -deoxy-glycosyl of the general formula Va wherein M a M 'are hydroxy, 6'-N -alkylkanamycin A, that is, the compound of formula VII wherein R 'is hydrogen, Q: is an aminoglycosyl of formula IIb, wherein W', X and Y are hydroxy, Z '' is an amino group of formula -NHR "and Z" is hydrogen and Q 4 is a 3 "-amino-3" -deoxy-glycosyl of formula (Va) in which M and M 'are hydrophenyl, 3'-deoxycanamycin A, a compound of formula VII wherein R 1 is hydrogen, Q 3 is aminoglycoxyl of the general formula of formula IIb in which W 'and Y are hydroxy, X and Z' are hydrogen, and Z '' is amino, and Q 4 is 3 "-amino-3" -deoxyglycosyl of the general formula Va, wherein M and M 'are hydroxy, 6'-N-methyl-3'-deoxycanamycin A, a compound of formula VII wherein R 1 is hydrogen, O 3 is an aminoglycosyl of formula IIb wherein W 'and Y are hydroxy, X and Z' are hydrogen and Z '' is methylamino and O 4 is 3 "-amino-3" -deoxyglycoyl of formula Va wherein M and M 'are hydroxy, 4'noxycanainycin A, a compound of formula VII wherein R' is hydrogen, Q 3 is an amino glycosyl of formula IIb wherein W 'and X are hydroxy, Y and Z "are hydrogen and Z '' are amino, and Q 4 is 3 "-amino-3" -deoxyglycosyl of formula Va wherein M and M 'are hydroxy. 6‘-N-methyl-4‘-deoxycanamycin A, the Ted compound of formula VII wherein R‘ is hydrogen, Q3 is an aminoglycosyl of formula IIb. wherein W 1 and X 2 are both hydroxy. X and Z 'are hydrogen and Z' 'is a methyl amino group, and Q 4 is a 3 "-amino-3" -deoxyglycoyl of the general formula Va wherein M and M * are hydroxy, 3', 4'-dideoxycyanamycin Thus, a compound of formula VII wherein R 'is hydrogen, Q 3 is an aminoglycosyl of formula IIb. wherein W 'is hydroxy, X, Y and Z' are hydrogen and Z '' is amino and Q 4 is 3 "-amino-3" -deoxyglycosyl of general formula Va, wherein M and M 'are hydroxy, 6 "-deoxycanamycin A, a compound of formula VII wherein R 'is hydrogen, Q 3 is an amino glycosyl of formula IIb wherein W', X and Y are hydroxy, Z "is amino and Z" is hydrogen, and Q 4 is 3 " -a-mino 3 "-deoxyglycosyl of general formula Va, wherein M is hydrogen and M 'is hydroxy, 4", 6 "-dideoxycanamycin A, i.e. compound 261833 37 of formula VII wherein R 1 is hydrogen Q 3 is an aminoglycosyl of formula IIb wherein W ', X and Y are hydroxy, Z' 'is amino and Z' is hydrogen, and Q 4 is 3 "-amino-3" -deoxyglycosyl of formula Va wherein M and M are hydrogen, kanamycin B, a compound of formula VII wherein R 1 is hydrogen, Q 3 is an amino glycosyl of general formula IIb wherein W 1 and Z 1 are amino, X and Y are hydroxy and Z "Is hydrogen, and Q 4 is 3" -amino-3 "-deoxyglykoxyl of formula Va, wherein M and M 'are hydroxy, 3'-deoxycanamycin B, a compound of formula VII wherein R' is hydrogen, Q 3 is an aminoglycosyl of formula IIb, wherein W 'and Z "' are amino, X and Z" are hydrogen and Y is hydroxy, and Q 4 is 3 "-amino-3" -deoxyglycosyl of formula Va, wherein M and M 'are hydroxy, 4'-deoxycanamycin B, a compound of formula VII wherein R 'is hydrogen, Q 3 is an aminoglycosyl of formula IIb wherein W 1 and Z "' are amino, X is hydroxy, Y and Z" are hydrogen, and Q 4 is a 3 "-amino-3" -deoxyglycosyl of formula Va, wherein both M and M 'are hydroxy, 3', 4'-dideoxy-cyanamycin B, a compound of formula VII wherein R 1 is hydrogen, Q 3 is aminoglycosyl of formula IIb wherein W 'and Z' 'are amino and X, Y and Z' are hydrogen, and Q 4 is 3 "-amino-3" -deoxyglycosyl of formula Va in which M and M 'are hydroxy, 3', 4'-dideoxy-3'-eno-kanamycin B, the Ted compound of formula VII wherein R 'is hydrogen, Q 3 is 3,4'-dioxy-3'-eno-aminoglycosyl Formula IIIb, and Q 4 is 3 "-amino-3" -deoxyglycosyl of Formula Va wherein M and M 'are hydroxy, 6'-N-methyl-3', 4'-dideoxycannamycin B, then the compound of general formula of formula VII wherein R 'is hydrogen, Q 3 is an aminoglycosyl of general formula IIb wherein W' is amino, X, Y and Z "are hydrogen and Z" 'is methylamino, and Q 2 is 3 "-amino-3 "-Deoxyglycosyl of the general formula Va wherein M 1 and M 1 are both hydroxy, kanamycin C, i.e. the compound of general formula VII wherein R 'is hydrogen, Q 3 is an amino-glycosyl of the general formula IIb wherein W', X, Y and Z" 'are hydroxy and Z 4 is hydrogen, and Q 4 is 3 "-amino-3" -deoxyglycoxy of the formula Va, wherein M and M 'are hydroxy, 3'-deoxycanamycin C, a compound of formula VII wherein R' is hydrogen, Q 3 is aminoglycosy the formula IIb in which W ', Y and Z' 'are hydroxy and X and Z' are hydrogen, and Q 4 is a 3 "-amino-3" -deoxy-glycosyl of the formula Va wherein M and M 'are hydroxy, 3 &apos;, 4 &apos; -dideoxycanamycin C, of formula VII wherein R &lt; 1 &gt; is hydrogen, Q &lt; 3 &gt; is aminoglycosyl of formula (IIb), wherein W &apos; and Z &quot; 3 &apos; -amino-3 &apos; -de-58 oxyglycosyl of formula Va wherein M and M &apos; are hydroxy, gentamicin A, a compound of formula VII wherein R &apos; is hydrogen, Q3 is aminoglycosyl of formula IIb wherein W the amino group, X, Y and Z '' are hydroxy and Z 'is hydrogen and Q 4 is 3 "-alkylamino-3' - deoxyglycosyl of the formula VIa, in which R" is hydrogen, gentamicin B, thus, the compound of formula VII wherein R 1 is hydrogen, Q 3 is an aminoglycosyl of formula IIb wherein W 'and Y are hydroxy, Z' 'is amino and Z "is hydrogen, and Q 4 is 3 "-alkylamino-3" - deoxyglycosyl of the formula VIa in which R "is hydrogen, gentamicin C, the compound of general formula VII wherein R 1 is hydrogen, Q 3 is aminoglycosyl of the general formula 11b, in wherein W 'is amino, X and Y are hydrogen and either Z' is methylamino and Z 'is methyl, i.e. gentamicin Cl; or Z '' is an amino group and Z 'is hydrogen, that is, gentinine C1', or Z1 'is amino and Z' is methyl, i.e. gentamicin Cb or C1a, and Q4 is 3 '-alkylamino-3 "-Deoxyglycosyl of the formula VIa wherein R" is methyl, verdamicin, i.e. the compound of general formula VII, wherein R 'is hydrogen, Q 3 is 3', 4'-di-deoxy-4'-eno-aminoglycyl of the general formula VIb, wherein R '' is methyl, and Q 4 is 3 "-alkylamino-3" -deoxyglycosyl of the general formula VIa wherein R "'is methyl, sisomcin, hence the compound of formula VII wherein R' is hydrogen, Q 3 is 3 ', 4'-dideoxy-4'-eno-aminoglycosyl of formula (IVb) wherein R' 'is hydrogen, and Q 4 is 3 "-alkyl-amino-3" -deo, xyglycosyl of formula VIa wherein R "" Is methyl, and netilmicin, a compound of the general formula VIIa, wherein R 'is ethyl, Q 3 is the 3', 4'-dide-oxy-4'-eno-aminoglycoxyl of the general formula IVb wherein R "'is hydrogen, and Q 4 is 3 "-alkylamino-3" -deoxyglycosyl both the formula Via in which R '' is methyl. 3. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se jako aminoglykosidovĂ©ho anti-biotika pouĆŸije kanamycinu A, 6‘-N-alkylkanarnycinu A, 3‘-deoxykanamycinu A, 6‘-N-methyl-3‘-deoxykanamycinu A,4‘-deoxykanamycinu A,6‘-N-methyl-3‘-deoxykanamycinu A,3‘,4‘-dideoxykanamycinu A,6“-deoxykanamycinu A,4“,6“-dideoxykanamycinu A,kanamycinu B, 3‘-deoxykanamycinu B, 4‘-deoxykanamycinu B, 3‘,4‘-dideoxyka,namycinu B, 3‘,4‘-dideoxy-3‘-eno-kanamycinu B, 6‘-N-methyl-3‘,4‘-dideoxykanamycinu B, 2 B 1 3 5 3 59 kanamycinu C, 3‘-deoxykanamycinu C, 3‘,4‘-dideoxykanamycinu C, gentamicinu A, gentamicinu B, gentamicinu C, verdamicinu, sisomicinu nebo netilmicinu.3. The process of claim 1 wherein the aminoglycoside anti-biotic is kanamycin A, 6'-N-alkylkanarnycine A, 3'-deoxycanamycin A, 6'-N-methyl-3'-deoxycanamycin A, 4 '. -deoxycanamycin A, 6'-N-methyl-3'-deoxycanamycin A, 3 ', 4'-dideoxycanamycin A, 6' -deoxycanamycin A, 4 ', 6 "-dideoxycanamycin A, kanamycin B, 3'-deoxycanamycin B, 4'-deoxycanamycin B, 3 ', 4'-dideoxyka, B, 3', 4'-dideoxy-3'-eno-kanamycin B, 6'-N-methyl-3 ', 4'-dideoxycycamamine B, 2 Kanamycin C, 3'-deoxycanamycin C, 3 ', 4'-dideoxycanamycin C, gentamicin A, gentamicin B, gentamicin C, verdamicin, sisomicin or netilmicin. 4. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se kationtovĂœ komplex aminoglyko-sidovĂ©ho antibiotika se zinkem tvoƙí reak-cĂ­ 2,3 aĆŸ 6 dĂ­lĆŻ molĂĄrnĂ­ch octanu nebo chlo-ridu zinečnatĂ©ho na 1 dĂ­l molĂĄrnĂ­ amino-glykosidovĂ©ho antibiotika v inertnĂ­m orga-nickĂ©m rozpouĆĄtědle zvolenĂ©m ze souboruzahrnujĂ­cĂ­ dimethylsu lfoxid, vodnĂœ diine-thylsulfoxid, dimethylformamid, vodnĂœ di-methylformamid, směs dimethylformamidu adimethylsulfoxidu, tetrahydrofuran, vodnĂœtetrahydrofuran, methanol, vodnĂœ metha-nol, ethanol a vodnĂœ ethancl, popƙípadě vpƙítomnosti octanu sodnĂ©ho.4. A process according to claim 1, wherein the zinc cationic aminoglycoside antibiotic complex is formed by reacting from 2.3 to 6 parts of zinc acetate or zinc per 1 molar molar amino glycoside antibiotic in an inert organ. a solvent selected from the group consisting of dimethylsulfoxide, aqueous diethylsulfoxide, dimethylformamide, aqueous dimethylformamide, a mixture of dimethylformamide and dimethylsulfoxide, tetrahydrofuran, aqueous tetrahydrofuran, methanol, aqueous methanol, ethanol, and aqueous ethanol, optionally in the presence of sodium acetate. 5. ZpĆŻsob pode bodu 1, vyznačujĂ­cĂ­ setm, ĆŸe se pouĆŸije acylačnĂ­ho činidla, jehoĆŸacylovĂĄ skupina je vybrĂĄna ze souboru, kte-rĂœ tvoƙí alkanoylovĂĄ, aroylovĂĄ, alkoxykar-bonylovĂĄ, aralkyloxykarbonylovĂĄ, aryloxy-karibonylovĂĄ, alkylsulfonylovĂĄ, aralkylsulfo-nylovĂĄ nebo arylsulfonylovĂĄ skupina znĂĄmĂĄjako skupina pro· ochranu amlnoskupiny.5. A process as claimed in claim 1, wherein the acylating agent is selected from the group consisting of alkanoyl, aroyl, alkoxycarbonyl, aralkyloxycarbonyl, aryloxycaribonyl, alkylsulfonyl, aralkylsulfonyl or arylsulfonyl. group for the protection of the amino group. 6. ZpĆŻsob pode bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se acylačnĂ­ činidlo pouĆŸije v molĂĄr-nĂ­m mnoĆŸstvĂ­ rovnĂ©m nebo ve slabĂ©m pƙe-bytku vzhledem k počtu aminoskupin, kte-rĂ© majĂ­ bĂœt v kationtovĂ©m komplexu amino-glykosidovĂ©ho antibiotika se zinkem acylo-vĂĄny.6. The process of claim 1, wherein the acylating agent is used in a molar amount equal to or less than the number of amino groups to be acylated in the cationic complex of the amino-glycoside antibiotic. 7. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se komplex zinečnatĂœch kationtƈ seselektivně N-acylovanĂœm derivĂĄtem amino-glykosidovĂ©ho antibiotika napƙed oddělĂ­ zacylačnĂ­ reakčnĂ­ směsi a potom se nechĂĄreagovat s činidlem pro odstraněnĂ­ zineč-natĂœch kationtĆŻ z tohoto komplexu.7. The process of claim 1 wherein the zinc cationic complex is sequentially separated by an N-acylated amino-glycoside derivative of the antibiotic, and then is not reacted with the zinc cation removal reagent from the complex. 8. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se komplex zinečnatĂœch kationtĆŻ seselektivně N-acylovanĂœm derivĂĄtem amino-glykosidovĂ©ho antibiotika se oddělĂ­ z acy-lačnĂ­ reakčnĂ­ směsi extrakcĂ­ organickĂœmrozpouĆĄtědlem, odpaƙenĂ­m organickĂ©ho roz-pouĆĄtědla tvoƙícĂ­ho prostƙedĂ­ pro acylačnĂ­reakčnĂ­ směs nebo zƙeděnĂ­m acylačnĂ­ re-akčnĂ­ směsi ƙedĂ­cĂ­m organickĂœm rozpouĆĄ-tědlem, načeĆŸ se nechĂĄ reagovat s činidlempro odstraněnĂ­ zinečnatĂœch kationtĆŻ.8. The process of claim 1, wherein the zinc cation complex is selectively separated by an N-acylated amino glycoside derivative from the acylation reaction mixture by extraction with an organic solvent, evaporating the organic solvent to form an acylation reaction mixture, or diluting the acylation reaction mixture. the reaction mixture with the diluent organic solvent and then reacted with the zinc cation removal reagent. 9. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se komplex zinečnatĂœch kationtĆŻ seselektivně N-acylovanĂœm derivĂĄtem amino-glykosidovĂ©ho antibiotika oddělenĂœ od smě- 60 si smĂ­chĂĄ s vodou nebo bezvodnĂœm nebovodnĂœm polĂĄrnĂ­m organickĂœm rozpouĆĄtěd-lem, jakoĆŸto činidlem pro odstraněnĂ­ zineč-natĂ©ho' kationtĆŻ.9. The process of claim 1, wherein the zinc cation complex is selectively mixed with an N-acylated derivative of an amino-glycoside antibiotic separated from the mixture with water or an anhydrous or non-aqueous polar organic solvent as the zinc removal agent. cations. 10. ZpĆŻsob podle bodu 9, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se pouĆŸije polĂĄrnĂ­ho organickĂ©horozpouĆĄtědla, ve kterĂ©m sĆŻl zinečnatĂ©ho ka-tiontu s anorganickou nebo organickou ky-selinou je rozpustnĂĄ, avĆĄak ve kterĂ©m N--acylovanĂœ derivĂĄt aminoglykosidovĂ©ho an-tibiotika je nerozpustnĂœ, nebo takovĂ©ho roz-pouĆĄtědla, ve kterĂ©m sĆŻl zinečnatĂ©ho ka-tiontu s anorganickou nebo organickou ky-selinou je nerozpustnĂĄ, avĆĄak ve kterĂ©m N--acylovanĂœ derivĂĄt aminoglykosidovĂ©ho an-tibiotika je rozpustnĂœ.10. A process as claimed in claim 9, wherein a polar organic solvent is used in which the zinc cation salt with the inorganic or organic acid is soluble, but wherein the N-acylated aminoglycoside derivative is insoluble or is insoluble. a solvent in which the zinc salt of the inorganic or organic acid is insoluble but in which the N-acylated aminoglycoside derivative is soluble. 11. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se oddělenĂœ komplex zinečnatĂœchkationtĆŻ s N-acylovanĂœm derivĂĄtem amino-glykosidovĂ©ho antibiotika znovu zcela roz-pustĂ­ v organickĂ©m rozpouĆĄtědle obsahujĂ­-cĂ­m podĂ­l vody a vĂœslednĂœ roztok se podro-bĂ­ chromatografickĂ©mu zpracovĂĄnĂ­ za po-uĆŸitĂ­ kationtoměničovĂ© pryskyƙice, anionto-měničovĂ© pryskyƙice, chelĂĄtoměničovĂ© prys-kyƙice nebo ve vodě nerozpustnĂ©ho poly-meru obsahujĂ­cĂ­ho funkčnĂ­ skupiny schop-nĂ© sloučenĂ­ s kovem, jakoĆŸto činidlem proodstraněnĂ­ zinečnatĂ©ho kationtĆŻ.11. The process of claim 1 wherein the separated zinc cation complex with the N-acylated amino-glycoside derivative is completely dissolved in an organic solvent containing a portion of water and the resulting solution is subjected to chromatographic treatment using cation exchange resins, anion-exchange resins, chelate-exchange resins or water-insoluble polymer-containing polymer-containing functional groups as zinc cation removal reagents. 12. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se acylačnĂ­ reakčnĂ­ směs pƙímo ne-chĂĄ projĂ­t sloupcem kationtoměničovĂ© prys-kyƙice, aniontoměničovĂ© pryskyƙice, chela-toĂ­měničovĂ© pryskyƙice nebo ve vodě ne-rozpustnĂ©ho polymeru obsahujĂ­cĂ­ho funkčnĂ­skupiny schopnĂ© sloučenĂ­ s kovem, pro ad-sorpci komplexu zinečnatĂœch kationtĆŻ s N--acylovanĂœm derivĂĄtem aminoglykosidovĂ©hoantibiotika a sloupec se potom vyvolĂĄ vod-nĂœm organickĂœm rozpouĆĄtědlem popƙípaděobsahujĂ­cĂ­m podĂ­l kyseliny nebo bĂĄze, eluĂĄtse shromĂĄĆŸdĂ­ po frakcĂ­ch a potĂ© se zĂ­skajĂ­frakce obsahujĂ­cĂ­ poĆŸadovanĂœ selektivně N--acylovanĂœ derivĂĄt aminoglykosidovĂ©ho an-tibiotika prostĂœ zinečnatĂœch kationtĆŻ.12. The process of claim 1 wherein the acylation reaction mixture is directly passed through a column of cation exchange resin, anion exchange resin, a chelator resin, or a water-insoluble polymer containing a functional group capable of combining with the metal. sorption of the zinc cation complex with the N-acylated aminoglycoside derivative and the column is then induced with an aqueous organic solvent optionally containing an acid or base, the eluate is collected by fractions and then fractions containing the desired zinc-free N-acylated aminoglycoside anibiotics derivative are obtained . 13. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe poĆŸadovanĂœ N-acylovanĂœ derivĂĄt a-minoglykosidovĂ©ho antibiotika nerozpustnĂœnebo v podstatě nerozpustnĂœ ve vodě se vy-srĂĄĆŸĂ­ z acylačnĂ­ reakčnĂ­ směsi, jejĂ­m bez-prostƙednĂ­m smĂ­chĂĄnĂ­m s vodou, pƙičemĆŸ zi-nečnatĂĄ sĆŻl zĆŻstane rozpuĆĄtěna ve vodě.13. The process of claim 1, wherein said N-acylated non-insoluble or substantially insoluble water-insoluble or substantially insoluble N-acylated derivative of the α-minoglycoside antibiotic is precipitated from the acylation reaction mixture by admixing it with water, wherein the zinc salt remains dissolved. in the water. 14. ZpĆŻsob podle bodu 1, vyznačujĂ­cĂ­ setĂ­m, ĆŸe se acylačnĂ­ reakčnĂ­ směs nechĂĄ rea-govat se sirovodĂ­kem, sirnĂ­kem alkalickĂ©hokovu nebo sirnĂ­kem kovu alkalickĂ© zeminyk vysrĂĄĆŸenĂ­ zinečnatĂœch kationtĆŻ ve forměsirnĂ­ku zinečnatĂ©ho, nebo s hydroxidem a-monnĂœm k vysrĂĄĆŸenĂ­ zinečnatĂœch kationtĆŻve formě hydroxidu zinečnatĂ©ho.14. The process of claim 1 wherein the acylation reaction mixture is reacted with hydrogen sulfide, alkali metal sulfide, or alkaline earth metal sulfide to precipitate zinc cations in zinc sulfide, or with zinc hydroxide to precipitate zinc cations.
CS797711A 1978-11-11 1979-11-12 Method of aminoglycoside antibiotic's selectively acylated n-protected derivative production CS261853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS829399A CS261859B2 (en) 1978-11-11 1982-12-20 Method of aminoglycoside antibiotic's selectively protected n-acylated derivative preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13840278A JPS5564598A (en) 1978-11-11 1978-11-11 Preparation of aminoglycoside antibiotic having selectively protected amino group

Publications (2)

Publication Number Publication Date
CS771179A2 CS771179A2 (en) 1988-06-15
CS261853B2 true CS261853B2 (en) 1989-02-10

Family

ID=15221109

Family Applications (1)

Application Number Title Priority Date Filing Date
CS797711A CS261853B2 (en) 1978-11-11 1979-11-12 Method of aminoglycoside antibiotic's selectively acylated n-protected derivative production

Country Status (5)

Country Link
JP (1) JPS5564598A (en)
BE (1) BE879925A (en)
CS (1) CS261853B2 (en)
HU (1) HU183050B (en)
ZA (1) ZA795691B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136254A (en) * 1976-06-17 1979-01-23 Schering Corporation Process of selectively blocking amino functions in aminoglycosides using transition metal salts and intermediates used thereby
EP0446670B1 (en) * 1990-03-08 1994-09-21 Biochimica Opos Spa Method of preparation of amikacin precursors
KR100450607B1 (en) * 2002-07-11 2004-09-30 êČœë™ì œì•œ ìŁŒì‹íšŒì‚Ź Process for preparing Galamin

Also Published As

Publication number Publication date
JPS631319B2 (en) 1988-01-12
JPS5564598A (en) 1980-05-15
BE879925A (en) 1980-03-03
ZA795691B (en) 1980-11-26
CS771179A2 (en) 1988-06-15
HU183050B (en) 1984-04-28

Similar Documents

Publication Publication Date Title
US4297485A (en) Production of a selectively protected N-acylated derivative of an aminoglycosidic antibiotic
IE45734B1 (en) Process of selectively blocking amino groups
CS202570B2 (en) Process for preparing aminoglycsidic antibiotics
CS261853B2 (en) Method of aminoglycoside antibiotic&#39;s selectively acylated n-protected derivative production
KR840001622B1 (en) Method for preparing 3-0-demethyl istamycin B
US4547492A (en) 1-N-(ω-Amino-α-hydroxyalkanoyl-2&#39;,3&#39;-dideoxykanamycin A and pharmaceutical composition containing same
US3872080A (en) Process for the preparation of garamine and intermediates produced thereby
US4298727A (en) 3&#39;,4&#39;-Dideoxykanamycin A and 1-N-(S)-α-hydroxy-ω-aminoalkanoyl) derivatives thereof
JPS631954B2 (en)
US4140849A (en) Kanamycin C derivatives
EP0546179B1 (en) 4-o-(aminoglycosyl)- or 4,6-di-o-(aminoglycosyl)-2,5-dideoxy-5,5-difluorostreptamine derivative and production thereof
KR830001613B1 (en) Method for preparing aminoglycoside antibiotics selectively protecting amino groups
EP0259014A2 (en) 5-Deoxy-5-fluorokanamycin B derivatives and processes for the production thereof
US4332794A (en) 6&#34;-Deoxydibekacin, 4&#34;,6&#34;-dideoxydibekacin and 1-N-aminoacyl derivatives thereof, and the production of these new compounds
JPS6332799B2 (en)
CA1152063A (en) 3&#39;,4&#39;-DIDEOXYKANAMYCIN A AND 1-N-((S)-.alpha.- HYDROXY-.omega.-AMINOALKANOLY) DERIVATIVES THEREOF
CA1131628A (en) Production of a selectively protected n-acylated derivative of an aminoglycosidic antibiotic
JP3215732B2 (en) Dibekacin or arbekacin derivatives effective against resistant bacteria and methods for their production
GB1567560A (en) Kanamycin c derivatives active against various drug-resistant bacteria
CA1175816A (en) 1-N-(.alpha.-HYDROXY-.omega.-AMINOALKANOYL) DERIVATIVES OF 5, 3&#39;,4&#39;-TRIDEOXY- OR 5,3&#39;,4&#39;-TRIDEOXY-6&#39;-N-METHYL- OR 5,3&#39;,4&#39;,6&#34;-TETRADEOXY-KANAMYCIN B AND PRODUCTION THEREOF
GB2075010A (en) Process for the Production of 3&#39;- Deoxykanamycin A
IE48973B1 (en) The production of a selectively protected n-acylated derivative of an aminoglycosidic antibiotic
JPS631953B2 (en)
JPH0631296B2 (en) 2 &#39;, 3&#39;-dideoxy-2&#39;-fluorokanamycin A derivative and production method thereof
JPS631951B2 (en)