CS261523B1 - Cement mixture ingredient - Google Patents

Cement mixture ingredient Download PDF

Info

Publication number
CS261523B1
CS261523B1 CS866534A CS653486A CS261523B1 CS 261523 B1 CS261523 B1 CS 261523B1 CS 866534 A CS866534 A CS 866534A CS 653486 A CS653486 A CS 653486A CS 261523 B1 CS261523 B1 CS 261523B1
Authority
CS
Czechoslovakia
Prior art keywords
sucrose
results
strength
cement
mpa
Prior art date
Application number
CS866534A
Other languages
Czech (cs)
Other versions
CS653486A1 (en
Inventor
Ladislav Ing Csc Komora
Mikulas Ing Csc Sveda
Original Assignee
Komora Ladislav
Sveda Mikulas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komora Ladislav, Sveda Mikulas filed Critical Komora Ladislav
Priority to CS866534A priority Critical patent/CS261523B1/en
Publication of CS653486A1 publication Critical patent/CS653486A1/en
Publication of CS261523B1 publication Critical patent/CS261523B1/en

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Predmetom riešenia je přísada do cementových zmesi na báze sacharidov so zlepšenými fyzikálnomechanickými vlastnosťami finálnych výrobkov, připravitelná hydrolýzou di- až polysacharidov v prostředí kyseliny sírovej alebo šťavelovej pri teplotách 70 až 180 °C, pričom vzniknuté monosacharidy sa ďalej alkalicky spracujú hydroxidom sodným alebo vápenatým pri teplotách 60 až 200 °C a pH 9 až 13.The subject of the solution is cement additive carbohydrate-based compositions with improved physical properties final products, prepared by hydrolysis di- to polysaccharides in the acid medium sulfuric or oxalic at temperatures 70-180 ° C, while the monosaccharides formed are further treated with hydroxide sodium or calcium at temperatures 60 to 200 ° C and pH 9 to 13.

Description

261323 3

Vynález sa týká přísady do cementovýchzmesí na báze sacharidov so zlepšenými fy-zikálnomechanickými vlastnosťami finálnychvýrobkov.

Cukor sa v odbornej literatúre uvádza a-ko velmi účinná spomal'u]'úca přísada docementových zmesí (Sebók T.: Přísady apřídavky do malt a betonů, SNTL Praha1985, str. 36—39).

Podl'a uvedeného, cukor zlepšuje spraco-vateTnosť mált a betonových zmesí. Zlepše-me opracovatelnosti sa prejavuje už pri dáv-ke 0,06 % hmot. na cement, pričom vply-vom spomalujúceho účinku cukru na tuhnu-tie sa spracovatelnosť v závislosti od dobytuhnutia zhoršuje len pomaly.

Vplyv cukru na pevnost vzorku závisí vý-razné od použitej dávky cukru a druhu ce-mentu. Tak zatial čo u cementu SPC 250,dvojdňové skúšky pevnosti, pri dávke 0,05pere. hmot. je pevnost okolo 3 MPa, {bezpřídavku 5 MPa) s dávkou 0,1 % hmot. jepevnost menšia ako 0,6 MPa, s dávkou 0,2a 0,3 % hmot. sa pevnost nedala merať. Po7 dňoch pevnost s najmenšou dávkou užmierne překročila pevnost zrovnávaciehopokusu bez přídavku, so zvyšováním dávkysa dosiahlo 60 %, 30 %, resp. nemeratel-ná pevnost s 0,3 % hmot. cukru na cement.Po 28 dňoch pevnost s najnižším prídavkombola cca o 20 % vyššia ako zrovnávací po-kus, s dávkou 0,1 °/o hmot. bola na úrovnireferenčného pokusu a s dávkou 0,3 % o-kolO' 2 MPa, t. j. 10 % v zrovnaní s 18 MPaporovnávacieho pokusu.

Po 90 dňoch pevnosti v prvých troch prí-davkoch boli vyššie o 3,7, resp. 15 °/o s 0,3pere. 2,5 MPa (Standard 19 MPa). S cementom PC 400 Mokrá po dvochdňoch pevnost s 0,05 % hmot. bola 80 %standardu, po 7 dňoch pevnosti s 0,05 a 0,1pere. hmot. boli vyššie o cca 20 % od Stan-dardu, aj po 90 dňoch boli pevnosti o 10 až20 % vyššie, zatial' čo už s dávkou 0,2 %hmot. cukru na cement bola pevnost len 2MPa, t. j. ako po 1 dni bez přídavku (Stan-dard 27 MPa). Ďalšou nevýhodou, okrem nebezpečiapredávkovania, sú nízko pevnosti v prvýchdňoch tuhnutia cementových zmesí, roztokycukru majú velmi malú skladovatelnosť přenebezpečie kvasenia. Tíeto dovody sú roz-hodujúce preto, že sa cukor do betonu ne-přidává.

Uvedené nevýhody odstraňuje přísada docementových zmesí s plastifikačným účin-kom pripravitelná hydrolýzou di-, až poly-sacharidov v prostředí kyseliny sírovej ale-bo šťavelovej pri teplotách 70 až 180 °C, pri-čom vzniknuté monosacharidy sa dalej al-kalicky spracujú hydroxidom sodným alebovápenatým pri teplotách 60 až 200 °C a pH9 až 13. Výhody uvedeného postupu sú v tom, že přísada neznižuje plastifikačný účinok pó- vodných sacharidov, ale že podstatné zvy- šuje pevnosti najmá v prvých dňoch prak- 4 ticky na žiadanú úroveň, t. j. ako bez plas-tifikátora, pričom pevnosti pripravenej ce-mentovej zmesi po troch a siedmich dňochsú vyššie, ako u porovnávacích pokusoch.Okrem toho uvedený postup umožňuje po-užit až 10-násobne vačšie množstvo uprave-ných sacharidov, ako to bolo s povodnýmicukrami, napr. sacharózou. Postup je vše-obecný a je ním možné upravovat akékolvekzmesi obsahujúca sacharidy, kde tíeto póso-bia vo, vačších množstvách, ako inhibitortuhnutia.

Postup je všeobecný, takže nie je nutnéna aplikáciu používat už získaný čistý cu-kor, ale staČia mono-, di- až polysacharidy,ktoré sú v prírode velmi rozšířené, resp.ktoré sa dajú jednoducho syntetizovat, resp.izolovat z odpadov. V případe, že sa jedná o monosacharidy,tieto sa v prírode vyskytujú spravidla spáť- alebo šesťčlánkovým reťazcom akopentózy alebo hexózy. Tieto stačí vyhriaťv alkalickom prostředí tvorenom napr. hyd-roxidom vápenatým na 80 °C a v priebehu5 h pri uvedenej teplete dochádza k ichoxidoredukčnej reakcii na příslušné kyseli-ny, ktoré dajú so zásadou soli tak, že zása-da sa v roztoku postupné odstraňuje, a pre-to je potřebné použit dostatočné množstvozásady. V případe, že sa monosacharid ďalej ne-mění, připadne je zo zmesi odstránený, ne-dochádza k spotrebe zásady, a tak je mož-né jednoduchou titráciou kyselinou stano-vit postup a ukončenie rozkladu. Toto jemožné tiež sledovat podlá pH roztoku, resp.stanovením aldehydickej skupiny, resp. re-dukujúcich cukrov. Výsledné produkty sapřed použitím upravujú na žiadané pH prí-davkom anorganických, resp. organickýchkyselin. V případe oligo- až polysacharidovtieto je potřebné najprv hydrolýzou zriede-nými kyselinami rozložit na monosachari-dy a až tieto podrobit reakcii v alkalickomprostředí. Postup hydrolýzy di- až polysa-charidov je všetibecne známy a takto mož-no připravit napr. xylózu (aldopentózu) sozdrevnatelých buniek dřeva, slamy a pod.hydrolýzou napr. zriedenou kyselinou sol-nou, resp. sírovou.

Po oddělení kvapaliny od nerozpustnýchpodielov (nehydrolyzovaných) sa kyslý roz-tok monosacharidov prevedie, napr. hydro-xidom vápenatým, sodným a podobné, nazásaditý roztok, v ktorom sa monosachari-dy prevádzajú na formu vhodnú pre použi-tie v stavebníctve. V stavebníctve je možnéaplikovat výhodné roztoky, resp. aj produktpo odpaření, čo však nie je výhodné, na-kolko pri príprave cementových zmesí ajtak je potřebné přidávat do· cementov zá-mesovú vodu. Podobné v kyslom prostředíje možné hydrolyzovať škrob, celulózu, he-micelulózy, sacharózu atď. obsiahnutú vrastlinách, no i tele živočíchov (glykogén)napr. zahrievaním pri normálnej, resp. mier- 261523 5 ne zvýšenej teplote (sacharóza), resp. vautokláve (škrob, celulóza). Nakoíko sa prihydrolýze di- až polysacharidu kyselina ne-spotřebuje na hydrolýzu, je dostatočné lenminimálně množstvo (stopové množstvo)kyselin. Aj samotné monosacharidy v kys-lom prostředí majú už lepšie vlastnosti akopovodně di- až oligosacharidy.

Samozřejmé, že monosacharidy je možnézískat z disacharidu aj použitím roznychfermentov a enzýmov, v tomto případe pouvolnění monosacharidov sa tieto upravu-jú pre získanie vhodných vlastností pre sta-vebníctvo v alkalickom prostředí. Výhodou uvedeného postupu je, že je ne-náročný na technologické zariadenie a spó-sob využitia, nakoJko vhodné suroviny súširoko dostupné a vznikajú i ako vedíajšieprodukty v mnohých velkotonážnych výro-bách, či už v samotných cukrovaroch, skú-šobňach no najma v drevospracujúcom prie-mysle a podobné. Ďalšou výhodou je to·, že postup je všeo-becný a možno ho použit nielen s čistýmiroztckmi sacharidov, ale i s různými zme-sami obsahujúcimi sacharidy, či ako nežia-dúce příměsi alebo doprovodné látky.

Doba posobenia(h) PH povodný roztok 11,6 0 po dosiahnutí teploty 8,2 1 11,4 2 11,1 3 10,9

Po ochladem roztoku sa tento zneutrali-zoval prídavkom 32,8 g 50 %-nej kyselinymravčej na pH 6,9. Hydroxid sodný sa po-užil vo formě 40 % hmot. vodného rozto-ku. Spotřeba hydroxidu sodného reakcioumonosacharidu bola 936 g, t. j. reakciou savytvořilo 2,34 molu kyselin z 2,22 molu glu-kózy. K roztoku sa přidalo 10 g kopolyaduktuetylénoxidu s propylénoxidom s molekulo-vou hmotnosfou 1 800 a 10 % hmot. eto-xamérových jednotiek v molekule na zní-ženie prevzdušňovania.

Analýza roztoku po neutralizácii bola na-sledovná: hustota 1,187 g . cm-3sušina 36,0 % hmot.

Obsah vicinálnych hydroxylových skupinpočítané na mól. hmotnost

Na príkladoch, ktoré nevyčerpávajú všet-ky možné kombinácie, uvádzame konkrétnéspůsoby úpravy sacharidov, ako i aplikač-ně skúšky výsledkov v cementových zme-siach. Příklad 1 400 g sacharózy sa rozpustí v 600 g vo-dy, přidá sa 5 g kyseliny šťaveTovej a vy-hřeje sa na teplotu 100 °C pod spatnýmchladičom. Zatial' čo roztok za studená ne-obsahoval redukujúce cukry (podl'a Scho-orla), už v prvej vzorke odobratej okamžitépo dosiahnutí požadovanej teploty obsaho-val 400 mg na gram red. cukrov tak, žeďalšia hydrolýza nebola potřebná.

Hydrolyzát sa upravil so 40 g hydroxidusodného na pH 11,6, vyhrial sa na teplotu90 rC. V produkte sa stanovovalo pH, obsahvicinálnych hydroxylových skupin iodista-novou metodou v přepočte na glukózu (Si),a redukujúce cukry ako glukóza (G). Výsledky sa měnili následovně:

Si G Prídavok (mg/g) (mg/g) NaOH (g) 340 400 40 320 192 72 126 58 — 120 55 — 118 54 — 180 16,6 % hmot. obsah redukujúcich cukrov 5,9 % hmot. Příklad 2

Do 1 000 g roztoku sacharózy o obsahu40 % hmot. sa přidá 0,5 % hmot. kyselinysírovej (pH roztoku 1,54) a vyhrial pod spat-ným chladičom za miešania na 90 °C.

Zatial' čo roztok sacharózy vo vodě obsa-hoval 16,1 % hmot. vicinálnych —OH sku-pin (v přepočte na glukózu), po vyhriatína žiadanú teplotu stúpol obsah na 24 °/ohmot. a za 1 h na 46 °/o hmot. V priebehudalších 5 h sa obsah vicinálnych —OH sku-pin nemenil. K roztoku sa přidalo 60,3 g 40 % hmot.suspenzie hydroxidu vápenatého na pH 11,2a zmes sa vyhriala na 90 °C.

Vplyv varenia monosacharidu na pH, resp. obsah vicinálnych —OH skupin bol nasle- dovný (Si) (1000g násada). 261523

Prídavok

Ca(OH)2 (g) doba namátiania(h)

PH před

pH po přídavku

Obsah Si(mg.g-1) 0 před vyhriatím 11,2 0 . po vyhriatí 9,44 0,5 9,54 1,0 8,24 1.5 9,54 2,0 9,91 2.5 10,81 3,0 11,2 — 570 24 10,7 405 12 10,9 — 18 10,8 370 24 11,2 — 16 11,4 — 116 11,4 — 7 180 0

Na neutralizáciu bolo použitých 21,6 gkouč. kyseliny mravčej na pH 7,1, t. j. při-dalo sa 117 g hydroxidu vápenatého, spotře-bovalo sa 1,11 molu (82,2 g) hydroxidu vá-penatého na 2,22 molu glukózy.

Produkt obsahoval: 36,8 % hmot. sušiny 21,0 % hmot. vicinálnych - -OH skupin po-čítané na sacharózu s mól. lnnot. 180 hustota — 1,1788 g . cm-3 obsah redukujúcich cukrov 4,58 % hmot. Příklad 3 Porovnávací A. 1 000 g 40 % hmot. roztoku sacharózy savyhrialo na 90 °C a upravilo sa pH s 13,9 gNaOH na 11,94. V priebehu 6 h varenia saobsah vicinálnych —OH skupin nemenil[335 + 15 mg/g stanovené ako mól. hmot-nost 360 sacharóza], taktiež pH roztoku zo-stalo na rovnakej úrovni (11,94 + 0,03) aobsah redukujúcich cukrov 0,3 % hmot.

Po ukončení namáhania při danej teplotesa upravilo pH na 6,50 (póvodný roztok5,56) s 13,9 g konc. kyseliny mravčej. Spo-třeba NaOH 0,04 molu, čo je možné připočí-tat úpravě pH (zo 5,56 na 6,50). B.

Podobné bola odskúšaná možnost úpravysacharózy 1 000 g 40 % roztoku s hydroxi-dem vápenatým pri teplote 90 °C počas 6hodin.

Prídavok hydroxidu vápenatého 7,5 g voformě 40 % suspenzie. Počas 6 hodin sa ne-menil obsah redukujúcich cukrov a bol 0až 0,4 °/o hmot., obsah vicinálnych —OHskupin (360 + 20 mg/g ako sacharóza) apH 11,6 až 11,7.

Obsah aldehydov ako formaldehyd stano-vené 0,3 až 0,4 % hmot. Na neutralizáciulia pH 7,06 sa použilo 7,8 g konc. kyselinymravčej. Rozdiel v hydroxide vápenatcm 0,10molu přidané — 0,085 molu na konci, t. j.0,015 mólu. P r í1 a d 4 A. gramov vody, 15 g kyseliny sírovej a 1,5 g sí-ranu meďnatého sa vložilo do 1,5 1 autoklá-vu s miešadlom a vyhrialo na teplotu 180stupňov Celzia za miešania. Po 4 hodináchsa produkt v autokláve ochladil na 80 °C,přefiltroval cez sklenú múčku a k filtrátuobsahujúcom 25 g sacharidov sa přidal hyd-roxid sodný a vyhrieval 5 h pri uvedenejteplotě. Při roakcii pri 11.9 sa viazalo 0,14 móluhydroxidu sodného, obsah sušiny bol 5 %hmot. Po zahuštění roztoku na obsah suši-ny 40 °/o hmot. sa urobili aplikačně skúšky. B.

Podobné v autokláve bol hydrolyzovanýškrob, ale pri teplote 160 °C. Po hydrolýzesa spracovával s NaOH ako v postupe A azahustil na 40 %-nú sušinu. Příklad 5 Zrovnávací Z portladnského cementu triedy PC 400 —Ladce sa namiešajú kaše normálnej husto-ty, podTa CSN 722 115. Podfa tej istej normysa zistí počiatok a doba tuhnutia. Z ce-mento-vej kaše sa zhotovili skúšobné vzor-ky — kecky o hrané 20 mm. Formy so skú-šobnými vzorkami sa uložia do vlhkej ko-mory (20 °C, reaktívna vlhkost viac ako 90pere.]. Po troch dňoch sa uložia do vody20 °C teplej. Vzorky sa skúšajú na pevnostv tlaku. Výsledky sú zhrnuté do tabulky 1.Ako z tabulky 1 vidno u zrovnávacieho po-kusu so sacbarózou už s 0,1 % hmot. pří-sadou cukru, na hmotnost cementu sa nedo-sahuje po prvom dni žiadna pevnost s polo-vičnou dávkou 00 % z referenčnej hodno-ty. 0.3 % hmot. za 28 dní sa dosahuje do50 % pevnosti z referenčnej hodnoty. Dáv-ka zámesovej vody sa trvale znižnvala, t.j. plastifikačný účinok s dávkou narastal.Doba tuhnutia sa s dávkou predlžovala (spo-maíovač), ale od dávky 0,22 hmot. cukrudochádzalo k falešnému tvrdnutiu. Příklad 6

Podl'a postupu uvedencm v příklade 5 sa zhotovili skúšobné telieska z cementu PC 400 a odskúšal sa produkt hydrolýzy a úpravy sacharózy vyrobenej podlá příkladu 2. Vý- 100 g dřevených pilin, na sušinu, a 1 000 9 ............. sledky aplikácii produktu sú zhrnuté dotabulky 2.

Ako z uvedených výsledkov vidno, prída-vok upraveného sacharidu zlepšuje plastic-ké vlastnosti cementovej kaše, urychluje tuh-nutie a dokonca pri menších dávkách 0,05a 0,1 % hmot. přídavku na cement zvyšujeuž aj jednodňové pevnosti. Příklad 7 10 odskúšaný pódia postupu 5. Výsledky súzhodnotené v tabulke 3. Zatial' čo v plasti-citě sú výsledky podlá příkladu 6 a 7 při-bližné rovnaké, jednodňové pevnosti aj sprídavkami 0,3 % hmot. na cement sú 90 %v porovnaní s výsledkami bez přídavku. Po7 dňoch tvrdnutia a ďalej, sú pevnosti o 10pere. vyššie ako v referenčnom pokuse.

Produkt připravený podl'a postupu 1 bol 261523

Vplyv prídavkov roztokov sacharózy neupravovanej (p = 1170 kg. m-3, suš. = 41,8) na vlastnosti cementových kaší (cement:PC 400) a pevnosti skúšobných teliesok o

Cti 1 0)

O

CO o

G co 00

CM cd > -4-»

CO o

G > ω

Pu

G

G

'G t-í > cd Ό

O

Q

CO cd

cd \co bΌ <ctí <W c F-1 o co cq CO 00* cm" ©" b 03 O o b t—1 r-f 00

Tfi

CO CM* ca > ce tí CM CO IO C0„®O_

cn irf cm co t>" r-T r> oo co m cn oo in OT CO rH co o bs

Co"

cm 'Φ o in in

Co" ©" © Ό cm" r-f I

Xt< CM O O N OO O NO© © 03 CM © CM rH r-fCM ’Φ O b O O © © CM 00 b

00 to o Η H

rH CM ČM cq co H CO. b^ COo co" co" ©" co" o" ©"O CD © © © © 00

© in C3 © © eq bco" cm" ©* in" cm" co" -φ*O o 03 O) 03 oo coCM CM H rí rH rl H o a G3

CO ©* co >co

G co &amp;0 4tí 00 b a 'Ctí a

N

O CL, 00

CM

Cd G

G 4tí GG £ > -o

-+-J 8£,

> S

® oCM X r-f

Cs. co rH e\J~ co moo" co c\f tjT mina □ ooo co rl rl riri CM^ CM^ Tři 00 00 cq 03* CO* in" bs" ’Φ oo" b> 00 00 00 tH oo cq ©^ co cq. cn cn coCD co" r-Γ r-f CO* ©*

CO b b b CO tH CO

CO^b^rHO^CO^ rdCM o" *Φ* b* o" ©" i co"CDínind H I CM

CM ca 4tí P-l

G X3

G

H 11 š o. 21 -§ &amp;.« α

Λ'£ O S >wft'3 ttí ·*« wΌ ’+-> o ω Ό “ř-4 carGocaV)

>03

O 04 .2 +->

G

G

rG

G .a cd ωoTtí

03 ©G b Ό

O > X© cd 4tí > 'Ctí Ό

'G

O O © O ’Φ O rH LC3 00 rH b* ΙΩ rH CM CM Eb CM CO CM

□ ΟΟΟΟΝΙΌ©OOOO^NHHHN © ·Φ iq cq rH iqo ©" o" co" b ©" co" ó'0030300C0000003 0) > ctí í-< Λ cq Q cq © O <q 3 co" CM co" o* CM* oo" o O 03 © © 0O b> S CM CM rH t—1 rH rH Ή * cm b h coin© cq.cM.o3.THTro" r-Γ co" ’Φ* co* 1-Γ m o cq th cm co in bo" o" o" o" o* ©" o"

O

O *Φ

O cu 03

O

© cq cq to CO co C£> CD CD cm' Ó cm" τ-Γ CD O © CO co 00 b. b co CM rH tH r-ď Ή tH rH rH

G 03 > S’3 s* S.s H QQCb έΙ «-η 53o. tu i> 8 ctí 4tí > 'Ctí

Q cd 4tí >

'G

Q cd 4tí > 'ctí

Q

b Ό ·—<G Tjw 0

\rH ř-» '—s

Ϊ-Ι ’—' G.

© R Q O O © O © ©" CD to" o" b" ©" CO © © oo oo b b CD 00 CM rH rH tH t—1 rH rH CM in © co CM © © oo © to CM © © © LC3 rH CO ΙΓ3 © CM rH CO * O H CM co in b CM O © O © o O © přísada přidaná 1,5 min. po přidaní vody

Jfi 261523

Vplyv prídavkov roztoku upravenej sacharózy podlá příkladu 1; (p = 1187 kg.m*3 suš. = 36,0 %}, na vlastnosti cementovýchkaší (cement: PC 400 Ladce) a pevnosti skúšobných teliesok Dávka Dávka Dávka Celková dávka vody Poč. Doba Pevnost v tlaku v (MPa) Poznámky 00

CM

řx ío ts in co oco” cm” co” irf cd” ao I 03 o O O O O *

rH rH rK rH rH

Z ti ti ti 03

CO

>W ti

Z 3 ti rti ti ti

O .2 ti ti

Xh ti ti z β β β

CO ti

•ι—I s a ·ι*4 s

Š2 S

ti **oZ C ·a

CM 03 © 03 CO 05 IS cn in i< < co” o” MÍ co co oo oo cn co 03 CO (O TP CM <© 03 03 rH cm” co” m” in O” *

CD t> CD

CM ID CO CO rHco” tjT n.” 10” id” o” co”M Μ M M CO rH M

O O O P O O CD 00 rH If) CM τΉ CO co Mi CM CO CM CM CM

QOOLOMnMlDCO 00 CM CM CO CM <O o” o rd a co on in so co” CD cm” CD r™l CD co” 00 00 co” 00 rH CD Ό O > CD CO CM eo O ti ti T3 co” cd” o” t> t—1 mT cm” CD CD σ> CO CO řx a CM rH rH rH rH rH rH o a OOOOOOOO ‘ti co” oí cí id” co” co” μ” in «

OCDOOOOC^COCOOOMrHrHHHHrHrH

rH 'ti ti 0-4* ti M M< CM CO rH < Ό03 © CD CO crý L ·£ o” th co” m” cd” th 00 a ti

TD ti ID * ř-f CD M CM^ CO^ in cm^ a CD O CD O CZ3 O ^D C^3 60 β tri

O

CM

O AS0 O o <8 4-> a CJtu '>>+-1 β

•f-H »Q £ oa>z 'ti ω z ti ti Ό

Z a ti > φ a Ašrt s-< „a0o « XJ oO fl, a

>, -wn βΌ OJ

Í5 S"3 S β g

O uti kl(O N fi s ».&amp; β a β *o

° coN ASO H βř> '>* o >β o

> tica βτϊ ω'C S ag > >·> +-»

Z a o> ti Λ s 'ti ti

N

O

CU co

CM $ ~Cm cí s § 3 cati 4tí tižti tiΰ s > Sh-•w, £ S _ coo caβ Λ > oCD QPm ti •I—* k β ti β 2 - o g ·βα·§£ ti ♦ +·1>Q tiO ti ·a rti ti 1

>S X5 o -—.><?tiřití> 'ti 'ti O e

£2 B Φ

O

in M^ O0 CO CM^co” cm” co” M” id” cd”CD O CD O O O CM^ CO CD^ co co t>cd” co” co” cd” cd’tx 00 00 00 00 00 t*s ^CD^vH c© C^ IO 'Hcd” r-f cm” CM r-T τ~Γ Oco c^. o co in co” Q0 CD . CDco” lo í>”co

ID cm”

CM CD^

CD

CD

CO

o O O O CM CO LO vn 00 O CD rH rH CM CO co CM CO CM rH rH

OOOCMeOOOO00 00 CD rH CO CO

tH t**H r*H cmi in^ o* eo

o” hT o” cd” lo co” o”OCDCDCDOOOOCOCD

-D LO r~l CM CO LQ CO CMr co” o” cd” CD cm” CD o O CD CO 00 00 CM CM rH rH rH rH rH rH

CD O_ CD CD <D o o COcd” cd” co” Τ-Γ r-Γ ΙΌOOCDCOOOt^OOOCMCMrHrHt—1t—It—ItH

O . 00 CD CM CD CO CMao ca t^N'inC0 r-f oo” in 00~ rH 00~ m * OCSrHCMCOint^CMo* o“ o“ o” o“ o" o" co přísada přidaná 1,5 min. po přidaní vody 261523

Vplyv prídavkov roztoku upravenej sacharózy (p = 1209 kg. m-3, suš. = 33,5 %) podlá příkladu 1 s použitím chlórňanu sod-ného ako alkalického činidla na vlastnosti cementových kaší připravených z cementu PC 400 a pevnost skúšobných teliesok Dávka Dávka Dávka Celková dávka vody Poč. Doba Pevnost v tlaku v (MPa) Poznámky přísady přísady vody (ml) (%) tuhnutia tuhnutia Doba tvrdnutia— (dní) (%) (ml) (ml) (min.) (min.) 1 3 7 28

tx CM CM^ 03 CO^00 o" r-f CO* TjT txO) O O O O Orl Η H rl H

CM

o" o" r-Γ írT o ctT t>. 00 00 00 00 00 O) CM^ © CO ΙΠ rHo" o" o ’Φ co co"co tx tx tx co co CM O in CM CD00 SfT ΤΤ IO CM"

Tfl xtft 00 CM rH 00 θ' 00 Tři oo co" co

OOOOCMOLOOQOOOOOOCMCOLOCOCM CM CM CM CO

OOIOVOtHIOOO

OOOOCOCMrHCMinCO O TT 03 CO CO CM O ©o" tx" 10" r-Γ o" co © r-f00)030)00 00 000)

Q co" o" m" oo" co" tx" tx" oo"o c a oo co tx t\ soCNCMrHrlrlrlrlrl

<□ O CO O, O~ O~ ©^ O"co" o" mi" co" o" r-f oo" co"0005COCONCDCOCMCMrlHrlrHr-tH O) 00 lf) co ooO) O O O) 00 ©o" r-Γ co" ΙΟ O)" co" vo * OOrHCMCOlDtxCMo" o" o" o" o" o" O* o" >>oo>\r—« 3 ca 2

'C a o a 3

•fM a IT^

rH 'ti ti cti 'ti ft

Cti ti cti w \r-4 P-t Λ ti 0) a Φ ω cti rti o š ti Φ a φ o

W o ti 4-> co

Cti cti ti 4tí a 'Cti ti 00

CM tí S-3 3 «8eti ti > P-4U_l oo >7) ti 0)

I

tx o) ř\in co tx" r-f Th tx" cm" co" oo O) O) 00 00 rH in co O O Tř 05 tx" o" r-Γ w" in o’ lf) co CO « - «3 40> Oω oa co co t> co o o o ΙΠ Tft in" o" O" co" TJ1 "Φ eo co CM"

O o" cti 4tí ti

fQ cti 00

rW

O tx ω s to > o > <0 a 3 >< φN m-j

Cti β £ T£> ti ti SSa 3 >u 2 aala > ti^_ 4tí > 'Cti ti 'Cti li Φ r-« >—· š >1 O >(Z544 '3O 44N “gtí g 44>

Cti'ti

ArMí-< Λ—, Λΐη

CM > eo ”3 O&amp;a > w

O

rH

CO

NO N O O O O

ω o οι o o ιη σ>CJ 05 U σ) oo co rH O o O eo O CM "Ψ in o CM tx co o g

rH

CD co"

O

CM

OO

CO H to S t-> in cm o·O) O) 05 03 05 in o

CM

CD CO CD 00^t>" co" o" co"O) 05 05 OO CO _ '3 gq > S Ό —>·*· cti

Q S-o — Q £a

CO o

CM

O o"

CM 00

O O O O co" cm" oo" cm"05 05 00 00

rH O0O) tH CO < r-f CO M*" 00" 11,45 177,0 183,7 89,2 110 210

r^CM CO ΙΟO O O O O 261523

Vplyv prídavkov roztoku upravenej sacharózy podlá příkladu 2; (p = 1178, suš. = 38,8 %), na vlastností cementových kaší(cement: SPC 325j a pevnosti skúšobných tellesok Dávka Dávka Dávka Celková dávka vody Poč. Doba Pevnost v tlaku — (MPa) Poznámky přísady přísady vody (ml) (%) tuhnutia tuhnutia Doba tvrdnutia — (dní) £

CD s

CD

CJ >»

JťS s *ca a

N o a 00

CM o co in co oo cdt< θ' CM" cd" t>00 CD O) 00 00 co

LO CO CO rH COO? r-f r-f Cjd 'd 00ΙΌ CO O CO ID rH co (□ co (□uď co" 3" co" cd cm"’ζρ ud co cm CO 00 CD O Ocm" TtT cd o" cd o o 3 o ud o 3r-f CO 3 3 CO τ-f r-f

3 m to 3 3 udCM rH CO CO COCM CO co co id

cd to cm" cm" r-fO CD CD CJ5 CD CD

CD CCJ^ CM OD UD 00 co" co" rH cd od O CD 3 CD CD CO CM rH rH rH r-( rH

o 3^ cd o, o3" cd co" 3" rd co"O CD CD CO 00 ooCM H rl Η O H CM LCD CD ’Ψ COCD 00^ CO 3 CMcd rd co" ud cd" ud O O tH CM CO 3cd o" o" cd o" cd w o tí +-» CZ5 ca ca 3 3 r2 3

Ίγ—I a «3 ί3 o a co co 3

CD 00

CM 0-< d s-§ 3 ,2x ·£ 3 3 £ £ . 73 > Sm -+j ž to cn O 33 33

> O 3 QCL, CD 00 CM^ CDt>" <d CM" CO" r-f CD"CO 00 CD CD CD 00 LO in LO 1<T CO rd r-H td cm" co" cd LÍD CO CO CD LÍD Ml

3 CO H O CM CMud CM" r-f CD td 3""Φ 3 CO 3 CM

to 3 ir^ rH oo^cm" úd co" cd" r-f Oτ—I r—I t—I ca

X &amp; ca

ÓD b- oCO wt—l qjr-f ai

CD lis o. y0!

>>-2N ĎΌ ><ΛO 3 ·—4 ,

3 "3° 2o 2Q -C 3 3 • i—í. +-*>CJ £3O tía Λ O CD O O 3 Ord CO CM CO O CMCO CO sff r-f r-f O O O O O OCM "Mi CO 3 COCM CM r-f ca Λ

CD cú

CD CĎ Φ £ S ω£ £«&amp;.—.

£<<N" CO 3 O,« aů cn >s Ό o

> <©caíL > 'ca xa li ω

CO ca Μ* ί>Ί

?> TO 3'3 O S a > — >>Ό 3 CD CD CO CO COo" co" co" cm" r-í cdO 3 3 CD 3 co

Q CO CM 3 CD co" cd" CM d CO" mT o CD 3 CD 03 oo CM r*4 r-f t—( r-f r-f C_ CD CD CD <3 O co" cd" rd' co" Líd od o 3 CD CO CO Cx CM rH rH rH rH rH Λ! ω> —* rrt ~13 >05'3 caa·*&amp; <->>2 § ra-p>3>Í5^q a '’Φ CM 3 °d o" r-f co" Líd cd" in o O rH CM CO ino" cd o" o" o" cd 261523

Vplyv prídavkov roztoku upravenej sacharózy (p = 1201 kg. m 3, suš. = 37,9 %], podía příkladu 1, (ale pri teplote 70 °C],na vlastnosti kaše (cement SPC 325] a pevnost skúšobných teliesok Dávka Dávka Dávka Celková dávka vody Poč. Doba Pevnost v tlaku — (MPa) Poznámky přísady přísady vody (ml] (%] tuhnutia tuhnutia Doba tvrdnutia — (dní]

Cx co .a a ci •i—l a CM 00 00. CO COθ' CO* m* CM* C?

00 O CD © O CD ιτγ ιο oϊ> in o*m Γχ o co tx OD.00.oítx*co in co to" Mí 00^ £0. CD O.oo* cm* oo cx*M1 tn to mí to M^

CM CO CO CM O. O. OCM Mí* CO r-4* O O* -é

W (JiJO a u£ '£?λ a«ga$ '+3 ja « 3 Ί-Ο ífl a 2 cω >- 05 .p á' 3in m II £ . ω>;n a s (Λ 4- 3 2i aa o5. u

(50 N 44 "a >3 a 8 CL. oo

CM 'r“1 3 ctí -íá -KCO 3C « CZ3 2 « λ co o toH CMco co o

UO co

o tno coCO rH

O T—l

Cti 44 43O'5x(3ω>CtíÍHο. Λ ·ι-1 CT5

O

CM

Ctí

Ctí j5 2 aa| |

O to o LO tn OCM rH O Mí Mí COCM CM 33 ctí 3 3 Λ •r“< . «Μ H >Q 2O Ctí CO CO CMo" s> tnO © ©

© M^ COCM t-Í ©CD © CD O 1O rH CM^ O tOco” CO CO r-Γ co" tfíO O CD O) 00 00CM CM rH tH rH rd

O O O O O Oco o tří cd" tri o"o o © oo oo oofM N rl Η Η H CO CO CM t> CDí co ts in cm^c\o" r-Γ CO* tří 00* to © © th. cm on ino" o" o" o" o* o*

κ o, tn co cot< t-T CM* CO* CO*00 CD CD O CD to in tv co ot< CO r-í co* 00*tn co t** t**

O

O σ> tn tn co co co cotn CD CO* CO CO* biMÍ Mí to tn Mí co en o βο q ca oCM* to* O* Mí* OO* O*rH rl CM rl

O oooid tnr-f CO CM rH CD rHCO CO Mí Mí rH rH /W OCO -w

N Ό £3f- tn<0 oΛ 3o +-1řo scn J2 ctí a

Ctí

>H *a o ~>

ctí ÍL š 'Ctí 'Ctí

£ f-H 44 s

iiV 05

O

o in oin o oCM Mí CO t> tO COCM CM CM

M^ co iq. t> tmO* Cx* to* CM* r-Γ O*O CD CD CD CD CD O CO CD. 03CO* O* CO* CÍ OO* to*O O CD CD OO COCM N Η Η H r( Φí3ωí>ctíp-< *33 ;ΰ S °S Λ O '05F-. 44

Q «««-d K? Q Ctí4x3 4x1 ctí ©Ttí s 3 £,§ >'§ >» - ctí

O O 0.0.0 O

S* o* to* oo* to* o*O O 00 00 CxCMCM rl rlH H 8?

co to co ooCD O O 00O* r-Γ CO* UD CD to ©.©„ rH CM CO ΙΟO O o o o o

261323 3

BACKGROUND OF THE INVENTION The present invention relates to a carbohydrate-based cementitious additive with improved physical mechanical properties of the final product.

Sugar has been reported in the literature as a very effective slower addition of docement mixtures (Sebók T .: Additives and Additives to Mortars and Concretes, SNTL Praha1985, pp. 36-39).

Accordingly, the sugar improves the processability of mortars and concrete mixtures. The improved workability already occurs at 0.06% by weight. for cement, whereby the slowing effect of the slowing effect of the sugar on the solidification is only slowed down.

The effect of the sugar on the strength of the sample depends strongly on the sugar dose used and the type of sugar used. While for SPC 250 cement, a two-day strength test, at 0.05ppm. wt. is a strength of about 3 MPa (with an addition of 5 MPa) with a dose of 0.1% by weight. the strength is less than 0.6 MPa, with a dose of 0.2 and 0.3% by weight. the fortress could not be measured. After 7 days, the smallest dose strength exceeded the strength of the no-addition comparison equation, with 60%, 30%, and 60%, respectively, with dose escalation. non-measurable strength with 0.3 wt. sugar for cement.After 28 days the strength with the lowest addition of about 20% higher than the leveling piece, with a 0.1 ° by weight. was at the level of the reference experiment and at a dose of 0.3% o-O 2 of 2 MPa, ie 10% compared to the 18 MPaporization experiment.

After 90 days of strength in the first three additions, they were higher by 3.7, respectively. 15 ° / os 0.3pere. 2.5 MPa (19 MPa standard). With cement PC 400 Wet after two days strength with 0.05 wt. was 80% of the standard, after 7 days of strength with 0.05 and 0.1pre. wt. they were higher by about 20% from Standard, even after 90 days the strengths were 10-20% higher, while already at a dose of 0.2% by weight. sugar for cement was a strength of only 2MPa, ie, as after 1 day without addition (Standard 27 MPa). A further disadvantage, in addition to the risk of overdosing, is the low strength in the early solidification of the cementitious compositions, the sugar solution having a very low fermentability risk of fermentation. These reasons are decisive because sugar is not added to the concrete.

The above-mentioned disadvantages are eliminated by the addition of cementitious compounds with plasticizing effect obtainable by hydrolysis of di- to poly-saccharides in sulfuric acid or oxalic acid at temperatures of 70 to 180 ° C, while the resulting monosaccharides are further treated with sodium hydroxide and calcium hydroxide. at temperatures of 60 ° C to 200 ° C and pH 9 to 13. The advantages of the process are that the additive does not reduce the plasticizing effect of the aqueous saccharides, but that it substantially increases the strengths in the first few days practically to the desired level, ie as without plasticizer, whereby the strength of the prepared mixture of the mixture after three and seven days is higher than in the comparative experiments. In addition, the process allows for up to 10-fold greater amounts of treated carbohydrates, such as those with flocculants, e.g. sucrose. The process is general and it is possible to modify any carbohydrate-containing composition where these act in greater amounts than the inhibitor.

The procedure is general, so it is not necessary to use the already obtained pure cocoa but the mono-, di- to polysaccharides are very widespread or can be easily synthesized or isolated from waste. In the case of monosaccharides, these occur naturally in the asbestos or six-cell chain of aopentosis or hexose. It is sufficient to heat them in an alkaline environment such as calcium hydroxide to 80 ° C and to oxidize them to the corresponding acids in the course of 5 hours with the aforementioned heat, which give the base with salt so that the base is gradually removed in the solution. and to this end, sufficient amounts of primer are required. If the monosaccharide is not further altered or removed from the mixture, the base is not consumed and thus the procedure and the termination of the decomposition can be determined by simple acid titration. This can also be monitored by the pH of the solution, respectively by determining the aldehyde group, respectively. releasing sugars. The resulting products are adjusted to the desired pH prior to use by the addition of inorganic, respectively. organic acids. In the case of oligo-to-polysaccharide, it is first necessary to break down the hydrolysis with dilute acids into monosaccharides and to react them in an alkaline medium. The process for the hydrolysis of di- to polysaccharides is well known and, for example, xylose (aldopentose) of wood-leachable cells, straw and hydrolysis can be prepared, e.g. sulfuric acid.

After separation of the liquid from the insoluble (non-hydrolysed) portions, the acidic solution of the monosaccharides is converted, for example, by calcium hydroxide, sodium hydroxide, and the like, in which the monosaccharides are converted into a form suitable for use in construction. In the construction industry it is possible to apply advantageous solutions, respectively. the evaporation product, which is not advantageous, however, when it is necessary to add water to the cement in the preparation of cementitious mixtures. Similarly, in the acidic environment, it is possible to hydrolyze starch, cellulose, hexelluloses, sucrose, etc. contained in the skin, but also animal (glycogen), e.g. by heating at normal, respectively. no-elevated temperature (sucrose), resp. autoclave (starch, cellulose). Since the acid is not consumed by hydrolysis of the di- to polysaccharide for hydrolysis, only a minimal amount (trace amount) of acids is sufficient. Even the monosaccharides themselves in the acidic environment have better properties of water and di- to oligosaccharides.

Of course, monosaccharides can also be obtained from the disaccharide by the use of differenteners and enzymes, in which case the release of the monosaccharides is adapted to provide suitable stability properties in the alkaline environment. The advantage of this process is that it is not demanding on the technological equipment and the way of use, since suitable raw materials are widely available and are also produced as by-products in many large-scale products, whether in the sugar mills themselves or in the wood processing industry. -industry and the like. Another advantage is that the process is general and can be used not only with pure carbohydrates, but also with various carbohydrate-containing substances, or as undesirable additives or accompanying substances.

Feeding time (h) PH flood solution 11.6 0 after reaching 8.2 1 11.4 2 11.1 3 10.9

After cooling the solution, this was neutralized by the addition of 32.8 g of 50% formic acid to pH 6.9. Sodium hydroxide was used in the form of 40 wt. aqueous solution. The consumption of sodium hydroxide by the reaction of the monosaccharide was 936 g, ie by reaction, it produced 2.34 moles of acids from 2.22 moles of glucose. To the solution was added 10 g of copolyaductuethylene oxide with propylene oxide having a molecular weight of 1800 and 10% by weight. ethoxamer units in the molecule to reduce aeration.

Analysis of the solution after neutralization was as follows: density 1.187 g. cm-3-saline 36.0 wt.

The content of vicinal hydroxyl groups calculated per mole. weight

In the examples, which do not exhaust all possible combinations, we present specific methods of carbohydrate treatment as well as application tests of results in cementitious mixtures. EXAMPLE 1 400 g of sucrose are dissolved in 600 g of water, 5 g of oxalic acid are added and heated to 100 DEG C. under a reflux condenser. While the solution did not contain cold reducing sugars (according to Scholars), it contained 400 mg per gram of red in the first sample taken immediately to reach the desired temperature. sugars such that further hydrolysis was not required.

The hydrolyzate was adjusted with 40 g of hydroxide to pH 11.6, heated to 90 rC. In the product, the pH, the contents of the canine hydroxyl groups was determined by the iodist method in terms of glucose (Si), and reducing sugars such as glucose (G). The results changed as follows:

Si G Addition (mg / g) (mg / g) NaOH (g) 340 400 40 320 192 72 126 58 - 120 55 - 118 54 - 180 16.6 wt. content of reducing sugars 5.9% by weight. Example 2

To 1000 g of sucrose solution of 40 wt. 0.5 wt. acid (pH 1.54) and heated to 90 ° C under reflux.

While the sucrose in water solution contained 16.1 wt. vicinal — OH skunk (converted to glucose), after heating the desired temperature, the content increased to 24 ° / ohm. and 1 h at 46 ° C. In the course of the next 5 hours, the vicinal —OH content did not change. 60.3 g of 40% calcium hydroxide suspension to pH 11.2 were added to the solution and the mixture was heated to 90 ° C.

The effect of boiling monosaccharide on pH, respectively. the content of vicinal —OH groups was as follows (Si) (1000g batch). 261523

Addition

Ca (OH) 2 (g) rinse time (h)

PH before

pH after addition

Si content (mg.g-1) 0 before heating 11.2 0. after heating 9.44 0.5 9.54 1.0 8.24 1.5 9.54 2.0 9.91 2.5 10.81 3.0 11.2 - 570 24 10.7 405 12 10.9 - 18 10.8 370 24 11.2 - 16 11.4 - 116 11.4 - 7 180 0

21.6 microns were used for neutralization. formic acid to pH 7.1, ie 117 g of calcium hydroxide was added, 1.11 moles (82.2 g) of leachate hydroxide was consumed at 2.22 moles of glucose.

The product contained: 36.8 wt. % dry matter 21.0 wt. vicinal -OH groups calculated on sucrose with a molar. lnnot. 180 density - 1.1788 g. cm-3 content of reducing sugars 4.58 wt. Example 3 Comparative A. 1000 g 40 wt. sucrose solution at 90 ° C and the pH was adjusted to 13.9 g NaOH to 11.94. Within 6 h of cooking, the content of vicinal-OH groups did not change [335 + 15 mg / g determined as mol. 360 sucrose], the pH of the solution also remained at the same level (11.94 + 0.03) and the content of reducing sugars was 0.3% by weight.

After the end of the stress at a given temperature, the pH was adjusted to 6.50 (0.56 aqueous solution) with 13.9 g conc. formic acid. NaOH of 0.04 mole, which may be added to the pH adjustment (from 5.56 to 6.50). B.

Similarly, the possibility of treating the saccharose with 1000 g of a 40% calcium hydroxide solution at 90 ° C for 6 hours was tested.

Addition of calcium hydroxide 7.5 g in 40% suspension. During 6 hours, the content of reducing sugars did not change and was 0 to 0.4% by weight, the content of vicinal-OH groups (360 ± 20 mg / g as sucrose) and HH 11.6 to 11.7.

The aldehyde content as formaldehyde is determined to be 0.3 to 0.4% by weight. 7.8 g of conc. acid formate. Difference in calcium hydroxide 0.10 mol added - 0.085 mol at the end, ie 0.015 mol. For example, 4 A. grams of water, 15 g of sulfuric acid and 1.5 g of copper sulfate were charged into a 1.5 L autoclave with a stirrer and heated to 180 ° C with stirring. After 4 hours, the product in the autoclave was cooled to 80 ° C, filtered through a glass flour, and sodium hydroxide was added to the filtrate containing 25 g of carbohydrates and heated for 5 hours at room temperature. During the rooting at 11.9, 0.14 mole of sodium hydroxide was bound, and the solids content was 5% by weight. After concentrating the solution to a dry content of 40% by weight. application tests were performed. B.

Similar to the autoclave, starch was hydrolyzed but at 160 ° C. After hydrolysis, it was treated with NaOH as in Procedure A and concentrated to 40% dry matter. Example 5 Comparison of the Portladn cement of the PC 400 class - the ladle mixes the slurries of normal density, according to CSN 722 115. According to the same norm, it determines the onset and setting time. 20 mm test specimens were made from the slurry. The test sample molds are placed in a humid chamber (20 ° C, reactive humidity above 90 ° C). After three days they are stored in water at 20 ° C. The samples are tested for compressive strength. As shown in Table 1, with a saccharose leveling composition of 0.1% by weight of sugar, the weight of the cement does not achieve any strength after the first day with a half-dose of 00% of the reference value. 0.3% by weight in 28 days reaches a 50% strength of the reference value The batching water batch has been steadily decreased, ie the plasticizing effect with the dose has increased. 22% by weight of sugar was falsified

According to the procedure described in Example 5, PC 400 test specimens were made and the product of the hydrolysis and treatment of sucrose produced according to Example 2 was tested. The results of applying the product are summarized in Table 2.

As can be seen from these results, the addition of the treated saccharide improves the plasticity of the cement slurry, accelerates the solidification and even at smaller doses of 0.05 and 0.1% by weight. the cement addition increases the day-to-day strength. EXAMPLE 7 10 Test Procedure 5. Test results are shown in Table 3. While the results of Examples 6 and 7 are similar in plasticity to the same, daytime strength and addition of 0.3% by weight. for cement are 90% compared to results without addition. After 7 days of hardening and further, the strengths are 10p. higher than in the reference experiment.

The product prepared according to Procedure 1 was 261523

Influence of additions of untreated sucrose solutions (p = 1170 kg. M-3, dry = 41.8) on the properties of cement slurries (cement: PC 400) and strength of test specimens o

Honor 1 0)

O

CO o

G co 00

CM cd> -4- »

CO o

G> ω

Pu

G

G

'G t-i> cd Ό

O

Q

CO cd

c bΌ <honor <W c F-1 o what cq CO 00 * cm "©" b 03 O obt — 1 rf 00

Tfi

CO CM * ca CM CO IO C0 '®O_

cn irf cm co t>"rTr> oo m m cn oo in OT CO rH co bs

What"

cm 'Φ in in

What "©" © Ό cm "rf I

Xt <CM OON OO O © 03 CM © CM rH fCM 'Φ O b OO © © CM 00 b

00 to Η H

rH CM CM cq co H CO. b ^ COo what "what" © "what" about "©" About CD © © © 00

© in C3 © eq bco "cm" © * in "cm" what "-φ * O o 03 O) 03 oo CM H ri rH H oa G3

WHAT?

G Co &amp; 0 4t 00 b &amp;

N

About CL, 00

CM

Cd G

G 4 GG £> -o

- + £ 8 £

> S

® oCM X rf

Cs. what rH e j ~ what moo "what c f jt mina □ ooo what rl rl riri CM ^ CM ^ three 00 00 cq 03 * CO * in" bs "'" oo "b> 00 00 00 h oo cq © ^ co cq. cn cn coCD what r-Γ rf CO * © *

CO bbb COH CO

CO ^ b ^ rHO ^ CO ^ rdCM o "* Φ * b * o" © "i co" CDinind HI CM

CM ca 4 th Pl

G X3

G

H 11 š o 21 -§ &amp; «α

Ft '£ OS>wft'3 thi · * «wΌ' + -> o ω Ό“--4 carGocaV)

> 03

O 04 .2 + ->

G

G

rG

G .a cd ωoTti

03 © G b Ό

O> X © 4th>'Honors'

'G

OO O O Φ O rH LC3 00 rH b * H rH CM CM CM CM CM CM CM

OOO OOO OOO O O H H q q q q q q q """""" q q q q q q q q q q q q q q q q * "O © CM CM CM CM CM CM CM cm cm cm cm cm cm cm cm cm cm cm c c c c c c c c c c c c co co co co co co th cm what in bo "o" o "o * ©" o "

O

O * Φ

03

O

C q to CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD r r r r r r r r r r r r r

G 03>S'3 with * Ss H QQCb ΙΙ «-η 53o. here i> 8 honors 4>> honors

Q cd 4 th>

'G

Q cd 4 th honor

Q

b Ό · - <G Tjw 0

rH-- '' s

Ϊ-Ι '-' G.

© RQOO © © "CD to" o "b" © "CO © oo bb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 © © 3 ©3 © CM rH CO * OH CM co in b CM O © o o O © additive added 1.5 min after water addition

Jfi 261523

Effect of Additions of Treated Sucrose Solution According to Example 1; (p = 1187 kg.m * 3 dry = 36.0%}, on cement cement properties (cement: PC 400 Ladce) and test specimen strength Dose Dose Dose Total water dose No. Time Compressive strength v (MPa) Remarks 00

CM

øx ío ts in co oco ”cm” what ”irf cd” and o 03 o OOOO *

rH rH rK rH rH

You tell you 03

WHAT

> W ti

Of the three thirty you

About .2 you

Xh ti ti from β β β

CO

• ι — I sa · ι * 4 s

W2 S

ti ** oZ C · a

CM 03 © 03 CO 05 IS cn in i <<what ”o” is what co oo 03 CO (o TP CM <© 03 03 rH cm ”co” m ”in O” *

CD t> CD

CM ID CO CO rHco ”tjT n.” 10 ”id” o ”co” M Μ MM CO rH M

OOOPOO CD 00 rH If) CM CO CM CO CM CM CM CM

QOOLOMnMlDCO 00 CM CM CM CM O CMO o rd a co on in co co CD cm ™ CD r ™ l CD co 00 00 co ”00 rH CD Ό O> CD CO CM eo O ti ti T3 co” cd ”O” t> t — 1 mT cm ”CD CD σ> CO CO x and CM rH rH rH rH rH rH oa OOOOOOOO 'ti co” oíiti id ”co” what ”μ” in «

OCDOOOOCl COCOOOMrHrHHHHrHrH

rH 'ti 0-4 * ti M M <CM CO rH <Ό03 © CD CO rý L · £ o ”th” m ”cd” th 00 and ti

TD ti ID * ø-f CD M CM ^ CO ^ in cm ^ a CD About CD3 CZ ^ 3 ^ 3 60 β tri

O

CM

O AS0 O o <8 4-> and CJtu '>> + - 1 β

• fH »Q £ oa> z 'ti ω z ti ti Ό

Z and ti> φ and Asht s- <"a0o" XJ oO fl, a

>, -wn ΌΌ

55 S 3 3 S β g

O uti kl (ON fi s ». &Amp; β and β * o

° coN ASO H βr>'> * o> β o

> tica βτϊ ω'CS ag>>

Z and o> ti Λ s' ti ti

N

O

CU co

$ $ Cí $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ > Q tiO ti · a rti ti 1

> With X5 o -—.><?

£ 2 B Φ

O

in M ^ O0 CO CM ^ co ”cm” what ”M” id ”cd” CD O CD OOO CM ^ CO CD ^ co co> cd ”co” co ”cd” cd'tx 00 00 00 00 00 t * s ^ CD ^ vH c © C ^ IO 'Hcd' rf cm 'CM rT τ ~ Γ Oco c ^. what about what? Q0 CD. CDco ”lo í>” co

ID cm ”

CM CD ^

CD

CD

WHAT

o CM CM CO LO v CD O rH rH CM CO co CM CO CM rH rH

OOOCMeOOOO00 00 CD rH CO CO

H t ** H r * H cmi in ^ o * eo

o "hT o" cd "lo co" o "OCDCDCDOOOOCOCD

-D LO r ~ l CM CO LQ CO CMr co ”o” cd ”CD cm” CD o CD CO 00 00 CM CM rH rH rH rH rH rH

CD O_ CD CD <D oo COcd ”cd” co ”Τ-Γ r-ΓOOCDCOOOt ^ OOOCMCMrHrHt — 1t — It — ItH

O. 00 CD CM CD CO CMao ca t ^ N'inC0 rf oo ”in 00 ~ rH 00 ~ m * OCSrHCMCOint ^ CMo * o“ o ”o“ o "o" what additive added 1.5 min. after addition of water 261523

Effect of the addition of the treated sucrose solution (p = 1209 kg. M-3, dry = 33.5%) according to Example 1 using sodium hypochlorite as the alkaline agent on the cement slurry properties prepared from PC 400 cement and the strength of the test batch batch Dose Total Dose of Water Am. Time Compressive strength v (MPa) Remarks additive water additive (ml) (%) solidification setting Cure time - (days) (%) (ml) (ml) (min.) (Min.) 1 3 7 28

tx CM CM ^ 03 CO ^ 00 o "rf CO * TjT txO)

CM

o "o" r-Γ írT o ctT t>. 00 00 00 00 00 O) CM ^ © CO ΙΠ rHo "o" o 'Φ co what "what tx tx tx what CM CM in CM CD00 SfT O CM IC"

Tfl xtft 00 CM rH 00 θ '00 Three oo co' what

OOOOCMOLOOQOOOOOOCMCOLOCOCM CM CM CM CO

OOIOVOtHIOOO

OC M OC OC OC TT CO CM OC OC OC OC OC OC OC OC OC OC OC OC OC OC 30 30 30 30 30 30 30

Q what "o" m "oo" what "tx" tx "oo" oca oo what tx t \ t

Co CO rf rf mi co CO CO CO CO CO CO CO oo oo oo oo oo 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 "ΙΟ O)" o "oOrHCMCOlDtxCMo" o "o" o "o" O * o ">>oo>

'C aoa 3

• fM and IT ^

rH 'ti ti cti' ti ft

Ti ω 0 0) ω ω ω ω ω ω ω ω ω ω ω ω ω

W o ti 4-> co

Honor the Fourth and 'Honor You 00

CM tí S-3 3 «8th ti> P-4U_l oo> 7) ti 0)

AND

tx o) Th Th Th Th Th Th Th 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 CO CO CO CO CO CO CO 40> Oo oa co co> co ooo ΙΠ Tft in "o" co "TJ1" Φ eo co CM "

About "Honor Four

fQ honor 00

rW

O tx ω s to>o><0 and 3><φN eg

Ti SS a SS a a a a a a a a O O O O O O O O O ((((((((((((

Cti'ti

ArMí- <Λ—, Λΐη

CM> eo ”3 O &amp;a> w

O

rH

WHAT

NO NOOOO

ω ο η J J J J J J J J J J J J J J J J J J J J

rH

CD co "

O

CM

OO

CO H t S t in in cm · 0) O) 05 03 05 in o

CM

CD CO CD 00 ^ t>"co" o "co" O) 05 05 OO CO _ '3 gq> S Ό -> · * · cti

Q So - Q £ a

CO o

CM

About "

CM 00

"Cm" oo "cm" 05 05 00 00

rH OOO) H CO <rf CO M * "00" 11.45 177.0 183.7 89.2 110 210

r ^ CM CO ΙΟO OOOO 261523

Effect of Additions of the Treated Sucrose Solution According to Example 2; (p = 1178, dry = 38.8%), on the properties of cement slurries (cement: SPC 325j and strength of test tellers Dose Dose Dose Total Dose of Water No. Time Compressive Strength - (MPa) Remarks Additive Water Additive (ml) (%) solidification solidification Cure time - (days) £

CD s

CD

CJ> »

You are with * ca and

N oa 00

CM o co in what about cdt <θ 'CM "cd"t> 00 CD O) 00 00 co

LO WHAT CO rH COO? rf rf Cjd 'd 00ΙΌ CO O CO ID rH co (CO ď co "3" co "cd cm"' udρ ud co cm CO 00 CD O Ocm "TtT cd o" cd oo 3 o ud o 3r- f CO 3 3 CO τ-f rf

3 m to 3 3 udCM rH WHAT WHAT COCM CO WHAT WHAT ID

cd to cm "cm" r-fO CD CD CJ5 CD CD

CD CCJ ^ CM FROM UD 00 what "what" rH cd from O CD 3 CD CD CO CM rH rH rH r- (rH

o 3 ^ cd o, o3 "cd co" 3 "rd co" o CD CD CO 00 ooCM H rl Η OH CM LCD CD Ψ COCD 00 ^ CO 3 CMcd rd what "ud cd" ud OOH CM CO 3cd o "o" cd o "cd wo ti + -» CZ5 ca ca 3 3 r2 3

—Γ — I and 3 3 ί3 oa co co 3

CD 00

CM 0- <d s-§ 3, 2x · £ 3 3 £ £. 73> Sm - + j to cn O 33 33

CD 00 CD ^ CDt>"<dCM" CO "rf CD" CD 00 CD CD 00 LO in LO 1 <T CO rd rH td cm "what" cd

3 CO CM CM CMM CM "rf CD td 3""Φ 3 CO 3 CM

to 3 ir ^ rH oo ^ cm "lim" cd "rf Oτ — I r — I t — I ca

X &amp; ca

ÓD b-oCO wt-1 qjr-f ai

CD press o. Y0!

>> - 2N ĎΌ><ΛO 3 · —4,

3 "3 ° 2o 2Q -C 3 3 i í + * - J J O ía CD CD CD CD CD CD OO OO OO OO OO OO OO OO OO OO

CD cú

CD CĎ S £ S ω £ £ &amp;

£ << N "CO 3 O," and cn> s. O

><©caíL>'ca xa li ω

CO ca Μ * ί> Ί

?> TO 3'3 OS a> - >> CD 3 CD CD WHAT CO CO "what" cm "r-í cdO 3 3 CD 3 what

Q CO CM 3 CD 03 CM "CD" CD "CD 3 CD 03" CM r * 4 rf t - (rf rf C_ CD CD CD <3 "what" cd "rd" what 3 CDs) CO CO Cx CM rH rH rH rH Λ! Ω> - * rrt ~ 13>05'3 caa * * &amp;<->> 2 § ra-p>3> Í5 ^ qa '' Φ CM 3 ° to " rf co "cd" in o c r CM co ino "cd o" o "cd" 261523

Effect of Additions of Treated Sucrose Solution (p = 1201 kg. M 3, dry = 37.9%), according to Example 1 (but at 70 ° C), on the properties of the slurry (cement SPC 325) and strength of test specimens Batch Dose Dose Total Water Dose Number Time Compressive Strength - (MPa) Remarks Additives Water Additive (ml) (%) Solidification Solidification Cure Time (days)

Cx co .aa ci i la CM 00 00. CO CO 'CO * m * CM * C?

00 About CD ι in ι ϊ ϊ in in in in in in in o o .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 O O O O O x x x M ^

CM CO CO CM OO OCM Mi * CO r-4 * OO * -é

W (JiJO au £ '£ λ and «ga $' +3 ja« 3 Ί-Ο ífl and 2 cω> - 05 .p á '3in m II £. Ω>; nas (Λ 4- 3 2i aa o5 . u

(50 N 44 "and> 3 and 8 CL. Oo.)

CM 'r' 1 3 honors -iCO-3C «CZ3 2« λ what about CMco what about

UO co

o tno coCO rH

OT — l

Honor 44 43O'5x (3ω> CTI. Λ · ι-1)

O

CM

They honor

Honors j5 2 aa | |

O o LO tn OCM R O O M O COCM CM 33 honor 3 3 r • r “<. «>H> Q 2O Honors CO WHAT CMo"s> ©

M ^ ^-© © © © © © © © © © © ^ ^ ^ ^ ^ ^ ^ 00 00 00 00 00 00 00 00 00 00

OO co OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO * * * * * * * * * * * * * "o" o "o" o * o *

κ o, tn co cot tT * * * CM CM CD CD CD CD CD CD CD CD CO CO CO CO CO CO CO

O

O σ> tn tn what co cotn CD CO * CO CO * biMÍ What is it What is it about qc qCM * to * O * M * OO * O * rH rl CM rl

About oooid tnr-f CO CM rHCO CO Mi M rH rH / W OCO -w

N 3 £ 3f- tn <0 oΛ 3o + -1o scn J2 honors a

They honor

> H * and o ~>

honors the honor of honor

44 f

iiV 05

O

o in oin o oCM Mi CO t> O COCM CM CM

M ^ co iq. t> tmO * Cx * to * CM * r-Γ O * CD CD CD CD CD CO. 03CO * O * CO * CÍ OO * to * OO CD OO COCM N CD Η H r (Φí3ωí> ctíp- <* 33; ΰ S ° S Λ O '05F-.

Q «« «-d K? Q Honor4x3 4x1 Honor © Themes with 3 £, §>'§> »- honor

OO 0.0.0 O

S * o * to * oo * to * o * OO 00 00 CxCMCM rlHl H 8?

what it is about ooCD OO 00O * r-Γ CO * UD CD to © © © rH CM CO ΙΟO O oooo

Claims (2)

261523 11 12 Příklad 8 Výsledky averenia produktu z příkladu1, ale pri teplote 70 °C rozklad v alkalic-kom prostředí počas 4 h, metodikou opísa-nou v postupe 5 sú zhrnuté do tabulky 4. Příklad 9 Hydrolýza sacharózy bola převedená po-dlá příkladu 1, další rozklad glukózy schlórňanom sodným pri teploite 80 °C v prie-behu 4 h. Výsledky s aplikáciou tohoto produktu súzhrnuté do tabulky 5. I v tomto případe, sa dosiahli zlepšenévlastnosti produktov, na úrovni příkladu 8.Příklady 10 až 14 Výsledky skúšok pódia postupu 5, ale u-skutočnených s troskoportlandským cemen-tom triedy SPC 325 Rohožník, sú zhrnuté dotabuliek 6 až 10. Přitom tabulka 6 je čistý roztok sacharó-zy, v tabuike 7 sú výsledky s prídavkami u-pravenej sacharózy podl'a příkladu 2, v ta-buike 8 upravená sacharóza pódia příkla-du 1, v tabuike 9 sacharóza upravená po-dá příkladu 1, ale pri teplote 70 °C a v ta- buike 10 pódia příkladu 1, ale použitýohlórňan sodný ako alkalické činidlo. Porovnáním výsledkov s portlandskýmcementom a troskoportlandským cementemvidno, že cement SPC je citlivější na přitom nosť cukrov a už dávka 0,05 % hmot. nacement zabraňuje tuhnutiu cementu v prie-behu 24 hodin. Úprava sacharózy na mono-sacharózu a jej nasledovná reakcia v alka-lickom prostředí vo všetkých případech, t.j. pri nižšej i vyššej teplote reakcie s hyd-roxidem vápenatým, sodným a chlórňanomsodným pri zachovaní dobrého plastifikač-ného účinku skracujú dobu tuhnutia a zvy-šuji! i jednodňové pevnosti v závislosti oddávky přídavku. Najma sedem dnové pev-nosti sú enormne vysoké až o 20 % vyššieako referenčný výsledok bez přídavku. Příklad 15 Boli odskúšavané produkty alkalického na-máhania sacharózy pódia příkladu 3A a3B, pódia postupu uvedenom v příklade 5. Boli urobené kočky s prídavkami 0,1 %produktu 3A a 3B a 0,5 % produktu 3A a3B s cementom PC — 400. Pevnosti boli robené u vzoriek po 48 ho-dinách. Výsledky boli následovně:označenie prídavok pevnosti po 48 h 3A 0,1 % hmot. 42,3 MPa 0,5 % hmot.Example 8 Results of the product annealing of Example 1, but at 70 ° C decomposition in alkaline medium for 4 h, are summarized in Table 4 according to the method described in Procedure 5. Example 9 Sucrose hydrolysis was converted according to the example. 1, further decomposition of glucose with sodium hypochlorite at 80 ° C in the course of 4 h. Results with the application of this product are summarized in Table 5. In this case too, the product properties were improved at Example 8. Examples 10-14 Test results the procedure of procedure 5, but with the troscortland cements of SPC 325 class Rohoznik, summarizes the tables 6 to 10. Here, table 6 is a pure sucrose solution, in Table 7 the results are with the addition of prepared sucrose according to the example 2, the sucrose treated in Example 8, in Table 9, the sucrose treated in Example 1, but at 70 ° C and in Table 10 of Example 1, but used Sodium boronate as alkaline reagent. By comparing the results with Portland cement and troscortland cementemvidno, the SPC cement is more sensitive to the present sugar and already 0.05% by weight. cement prevents the cement from solidifying during 24 hours. The treatment of sucrose with mono-sucrose and its subsequent reaction in alkali in all cases, i.e. at both lower and higher reaction temperatures with calcium, sodium and hypochlorite, while maintaining good plasticizing effect, shorten the setting time and increase! and the day-to-day strength in dependence of the allowance compartment. In particular, the seven-day strength is enormously high up to 20% higher than the reference result without addition. Example 15 The alkaline sucrose loading products of Example 3A and 3B were tested, as described in Example 5. Cats were made with 0.1% of 3A and 3B and 0.5% of 3A and 3B with PC-400. were performed for 48 hour samples. The results were as follows: strength addition after 48 h 3A 0.1 wt. 42.3 MPa 0.5 wt. 2,3 MPa 3B 0,1 % hmot. 34,8 MPa 0,5 % hmot. 2,0 MPa V zrovnaní s výsledkami zhrnutými v ta-buike 1 (sa sacharózouj vidno, že produktylen samotného působenia alkalického pro-stredia sú na úrovni s neupravenou sacha-rózou. Taktiež sa odskúšalo len pósobenieprvého kroku, t. j. kyslej hydrolýzy sacha-rózy na glukózu pódia příkladu 1 bez ná- Prídavok (°/o hmot.) sacharózy 0sprac. v kyslom prolstredí sledného spracovania v alkalickém prostře-dí. Pevnosti skúšobných teliesok, jednodňové,připravených pódia postupu uvedenom vpříklade 5 s cementom PC—400 boli násle-dovně: 0,05 0,10 0,20 0,3 0,5 Pevnost po 24 h 43,2 40,2 (MPa) Výsledky pevnosti sú lepšie, ako sa sa-mou sachtarózou (tabulka 1), ale jedno-značné horšie ako pri následnom spracoiva-ní v alkalickom prostředí (tabulka 2 až 5). 31,1 26,5 6,5 2,3 Po odskúšavaní produktu z příkladu 4 bo-li výsledky pevnosti na úrovni tabulky 4. VYNALEZU až 180 °C, pričorn vzniknuté monosacharidy sa cřalej alkalicky spracujú hydroxidom sod- ným alebo vápenatým pri teplotách 60 až 200 °C a pH 9 až 13. PREDMET Přísada do cementových zmesí s plastifi- kačným účinkom pripraviteiná hydrolýzou di-, až polysacharidov v prostředí kyseliny sírovej alebo šťaveiovej pri teplotách 702.3 MPa 3B 0.1% wt. 34.8 MPa 0.5 wt. 2.0 MPa In comparison with the results summarized in Table 1 (sucrose shows that the alkaline product itself is level with unadjusted sucrose. Only the first step, ie the acid hydrolysis of sucrose at glucose of Example 1 without addition of (% w / w) sucrose treated in an acidic dilution of the subsequent treatment in an alkaline medium The strengths of the test specimens prepared by the procedure of Example 5 with cement PC-400 were as follows : 0,05 0,10 0,20 0,3 0,5 Strength after 24 h 43,2 40,2 (MPa) Strength results are better than with sachtarose (Table 1), but noticeably worse as in the subsequent treatment in alkaline medium (Tables 2 to 5) 31.1 26.5 6.5 2.3 After testing the product of Example 4, if the strength results at table 4 level were as high as 180 ° C, the resulting monosaccharides are further alkali treated with hydro sodium or calcium oxide at a temperature of 60 to 200 ° C and a pH of 9 to 13. ARTICLE Additive for cementitious mixtures with plasticizing effect prepared by hydrolysis of di- to polysaccharides in sulfuric or oxalic acid at temperatures of 70 ° C.
CS866534A 1986-09-10 1986-09-10 Cement mixture ingredient CS261523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS866534A CS261523B1 (en) 1986-09-10 1986-09-10 Cement mixture ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS866534A CS261523B1 (en) 1986-09-10 1986-09-10 Cement mixture ingredient

Publications (2)

Publication Number Publication Date
CS653486A1 CS653486A1 (en) 1988-07-15
CS261523B1 true CS261523B1 (en) 1989-02-10

Family

ID=5412607

Family Applications (1)

Application Number Title Priority Date Filing Date
CS866534A CS261523B1 (en) 1986-09-10 1986-09-10 Cement mixture ingredient

Country Status (1)

Country Link
CS (1) CS261523B1 (en)

Also Published As

Publication number Publication date
CS653486A1 (en) 1988-07-15

Similar Documents

Publication Publication Date Title
US10961150B2 (en) Sizing composition for mineral fibers and resulting products
CA2547015C (en) Gluconate broth for cement and concrete admixture
RU2606615C2 (en) Formaldehyde-free binder composition for mineral fibres
CN102171273B (en) Method for producing phosphated polycondensation products and the use thereof
DK171916B1 (en) Process for producing fibre-reinforced formed objects
EP2709964B1 (en) Process for preparing additive for cementitious materials, additive and mixture comprising additive
AU2013244901A1 (en) Binders and associated products
US5286412A (en) Modified lignosulfonate dispersant for gypsum
RU2331605C1 (en) Manufacturing method for acidproof concrete
US12319883B2 (en) Briquettes
CS261523B1 (en) Cement mixture ingredient
JP2007537117A (en) Molasses treatment method for producing &#34;Molasspers&#34; surfactant for use in concrete fluidizer (water reducing agent) and cement clinker grinding admixture
CZ281360B6 (en) The use of naphthalenesulfonic acid and formaldehyde condensates with low content of free formaldehyde
JP6338413B2 (en) Slag granulator and method for producing the same
CN112174566B (en) Preparation method of powder modified protein gypsum retarder
CN117843356B (en) High-plasticity composite porcelain clay material with jade effect, preparation process and application thereof in porcelain products
US20240190768A1 (en) Cement additive for retardation of cement hydration, cement mixtures including same, and methods of forming and using same
Brevet et al. Effects of flaxseed mucilage and water to cement ratio on mechanical and hydration characteristics of an OPC mortar
CN112645624B (en) Concrete retarder and preparation method thereof
CN112321192A (en) Cement retarder and preparation method thereof
RU2771048C1 (en) Method for producing phosphorylated resistant starch
WO2014032132A1 (en) Concentrated sugar additive as set retarder for cement preparations
JPH0678184B2 (en) Cement admixture
RU2806076C1 (en) Method for manufacturing raw materials for obtaining man-made anhydrite binder
RU2576766C1 (en) Method of producing modifying additive for cement composition and cement composition