JPH0314214B2 - - Google Patents

Info

Publication number
JPH0314214B2
JPH0314214B2 JP59073574A JP7357484A JPH0314214B2 JP H0314214 B2 JPH0314214 B2 JP H0314214B2 JP 59073574 A JP59073574 A JP 59073574A JP 7357484 A JP7357484 A JP 7357484A JP H0314214 B2 JPH0314214 B2 JP H0314214B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
coils
main
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073574A
Other languages
Japanese (ja)
Other versions
JPS60217608A (en
Inventor
Masaki Yamana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59073574A priority Critical patent/JPS60217608A/en
Publication of JPS60217608A publication Critical patent/JPS60217608A/en
Publication of JPH0314214B2 publication Critical patent/JPH0314214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は空心の筒状コイルの内部空間に少なく
とも近似的に均一な磁場を発生させる磁場コイ
ル、ことに核磁気共鳴コンピユータ断層像撮影装
置(以下NMR−CTという)用の磁場コイルに
関する。
Detailed Description of the Invention [Field of the Invention] The present invention relates to a magnetic field coil that generates at least an approximately uniform magnetic field in the internal space of an air-centered cylindrical coil, and particularly to a nuclear magnetic resonance computer tomography apparatus ( This invention relates to a magnetic field coil for NMR-CT (hereinafter referred to as NMR-CT).

〔従来技術とその問題点〕[Prior art and its problems]

NMR−CTに用いられる均一磁場コイルは、
コイル内に被検体である人体を収納するために、
内径が1mに近い筒状または複数のリング状のコ
イル配列で構成され、被検体である人体を判定す
るに足る断層像を得るためには、人体が収納され
るコイル内空間部における磁場の強さには百万分
の数十という均一性が求められる。この磁場の強
度とその均一性を満たすために、同軸配置のリン
グ状主コイルを複数個組み合わせて磁場の均一性
の最もよい配置,電流値を選んで均一磁場コイル
を構成する方法が知られている。
The uniform magnetic field coil used for NMR-CT is
In order to store the human body as a test subject inside the coil,
Consisting of a cylindrical or multiple ring-shaped coil array with an inner diameter of nearly 1 m, in order to obtain a tomographic image sufficient to determine the human body being examined, the strength of the magnetic field in the inner space of the coil where the human body is housed is required. Uniformity on the order of tens of parts per million is required. In order to satisfy the strength and uniformity of this magnetic field, a method is known in which a uniform magnetic field coil is constructed by combining multiple coaxially arranged ring-shaped main coils and selecting the arrangement and current value that provide the best uniformity of the magnetic field. There is.

第1図から第3図は複数のリング状の主界磁コ
イルからなる均一磁場コイルのコイル配列を示す
断面図である。第1図の場合、均一磁場コイルは
一対のリング状主コイル11および12からな
り、(仮想)回転軸1に対して同軸状に、また回
転軸1に垂直な対称面2に対して対称かつ平行に
配設されている。第2図の場合、均一磁場コイル
は、回転軸1に対して同軸状の4個のリング状主
コイルからなり、対称面2に対してそれぞれ対称
な位置に配されたコイル21,22からなる一対
のコイルと、コイル23,24からなる別の一対
のコイルとの2対のコイルによつて構成され、そ
れぞれのコイルの配置,大きさ,電流値等を磁場
の均一性が最もよくなるように選ぶことにより、
第1図の一対のコイルで構成された磁場コイルに
比べて磁場の均一性を高めるよう構成されてい
る。第3図は第2図と同様に2対のリング状主コ
イル31,32および33,34からなる均一磁
場コイルで、2対のコイルそれぞれのアンペアタ
ーン(起磁力,コイルの巻数と電流の積)を変え
ることにより磁場の強度の均一性の向上を計つた
ものである。
1 to 3 are cross-sectional views showing a coil arrangement of a uniform magnetic field coil consisting of a plurality of ring-shaped main field coils. In the case of FIG. 1, the uniform magnetic field coil consists of a pair of ring-shaped main coils 11 and 12, coaxial to the (virtual) rotation axis 1 and symmetrical to the symmetry plane 2 perpendicular to the rotation axis 1. are arranged in parallel. In the case of FIG. 2, the uniform magnetic field coil consists of four ring-shaped main coils coaxial with the rotation axis 1, and consists of coils 21 and 22 arranged at symmetrical positions with respect to the plane of symmetry 2. It is composed of two pairs of coils, one pair of coils and another pair of coils consisting of coils 23 and 24, and the arrangement, size, current value, etc. of each coil are adjusted so that the uniformity of the magnetic field is the best. By choosing
It is constructed to improve the uniformity of the magnetic field compared to the magnetic field coil constructed from a pair of coils in FIG. Figure 3 shows a uniform magnetic field coil consisting of two pairs of ring-shaped main coils 31, 32 and 33, 34, similar to Figure 2. ) to improve the uniformity of the magnetic field strength.

第4図は均一磁場コイルの磁速分布図の一例と
して、第3図のコイル配列について1を回転軸と
する同軸円筒座標系として求めた磁束分布図であ
り、回転軸1および対称面2を含む右上部分の磁
束分布を示したものである。図において、100
は4個のリング状主コイル31〜34に流れる電
流によつて発生する磁束線で、主コイル31〜3
4を包囲する形で発生し、主コイル31,32の
内径側を通る部分の磁束線はコイルに近接した部
分を除き回転軸1に平行になつており、コイル内
空間部における磁場の強さが一様であることを示
している。一方、コイル31および32の外側に
漏れ出した磁束線はコイル外側の軸方向および半
径方向の広い範囲にひろがつて分布している。こ
こでは磁場コイルの外側に漏れ出した磁界を漏れ
磁界と呼ぶこととする。いま上述のように広がる
漏れ磁界を発生する磁場コイルをある広さの室内
に設置したと仮定すると、室内に強磁性体が存在
した場合には漏れ磁界はその影響を受けて磁界の
分布が変わり、その結果均一磁場コイル内の磁場
の強さおよびその均一性に少なからぬ影響を与え
るという問題を生ずる。
FIG. 4 is a magnetic flux distribution diagram obtained as an example of the magnetic velocity distribution diagram of a uniform magnetic field coil as a coaxial cylindrical coordinate system with rotation axis 1 for the coil arrangement of FIG. This figure shows the magnetic flux distribution in the upper right part including the upper right part. In the figure, 100
are magnetic flux lines generated by the current flowing through the four ring-shaped main coils 31 to 34;
4, and the magnetic flux lines of the part passing through the inner diameter side of the main coils 31 and 32 are parallel to the rotation axis 1 except for the part near the coils, and the strength of the magnetic field in the inner space of the coils is It shows that is uniform. On the other hand, the magnetic flux lines leaking to the outside of the coils 31 and 32 are distributed over a wide range in the axial and radial directions outside the coils. Here, the magnetic field leaking to the outside of the magnetic field coil will be referred to as a leakage magnetic field. Assuming that a magnetic field coil that generates a leakage magnetic field that spreads as described above is installed in a room of a certain size, if there is a ferromagnetic substance in the room, the leakage magnetic field will be affected by it and the distribution of the magnetic field will change. As a result, a problem arises in that the strength of the magnetic field within the uniform magnetic field coil and its uniformity are considerably affected.

ことに我が国においては一般にNMA−CTを
設置するたにたとえば半径5mmの大きさを包含す
る部屋を用意するよう制約することは一般に困難
であり、建家の鉄筋や鉄骨等の鋼材による漏れ磁
界分布の変歪を防ぐことが困難であるのが実情で
ある。
In particular, in Japan, it is generally difficult to prepare a room with a radius of, for example, 5 mm in order to install an NMA-CT, and leakage magnetic field distribution due to steel materials such as reinforcing bars and steel frames of buildings is generally difficult. The reality is that it is difficult to prevent the distortion of

コイルの内部空間部に百万分の数十という精度
が得られるように均一な磁場を作り出すために、
それぞれのコイルは一般に相互位置関係を微細調
整可能に支持されるよう構成される。制約された
周囲条件下で上述の精度を得るために最良のコイ
ル位置調整が行われ、またしばしばその精度維持
のための検査と修正とを必要とする。場合によつ
ては、その精度を保持するために、たとえば自動
車などの移動物体の接近を阻止するような配慮を
も必要とする。
In order to create a uniform magnetic field in the inner space of the coil with an accuracy of several tens of millionths,
Each coil is generally configured to be supported such that its relative position relative to each other can be finely adjusted. Optimum coil positioning is performed to achieve the above-mentioned accuracy under constrained ambient conditions and often requires inspection and modification to maintain accuracy. In some cases, in order to maintain accuracy, consideration must be taken to prevent moving objects such as cars from approaching.

そこで、漏れ磁界が分布する範囲とその磁束量
を低減するために、コイルの外側に強磁性体から
なる筒状体を設け、漏れ磁界がこの筒状体を通つ
てコイル内に循環するよう構成することにより漏
れ磁界が室内に広く分布することを防ぐ方法が知
られている。しかし、筒状体の厚さは数十mm程度
が必要であり、均一磁場コイル装置全体の重量が
増加し、設置場所の床の強度や運搬および搬入に
支障をきたすという問題があり、また強磁性体か
らなる筒状体の磁気特性が非直線性を持つため
に、均一性のよい磁場コイルを設計する際の磁場
の精密な数値計算が困難になるという問題があ
る。
Therefore, in order to reduce the range in which the leakage magnetic field is distributed and the amount of its magnetic flux, a cylindrical body made of ferromagnetic material is provided outside the coil, and the leakage magnetic field is configured to circulate inside the coil through this cylindrical body. There is a known method of preventing leakage magnetic fields from widely distributing indoors. However, the thickness of the cylindrical body needs to be several tens of millimeters, which increases the weight of the entire uniform magnetic field coil device, which poses problems such as hindering the strength of the floor at the installation site and hindering transportation and loading. Since the magnetic properties of a cylindrical body made of a magnetic material are nonlinear, there is a problem in that precise numerical calculation of the magnetic field is difficult when designing a magnetic field coil with good uniformity.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、
強磁性体からなる筒状体を設けることなく漏れ磁
界の広がりを防止できる均一磁場コイルを提供す
ることを目的とする。
The present invention was made in view of the above-mentioned situation, and
It is an object of the present invention to provide a uniform magnetic field coil that can prevent the spread of leakage magnetic fields without providing a cylindrical body made of ferromagnetic material.

〔発明の要点〕[Key points of the invention]

本発明のコイルは、一対または複数対のリング
状主コイルからなる磁場コイルの外側に、主コイ
ルと同軸状に主コイルと磁気能率が等しく発生磁
束の方向が逆な一対または複数対のリング状のシ
ールドコイルを設け、漏れ磁界を打ち消すことに
よりシールドコイルの外側への漏れ磁界の広がり
を抑さえるようにするとともに、シールドコイル
の径を大きくすることによりシールドコイルの重
量ならびに電流を低減し、シールドコイルを設け
ることによる重量および消費電力の増加を抑制し
たものである。
The coil of the present invention has one or more pairs of ring-shaped main coils coaxially arranged on the outside of a magnetic field coil consisting of one or more pairs of ring-shaped main coils, and having the same magnetic efficiency as the main coil and opposite direction of generated magnetic flux. A shield coil is provided to suppress the spread of the leakage magnetic field to the outside of the shield coil by canceling the leakage magnetic field, and by increasing the diameter of the shield coil, the weight and current of the shield coil are reduced. This suppresses increases in weight and power consumption due to the provision of a coil.

ここで磁気能率とは個々のコイルの磁気的有効
面積とアンペアターンの積の和であり、次式によ
つて求められる。今、断面が充分小さく一本の導
体でなる円形状の線輪があるとすると、この線輪
の磁気能率はこの導体が囲む円の面積と導体を流
れる電流の積として表される。つまり、 m=si ……(1) ここで、 m;この線輪の磁気能率 s;この線輪の導体が囲む円の面積(半径をr
とすると、s=πr2) i;導体に流れる電流 主コイルの磁気能率をM1とすると、このM1
この主コイルを構成する各線輪の導体ごとについ
て上記(1)式を積算すればよい。すなわち、 M1=μ0C1N=1 NNj=1 πr2 Nj}I1 ……(2) ここで、 μ0;真空中の透磁率(4π×10-7) C1;第1コイルの線輪数 NN;N番目の線輪の巻数 rNj;その導体の半径位置 I1;第1コイルの導体の電流値 また、シールドコイルの磁気能率M2は上式でイ
ンデツクス1を2に変えればよい。ただし、電流
の方向は逆なので、主コイルの磁気能率を正に取
ると、シールドコイルのそれは負である。前記の
2つのコイル磁気能率の関係をM1,M2を用いて
表すと次式となる。
Here, the magnetic efficiency is the sum of the products of the magnetically effective area and ampere turns of each individual coil, and is determined by the following equation. Now, if we assume that there is a circular wire ring with a sufficiently small cross section and made up of a single conductor, the magnetic efficiency of this wire ring can be expressed as the product of the area of the circle surrounded by this conductor and the current flowing through the conductor. In other words, m=si...(1) where, m: Magnetic efficiency of this wire s: Area of the circle surrounded by the conductor of this wire (radius is r
Then, s = πr 2 ) i: Current flowing in the conductor If the magnetic efficiency of the main coil is M 1 , then M 1 can be calculated by integrating the above equation (1) for each conductor of each wire that makes up this main coil. good. That is, M 1 = μ 0 { C1N=1 NNj=1 πr 2 Nj }I 1 ...(2) Here, μ 0 ; Magnetic permeability in vacuum (4π×10 -7 ) C 1 ; Number of wires of the first coil N N ; Number of turns of the Nth wire rN j ; Radial position of the conductor I 1 ; Current value of the conductor of the first coil Also, the magnetic efficiency M 2 of the shield coil is indexed by the above formula. Just change 1 to 2. However, since the direction of the current is opposite, if the magnetic efficiency of the main coil is positive, that of the shield coil is negative. The relationship between the above two coil magnetic efficiencies is expressed using M 1 and M 2 as follows.

M1+M2=0 ……(3) また、これらのコイルから充分離れた位置での
主コイルが生起する磁場の磁束密度B1rは近似的
に次式で表される。
M 1 +M 2 =0 (3) Furthermore, the magnetic flux density B 1r of the magnetic field generated by the main coil at a position sufficiently distant from these coils is approximately expressed by the following equation.

B1r=M1/2π{k31/r3+k5a2 1er5+………}……(4
) ここで、 r;コイル中心からの距離 a1e;主コイルの等価半径 k3,k5;級数展開での各次数の項の係数(等価
半径a1eには関係ない) この式で分かるように、一つのコイルによつて
生起される磁場のコイル外部への漏れ磁場の強度
は主としてコイル中心からの距離の3乗に反比例
して減少することを表すが、直径約1m,中心に
生起する磁束密度が1T前後であるNMR−CTマ
グネツトの場合はNMR−CT装置から数m離れ
た隣の部屋とかマグネツト以外のNMR−CT装
置などにこの漏れ磁場の影響を及ぼさない程度の
減衰は期待できないのである。この点からシール
ドコイルとしての別のコイルを設けることが必要
になる。
B 1r =M 1 /2π{k 3 1/r 3 +k 5 a 2 1e r 5 +………}……(4
) Here, r: Distance from the center of the coil a 1e ; Equivalent radius of the main coil k 3 , k 5 ; Coefficient of each order term in the series expansion (not related to the equivalent radius a 1e ) As can be seen from this formula The strength of the leakage magnetic field generated by a single coil to the outside of the coil mainly decreases in inverse proportion to the cube of the distance from the center of the coil. In the case of an NMR-CT magnet with a magnetic flux density of around 1T, it is not possible to expect attenuation to the extent that this leakage magnetic field does not affect the neighboring room several meters away from the NMR-CT device or NMR-CT devices other than the magnet. It is. From this point of view, it becomes necessary to provide another coil as a shield coil.

主コイルと同じようにしてシールドコイルの磁
束密度B2rは次式で表される。
The magnetic flux density B 2r of the shield coil is expressed by the following formula in the same way as the main coil.

B2r=M2{k31/r3+k5a2e/r5+………} ……(5) これらの2つのコイルで生起される磁場は前記
(4)式と(5)式の和として表され、次式となる。
B 2r = M 2 {k 3 1/r 3 +k 5 a 2e /r 5 +......} ...(5) The magnetic fields generated by these two coils are as described above.
It is expressed as the sum of equations (4) and (5), and becomes the following equation.

Br=k3M1+M2/r3+k5a21eM1+a22eM2/r5+…
… … (6) この式に(3)式を代入すると状のように整理でき
る。
Brk3M1M2r3k5a21e M1a22e M2 /r5
… … (6) By substituting formula (3) into this formula, it can be rearranged as follows.

Br=k5(a21e−a22e)M1/r5+… ……(7) すなわち、主コイルとシールドコイルの2つのコ
イルの磁気能率をその値を一致させ方向を逆にす
ることにより、漏れ磁場の強度はコイル中心から
の距離の3乗に反比例する成分が零になり5乗に
反比例して減少する成分がその主体になるので、
コイル中心からの距離の増加によつて急激に漏れ
磁場が減少することになる。たとえば、主コイル
の半径を0.5m,シールドコイルの半径を7.7mと
し、これらの2つのコイルが生起するコイル中心
の均一磁場の磁束密度を1Tとすると、コイル中
心から3m離れた位置の漏れ磁場の磁束密度は約
1.3Gになり充分の低減効果となつている。ちな
みに主コイルのみでコイル中心に1Tの均一磁場
を生起するとした時のコイル中心から3mの離れ
た位置の漏れ磁場の磁束密度は約50Gとなり、漏
れ磁場の強度の許容値である5Gに比べはるかに
大きい値になる。
Br=k 5 (a 2 / 1e −a 2 / 2e )M 1 /r 5 +… (7) In other words, if the magnetic efficiencies of the two coils, the main coil and the shield coil, are matched and their directions are reversed, By doing this, the strength of the leakage magnetic field is such that the component that is inversely proportional to the cube of the distance from the center of the coil becomes zero, and the component that decreases inversely proportional to the fifth power becomes the main component.
As the distance from the coil center increases, the leakage magnetic field decreases rapidly. For example, if the radius of the main coil is 0.5 m and the radius of the shield coil is 7.7 m, and the magnetic flux density of the uniform magnetic field at the center of the coil generated by these two coils is 1 T, then the leakage magnetic field at a position 3 m away from the center of the coil is The magnetic flux density of is approximately
1.3G, which is a sufficient reduction effect. By the way, when a uniform magnetic field of 1T is generated at the center of the coil using only the main coil, the magnetic flux density of the leakage magnetic field at a distance of 3m from the center of the coil is approximately 50G, which is much higher than the allowable value of 5G for the strength of the leakage magnetic field. becomes a large value.

このように2つのコイルの磁気能率の値を一致
させることにより漏れ磁場の強度を打ち消すこと
ができるが、この磁気能率はコイルを構成する線
輪の巻数や寸法を設定すれば簡単に計算すること
ができるので、均一磁場コイルを設計する過程で
常にこの磁気能率が一致する条件を満足するよう
にしながら計算を進めることができるので、効率
的な設計計算が可能となつている。
In this way, by matching the magnetic efficiency values of the two coils, the strength of the leakage magnetic field can be canceled out, but this magnetic efficiency can be easily calculated by setting the number of turns and dimensions of the wire that makes up the coil. Therefore, in the process of designing a uniform magnetic field coil, it is possible to proceed with calculations while always satisfying the condition that the magnetic efficiencies match, making it possible to perform efficient design calculations.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第5図は本発明の最も基本的な実施例を示すコ
イル配置図で、第1図に示す一対のリング状主コ
イルからなる磁場コイルへの適用例を示したもの
である。図において、41および42は一対のシ
ールドコイルで、主コイル11および12と同軸
状に、かつ対称面2に対して対称な位置に配設さ
れており、一対のシールドコイル41および42
はそれ自身最良の磁場の均一性を満足するよう構
成される。またシールドコイルと主コイルは発生
磁束の向きが逆向きになるよう形成され、かつ次
式に示すように一対のシールドコイルの磁気能率
(個々のコイルの磁気的有効面積とアンペアター
ンの積の和)が主コイルのそれと等しくなるよう
構成されている。
FIG. 5 is a coil arrangement diagram showing the most basic embodiment of the present invention, and shows an example of application to a magnetic field coil consisting of a pair of ring-shaped main coils shown in FIG. In the figure, 41 and 42 are a pair of shield coils, which are arranged coaxially with the main coils 11 and 12 and symmetrically with respect to the plane of symmetry 2.
is itself constructed to satisfy the best magnetic field homogeneity. In addition, the shield coil and the main coil are formed so that the direction of the generated magnetic flux is opposite to each other, and the magnetic efficiency of the pair of shield coils (the sum of the products of the magnetically effective area and ampere turns of each individual coil) is calculated as shown in the following equation. ) is configured to be equal to that of the main coil.

第5図においては、シールドコイルの径は主コ
イルの径の2倍に選ばれており、したがつてシー
ルドコイルのアンペアターンは前記式(2)より主コ
イルのアンペアターンの1/4ですむことになる。
また回転軸1の近傍における均一磁場の強さはコ
イルの径に逆比例するので、シールドコイルが作
る逆向きの均一磁場の強さは主コイルの作る均一
磁場の強さの1/8になる。したがつて、均一磁場
の強さはシールドコイルを設けたことにより7/8
に減少する。均一磁場の強さをシールドコイルを
設けない従来構造と同じに保つためには、主コイ
ル11および12のアンペアターンをあらかじめ
8/7倍にしておけばよい。
In Figure 5, the diameter of the shield coil is chosen to be twice the diameter of the main coil, so the ampere turns of the shield coil is 1/4 of the ampere turns of the main coil according to equation (2) above. It turns out.
Furthermore, the strength of the uniform magnetic field near the rotating shaft 1 is inversely proportional to the diameter of the coil, so the strength of the uniform magnetic field in the opposite direction created by the shield coil is 1/8 of the strength of the uniform magnetic field created by the main coil. . Therefore, the strength of the uniform magnetic field is reduced to 7/8 by providing the shield coil.
decreases to In order to keep the strength of the uniform magnetic field the same as in the conventional structure without a shield coil, the ampere turns of the main coils 11 and 12 may be increased to 8/7 times in advance.

第6図は第5図の均一磁場コイルの磁束分布図
である。図において、主コイル11および12を
包囲する磁束線100が主コイル11の内側(図
では下側)を通る部分においては回転軸1にほぼ
平行になり、主コイル内空間部における磁場の強
さがほぼ均一になつていることを示している。ま
た、シールドコイル41の外側を通る磁束線たと
えば101と102とは、シールドコイル41か
ら少し離れた位置では相互の間隔が大きく拡が
り、シールドコイルの外側における漏れ磁界の強
さが著しく低下していることを示している。この
状況は、第4図における磁束線の分布と第6図の
磁束線の分布とを比較することにより、シールド
コイルによる漏れ磁界の低減効果を明確に知るこ
とができる。
FIG. 6 is a magnetic flux distribution diagram of the uniform magnetic field coil of FIG. 5. In the figure, the magnetic flux lines 100 surrounding the main coils 11 and 12 are almost parallel to the rotation axis 1 in the part where they pass inside the main coil 11 (lower side in the figure), and the strength of the magnetic field in the space inside the main coil is This shows that it is almost uniform. Furthermore, the distance between the magnetic flux lines 101 and 102 that pass outside the shield coil 41 is greatly increased at a position slightly away from the shield coil 41, and the strength of the leakage magnetic field outside the shield coil is significantly reduced. It is shown that. In this situation, by comparing the distribution of magnetic flux lines in FIG. 4 with the distribution of magnetic flux lines in FIG. 6, the effect of reducing the leakage magnetic field by the shield coil can be clearly understood.

第7図は本発明の他の実施例を示す均一磁場コ
イルのコイル配置図で、第3図の主コイル配置に
よる磁場コイルへの適用例を示したものである。
図の場合、31,32および33,34からなる
2対の主コイルの外側に設けられた一対のシール
ドコイル51および52は、アンペアターンが等
しく対称面2に対して対称の位置に配設され、他
の一対のシールドコイル53および54もアンペ
アターンが等しく対称面2に対して対称の位置に
配設されている。また一対の主コイル31,32
のアンペアターンは他の一対の主コイル33,3
4のそれの1/2であり、2対のシールドコイル5
1,52および53,54は共に同じアンペアタ
ーンになるように構成されている。しかし、これ
らの比率そのものは、主コイル群およびシールド
コイル群がそれぞれ均一磁場を形成する条件を満
足するものであれば任意の比率を選択することが
できる。また主コイルとシールドコイルとのアン
ペアターンの比率は前述の条件式を満足するよう
決められている。
FIG. 7 is a coil arrangement diagram of a uniform magnetic field coil showing another embodiment of the present invention, and shows an example of application to a magnetic field coil using the main coil arrangement of FIG. 3.
In the case of the figure, a pair of shield coils 51 and 52 provided outside the two pairs of main coils 31, 32 and 33, 34 have equal ampere turns and are arranged symmetrically with respect to the plane of symmetry 2. , the other pair of shield coils 53 and 54 also have the same ampere turns and are arranged at symmetrical positions with respect to the plane of symmetry 2. In addition, a pair of main coils 31 and 32
The ampere turns of the other pair of main coils 33, 3
It is 1/2 of that of 4, and 2 pairs of shield coils 5
1, 52 and 53, 54 are both configured to have the same ampere turns. However, any ratio can be selected as long as the main coil group and the shield coil group each satisfy the condition that a uniform magnetic field is formed. Further, the ampere-turn ratio between the main coil and the shield coil is determined so as to satisfy the above-mentioned conditional expression.

第8図は第7図のコイル配置における磁束分布
図である。図において、主コイル31および33
を包囲する磁束線100は、コイル31および3
3の内側(図では下側)において第4図の場合と
同様に回転軸1にほぼ平行になつており、主コイ
ル内部空間部における磁場の強さが一様になつて
いることを示している。またシールドコイル51
および53の外側を通る磁束線たとえば103,
104はそれぞれシールドコイルの外側において
その内側の磁束線との間の間隔が大きく開いてお
り、第4図との比較から明らかなように漏れ磁界
の広がりとその強さが著しく低減されていること
がわかる。
FIG. 8 is a magnetic flux distribution diagram in the coil arrangement of FIG. 7. In the figure, main coils 31 and 33
The magnetic flux lines 100 surrounding the coils 31 and 3
3 (lower side in the figure), it is almost parallel to the rotation axis 1 as in the case of Figure 4, indicating that the strength of the magnetic field in the main coil internal space is uniform. There is. Also, the shield coil 51
and magnetic flux lines passing outside of 53, for example 103,
104 has a large gap between the outside of the shield coil and the inside magnetic flux line, and as is clear from the comparison with Fig. 4, the spread and strength of the leakage magnetic field are significantly reduced. I understand.

なお、第2図の主コイル配置に対応する実施例
は省略したが、主コイルの数と配置がどのような
組み合わせであつても、本発明を適用できること
は前述の実施例から容易に類推することができ
る。
Note that although the embodiment corresponding to the main coil arrangement in FIG. 2 has been omitted, it can be easily inferred from the above-mentioned embodiment that the present invention can be applied to any combination of the number and arrangement of main coils. be able to.

また、主コイルとシールドコイルとの半径およ
びアンペアターンの比率は、この比率を大きくす
ることにより主コイルの電流の増加は少なくてす
むが、その反面コイル全体の径が大きくなつてし
まうし、比率を小さくすれば主コイルのアンペア
ターンの増加量が大きくなるので、均一磁場コイ
ルに要求される諸性能を勘案して最適条件を決め
ることが好ましい。
Also, by increasing the ratio of the radius and ampere turns of the main coil to the shield coil, the increase in current in the main coil can be reduced, but on the other hand, the diameter of the entire coil becomes larger, and the ratio Since the increase in the ampere turns of the main coil will increase if the value is made smaller, it is preferable to determine the optimum conditions by taking various performances required of the uniform magnetic field coil into consideration.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、複数のリング状の主コ
イルからなる均一磁場コイルの外側に、磁気能率
の和が主コイルのそれと等しく発生磁束の方向が
逆向きな複数のリング状のシールドコイルを設け
るよう構成した。その結果、均一磁場コイルの外
側に広がる漏れ磁界の広がりとその強さを従来の
磁気回路を持たない均一磁場コイルに比べて大幅
に低減した均一磁場コイルを提供することがで
き、均一磁場コイル周囲に存在する強磁性体に漏
れ磁界が鎖交することによつて生ずる均一磁場の
不均一性の増加や、上記弊害を回避するための設
置場所の制約等の従来の問題点を排除でき、した
がつてNMR−CTによる人体の断層像の乱れを
防止することに貢献できる。
As described above, the present invention includes a plurality of ring-shaped shield coils whose sum of magnetic efficiencies is equal to that of the main coils and whose direction of generated magnetic flux is opposite to that of the main coils, on the outside of a uniform magnetic field coil consisting of a plurality of ring-shaped main coils. It was configured to provide. As a result, it is possible to provide a uniform magnetic field coil in which the spread and strength of the leakage magnetic field that spreads outside the uniform magnetic field coil is significantly reduced compared to conventional uniform magnetic field coils that do not have a magnetic circuit. Conventional problems such as increased inhomogeneity of the uniform magnetic field caused by the linkage of leakage magnetic fields to ferromagnetic materials existing in This can contribute to preventing disturbances in tomographic images of the human body produced by NMR-CT.

またシールドコイルは強磁性体からなる筒状体
に比べて遥かに軽量にできるので、設置場所への
搬入や床強度に特段の配慮をする必要がなくな
り、既設の建家内に容易に設置できるNMR−
CTを提供することができる。
In addition, shield coils can be made much lighter than cylindrical bodies made of ferromagnetic material, so there is no need to transport them to the installation site or pay special attention to floor strength, and NMR can be easily installed inside existing buildings. −
CT can be provided.

さらに、均一磁場の乱れを微調整して修正する
場合、主コイルに比べてアンペアターンが数分の
一と小さく、したがつて軽量なシールドコイルの
位置を調整可能に支持するよう構成すれば、主コ
イルを調整可能に支持する方式に比べてコイルの
支持構造を簡単化できるとともに、均一磁場の強
さに占めるシールドコイルの発生磁束の量が少な
いので、主コイルの位置を調整するのに比べてよ
り微細に均一磁場の乱れの修正が可能になるとい
う利点が得られる。
Furthermore, when fine-tuning and correcting disturbances in the uniform magnetic field, the position of the shield coil, which has a fraction of the ampere-turns compared to the main coil and is therefore lightweight, can be supported in an adjustable manner. The coil support structure can be simplified compared to a method that supports the main coil in an adjustable manner, and the amount of magnetic flux generated by the shield coil that accounts for the strength of the uniform magnetic field is small, compared to adjusting the position of the main coil. This has the advantage that it becomes possible to more finely correct disturbances in the uniform magnetic field.

さらにまた、主コイルの外側に強磁性体からな
る筒状体のように磁気特性が非直線性になる部分
を含まないので、均一磁場コイルの設計にあたつ
て精度の高い磁場の数値計算が容易にできる利点
がある。
Furthermore, since the main coil does not include a part with nonlinear magnetic properties such as a cylindrical body made of ferromagnetic material, highly accurate numerical calculation of the magnetic field is possible when designing a uniform magnetic field coil. It has the advantage of being easy to do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は公知の均一磁場コイルの主
コイルの配置図、第4図は第3図の主コイル配置
における従来の磁束分布図、第5図は本発明の実
施例を示すコイル配置図、第6図は第5図の実施
例における磁束分布図、第7図は本発明の異なる
実施例を示すコイル配置図、第8図は第7図の実
施例における磁束分布図である。 1……回転軸、2……対称面、11,12……
一対の主コイル、21,22,23,24……径
の異なる2対の主コイル、31,32,33,3
4……アンペアターンの異なる2対の主コイル、
41,42……一対のシールドコイル、51,5
2,53,54……径の異なる2対のシールドコ
イル、100……主コイルを包囲する磁束線、1
01,103,104……漏れ磁束線。
Figures 1 to 3 are arrangement diagrams of the main coil of a known uniform magnetic field coil, Figure 4 is a conventional magnetic flux distribution diagram in the main coil arrangement of Figure 3, and Figure 5 is a coil showing an embodiment of the present invention. 6 is a magnetic flux distribution diagram in the embodiment of FIG. 5, FIG. 7 is a coil layout diagram showing a different embodiment of the present invention, and FIG. 8 is a magnetic flux distribution diagram in the embodiment of FIG. 7. . 1...Rotation axis, 2...Symmetry plane, 11, 12...
A pair of main coils, 21, 22, 23, 24... Two pairs of main coils with different diameters, 31, 32, 33, 3
4...Two pairs of main coils with different ampere turns,
41, 42...Pair of shield coils, 51, 5
2, 53, 54...Two pairs of shield coils with different diameters, 100...Magnetic flux lines surrounding the main coil, 1
01, 103, 104...Leakage magnetic flux lines.

Claims (1)

【特許請求の範囲】[Claims] 1 互いに同軸状でまた軸に垂直な対称面に対し
て対称かつ平行な少なくとも一対のリング状の主
界磁コイルを備えこの主界磁コイルの内部空間部
に均一磁場を発生する磁場コイルにおいて、内径
が前記主界磁コイルの外径より大きく形成され前
記主界磁コイルと同軸状かつ前記対称面に対して
対称に配された少なくとも一対のリング状のシー
ルドコイルを備え、この複数のシールドコイルの
磁気能率の和が前記主界磁コイルのそれと等しく
かつその発生磁束の方向が前記主界磁コイルのそ
れと逆方向であることを特徴とする均一磁場コイ
ル。
1. A magnetic field coil that includes at least a pair of ring-shaped main field coils that are coaxial with each other and symmetrical and parallel to a plane of symmetry perpendicular to the axis, and that generates a uniform magnetic field in the internal space of the main field coil, at least a pair of ring-shaped shield coils having an inner diameter larger than the outer diameter of the main field coil, coaxial with the main field coil, and symmetrically arranged with respect to the plane of symmetry; A uniform magnetic field coil characterized in that the sum of the magnetic efficiencies of is equal to that of the main field coil, and the direction of the generated magnetic flux is opposite to that of the main field coil.
JP59073574A 1984-04-12 1984-04-12 Uniform magnetic field coil Granted JPS60217608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073574A JPS60217608A (en) 1984-04-12 1984-04-12 Uniform magnetic field coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073574A JPS60217608A (en) 1984-04-12 1984-04-12 Uniform magnetic field coil

Publications (2)

Publication Number Publication Date
JPS60217608A JPS60217608A (en) 1985-10-31
JPH0314214B2 true JPH0314214B2 (en) 1991-02-26

Family

ID=13522186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073574A Granted JPS60217608A (en) 1984-04-12 1984-04-12 Uniform magnetic field coil

Country Status (1)

Country Link
JP (1) JPS60217608A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458247A (en) * 1987-08-29 1989-03-06 Fuji Electric Co Ltd Uniform magnetic field coil
JP2643384B2 (en) * 1988-02-03 1997-08-20 富士電機株式会社 Superconducting magnet
JP2006200913A (en) * 2005-01-18 2006-08-03 Tokyo Electric Power Services Co Ltd Detector of thickness loss in hollow metal body
WO2014203105A1 (en) * 2013-06-21 2014-12-24 Koninklijke Philips N.V. Cryostat and system for combined magnetic resonance imaging and radiation therapy
CN106456047B (en) * 2014-05-20 2020-03-06 株式会社日立制作所 Magnetic type MRI apparatus with extremely narrow leakage magnetic field
JP7114382B2 (en) * 2018-07-20 2022-08-08 キヤノンメディカルシステムズ株式会社 Installation method of magnetic material and arithmetic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290293A (en) * 1976-01-22 1977-07-29 Fuji Electric Co Ltd Super conduction energy storing unit
JPS56130905A (en) * 1980-02-05 1981-10-14 Thomson Csf Magnet
JPS57180947A (en) * 1981-04-30 1982-11-08 Tokyo Shibaura Electric Co Diagnostic nuclear magnetic resonance apparatus
JPS6098344A (en) * 1983-10-14 1985-06-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Nuclear magnetic resonance device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290293A (en) * 1976-01-22 1977-07-29 Fuji Electric Co Ltd Super conduction energy storing unit
JPS56130905A (en) * 1980-02-05 1981-10-14 Thomson Csf Magnet
JPS57180947A (en) * 1981-04-30 1982-11-08 Tokyo Shibaura Electric Co Diagnostic nuclear magnetic resonance apparatus
JPS6098344A (en) * 1983-10-14 1985-06-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Nuclear magnetic resonance device

Also Published As

Publication number Publication date
JPS60217608A (en) 1985-10-31

Similar Documents

Publication Publication Date Title
EP0216404B1 (en) Magnetic resonance imaging apparatus including-homogenizing magnetic elements
US4595899A (en) Magnetic structure for NMR applications and the like
US5565831A (en) Shielded and open MRI magnet
US4890082A (en) Coil for generating a homogeneous magnetic field
US5708362A (en) Magnet arrangement for a diagnostic magnetic resonance apparatus
US5396208A (en) Magnet system for magnetic resonance imaging
JPH06304150A (en) Magnet for magnetic resonance image
US6100780A (en) Cryogenic-fluid-cooled open MRI magnet with uniform magnetic field
US5343148A (en) Gradient coil system
JPS5853742A (en) Gradient coil system of nuclear spin resonance device
WO1999027851A1 (en) Magnet apparatus and mri apparatus
JP2643384B2 (en) Superconducting magnet
JPS62252110A (en) Frame structure for magnet system of nuclear magnetic resonance equipment
JPH0471324B2 (en)
JPH0314214B2 (en)
US4931759A (en) Magnetic resonance imaging magnet having minimally symmetric ferromagnetic shield
JPH02257937A (en) Skew coil apparatus for nuclear magnetic resonance tomograph
JPH0744105B2 (en) electromagnet
CN109887705B (en) Electromagnet assembly
JPH0321176B2 (en)
GB2184243A (en) Electromagnet arrangements
US4673881A (en) Magnetic apparatus of a nuclear spin tomography system with an approximately hollow-cylindrical shielding device
US6657527B2 (en) Apparatus and method for fabricating magnet support structure
EP1521095B1 (en) Superconducting magnet apparatus
JPH0785439B2 (en) Bending electromagnet