CS260388B1 - Method of magnesium oxide and/or its hydration production - Google Patents
Method of magnesium oxide and/or its hydration production Download PDFInfo
- Publication number
- CS260388B1 CS260388B1 CS874323A CS432387A CS260388B1 CS 260388 B1 CS260388 B1 CS 260388B1 CS 874323 A CS874323 A CS 874323A CS 432387 A CS432387 A CS 432387A CS 260388 B1 CS260388 B1 CS 260388B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- calcium
- magnesium
- solution
- salt
- magnesium oxide
- Prior art date
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 239000000395 magnesium oxide Substances 0.000 title claims abstract description 50
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 230000036571 hydration Effects 0.000 title claims abstract description 21
- 238000006703 hydration reaction Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000047 product Substances 0.000 claims abstract description 31
- 239000000243 solution Substances 0.000 claims abstract description 26
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 16
- 238000002386 leaching Methods 0.000 claims abstract description 16
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 11
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 10
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 10
- -1 organic base salts Chemical class 0.000 claims abstract description 10
- 239000011777 magnesium Substances 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims abstract description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims abstract description 6
- 159000000007 calcium salts Chemical class 0.000 claims abstract description 6
- 239000002253 acid Substances 0.000 claims abstract description 5
- 239000002585 base Substances 0.000 claims abstract description 5
- 239000002244 precipitate Substances 0.000 claims abstract description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 52
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 25
- 238000001914 filtration Methods 0.000 claims description 7
- 150000007524 organic acids Chemical class 0.000 claims description 6
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 238000005119 centrifugation Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 4
- 239000001099 ammonium carbonate Substances 0.000 claims description 4
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 150000004679 hydroxides Chemical class 0.000 claims description 3
- 150000007530 organic bases Chemical class 0.000 claims description 3
- 239000012429 reaction media Substances 0.000 claims description 2
- 238000004062 sedimentation Methods 0.000 claims description 2
- 125000005587 carbonate group Chemical group 0.000 claims 1
- 230000000887 hydrating effect Effects 0.000 claims 1
- 235000012245 magnesium oxide Nutrition 0.000 abstract description 50
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 abstract description 35
- 235000012255 calcium oxide Nutrition 0.000 abstract description 31
- 239000000292 calcium oxide Substances 0.000 abstract description 28
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 abstract description 22
- 239000002994 raw material Substances 0.000 abstract description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 9
- 239000011575 calcium Substances 0.000 abstract description 9
- 229910052791 calcium Inorganic materials 0.000 abstract description 9
- 239000000347 magnesium hydroxide Substances 0.000 abstract description 9
- 229910001862 magnesium hydroxide Inorganic materials 0.000 abstract description 9
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 abstract description 8
- 150000007522 mineralic acids Chemical class 0.000 abstract description 6
- 229910001854 alkali hydroxide Inorganic materials 0.000 abstract description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 abstract 1
- 235000011941 Tilia x europaea Nutrition 0.000 abstract 1
- 239000004571 lime Substances 0.000 abstract 1
- 229960000869 magnesium oxide Drugs 0.000 description 39
- 235000010216 calcium carbonate Nutrition 0.000 description 24
- 239000010459 dolomite Substances 0.000 description 20
- 229910000514 dolomite Inorganic materials 0.000 description 20
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000001095 magnesium carbonate Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 8
- 235000014380 magnesium carbonate Nutrition 0.000 description 8
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 8
- 229940091250 magnesium supplement Drugs 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000006028 limestone Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical class [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- CPGKMLVTFNUAHL-UHFFFAOYSA-N [Ca].[Ca] Chemical compound [Ca].[Ca] CPGKMLVTFNUAHL-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 238000005029 sieve analysis Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229940077744 antacid containing magnesium compound Drugs 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- HHSPVTKDOHQBKF-UHFFFAOYSA-J calcium;magnesium;dicarbonate Chemical compound [Mg+2].[Ca+2].[O-]C([O-])=O.[O-]C([O-])=O HHSPVTKDOHQBKF-UHFFFAOYSA-J 0.000 description 1
- YLUIKWVQCKSMCF-UHFFFAOYSA-N calcium;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[Mg+2].[Ca+2] YLUIKWVQCKSMCF-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 239000012633 leachable Substances 0.000 description 1
- 235000011160 magnesium carbonates Nutrition 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- NEKPCAYWQWRBHN-UHFFFAOYSA-L magnesium;carbonate;trihydrate Chemical compound O.O.O.[Mg+2].[O-]C([O-])=O NEKPCAYWQWRBHN-UHFFFAOYSA-L 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Oxid horečnatý alebo produkty jeho hydratácie sa vyrábajú z horečnatých alebo liorečnatovápenatých surovin, připadne ich oxidických alebo hydroxidických surovin. Uhličitanové suroviny sa prevedú pálením na oxidické. Z oxidov vápenatého a horečnaté ho pri 0 až 100°C posobením vodného roztoku soli organickej zásady s organickou alebo anorganickou kyselinou a/alebo najmenej jednej amónnej soli, připadne s prebytkom zásady, reaguje hlavně oxid vápenatý na vápenatá sol a prechádza do roztoku, pričom na výrazné zvýšenie tejto selektivity sa do lúžiaceho roztoku přidává 0,1 až 30 % hmot. alkalického hydroxidu, počí tané na sušinu amónnej soli alebo soli organickej zásady s kyselinou. Ostávajúci ο χιά alebo hydroxid horečnatý sa oddělí, premyje a spravidla vysuší. Z roztoku sa posobením oxidu uhličitého vyzráža uhličitan vá penatý.Magnesium oxide or products of its hydration they are made of magnesium or lime raw materials, possibly oxidic or hydroxidic raw materials. carbonate the raw materials are converted to. \ t oxide. Of calcium and magnesium oxides at 0 to 100 ° C by adding an aqueous solution organic base salts of organic or an inorganic acid and / or at least with one excess of ammonium salt bases, mainly calcium oxide reacts to the calcium salt and to the solution, while increasing this selectivity significantly 0.1 is added to the leaching solution % to 30 wt. alkali hydroxide, calc on the dry weight of the ammonium salt or salt organic base with an acid. Remaining ο The magnesium hydroxide or magnesium hydroxide is separated, washed and generally dried. From the solution, serve carbon dioxide precipitates carbon dioxide Penati.
Description
Oxid horečnatý alebo produkty jeho hydratácie sa vyrábajú z horečnatých alebo liorečnatovápenatých surovin, připadne ich oxidických alebo hydroxidických surovin. Uhličitanové suroviny sa prevedú pálením na oxidické. Z oxidov vápenatého a horečnatého pri 0 až 100°C posobením vodného roztoku soli organickej zásady s organickou alebo anorganickou kyselinou a/alebo najmenej jednej amónnej soli, připadne s prebytkom zásady, reaguje hlavně oxid vápenatý na vápenatá sol a prechádza do roztoku, pričom na výrazné zvýšenie tejto selektivity sa do lúžiaceho roztoku přidává 0,1 až 30 % hmot. alkalického hydroxidu, počítané na sušinu amónnej soli alebo soli organickej zásady s kyselinou. Ostávajúci οχιά alebo hydroxid horečnatý sa oddělí, premyje a spravidla vysuší. Z roztoku sa posobením oxidu uhličitého vyzráža uhličitan vápenatý.Magnesium oxide or its hydration products are made from magnesium or calcium-calcium raw materials or their oxidic or hydroxide raw materials. Carbonate raw materials are converted to oxidic by burning. Of the calcium and magnesium oxides at 0 to 100 ° C by impregnating an aqueous solution of an organic base salt with an organic or inorganic acid and / or at least one ammonium salt, optionally with an excess of base, mainly calcium oxide reacts to the calcium salt and passes into solution. to increase this selectivity 0.1 to 30 wt. % of alkali hydroxide, calculated on the dry weight of the ammonium salt or the acid base of the organic base. The remaining magnesium or magnesium hydroxide is separated, washed and, as a rule, dried. Calcium carbonate is precipitated from the solution by deposition of carbon dioxide.
Vynález rieši sposob výroby oxidu horečnatého a/alebo produktov jeho hydratácle, vrátane hydroxidu horečnatého i dalších produktov jeho hydratácie a obvykle súčasne aj uhličitanu vápenatého, z prevážne horečnatých alebo horečnatovápenatých a z nich hlavně z uhličitanových alebo oxidických surovin, ako z praženca magnezitu, pražencov dolomagnezitu, dolomitu, vápnitého dolomitu, dolomitického vápna ap.The invention provides a process for the production of magnesium oxide and / or its hydrate products, including magnesium hydroxide and other hydration products, and usually also calcium carbonate, from predominantly magnesium or calcium-calcium and mainly from carbonate or oxidic raw materials such as magnesite, dolomagnestate, dolomite, calcareous dolomite, dolomitic lime and the like.
Oxid horečnatý a uhličitan vápenatý možno z dolomitu alebo z dolomitového vápenca připravit jeho čiastočným termickým rozkladom do prvého stupňa pri teplote přibližné do 800 °C v závislosti od reakčných podmienok. Obidve zlúčeniny však jestvujú vo vzniknutom produkte v podobě práškovitej zmesi, z ktorej ich známými fyzikálnymi postupmi nemožno navzájom oddělit. Z chemických postupov prichádza do úvahy najma selektívne vylúženie oxidu horečnatého roztokmi karboxylátov amónnych, najma vodným roztokom mravčanu amónneho, v ktorých sa uhličitan vápenatý nerozpúšťa. Z týchto roztokov potom možno získat hydroxid horečnatý podta čs. autorského osved. č. 180 284, zásaditý uhličitan horečnatý podta čs. autorského osvedčenia č. 196 905 alebo trihydrát uhličitanu horečnatého podta čs. autor, osvědčení č. 194 644 a 208 296. Podta čs. autorského osvedčenia č. 199 323 pri lúžení vodnými roztokmi síranu, dusičnanu alebo chloridu amónneho vznikajú odpovedajúce horečnaté soli, ktoré sa ďalej prevedú na zásaditý uhličitan alebo oxalát horečnatý. Tieto zlúčeniny sú medziproduktami při výrobě oxidu horečnatého. Iné spósoby lúženia oxidu horečnatého z vápencového dolomitu uvádzajú rumunské patenty 59 712 a 59 779.Magnesium oxide and calcium carbonate can be prepared from dolomite or dolomite limestone by partial thermal decomposition to the first stage at a temperature of up to about 800 ° C, depending on the reaction conditions. However, both compounds exist in the resulting product in the form of a powdery mixture from which they cannot be separated from one another by known physical processes. Among the chemical processes, in particular, selective leaching of the magnesium oxide with ammonium carboxylate solutions, in particular aqueous ammonium formate, in which the calcium carbonate does not dissolve, is possible. From these solutions, magnesium hydroxide according to U.S. Pat. autorského certifik. no. 180 284, basic magnesium carbonate under MS. of the author's certificate no. 196 905 or magnesium carbonate trihydrate according to U.S. Pat. author, certificate no. 194 644 and 208 296. Podta čs. of the author's certificate no. Leaching with aqueous solutions of sulphate, nitrate or ammonium chloride yields the corresponding magnesium salts which are further converted to basic magnesium carbonate or oxalate. These compounds are intermediates in the production of magnesium oxide. Other methods of leaching magnesium oxide from limestone dolomite are disclosed in Romanian patents 59,712 and 59,779.
Termickým rozkladom dolomitu do druhého stupňa pri teplote nad 900 °C vzniká zmes oxidov obsahujúca teoreticky 41,7 % hmot. MgO a 58,3 % hmot. CaO. Tieto dve zložky takisto nemožno navzájom oddělit fyzikálnymi postupmi. Spósob zvýšenia obsahu oxidu horečnatého v takto pripravenom produkte rieši čs. autorské osvedčenie č. 190 976. Zakladá sa na tom, že sa z kaleinátu dolomitu připraví suspenzia, na ktorú sa pósobí kyselinou dusičnou alebo dusičnanom amónnym alebo mravčanom amónnym alebo octanom amóinnym a zo suspenzie sa oddělí nerozpustný zvyšok. Roztoky vápenatých solí, vznikajúce pri extrakcii, je možné spracovať súčasným působením amoniaku a oxidu uhličitého za vzniku čistého uhličitanu vápenatého a zodpovedajúcej amónnej soli, čím sa dosiahne reeyklovanie extrakčného činidla v reakčnom procese. Takýmto postupom možno oxid vápenatý odstrániť len čiastočne, takže vznikajúci produkt má zloženie v rozsahu 26,8 % CaO a 72,4% MgO až 43,0% CaO a 52,6% MgO vzhtadom na výžíhaný stav. Postup je zaujímavý, ale jeho nevýhodou je však len čiastočné oddelenie oxidu vápenatého od oxidu horečnatého, obťažná filtrovatelnosť, premývatelnosť a dehydratácia vzniknutého produktu, čo komplikuje výrobně operácie nevyhnutné pri jeho ďalšom spracovaní na žiaruvzdornú zmes.Thermal decomposition of dolomite into the second stage at a temperature above 900 ° C produces a mixture of oxides containing theoretically 41.7% by weight. MgO and 58.3 wt. CaO. Nor can the two components be separated by physical processes. The method of increasing the content of magnesium oxide in such a prepared product is solved by MS. author's certificate no. 190 976. The suspension is prepared from dolomite kaleinate and treated with nitric acid or ammonium nitrate or ammonium formate or ammonium acetate and an insoluble residue is separated from the suspension. The calcium salt solutions resulting from the extraction can be treated by the simultaneous treatment of ammonia and carbon dioxide to form pure calcium carbonate and the corresponding ammonium salt, thereby re-occluding the extraction agent in the reaction process. In this way, the calcium oxide can only be partially removed so that the resulting product has a composition in the range of 26.8% CaO and 72.4% MgO to 43.0% CaO and 52.6% MgO based on the annealed state. The process is interesting, but its disadvantage is, however, only the partial separation of calcium oxide from magnesium oxide, difficulty in filterability, washability and dehydration of the resulting product, which complicates the manufacturing operations necessary for its further processing into a refractory mixture.
Významný technický pokrok sa dosiahol spůsobom podta čs. autorského osvedčenia č. 248 963, spočívajúcom na selektívnom lúžení oxidu vápenatého a produktov jeho hydratácie zo zmesi s oxidom horečnatým, produktami jeho hydratácie a případnými prímesami nerozpustných zlúčenín železa, kremíka a dalších zlúčenín. Přitom selektívne lúčenie sa robí vodnými roztokmi organických amínov a solí anorganických alebo hydroxidom amónnym a s organickými arnínmi pri pH 7—12 tak, že po vylúžení zlúčenín vápnika sa zlúčeniny horčíka oddelia (filtráciou, odstreďovaním ap.j a z vodného roztoku (filtrátu) sa působením oxidu uhličitého alebo uhličitanu amónneho vyzráža uhličitan vápenatý. Oba produkty sa obvykle potom sušia. Na dosiahnutie vysokej selektivity rozpúšfania iba oxidu vápenatého a produktov jeho hydratácie je potřebné zásadité prostredie, ktoré sa dosahuje přidáním alkylamínov a alkanolamínov. Okrem ekologických problémov tohto sposobu výroby vinou amínov náročné je aj premývanie či už oxidu horčíka a produktov jeho hydratácie alebo uhličitanu vápenatého. Spotřeba premývacej vody je značné, lebo čo len stopové množstvá zvyškových amínov sposobujú sfarbenie finálnych produktov.Significant technical progress has been achieved in accordance with MS. of the author's certificate no. No. 248,963, based on the selective leaching of calcium oxide and its hydration products from a mixture with magnesium oxide, its hydration products, and optional admixtures of insoluble iron, silicon, and other compounds. The selective separation is carried out with aqueous solutions of organic amines and inorganic salts or with ammonium hydroxide and with organic amine at pH 7-12 by separating the magnesium compounds after filtration of the calcium compounds (by filtration, centrifugation and by treatment with carbon dioxide). Both ammonium carbonate and ammonium carbonate precipitate calcium carbonate. Both products are then usually dried. In order to achieve a high selectivity of dissolution of only calcium oxide and its hydration products, an alkaline environment is required which is achieved by adding alkylamines and alkanolamines. Washing of either magnesium oxide and its hydration products or calcium carbonate Consumption of washing water is considerable, since only trace amounts of residual amines cause discoloration of the final products.
A tak přednosti tohto postupu využívá a navýše rieši uvedené a ďalšie problémy spósob výroby podta vynálezu,Thus, the advantages of this process make use of and additionally solve the above and other problems of the method of manufacture according to the invention,
Podta vynálezu sposob výroby oxidu horečnatého a/alebo produktov jeho hydratácie z prevážne horečnatých a/alebo horečnato-vápenatých uhličitanových a/alebo oxidických surovin, připadne hydroxidických surovin, spravidla za súčasnej výroby uhličitanu vápenatého, připravených čiastočným alebo úplným termickým rozkladom východiskové] uhličitanovej suroviny pri teplote 800 až 1 300 °C sa zakladá na tom, že sa na praženec, oxidy a/alebo hydroxidy pri teplote 0 až 100 °C působí vodným roztokom najmenej jednej soli organickej zásady s organickou alebo anorganickou kyselinou a/alebo najmenej jednej amónnej soli organickej alebo anorganickej kyseliny v množstve potrebnom na vytvorenie vodorozpustnej vápenatej soli alebo na dosiahnutie požadovaného stupňa vylúženia, připadne s prebytkom zásady a uskutočňuje sa tak, že do reakčného prostredia sa jednorázové alebo po častiach přidá 0,1 až 30 % hmot. najmenej jedného hydroxidu alkalického kovu, počítané na sušinu amónnej soli a/alebo soli organickej zásady s kyselinou. Potom ostávajúci oxid horečnatý a/alebo produkty jeho hydratácie, připadne s nevylú260388 zenými komponentní i sa od roztoku oddělí, ako odstreďovaním, sedimentáciou alebo filtráciou, obvykle v spojení s premývaním a vysušením, pričom z roztoku sa pri pH 7 až 12 působením oxidu uhličitého a/alebo uhličitanu amonného vyzráža uhličitan vápenatý, ktorý sa oddělí.According to the invention, a process for the production of magnesium oxide and / or its hydration products from predominantly magnesium and / or magnesium-calcium carbonate and / or oxidic feedstocks or hydroxide feedstocks, generally with simultaneous production of calcium carbonate prepared by partial or complete thermal decomposition of at a temperature of 800 to 1300 ° C is based on the treatment of the bovine, oxides and / or hydroxides at 0 to 100 ° C with an aqueous solution of at least one organic or inorganic acid salt and / or at least one organic ammonium salt %, or an inorganic acid in an amount necessary to form a water-soluble calcium salt or to achieve the desired degree of leaching, if appropriate with an excess of base, is carried out by adding 0.1-30% by weight to the reaction medium. % of at least one alkali metal hydroxide, calculated on the dry basis of the ammonium salt and / or the acid addition salt of the organic base. Thereafter, the remaining magnesium oxide and / or its hydration products, optionally with unleached components, are separated from the solution by centrifugation, sedimentation or filtration, usually in conjunction with washing and drying, the solution being treated with carbon dioxide at pH 7 to 12 and and / or ammonium carbonate precipitates the calcium carbonate which is separated.
Výhodou spůsobu výroby, využívajúceho tiež zaujímavú skutočnosť, že aj silné anorganické zásady možno použit ako přísady na ovplyvňovanie selektivity reakcií amonných solí alebo solí z alkylamínov a minerálnych i karboxylových kyselin s jednotlivými oxidmi alebo liydroxidmi alkalických zemin, najma selektívne s oxidom vápenatým vedla přítomného oxidu horečnatého, je dosiahnutie ešte vyššej čistoty oxidu horečnatého, je dosiahnutie ešte vyššej čistoty oxidu horečnatého, či produktov jeho hydratácie, čo je potřebné pre rad aplikácii. Ďalej sa dosiahne vyššia čistota aj uhličitanu vápenatého. Potom nižšia spotřeba premývacích vod a spravidla 1'ahšia tiltrovatelnosť ako o xidu horečnatého a produktov jeho hydratácie, tak aj uhličitanu vápenatého, ktorý je cenným vedlajším produktom.An advantage of the manufacturing process, which also makes use of the interesting fact that even strong inorganic bases can be used as additives to influence the selectivity of the reactions of ammonium or alkylamine salts and mineral and carboxylic acids with individual alkaline earth oxides or hydroxides, in particular selectively with calcium is to achieve even higher purity of magnesium oxide, to achieve even higher purity of magnesium oxide or its hydration products, which is needed for a number of applications. Furthermore, higher purity of calcium carbonate is also achieved. Thereafter, lower consumption of wash water and generally less filterability of both magnesium oxide and its hydration products, as well as calcium carbonate, which is a valuable by-product.
V případe výroby oxidu horečnatého a/alebo produktov jeho hydratácie podlá tohto vynálezu, pričom produktom hydratácie je látka alebo sústava látok vznikájúca interreakciou molekul vody s tuhým oxidom horečnatým, je zvlášť vhodnou horečnatou, resp. horečnatovapenatou surovinou poměrně čistý dolomit, dolomitický vápenec, technický oxid horečnatý, magnezit, ale aj ďalšie horečnaté a horečnatovápenaté suroviny, najma v podobě uhličitanov a oxidov. Přitom za oxidové suroviny pódia tohto vynálezu sa považuji! okrem oxidu horečnatého, zmesi oxidov horečnatého a vápenatého aj produkty ich čiastočnej alebo úplnej hydratácie. Sposob podta tohto vynálezu sa dá však využit aj na rafináciu oxidu horečnatého a/alebo hydroxidu horečnatého, lebo výrobkom je ovela čistější oxid alebo hydroxid horečnatý, než použitý vo formě vstupnej suroviny do procesu. Zvlášť vhodnou surovinou je magnezit, poměrně čistý dolomit, připadne dolomitický vápenec, pričom po ich prvotnom spracovaní termickým rozkladom vzniknutý oxid vápenatý sa získává, resp. izoluje spravidla ako čistý uhličitan vápenatý.In the case of the production of magnesium oxide and / or its hydration products according to the present invention, wherein the hydration product is a substance or a system of substances resulting from the interreaction of water molecules with solid magnesium oxide, it is particularly suitable for magnesium and magnesium oxide. Magnesium-foamy raw material relatively pure dolomite, dolomitic limestone, technical magnesium oxide, magnesite, but also other magnesium and calcium-based raw materials, mainly in the form of carbonates and oxides. The oxide raw materials of the present invention are considered to be! in addition to magnesium oxide, a mixture of magnesium and calcium oxides, products of their partial or total hydration. However, the process according to the invention can also be used for refining magnesium oxide and / or magnesium hydroxide, since the product is a much purer magnesium oxide or hydroxide than used as feedstock in the process. A particularly suitable raw material is magnesite, relatively pure dolomite, or dolomitic limestone, and after their first treatment by thermal decomposition, the calcium oxide formed is obtained, respectively. usually as pure calcium carbonate.
Evidentný je aj synergizmuS spůsobu podlá tohto vynálezu, ktorým sa vyrába nielen kvalitný oxid a/alebo hydroxid horečnatý, ale spravidla aj uhličitan vápenatý.The synergism of the process according to the invention, which produces not only high-quality magnesium oxide and / or magnesium hydroxide, but also, as a rule, calcium carbonate, is also evident.
Ako hydroxidy alkalických kovov sú vhodné hydroxid sódny a draselný. Menej vhodné, hlavně z technicko-ekonomických příčin sú: hydroxid lítny, hydroxid cézny a hydroxid rubídny.Sodium and potassium hydroxides are suitable as alkali metal hydroxides. Less suitable, mainly for technical and economic reasons, are lithium hydroxide, cesium hydroxide and rubidium hydroxide.
Ich množstvo bývá v rozsahu 0,1 až 30 % hmot., počítané na soli alkylamínov a amónnych solí organických alebo anorganických kyselin. Vyššie množstvá prakticky už neprinášajú výhody, můžu nastat problémy s regeneráciou lúžiáceho roztoku a nížšie sú už prakticky neúčinné. Přísady hydroxidov alkalických kovov zvyšuji! pH prostredia lúžiaceho roztoku, čím zvyšujú selektivitu rozpúšťania iba oxidu vápenatého zo zmesi oxidov a produktov hydratácie horčíka a vápnika. Tak pH prostredia bývá najčastejšie 8,6 a 11,5, pričom pri pH výše 10,2 selektívne reaguje s amonnou sofou alebo sol'ou alkyl-, či alkanoiamínu s anorganickou alebo organickou kyselinou len oxid vápenatý.Their amount is in the range of 0.1 to 30% by weight, based on the salts of alkylamines and ammonium salts of organic or inorganic acids. Higher amounts practically no longer benefit, problems with leach solution regeneration may occur and lower ones are virtually ineffective. Additions of alkali metal hydroxides increase! pH of the leaching solution environment, thereby increasing the selectivity of dissolving only calcium oxide from the mixture of oxides and hydration products of magnesium and calcium. Thus, the pH of the environment is most often 8.6 and 11.5, with at pH above 10.2 selectively only calcium oxide is reacted selectively with an ammonium salt or an alkyl or alkanolamine salt with an inorganic or organic acid.
Ak cielom spůsobu výroby podta tohto vynálezu je oxid horečnatý alebo produkty jeho hydratácie s· definovaným, či voprcd zadaným obsahom vápenatej zložky, například oxidu vápenatého, vtedy sa na lúženie použije menšie, než stechiometrické množstvo lúžiáceho roztoku, odpovedajúce požadovanému stupňu vylúženia vápenatej zložky z praženca. V prípadoch, že sa požaduje prakticky úplné vylúženíe vápenatej zložky z praženca a/alebo oxidových surovin, třeba použiť stechiometrické, výhodné nadstechiometrlcké množstvo lúžiáceho roztoku, přepočítané na obsah vylúžitefnej vápenatej zložky vo vsádzke lúženej suroviny.If the aim of the process of the present invention is magnesium oxide or its hydration products with a defined or predetermined content of calcium component, for example calcium oxide, then less than a stoichiometric amount of leaching solution corresponding to the desired degree of calcium component leaching is used. . Where practically complete leaching of the calcium constituent from the roast and / or oxide feedstocks is desired, a stoichiometric, preferably above-stoichiometric amount of leaching solution calculated on the leachable calcium constituent content of the leached feedstock should be used.
Na vyzrážanie uhličitanu vápenatého podfa tohto vynálezu možno použiť ako čistý oxid uhličitý, tak aj jeho zmesi so vzduchom, dusíkom, oxidom uhelnatým, metánom a inými plynmi, ktoré nereaguji! so zložkami lúžiáceho roztoku. Pri použití plynov obsahujúcich oxid uhličitý možno tento spůsob navýše použiť aj ako metédu na skoncentrovanie vedfajšieho plynu, napr. oxidu uhofnatého. Na tieto účely možno využit aj oxid uhličitý získaný termickým rozkladom vápencov, dolomitu ap., najma po oddělení tuhých častíc.Both pure carbon dioxide and mixtures thereof with air, nitrogen, carbon monoxide, methane and other non-reactive gases may be used to precipitate the calcium carbonate of the present invention! with leach solution components. When using carbon dioxide-containing gases, this method can additionally be used as a method for concentrating by-gas, e.g. carbon monoxide. Carbon dioxide obtained by thermal decomposition of limestone, dolomite and the like, especially after separation of the solid particles, can also be used for this purpose.
Lúžením vznikajúci vodný roztok vápenatej soli príslušnej kyseliny (kyseliny chlorovodíkovej, dusičnej, mravčej, octovej ap.) sa od nerozpustného oxidu horečnatého a/alebo produktov jeho hydratácie, ako aj od nerozpustných zlúčenín kremíka, železa a iných prvkov, přítomných vo východiskovej surovině, oddělí obvyklými metodami, například filtráciou alebo odstreďovaním,The leaching aqueous solution of the calcium salt of the respective acid (hydrochloric, nitric, formic, acetic, etc.) separates from the insoluble magnesium oxide and / or its hydration products, as well as from the insoluble silicon, iron and other elements present in the starting material. by conventional methods, such as filtration or centrifugation,
Z filtrátu sa působením oxidu uhličitého pri teplote 0 až 100 °C, najvhodnejšie pri teplote 20 až 70 °C, pri pH 7 až 12, najvhodnejšie pri pH 7,5 až 10,5 pri tlaku plynnéj atmosféry 0,09 až 2 MPa, najvhodnejšie pri 0,1 až 0,3 MPa zráža 1'ahko. filtrovatefný a sedimentovatefný uhličitan vápenatý, ktorý možno oddělit obvyklými metódami, například filtráciou, dekantáciou, odstreďovaním ap.From the filtrate, treatment with carbon dioxide at a temperature of 0 to 100 ° C, most preferably at a temperature of 20 to 70 ° C, at a pH of 7 to 12, most preferably at a pH of 7.5 to 10.5 at a gas pressure of 0.09 to 2 MPa, most preferably at 0.1 to 0.3 MPa, it precipitates lightly. filterable and sedimentable calcium carbonate which can be separated by conventional methods, for example by filtration, decantation, centrifugation and the like.
Z použitého lúžiáceho roztoku před jeho opátovným použitím, resp. recirkuláciou je vhodné odstrániť oxid uhličitý, a to či už zahrievaním, prefúkaním indiferentným plynom alebo aj vzduchom, odsáváním ap. Vhodným postupom na odstránenie oxidu uhličitého z lúžiáceho roztoku je aj jehoFrom the used leach solution before its re-use, respectively. by recirculation, it is advisable to remove carbon dioxide, either by heating, by blowing with indifferent gas or by air, by suction, etc. A suitable procedure for removing carbon dioxide from the leach solution is also
280388 viazanie přidáváním oxidu alebo hydroxidu vápenatého. Zvlášť výhodné je použitie menej hodnotného hydroxidu alebo oxidu vápenatého, odpadajúceho z roznych výrobných procesov.280388 binding by adding calcium oxide or hydroxide. Especially preferred is the use of less valuable calcium hydroxide or calcium oxide resulting from various manufacturing processes.
Sposob podl'a tohto vynálezu možno uskutočňovať polokontinuálne, kontinuálně i přetržíte.The process according to the invention can be carried out semi-continuously, continuously and continuously.
Ďalšie podrobnosti sposobu, ako aj ďalšie výhody sú zřejmé z príkladov.Further details of the process as well as other advantages are evident from the examples.
Příklad 1Example 1
Dolomit z lokality Oslauy — Kršteňany (straty ,,žíháním“ = 47,9 % hmot.; CaO ~= 30,2 % hmot.; MgO = 20,5 % hmot.; R2O3 = 1,2% hmot.; S1O2 = 0,1% hmot.) o distribúcii zrenia častíc (stanovené šitovou analýzou): fe 0,25 mm — 25,6 % hmot.; < 0,25 až 0,20 mm = 10,0 % hmot.; < 0,25 až 0,16 mm 8,0 % hmot.; < 0,16 až 0,10 milimetra 24,0 % hmot.; < 0,10 až 0,063 milimstra ·— 20,8 % hmot. a < 0,063 mm (přepad cez šito) — 11,6 % hmot. sa použil ako východisková surovina.Dolomite from locality Oslauy - Kršteňany (losses by annealing = 47.9% by weight; CaO ~ = 30.2% by weight; MgO = 20.5% by weight .; R2O3 = 1.2% by weight .; S1O2 = 0.1% by weight) with particle maturation distribution (determined by sieve analysis): fe 0.25 mm - 25.6% by weight; <0.25 to 0.20 mm = 10.0 wt%; <0.25 to 0.16 mm 8.0 wt%; <0.16 to 0.10 millimeter 24.0% by weight; <0.10 to 0.063 millimeters · - 20.8 wt. and < 0.063 mm (sieve overflow) - 11.6 wt. was used as starting material.
Tento sa vypálil pri teplote 1 000 °C počas 4 h., pričom sa získal pálený dolomit, resp. praženec (straty „žíháním“ — = 1,6 % hmot.; CaO 56,9 % hmot.; MgO 38,8 pere. hmot.; R2O3 — 2,3 % hmot. a SÍO2 —:This was fired at 1000 ° C for 4 h to give burnt dolomite and quartzite, respectively. Roast (loss on ignition) - = 1.6% by weight; CaO 56.9% by weight; MgO 38.8 by weight; R2O3 - 2.3% by weight and SiO2 -:
0,30 % hmot.) tohto zrnenia, stanoveného sítovou analýzou: na site o velkosti ok 0,5 mm sa zachytilo 17,65 %; na site 0,43 milimetra 1,08%; na site 0,25 mm 3,23%; na site 0,15 mm celkom 4,58 %; na site 0,08 milimetra už 51,28 %; na site 0,04 mm 18,78 pere. a na site pod 0,04 mm, resp. přepad cez šito 0,04 mm činil 3,0 %, pričom straty tvořili 0,43 %.0.30% by weight of this grain, as determined by sieve analysis: 17.65% was collected on a 0.5 mm sieve; on a sieve 0.43 millimeter 1.08%; on sieve 0.25 mm 3.23%; on sieve 0.15 mm total 4.58%; on the 0.08 millimeter screen already 51.28%; on sieve 0.04 mm 18.78 pens. and on a sieve below 0.04 mm, respectively. the 0.04 mm sieve overflow was 3.0%, with losses of 0.43%.
Do írojhrdlej banky opatrenej miešadlom, spatným chladičom a teplomerom sa navážilo 25 g dusičnanu amónneho NH1NO3, 64 gramov vody a 1 g hydroxidu sodného. Za miešania sa obsah banky vytemperoval na 22 °C a přidalo sa 10 g páleného dolomitu (praženca). Počas 10 min. pri pH 9,65 přešlo do roztoku z praženca dolomitu 87,3 % oxidu vápenatého (vo formě dusičnanu vápenatého) a 0,97 % oxidu horečnatého, po min. už 94,8 % oxidu vápenatého a 1,87 pere. oxidu horečnatého, počas 3 h. pri pH rovná sa 9,54 96,4 % hmot. oxidu vápenatého a 1,87 % oxidu horečnatého, Reakčný roztok sa nato přefiltroval, na flltri oddělený podiel pozostával z 97,6 % hmot. oxidu horečnatého, resp. produktov jeho hydratácie, hlavně hydroxidu horečnatého, 1,07 pere. hmot. uhličitanu vápenatého a zvyšok do 100 % tvořili oxidy hliníka, kremíka a železa. Do filtrátu sa voviedol oxid uhličitý, pričom sa vylúčil uhličitan vápenatý s prímesami hlavně uhličitanu horečnatého, oddělil na filtri, pričom filtrát sa použil ako lúžiaci roztok na další pokus. Uhličitan vápenatý sa ešte na filtri premyl štyrikrát vodou a vysušil pri teplote 110 až 120 'C.25 g of ammonium nitrate NH1NO3, 64 grams of water and 1 g of sodium hydroxide were weighed into a three-necked flask equipped with a stirrer, a reflux condenser and a thermometer. While stirring, the contents of the flask were allowed to warm to 22 ° C and 10 g of burnt dolomite was added. Within 10 min. at pH 9.65, 87.3% of calcium oxide (in the form of calcium nitrate) and 0.97% of magnesium oxide were passed into the dolomite froth solution after min. already 94.8% calcium oxide and 1.87 washes. of magnesium oxide, for 3 h. at pH equal to 9.54 96.4 wt. The reaction solution was then filtered, the filter fraction consisting of 97.6% by weight of calcium oxide and 1.87% magnesium oxide. of magnesium oxide, respectively. products of its hydration, mainly magnesium hydroxide, 1.07 pere. wt. calcium carbonate and the remainder to 100% were oxides of aluminum, silicon and iron. The filtrate was fed with carbon dioxide, precipitating calcium carbonate with admixtures mainly magnesium carbonate, separated on the filter, the filtrate being used as a leaching solution for the next experiment. The calcium carbonate was washed four times with water on the filter and dried at 110-120 ° C.
V ďalšom pokuse za inak podobných podmienok sa robila selektívna „extrakcia“ pri teplote 0 °C.In another experiment under otherwise similar conditions, selective "extraction" was performed at 0 ° C.
Počas 10 min. přešlo z póvodnélio množstva oxidu vápenatého praženca do filtrátu 86,1 % a 0,0 % oxidu horečnatého (pH bolo 9,9); po 60 min. 88,6% oxidu vápenatého a 0,83 % oxidu horečnatého a za 5 h. 92,4 % oxidu vápenatého a 0,88 % oxidu horečnatého.Within 10 min. went from the original amount of calcium oxide to the filtrate to 86.1% and 0.0% magnesium oxide (pH 9.9); after 60 min. 88.6% calcium oxide and 0.83% magnesium oxide in 5 hours. 92.4% calcium oxide and 0.88% magnesium oxide.
Pri teplote 50 +1°C počas 60 min. pre šlo do roztoku z praženca dolomitu 94,6 % oxidu vápenatého, 3,9 % oxidu horečnatého; po 2 h. 98,2 %, resp. 4,9 %; po 3 h. 99,9 pere. oxidu vápenatého a 5,8 % oxidu horečnatého. Na filtri zachytený tuhý zvyšok pozostával z 88,4 % oxidu horečnatého, respektive produktov jeho hydratácie, 10,7 % uhličitanu vápenatého, pričom zvyšok tvořili zlúčeniny hliníka, kremíka a železa.At 50 + 1 ° C for 60 min. 94.6% calcium oxide, 3.9% magnesium oxide went into the dolomite roate solution; after 2 h. 98.2%, respectively. 4.9%; after 3 h. 99.9 pere. calcium oxide and 5.8% magnesium oxide. The solids retained on the filter consisted of 88.4% magnesium oxide and / or its hydration products, 10.7% calcium carbonate, the remainder being aluminum, silicon and iron compounds.
Příklad 2Example 2
Postupuje sa podobné ako v příklade 1, avšak pri teplote (30 +0,1 °C) a násadu na každý pokus tvoří okrem 10 g páleného dolomitu specifikovaného takisto v příklade 1, po 64 g vody, 25 g dusičnanu amónneho a mění sa len obsah hydroxidu sodného. Výsledky rýchlosti reakcie lňžiaceho roztoku a jeho selektivity sú uvedené v tabulke 1.The procedure is similar to that of Example 1, but at a temperature (30 + 0.1 ° C) and batch for each experiment, in addition to 10 g of burnt dolomite specified in Example 1, 64 g of water, 25 g of ammonium nitrate, sodium hydroxide content. The results of the leach solution reaction rate and its selectivity are shown in Table 1.
280388280388
šania pri teplote (48 +0,1 °C) prebiehalo lúženie počas 3 h. (pokus A).Stirring at a temperature of (48 + 0.1 ° C) was carried out for 3 hours. (Experiment A).
Tabulka 2Table 2
Filtrát z pokusu A po vyzrážaní s oxidom uhličitým po premytí a vysušeni obsahoval okrem hlavnej zložky 93,26 % hmot. uhličitanu vápenatého ešte 6,7 % hmot. uhličitanu horečnatého.The filtrate from experiment A after precipitation with carbon dioxide after washing and drying contained, besides the main component, 93.26% by weight. % of calcium carbonate still 6.7 wt. magnesium carbonate.
Produkt B tvořilo 99,7 % hmot. uhličitanu vápenatého a 0,3 % hmot. uhličitanu horečnatého.Product B comprised 99.7 wt. % calcium carbonate and 0.3 wt. magnesium carbonate.
Tuhý oddělený podiel na. filtri po premytí, vysušení a vypálení na teplotu 400 CC pozostával u pokusu A z 98,9 % hmot. oxidu horečnatého a 0,5 % hmot. uhličitanu vápenatého a z pokusu B z 98,8 % hmot. oxidu horečnatého a 0,5 % hmot. uhličitanu vápenatého.Solid Separate Proportion. After washing, drying and firing to 400 DEG C., the test A consisted of 98.9% by weight of the test A; % magnesium oxide and 0.5 wt. % of calcium carbonate and from Test B 98.8 wt. % magnesium oxide and 0.5 wt. calcium carbonate.
Filtrácia produktov však prebiehala oveta ťažšie ako v predchádzajúcich príkladoch.However, filtration of the products was much more difficult than in the previous examples.
Příklad 4Example 4
Pri použití aparatúry a postupu charakterizovaného v příklade 1, sa pri násadě 25 g dusičnanu amónneho, 64 g vody a 10 g páleného dolomitu přidá 1,5 g hydroxidu lítneho a za neustálého miešania pri teplote 30 ΨΟ,Ι °C počas 3 h. dosiahne konverzia oxidu vápenatého 99,1 % a oxidu horečnatého 1,4 %. Lúžiaci roztok po vyzrážaní uhličitanov horečnatého a vápenatého sa opatovne použil na lúženie s podobnými výsledkami. V dalšom pokuse sa navýše do lúžiaceho roztoku, hlavně na uhradenie strát přidalo 2,5 g dusičnanu amónneho, 7 g vody a 0,15 g hydroxidu lítneho.Using the apparatus and procedure described in Example 1, 1.5 g of lithium hydroxide are added to a batch of 25 g of ammonium nitrate, 64 g of water and 10 g of burnt dolomite with stirring at 30 ° C for 3 hours. the conversion of calcium oxide to 99.1% and magnesium oxide to 1.4%. The leach solution after precipitation of magnesium and calcium carbonates was carefully used for leaching with similar results. In a further experiment, 2.5 g of ammonium nitrate, 7 g of water and 0.15 g of lithium hydroxide were added to the leaching solution, mainly to cover losses.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS874323A CS260388B1 (en) | 1987-06-12 | 1987-06-12 | Method of magnesium oxide and/or its hydration production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS874323A CS260388B1 (en) | 1987-06-12 | 1987-06-12 | Method of magnesium oxide and/or its hydration production |
Publications (2)
Publication Number | Publication Date |
---|---|
CS432387A1 CS432387A1 (en) | 1988-05-16 |
CS260388B1 true CS260388B1 (en) | 1988-12-15 |
Family
ID=5385710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS874323A CS260388B1 (en) | 1987-06-12 | 1987-06-12 | Method of magnesium oxide and/or its hydration production |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS260388B1 (en) |
-
1987
- 1987-06-12 CS CS874323A patent/CS260388B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS432387A1 (en) | 1988-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4298379A (en) | Production of high purity and high surface area magnesium oxide | |
CA1302048C (en) | Process for the preparation of pure magnesium-oxide, especially suitablefor the preparation of fireproof objects | |
AU764739B2 (en) | A method for isolation and production of magnesium metal, magnesium chloride, magnesite and magnesium based products | |
EA037051B1 (en) | Process for the recovery of lithium | |
US10815549B2 (en) | Method for the purification of alumina | |
CA1191698A (en) | Treatment of aluminous materials | |
US10144650B2 (en) | Method for recovery of the constituent components of laterites | |
EP0024131B1 (en) | A method of obtaining alumina from clay and other alumino-silicates and alumina obtained by this method | |
RU2097322C1 (en) | Method for complex processing of serpentinite mineral | |
US3383166A (en) | Process for producing iron-free aluminum nitrate solutions | |
CA1200076A (en) | Magnesium oxide production | |
RU2090509C1 (en) | Method of system processing of leucoxene concentrate | |
CS260388B1 (en) | Method of magnesium oxide and/or its hydration production | |
US3836627A (en) | Process for making magnesium oxide and magnesium hydroxide from calcined dolomite and magnesium chloride | |
US4154802A (en) | Upgrading of magnesium containing materials | |
CN109502612A (en) | A kind of heavy nickel mother liquor production method of magnesium oxide with lateritic nickel ore production nickel ore concentrate | |
SU1599304A1 (en) | Method of producing magnesium oxide or products of hydration thereof | |
CS249457B1 (en) | Method of calcium compounds removal | |
CS248963B1 (en) | Magnesium oxide and/or its hydratation's products making method | |
US1895580A (en) | Treatment of bauxite, alunite, and like aluminous material | |
US9725785B2 (en) | Process for cold hydrochemical decomposition of sodium hydrogen aluminosilicate | |
RU2104935C1 (en) | Method for processing dolomite | |
RU2100276C1 (en) | Method of magnesium oxide producing | |
KR830000019B1 (en) | Method of manufacturing alumina | |
CS199323B1 (en) | Process for preparing magnesium oxide from dolomites and dolomite calcites |