CS260394B1 - A method of preparing aldoses - Google Patents
A method of preparing aldoses Download PDFInfo
- Publication number
- CS260394B1 CS260394B1 CS874637A CS463787A CS260394B1 CS 260394 B1 CS260394 B1 CS 260394B1 CS 874637 A CS874637 A CS 874637A CS 463787 A CS463787 A CS 463787A CS 260394 B1 CS260394 B1 CS 260394B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- aldoses
- citric acid
- preparation
- aldose
- preparing
- Prior art date
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Saccharide Compounds (AREA)
Abstract
Účelom spósobu přípravy aldóz je zlepšeme spůsobov přípravy aldóz, t. j. zjednodu- šenie a zhospodárnenie týchto spósobov pří pravy. Uvedený účel sa dosiahne tak, že k N-fenylglykozylamínu, formaldehydu, etanolu, vodě a molybdénanovej zlúčenine sa přidá kyselina citrónová v mólovom pomere molybdénu v oxidačnom stupni VI ku kyselině citrónovej 1 : aspoň 2 a nechá reagovat pri teplote do 100 °C. Spósob přípravy aldóz má použitie v organlckej chémii.The purpose of the aldose preparation method is to improve the aldose preparation method, i.e. to simplify and economize these preparation methods. The stated purpose is achieved by adding citric acid to N-phenylglycosylamine, formaldehyde, ethanol, water and a molybdate compound in a molar ratio of molybdenum in oxidation state VI to citric acid of 1: at least 2 and allowing it to react at a temperature of up to 100°C. The method of preparing aldoses is used in organic chemistry.
Description
260394260394
Vynález sa týká spósobu přípravy aldóz. V niektorých sposoboch izolácií jednej al-dózy zo zraesi aldóz sa použila reakcia al-dóz s anilínmi, ktorá využívá rozdielnu kryš-talizačnu schopnost vzniknutých N-fenylgly-kozylamínov. Zo zraesi arabinózy a ribózysa izoluje N-fenylribozylamín, zo zraesi xy-lózy a lyxózy N-fenyllyxozylamín [V. Bílik,J. Capiovič: Chem. Zvěsti 27, 547 (1973)],zo zmesi fruktózy, glukózy a manózy N-fe-nylmanozylamín [V. Bílik, K. Tihlárik: Chem.Zvěsti 28, 206 (1984)], zo zraesi D-glycero--L-glukoheptózy a D-glycero-L-manoheptózyN-fenyl-D-glycero-L-manoheptozylamín [ V.Bílik, L. Petruš: Chem. Zvěsti 30, 359 (1976)]a zo zmesi Larabinózy a D-xylózy N-(4-nitro-fenyl)-L-arbinozylamín [V. Bílik, A. Kramář:Chem. Zvěsti 33, 641 (1979)]. Z N-fenylgly-kozylamínov sa můžu aldózy uvolňovatformaldehydom [T. Fujita, T. Sáto: Bull.Chem. Soc. Japn 33, 353 (1960)], benzalde-hydom [R. L. Whistler, J. N. BeMiller: Me-thods Carbohydr. Chem. 1, 81 (1962)], hydrolýzou technikou preháňania vodnouparou [V. Bílik, J. Čaplovič: Chem. Zvěsti27, 547 (1973); V. Bílik, L. Petruš: Chem.Zvěsti 30, 359 (1976)], hydrolýzou silnékyslým iónomeničom (CS AO č. 196 996).The invention relates to a process for the preparation of aldoses. In some methods of isolating one of the aldose precipitates, the reaction of aldoses with anilines has been used, employing a different crystallization ability of the resulting N-phenylglycosylamines. N-Phenylribozylamine isolates N-phenyllyxozylamine from the precipitation of arabinose and ribose and from N-phenyllyxozylamine [x]. Bílik, J. Capiovic: Chem. Rev. 27, 547 (1973)], from a mixture of fructose, glucose and mannose, N-phenylmanozylamine [V. Bílik, K. Tihlárik: Chem. L. Petrus: Chem. Annals 30, 359 (1976)] and from a mixture of Larabinose and D-xylose N- (4-nitro-phenyl) -L-arbinozylamine [V. Bílik, A. Kramář: Chem. Rumors 33, 641 (1979)]. From N-phenylglycosylamines, aldose can be released by formaldehyde [T. Fujita, T. Sato: Bull.Chem. Soc. Japn 33, 353 (1960)], benzaldehyde [R. L. Whistler, J.N. BeMiller: Me-thods Carbohydr. Chem. 1, 81 (1962)], by hydrolysis by the hydrofoam technique [V. Bílik, J. Čaplovič: Chem. Rumors 27: 547 (1973); V. Bílik, L. Petruš: Chem.Zvěsti 30, 359 (1976)] by hydrolysis with a strong acid ion exchanger (CS AO No. 196 996).
Pri všetkých t-ýchto reakciáeh třeba, abyinolybdénanové ióny v postupech uvolňova-nia neboli přítomné. Preto sa museli rozto-ky aldóz před příslušnou derivatizáciou naodpovedajúce N-fenylglykozylamíny deioni-zovať, čo zvyšuje pracnost a zdražuje připra-vené aldózy. Aldózy sa v slabo kyslých vod-ných roztokoch za přítomnosti molybdéna-nových iónov epimerizujú a vytvárajú rov-novážnu zmes C—2-epimérnych aldóz [V.Bílik: Chem. listy 77, 496 (1983)].In all of these reactions, the polybenzene ions in the release procedures are not required. Therefore, the aldose solutions had to be deionized prior to the corresponding derivatization of the corresponding N-phenylglycosylamines, thereby increasing the labor and cost of the prepared aldoses. Aldoses are epimerized in weakly acidic aqueous solutions in the presence of molybdenum ions to form a uniform mixture of C-2-epimeric aldoses [U.S. Pat. sheets 77, 496 (1983)].
Uvedené nevýhody v podstatnej miere od-straňuje spósob přípravy aldóz podlá vyná-lezu, ktorého podstata spočívá v tom, že kN-fenylglykozylamínu, formaldehydu, eta-nolu, vodě a molybdénanovej zlúčenine sapřidá kyselina citrónová v mólovom pomě-re molybdénu v oxidačnom stupni VI ku ky-selině citrónovej 1 : aspoň 2 a nechá rea-govat pri teplote do· 100 °C. Výhodou navrhovaného spósobu přípravyaldóz je, že netřeba molybdénanové ióny od-straňovat, najčastejšie anexami, s násled-ným zahušťováním roztokov, čím sa ušetřína mzdách, materiáloch, energii a v pod-statnej miere ušetří použitie niektorých za-riadení (odpariek, kolon). Příklad 1The above drawbacks are substantially obviated by the method of preparation of aldoses according to the invention, wherein citric acid is added to the N-phenylglycoslamine, formaldehyde, ethanol, water and molybdenum compound in the molybdenum molar ratio in the oxidation stage VI. to citric acid 1: at least 2 and reacting to a temperature of up to 100 ° C. The advantage of the proposed method of preparation is that it is not necessary to remove molybdenum ions, most often by anion exchangers, with subsequent concentration of the solutions, thereby saving wages, materials, energy and substantially saving the use of some equipment (evaporators, columns). Example 1
Zmes 25,5 g (0,1 molu) N-fenyl-D-mano-zylamínu, 0,25 g (2.10-4 mólov) tetrahyd-rátu heptamolybdénanu hexaamonného, 0,59gramu (2,8 . 10~3 mólov) monohydrátu ky-seliny citrónovej (mólový poměr kyselinycitrónovej k molybdénu v oxidačnom stupniVI je 2 : 1], 15,8 ml (0,2 mólu) 35 % hmot.vodného roztoku formaldehydu, 35 ml 96 % hmot. etanolu a 190 ml vody sa zahriovapočas 3 h pri teplote 90 °C. Inhibícia epime-rizácie D-manózy sa zisťuje papierovou chro-matografiou (Whatman No 1) s použitím e-lučného systému A: acetonu, 1-butanolu avody v objemovom pomere 5 : 1 : 4, s do-bou prietoku elučných systémov 18 až 20 ha následuj úcou detekciou s anilíniumhydro-génftalátom. Chromatografický záznam do-kazuje přítomnost D-manózy a v stopovommnožstve přítomnost D-glukózy. Pohyblivostvzťahujúca sa na glukózu 1,00 je pre manózuv elučnom systéme A: 1,31 a v elučnom sy-stéme B: 1,30. Příklad 2A mixture of 25.5 g (0.1 mol) of N-phenyl-D-mannosylamine, 0.25 g (2.10-4 mol) of hexaammonium heptamolybdate tetrahydrate, 0.59 g (2.8, 10 ~ 3 mol) citric acid monohydrate (molar ratio of citric acid to molybdenum in the V1 oxidation step is 2: 1), 15.8 ml (0.2 mol) of 35% w / w aqueous formaldehyde solution, 35 ml of 96% ethanol and 190 ml of water heating for 3 h at 90 DEG C. The inhibition of D-mannose epimerization is determined by paper chromatography (Whatman No 1) using the elution system A: acetone, 1-butanol and 5: 1: 4 by volume. with an elution system flow rate of 18 to 20 h, followed by detection with aniline hydrophthalate The chromatographic pattern shows the presence of D-mannose and the presence of D-glucose in the trace amount. 1.31 and in elution system B: 1.30 Example 2
Postupuje sa ako v příklade 1 s tým roz-dielom, že sa zmes zahrieva počas 2 h priteplote 100 °C. Chromatografický záznam do-kazuje přítomnost D-manózy a v stopovommnožstve přítomnost D-glukózy. Příklad 3The procedure is as in Example 1, except that the mixture is heated at 100 ° C for 2 h. Chromatographic recording shows the presence of D-mannose and the presence of D-glucose in the stopmomass. Example 3
Postupuje sa ako v příklade 1 s tým roz-dielom, že sa použije zmes 22,5 g (0,1 mólu)N-fenyl-D-ribozylamínu, 25 mg (2.10-5 mó-lov) tetrahydrátu heptamolybdénanu hexa-amonného, 59 mg (2,8.10-4 mólov) mono-hydrátu kyseliny citrónovej (mólový poměrkyseliny citrónovej k molybdénu v oxidač-nom stupni VI je 2 : 1), 15,8 ml (0,2 mólu)35 % hmot. vodného roztoku formaldehydu,35 ml 96 % hmot. etanolu a 190 ml vody.Chromatografický záznam dokazuje přítom-nost D-ribózy a v stopovom množstve pří-tomnost D-arabinózy. Pohyblivost vzťahujú-ca sa na D-glukózu 1,00 je pre D-ribózu velučnom systéme A: 2,13 a v elučnom systé-me B: 1,90 a pre D-arabinózu v elučnom sy-stéme A: 1,41 a v elučnom systéme B: 1,30. PřikládáProceeding as in Example 1, except that a mixture of 22.5 g (0.1 mol) of N-phenyl-D-ribozylamine, 25 mg (2.10 -5 mol) of hexammonium heptamolybdate tetrahydrate is used, 59 mg (2.8.times.10@-4 mol) of citric acid monohydrate (molar ratio of citric acid to molybdenum in oxidation stage VI is 2: 1), 15.8 ml (0.2 mol) of 35 wt. % aqueous formaldehyde solution, 35 ml 96 wt. ethanol and 190 ml of water. Chromatography shows the presence of D-ribose and the presence of D-arabinose in trace amounts. Mobility related to D-glucose 1.00 is for D-ribose a system of A: 2.13 and in elution system B: 1.90 and for D-arabinose in elution system A: 1.41 and in elution system B: 1.30. Attaches
Postupuje sa ako v příklade 3 s tým roz-dielom, že sa použije N-fenyl-L-lyxozylamín.Chromatografický záznam dokazuje přítom-nost' L-lyxózy a v stopovom množstve pří-tomnost L-xylózy. Pohyblivost vzťahujúca sana D-glukózu je pre L-lyxózu v elučnom sy-stéme A: 1,82 a v elučnom systéme B: 1,66a pre L-xylózu v elučnom systéme A: 1,72 av elučnom systéme B: 1,54. V príkladoch prevedenia sa uvádzajú tep-loty inhibície epimerizácie 90 a 100 °C, aleepimerizácia je inhibovaná aj pri podstatnénižších teplotách, například pri zahušťova-ní roztokov aldóz. Kyselina citrónová vytvá-ra s molybdénanovými iónmi stabilný kom-plex, ktorým sa inhibuje epimerizácia al-dóz aj podstatné dlhší čas, ako sa uvádza vpríkladoch prevedenia. Nie je ale efektívneskladovat roztoky aldóz dlhší čas pri niž-ších teplotách, nakolko rozlgky aldóz súThe procedure is as in Example 3, except that N-phenyl-L-lyxozylamine is used. Chromatographic recording shows the presence of L-lyxose and the presence of L-xylose in trace amounts. The mobility of sana D-glucose for L-lyxosis in the elution system A: 1.82 and in the elution system B: 1.66a for L-xylose in elution system A: 1.72 and elution system B: 1.54 . In the Examples, epimerization inhibition temperatures of 90 and 100 ° C are reported, but epimerization is inhibited at even lower temperatures, for example, when concentrating aldose solutions. Citric acid forms a stable complex with molybdenum ions, which inhibits both epimerization and substantial longer periods of time as described in the Examples. However, it is not effective to store aldose solutions for longer periods at lower temperatures, as aldose spills are
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS874637A CS260394B1 (en) | 1987-06-23 | 1987-06-23 | A method of preparing aldoses |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS874637A CS260394B1 (en) | 1987-06-23 | 1987-06-23 | A method of preparing aldoses |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS463787A1 CS463787A1 (en) | 1988-05-16 |
| CS260394B1 true CS260394B1 (en) | 1988-12-15 |
Family
ID=5389597
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS874637A CS260394B1 (en) | 1987-06-23 | 1987-06-23 | A method of preparing aldoses |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS260394B1 (en) |
-
1987
- 1987-06-23 CS CS874637A patent/CS260394B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS463787A1 (en) | 1988-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Conchie et al. | Methyl and phenyl glycosides of the common sugars | |
| Sanchez et al. | Studies in prebiotic synthesis: V. Synthesis and photoanomerization of pyrimidine nucleosides | |
| US5015296A (en) | Continuous epimerization of sugars, in particular D-arabinose to D-ribose | |
| Imazawa et al. | Synthesis of 3'-azido-2', 3'-dideoxyribofuranosylpurines | |
| Shannahoff et al. | 2, 2'-Anhydropyrimidine nucleosides. Novel syntheses and reactions | |
| Carson | The Reaction of Fructose with Isopropylamine and Cyclohexylamine2 | |
| HONMA et al. | A facile O-glycosidation using stannic chloride | |
| Anet | Chemistry of Non-enzymic Browning. VII. Crystalline Di-D-fructose-glycine and some related compounds | |
| Bílik | Reactions of Saccharides Catalyzed by Molybdate Ions. IV.* Epimerization of Aldopentoses | |
| Ogawa et al. | The structure of an antibiotic kanamycin | |
| EP0039127B1 (en) | A process for making ketose sugars | |
| Nakanishi et al. | Production of a New Ammonucleoside, 9-(2′-Amino-2′-deoxypentofuranosyl) Guanine, by Aerobacter sp. | |
| CS260394B1 (en) | A method of preparing aldoses | |
| Hodge et al. | Preparation and Properties of Dialditylamines1 | |
| Lee et al. | Synthesis of 2-(6-aminohexanamido) ethyl 1-thio-β-d-galactopyranoside and 1-thio-β-d-glucopyranoside, and related compounds | |
| Lee et al. | Preparation of 1-thioglycosides having ω-aldehydo aglycons useful for attachment to proteins by reductive amination | |
| US6232450B1 (en) | Inhibition of human fucosyltransferases with N-linked Lewis-x and LacNAc analogs | |
| Sattler et al. | Unfermentable Reducing Substances in Molasses. Volatile Decomposition Products of Sugars and their Role in Melanoidin Formation. | |
| JP3081016B2 (en) | Crystalline thionicotinamide-adenine dinucleotide potassium phosphate and process for producing the same | |
| CS260393B1 (en) | A method of preparing aldoses | |
| US4631271A (en) | Serotonin-D-fructose and pharmaceutical composition containing same | |
| JPH0558438B2 (en) | ||
| US3655885A (en) | Antibacterial compositions and methods of treating bacterial infections | |
| Morgan et al. | Mutarotation of some biologically important 2-substituted hexoses | |
| Molander et al. | Bisulfite ion-catalyzed transamination of cytosine residues with. alpha.,. omega.-alkanediamines: The effect of chain length on the reaction kinetics |