CS261054B1 - Device for homogeneous stationary magnetic field generation - Google Patents
Device for homogeneous stationary magnetic field generation Download PDFInfo
- Publication number
- CS261054B1 CS261054B1 CS866286A CS628686A CS261054B1 CS 261054 B1 CS261054 B1 CS 261054B1 CS 866286 A CS866286 A CS 866286A CS 628686 A CS628686 A CS 628686A CS 261054 B1 CS261054 B1 CS 261054B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- coils
- stationary magnetic
- rotationally
- magnetic field
- homogeneous stationary
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 8
- 230000005294 ferromagnetic effect Effects 0.000 claims description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Description
Vynález sa týká zariadenia na generovanie homogénneho stacionárneho magnetického póla, vhodného najma pre tomografiu na principe jadrovej magnetickej rezonancie, kde přípustná nehomogenita pol'a je v pracovnom objeme menšia ako 50 ppm.The present invention relates to a device for generating a homogeneous stationary magnetic pole, particularly suitable for nuclear magnetic resonance tomography, wherein the permissible field inhomogeneity in the working volume is less than 50 ppm.
Doteraz známe supravodivé alebo rezistívne zariadenie na generovanie homogénneho stacionárneho magnetického póla využívajú rotačně a stredovo symetrický systém cievok, kde každá dvojica má iné vnútorné a vonkajšie radiálně rozměry voči susednej dvojici. Geometrická konfigurácia týchto systémov je plné viazaná homogenitou pol'a, preto sa nedajú respektovat energetické a konstrukčně hiadiská. Majú veiké příkonové straty, zložité nosné konštrukcie a nastavovacie mechanizmy na nastavenie polóh cievok. Nehomogenity získaného magnetického pol'a sú rádu 8 až 12 a priemer pracovnej oblasti vo formě gule so stredom v střede systému cievok s relativnými odchýlkami menšími ako 50 ppm je 30 až 50 % priemeru vstupného otvoru systému.The prior art superconducting or resistive devices for generating a homogeneous stationary magnetic pole utilize a rotationally and centrally symmetrical coil system, each pair having different internal and external radial dimensions relative to the adjacent pair. The geometrical configuration of these systems is fully bound by the field homogeneity, so energy and construction aspects cannot be respected. They have large power losses, complex support structures and adjusting mechanisms to adjust coil positions. The inhomogeneities of the magnetic field obtained are of the order of 8 to 12 and the diameter of the working area in the form of a sphere centered in the center of the coil system with relative deviations of less than 50 ppm is 30 to 50% of the diameter of the inlet opening of the system.
Uvedené nevýhody v podstatnej miere odstraňuje zariadenie na generovanie homogénneho stacionárneho magnetického pol'a, ktorého podstata spočívá v tom, že rotačně a stredovo symetrické dvojice cievok s rovnakými radiálnymi rozmermi majú vonkajší poloměr 1,1 až 2-krát vačší, ako vnútorný poloměr a axiálny rozměr každej nasledovnej cievky v smere od středu systému je 1,1 až 4-krát vačší, ako predchádzajúcej cievky a každá nasledovná medzera medzi susednými děvkami v smere od středu systému je 1,1 až 2-krát váčšia ako medzera predchádzajúca.The above-mentioned disadvantages are substantially eliminated by a device for generating a homogeneous stationary magnetic field, which consists in the fact that the rotationally and centrally symmetrical pairs of coils with the same radial dimensions have an outer radius of 1.1 to 2 times larger than the inner radius and axial the dimension of each successive spool in the direction away from the center of the system is 1.1 to 4 times larger than the previous spool, and each successive gap between adjacent sluts in the direction away from the center of the system is 1.1 to 2 times larger than the previous one.
Výhodou uvedeného zariadenia je to, že jeho geometrická konfigurácia zaručuje maximálnu pracovnú oblast pri respektovaní energetických, konštrukčných a technologických požiadaviek. Nehomogenity poTa sú rádu 8 až 20 a priemer pracovnej oblasti vo formě gule s relativnými odchýlkami menšími ako 50 ppm je 30 až 70 iO/o priemeru vstupného otvoru cievok. Rovnaké vnútorné a vonkajšie poloměry cievok umožňujú ich zostavenie z rovnakých segmentov a použitie jedného navíjacieho zariadenia, jednej navíjacej šablony, jednej zalievacej a impregnačnej formy. Základným prvkom nosnej konštrukcie je spoločný nosný válec, na ktorom cievky majú len jeden stupeň volnosti. Nastavovací mechanizmus sa zjednodušuje na jemné posúvanie cievok na nosnom válci v axiálnom smere, ktoré umožní nastavenie optimálneho pofa, aj korigovanie vplyvu dovolených výrobných nepřesností jednotlivých cievok.The advantage of said device is that its geometrical configuration guarantees maximum working area while respecting energy, construction and technological requirements. The inhomogeneities are of the order of 8 to 20 and the diameter of the working area in the form of a sphere with relative deviations of less than 50 ppm is 30 to 70 10 / o the diameter of the coil inlet opening. The same inner and outer coil radii allow their assembly from the same segments and the use of one winding device, one winding template, one potting and impregnating mold. The basic element of the support structure is a common support cylinder on which the coils have only one degree of freedom. The adjusting mechanism is simplified for gentle shifting of the coils on the support cylinder in the axial direction, which allows adjustment of the optimum profile, as well as for correcting the influence of the permissible manufacturing inaccuracies of the individual coils.
Na pripojenom výkrese je schematicky znázorněné zariadenie na generovanie homogénneho stacionárneho pofa s piatimi dvojicami cievok, kde na obr. 1 je znázorněný rez prechádzajúci rotačnou osou a na obr. 2 axonometrický pohl'ad.In the attached drawing, there is shown schematically an apparatus for generating a homogeneous stationary field with five pairs of coils. 1 is a cross-section through the rotary axis and FIG. 2 is an axonometric view.
Zariadenie pozostáva z dvojíc cievok 1 až 5, ktoré sú uložené na spoločnom nosnom válci 6. Celý systém je opláštěný feromagnetickým plášťom 7 s celami 8.The device consists of pairs of coils 1 to 5, which are mounted on a common support cylinder 6. The entire system is covered with a ferromagnetic sheath 7 with cells 8.
Ako příklad na konkrétné prevedenie uvedieme osemcievkové zariadenie podía vynálezu. Geometrickú konfiguráciu definujeme poměrovým vzťahom medzi jednotlivými parametr ami:As an example of a specific embodiment, an eight-coil device according to the invention is mentioned. Geometric configuration is defined by the ratio between individual parameters:
Ro : R : LI : L2 : L3 : L4 : Ml : M2 :Ro: R: L1: L2: L3: L4: Ml: M2:
: M3 : = 1 : 1,402 : 0,159302 :: M3: 1: 1,402: 0,159302
: 0,192472 : 0,296824 : 0,917106 :: 0.192472: 0.296824: 0.917106:
: 0,115632 : 0,126290 : 0,168192 : 0,299864, kde:: 0,115632: 0,126290: 0,168192: 0,299864, where:
Ro je vnútorný poloměr cievok 1 až 4,Ro is the inner radius of the coils 1 to 4,
R je vonkajší poloměr cievok 1 až 4,R is the outer radius of the coils 1 to 4,
Li sú axiálně rozměry cievok 1 až 4,Li is the axial dimensions of the coils 1 to 4,
Mi sú šířky medzier medzi cievkami 1 až 4.Mi is the gap widths between the coils 1 to 4.
Nehomogenity póla sú rádu 16 a priemer pracovnej oblasti, vo formě gule v střede systému s relativnými odchýlkami menšími ako 50 ppm je 65 % priemeru vnútorného poloměru cievok 1 až 4.The inhomogeneities of the poles are of the order of 16 and the diameter of the working area, in the form of a sphere in the center of the system with relative deviations less than 50 ppm is 65% of the diameter of the inner coil radius 1 to 4.
Zariadenie na generovanie homogénneho stacionárneho magnetického pol'a može nájsť plné využitie v tomografii a spektroskopii na principe jadrovej magnetickej rezonancie a všade tam, kde je potřebné vytvořit homogénne magnetické pole vo vel'kom objeme.A device for generating a homogeneous stationary magnetic field can be used in tomography and spectroscopy on the principle of nuclear magnetic resonance and wherever it is necessary to create a homogeneous magnetic field in a large volume.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS866286A CS261054B1 (en) | 1986-08-29 | 1986-08-29 | Device for homogeneous stationary magnetic field generation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS866286A CS261054B1 (en) | 1986-08-29 | 1986-08-29 | Device for homogeneous stationary magnetic field generation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS628686A1 CS628686A1 (en) | 1988-06-15 |
| CS261054B1 true CS261054B1 (en) | 1989-01-12 |
Family
ID=5409553
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS866286A CS261054B1 (en) | 1986-08-29 | 1986-08-29 | Device for homogeneous stationary magnetic field generation |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS261054B1 (en) |
-
1986
- 1986-08-29 CS CS866286A patent/CS261054B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS628686A1 (en) | 1988-06-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR970004567B1 (en) | Cylindrical Nuclear Magnetic Resonance Bias Magnet Device Using Permanent Magnet and Its Manufacturing Method | |
| FI65365C (en) | SPOLANORDNING | |
| US4724412A (en) | Method of determining coil arrangement of an actively shielded magnetic resonance magnet | |
| DE69129202T2 (en) | CIRCULAR PROGRAMMABLE SCANNER | |
| US5332971A (en) | Permanent magnet for nuclear magnetic resonance imaging equipment | |
| DE68928292T2 (en) | Electrical surface coil assemblies | |
| CA1317630C (en) | Electro-magnet and method of forming same | |
| US4581580A (en) | Intentionally non-orthogonal correction coils for high-homogeneity magnets | |
| JPH04504067A (en) | magnet device | |
| FI86010B (en) | KAERNMAGNETISK RESONANSANORDNING MED EN MAGNET AV PERMANENT MAGNETISKT AEMNE. | |
| EP0400922A1 (en) | Magnetic field generating apparatus | |
| US5396208A (en) | Magnet system for magnetic resonance imaging | |
| CN1266484C (en) | Superconducting open MRI magnet with transverse magntic field | |
| DE3881982T2 (en) | Magnetic resonance apparatus with a low-noise gradient coil. | |
| CS261054B1 (en) | Device for homogeneous stationary magnetic field generation | |
| EP1361453B1 (en) | Nmr magnet device for solution analysis and nmr apparatus | |
| US5786694A (en) | Gradient coil system for use in a diagnostic magnetic resonance apparatus | |
| US4635017A (en) | Magnetic apparatus of a system for nuclear spin tomography with a shielding device | |
| US4743852A (en) | Coil for NMR probe | |
| JPH05285117A (en) | Magnetic resonance apparatus | |
| RU2053520C1 (en) | Tomograph magnetic system | |
| JP2615579B2 (en) | Superconducting magnet | |
| JPH0314214B2 (en) | ||
| SU1756907A1 (en) | Device for simulating physical field | |
| CZ310292A3 (en) | Apparatus for generating gradient magnetic fields for nuclear magnetic resonance tomography |