CS261099B1 - Method of Cold Welding of Tubular Bimetals - Google Patents
Method of Cold Welding of Tubular Bimetals Download PDFInfo
- Publication number
- CS261099B1 CS261099B1 CS874626A CS462687A CS261099B1 CS 261099 B1 CS261099 B1 CS 261099B1 CS 874626 A CS874626 A CS 874626A CS 462687 A CS462687 A CS 462687A CS 261099 B1 CS261099 B1 CS 261099B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- bimetals
- khz
- welded
- tubular
- pressure welding
- Prior art date
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Riešenie spadá do oblasti zvárania bimetalov tlakom za studená s cielom zlepšit mechanické a hlavně elektrické vlastnosti spoja. Podstatou riešenia je, že na zvárané kovy sa počas zvárania tlakom za studená posobí ultrazvukom s frekvenciou 10 kHz až 30 kHz a amplitudou 25 um až 35 μΐη. Riešenie je možné využit hlavně v elektrotechnickom priemysle.The solution falls into the field of cold pressure welding of bimetals with the aim of improving the mechanical and mainly electrical properties of the joint. The essence of the solution is that the welded metals are subjected to ultrasound during cold pressure welding with a frequency of 10 kHz to 30 kHz and an amplitude of 25 μm to 35 μΐη. The solution can be used mainly in the electrical industry.
Description
Vynález sa týká sposobu zvárania tlakom za studená rúrkových bimetalov, najmá s kubickou plošné centrovanou mriežkou, ako sú například Cu, Al, Ag, Au, Pt, Zr, Ti, Cd, Be, Pd, Sn a niektoré ich zliatiny.The invention relates to a method of cold-pressure welding of tubular bimetals, in particular with a cubic flat centered grid, such as Cu, Al, Ag, Au, Pt, Zr, Ti, Cd, Be, Pd, Sn and some alloys thereof.
Fyzikálny princip zvárania tlakom za studená spočívá v přiblížení zváraných materiálov na vzdialenosť blízku mriežkovému parametru zváraných kovov s následným vznikom zvarového spoja posobením medziatómových sil. Tento efekt je podmienený dostatočne velkým měrným tlakom a redukciou v mieste kontaktu zváraných materiálov. Pri zhotovení zvarového spoja bimetalu, například Cu—Al v tvare rúrky, ktorej vonkajší plášť je z materiálu Al a vnútorné puzdro z materiálu Cu sú požadované parametre zvárania tlakom za studená, ako sú měrný tlak a pretvorenie, zabezpečené upnutím zváraných súčiastok v přípravku, ktorý neumožňuje změnu vonkajších rozmerov bimetalu a vhodné zvoleným presahom pretláčacieho nástroja voči otvoru v Cu-puzdre.The physical principle of cold-pressure welding is to bring the materials to be welded at a distance close to the lattice parameter of the metals to be welded, with the consequent formation of the weld joint by imparting interatomic forces. This effect is caused by sufficiently high specific pressure and reduction at the point of contact of the welded materials. In the manufacture of a bimetal weld joint, for example Cu-Al in the form of a tube, the outer sheath of which is of Al and the inner sleeve of Cu, the required cold-pressure welding parameters such as specific pressure and deformation are ensured by clamping the welded components in it does not allow the external dimensions of the bimetal to be changed and suitably selected by the extrusion tool overlap with the hole in the Cu-sleeve.
Saurtné vytvorenie zvarového· spoja sa realizuje přitlačením pretláčacieho nástroja v smere pozdížnej osi zváraných súčiastok upnutých s přípravku. Takto vyhotovené zvarové spoje vykazujú určité nedostatky z hladiska naviazania zváraných materiálov, čo obmedzuje ich použitie na případy, kde nie sú dóležité elektrické parametre zvarového spoja.Saute sealing of the weld joint is realized by pressing the extrusion tool in the direction of the longitudinal axis of the welded parts clamped to the fixture. Welded joints thus produced exhibit certain drawbacks in the bonding of the welded materials, limiting their use to cases where the electrical parameters of the welded joint are not important.
Uvedené nedostatky podstatné odstraňuje sposob zvárania rúrkových bimetalov tlakom za studená podlá vynálezu, ktorého· podstatou je, že na zvárané kovy sa počas zvárania za studená pósobí ultrazvukom s frekvenciou 10 kHz až 30 kHz a amplitúdou 25 gm až 35 gm.The above-mentioned drawbacks substantially eliminate the cold-pressure welding method of the pipe bimetals according to the invention, which is based on the fact that the welded metals are subjected to ultrasound at a frequency of 10 kHz to 30 kHz and an amplitude of 25 gm to 35 gm.
Výhodou spósobu podfa vynálezu je, že sa dosiahne podstatné zlepšenie naviazania zváraných materiálov. Podstatné sa zlepší mechanická pevnosť a elektrické parametre, hlavně přechodový odpor spoja v důsledku rozrušenia vrstvy oxidov v mieste kontaktovania a vzájomného mechanického premiešania zváraných materiálov.An advantage of the method according to the invention is that a substantial improvement in the binding of the welded materials is achieved. The mechanical strength and electrical parameters, in particular the bonding resistance of the joint due to the destruction of the oxide layer at the point of contact and the mutual mechanical mixing of the welded materials, are substantially improved.
Na priloženom výkrese je znázorněný schematický prierez jedného z možných zariadení na vykonávania spósobu podfa vynálezu.The attached drawing shows a schematic cross-section of one of the possible devices for carrying out the method according to the invention.
Pri realizácii spósobu podía vynálezu sa zvárané diely 1, 2 vložia do objímky 3 zariadenia na zváranie tlakom za studená, ktorého pretláčací nástroj 4 je spojený s ultrazvukovým meničom 6 prostredníctvom ultrazvukového medzičlena 5. Ultrazvukový měnič 6 kmitá frekvenciou 20 kHz s amplitúdou 8 gm. Kmitanie sa prevedie na pretláčací nástroj 4, ktorý kmitá frekvenciou 20 kHz s amplitúdou 30 gm a súčasne pósobí na zváranie diely 1, 2 přítlačnou silou 3 500 N. V důsledku spolupůsobenia tlakovej sily a ultrazvukovej energie dochádza k rozrušeniu vrstvy oxidov v mieste kontaktovania zváraných dielov 1, 2 a vzájomnému mechanickému premiešaniu materiálov.In carrying out the method of the invention, the welded parts 1, 2 are inserted into the sleeve 3 of the cold-pressure welding machine, whose die 4 is connected to the ultrasonic transducer 6 via an ultrasonic intermediate member 5. The ultrasonic transducer 6 oscillates at 20 kHz at 8 gm. The oscillation is carried out on an extrusion tool 4 which oscillates at a frequency of 20 kHz with an amplitude of 30 gm and at the same time acts on the welding of the parts 1, 2 with a thrust force of 3,500 N. The pressure layer and ultrasonic energy are destroyed. 1, 2 and mechanical intermixing of the materials.
Spósob podfa vynálezu je možné využit predovšetkým v elektrotechnickom priemysle, pri náhradě médi hliníkom.The process according to the invention can be used, in particular, in the electrical industry, for the replacement of media by aluminum.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS874626A CS261099B1 (en) | 1987-06-18 | 1987-06-18 | Method of Cold Welding of Tubular Bimetals |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS874626A CS261099B1 (en) | 1987-06-18 | 1987-06-18 | Method of Cold Welding of Tubular Bimetals |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS462687A1 CS462687A1 (en) | 1988-02-15 |
| CS261099B1 true CS261099B1 (en) | 1989-01-12 |
Family
ID=5389473
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS874626A CS261099B1 (en) | 1987-06-18 | 1987-06-18 | Method of Cold Welding of Tubular Bimetals |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS261099B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1646460B1 (en) * | 2003-07-09 | 2015-04-22 | Technische Universität Dresden | Annular composite workpieces and a cold-rolling method for producing said workpieces |
-
1987
- 1987-06-18 CS CS874626A patent/CS261099B1/en unknown
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1646460B1 (en) * | 2003-07-09 | 2015-04-22 | Technische Universität Dresden | Annular composite workpieces and a cold-rolling method for producing said workpieces |
Also Published As
| Publication number | Publication date |
|---|---|
| CS462687A1 (en) | 1988-02-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5549335A (en) | Solderless metallurgical joint | |
| US20100108666A1 (en) | Method for high pressure/high velocity welding or joining first and second metal workpieces before welding/joining; article of manufacture made thereby | |
| KR0129952B1 (en) | Supersonic vibrator | |
| US3966520A (en) | Method of ultrasonically welding a circumferential telescoping joint | |
| US3257721A (en) | Method and apparatus for employing torsional vibratory energy | |
| US7819302B2 (en) | Aluminum end caps ultrasonically welded to end of aluminum tube | |
| RU2336505C2 (en) | Viscoelastic measuring element and method of its connection | |
| US3054309A (en) | Vibratory device | |
| US2891179A (en) | Support for vibratory devices | |
| CS261099B1 (en) | Method of Cold Welding of Tubular Bimetals | |
| US5715989A (en) | Microelectronic wire bonding using friction welding process | |
| US3038358A (en) | Ultrasonic devices | |
| Lippold et al. | Microstructural evolution during inertia friction welding of austenitic stainless steels | |
| JP2946414B1 (en) | Thermoplastic pipe joining equipment | |
| US3038359A (en) | Vibratory device | |
| JPH1058162A (en) | Metallurgical joining without solder | |
| US4524898A (en) | Apparatus for preventing step-edge shearing during ultrasonic welding | |
| JPH0191979A (en) | Method for cold pressure welding of metal conduits | |
| JP2750156B2 (en) | Ultrasonic welding method for thin plastic tubes | |
| JP2616164B2 (en) | Connection structure of thin metal pipe with metal pipe core wire | |
| JPH0526074B2 (en) | ||
| Erny et al. | Comparative study between furnace brazing and laser brazing | |
| Zimmerman et al. | The Fundamentals of Microjoining Processes | |
| JPS63212083A (en) | Welding method for shape memory alloy members and welded products of shape memory alloy members | |
| JPS62248581A (en) | Heat pipe manufacturing method |