CS260342B1 - Hydrophylic naphtha bitumen and method of its preparation - Google Patents
Hydrophylic naphtha bitumen and method of its preparation Download PDFInfo
- Publication number
- CS260342B1 CS260342B1 CS871351A CS135187A CS260342B1 CS 260342 B1 CS260342 B1 CS 260342B1 CS 871351 A CS871351 A CS 871351A CS 135187 A CS135187 A CS 135187A CS 260342 B1 CS260342 B1 CS 260342B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- weight
- polymerization
- hydrophilic petroleum
- derivatives
- koh
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000002360 preparation method Methods 0.000 title claims description 8
- 239000010426 asphalt Substances 0.000 title 1
- 229920005989 resin Polymers 0.000 claims abstract description 45
- 239000011347 resin Substances 0.000 claims abstract description 45
- 239000003208 petroleum Substances 0.000 claims abstract description 31
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims abstract description 22
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 20
- 238000009835 boiling Methods 0.000 claims abstract description 13
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 11
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims abstract description 11
- 239000011976 maleic acid Substances 0.000 claims abstract description 11
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 10
- 150000008064 anhydrides Chemical class 0.000 claims abstract description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 4
- 239000000975 dye Substances 0.000 claims abstract description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 23
- 239000002253 acid Substances 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 8
- 239000011541 reaction mixture Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000000197 pyrolysis Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 150000001993 dienes Chemical class 0.000 claims description 4
- 238000004821 distillation Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000003209 petroleum derivative Substances 0.000 claims description 3
- 238000004513 sizing Methods 0.000 claims description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- 239000010779 crude oil Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 240000004160 Capsicum annuum Species 0.000 claims 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 claims 1
- 241000605112 Scapanulus oweni Species 0.000 claims 1
- 239000001511 capsicum annuum Substances 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 239000004922 lacquer Substances 0.000 claims 1
- 229930195734 saturated hydrocarbon Natural products 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 239000013032 Hydrocarbon resin Substances 0.000 abstract description 2
- 229920006270 hydrocarbon resin Polymers 0.000 abstract description 2
- 239000003973 paint Substances 0.000 abstract description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 16
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 16
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 16
- 239000000178 monomer Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002496 iodine Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Hydrofilné ropné živice sa používajú pri výrobě lakov a farbív. Podstatou riešenia je, že živica na báze nenasýtených uhlovodí kov s teplotou varu 30 až 240 °C v molekule s priemernou mólovou hmotnosťou 450 až 900 kg . mól'1 obsahuje 10 až 80 % hmot. kolofóuie a/alebo jej derivátov, pričom číslo kyslosti je 30 až 170 mg KOH.g"1. Připadne móže ešte obsahovat anhydrid a/aleb-> kyselinu maleínovú a/alebo ich derivá ty. Tieto živice so pripravujú z uhlovodíkových frakcií vrincich v intervale 30 až 240 stupňov Celzia, ktoré obsahuji! 8 až 65 % hmot. nenasýtených uhlovodíkov termickou polymerizáciou pri teplote 170 až 270 C'C v přítomnosti 5 až 500 % hmot. kolofónie a/ /alebo jej derivátov, připadne aj za přítomnosti anhydridu a/alebo kyseliny maleínovej a/alebo ich aduktov v množstve 5 až 200 % hmot. vztiahnuté na hmotnost kolofónie.Hydrophilic petroleum resins are used paints and dyes. The essence of the solution is, that the unsaturated hydrocarbon resin metal having a boiling point of 30 to 240 ° C per molecule with an average molecular weight of 450 up to 900 kg. mole 1 contains 10 to 80 wt. colophobia and / or derivatives thereof, wherein the number acidity is 30 to 170 mg KOH.g "1 it may still contain anhydride and / or maleic acid and / or derivatives thereof you. These resins are prepared from hydrocarbon fractions of layers at intervals of 30 to 240 degrees Celsius I contain! 8 to 65% wt. unsaturated hydrocarbons by polymerization at 170-270 ° C in the presence of 5 to 500 wt. colophony and / or derivatives thereof, even in the presence anhydride and / or maleic acid and / or adducts thereof in an amount of 5 to 5% 200 wt. based on the weight of the colophony.
Description
Vynález sa týká hydrofilnej ropnej živice na báze nenasýtených uhlovodíkov a spósobu jej přípravy.The invention relates to a hydrophilic petroleum resin based on unsaturated hydrocarbons and to a process for its preparation.
Ropné živice sú polymérne zlúčeniny vyrábané katalytickou, radikálovou alebo termickou polymerizáciou nenasýtených uhlovodíkov a/alebo nenasýtených ropných frakcií vznikajúcich pri pyrolýze alebo katalytickém spracovaní ropných produktov. Pre zlepšenie niektorých ich vlastností sa příprava ropných živíc uskutočňuje v přítomnosti polárných monomérov, čím sa kcpolyinerizáciou získá polymer s hydrofilnými vlastnosfami. Aplikácíou tohoto principu a vylepšením polymerizačnej metódy ako aj modifikáciou produktov sa zaoberá viac patentov.Petroleum resins are polymeric compounds produced by the catalytic, radical or thermal polymerization of unsaturated hydrocarbons and / or unsaturated petroleum fractions resulting from the pyrolysis or catalytic treatment of petroleum products. To improve some of their properties, the preparation of petroleum resins is carried out in the presence of polar monomers, thereby obtaining a polymer having hydrophilic properties by poly-polymerization. Several patents deal with the application of this principle and the improvement of the polymerization method as well as the modification of products.
Najbežnejšou modifikáciou je reakcia nenasýtených uhlovodíkových frakcií s anhydridom kyseliny maleinovej (jap. patent 79 — —145 786; jap. patent 77—12 806; ZSSR patent 604 706; jap. patent 78—111 104; ZSSR patent 529 279; jap. patent 78—106 801).The most common modification is the reaction of unsaturated hydrocarbon fractions with maleic anhydride (Japanese Patent 79-145786; Japanese Patent 77-12126; USSR Patent 604706; Japanese Patent 78-111104; USSR Patent 529,279; Japanese Patent 529,279; 78—106 801).
Pretože tento anhydrid sa do reakcie přidává pri teplote jeho topenia, može dochádzaf uiekedy k zhoršeniu farby živice, čomu sa zabraňuje prídavkom niektorých fosforečňanevých esterov. Vzniknutá ropná živica modifikovaná maleínanhydridom sa vyznačuje dobrou tepelnou stabilitou a odolnosťou voči poveternostným vplyvom (jap. patent 75—22 720). V případe, že sa ropná živica modifikovaná malemanhydridom redukuje liydroxylamínom, hydrazínom alebo molekulovým vodíkom a neutr lizu je alkáliami, tak vzniká živica svetlej farby, používateíná ako papierenské glejidlo (jap. patent 75 —9 881).Since this anhydride is added to the reaction at its melting point, the color of the resin may sometimes deteriorate, which is prevented by the addition of some phosphate esters. The resulting maleic anhydride modified petroleum resin is characterized by good thermal stability and weathering resistance (Japanese Patent 75-222,720). If the malemanhydride-modified petroleum resin is reduced with liydroxylamine, hydrazine or molecular hydrogen and neutrality is alkali, a light colored resin is used, which can be used as a paper sizing agent (Japanese Patent 75-9,881).
Papierenské glejidlo je možné získal’ aj keď sa produkt reakcie ropnej živice s maleínanhydridom emulguje s N-dialkylamíno-alkohlmi a povrcliovo aktívnymi látkami (jap. patent 76—11987; jap. patent 76—112 906), připadne Red' sa živica modifikovaná maleínahydridom zohrieva 5 hodin při 150 °C s Ν,Ν-dimetylpropyléndiamínom a potom 5 hodin pri 120 °C s etylénchlorhydrínom a vzniknutý produkt sa riedi vodou (jap. patent 80-65 248).A paper size can also be obtained when the product of the reaction of the petroleum resin with maleic anhydride is emulsified with N-dialkylamino-alcohols and post-active substances (Japanese Patent 76-111987; Japanese Patent 76-112906), or Red's maleic anhydride modified resin is heated for 5 hours at 150 ° C with Ν, Ν-dimethylpropylenediamine and then for 5 hours at 120 ° C with ethylene chlorohydrin and the resulting product is diluted with water (Japanese Patent 80-65 248).
Živica s vlastnosfami tvořit' povrchové filmy vzniká zavedením epoxy- alebo hydrnxylovej skupiny do produktu katiónovej poIymerizácie piperilénu, pomocou peroxidu vodíka alebo peroxykyseliny. Živicu s dobrou tepelnou stabilitou možno získat reakciou Diels-Alderových aduktov konjugovaných diénov, například cyklpentadiénu s α,ζϊ-nasýtenými mono- alebo dikarboxylovými kyselinami a alkylbenzénov v přítomnosti Friedel-Craftsových katalyzátorov (jap. patent 74—80 044; jap. patent 74—109 350).Resin having the property of forming surface films is formed by introducing an epoxy or hydroxy group into the cationic polymerization product of piperilene, using hydrogen peroxide or peroxyacid. A resin with good thermal stability can be obtained by reacting Diels-Alder adducts of conjugated dienes, for example cyclpentadiene, with α, ζϊ-saturated mono- or dicarboxylic acids and alkylbenzenes in the presence of Friedel-Crafts catalysts (jap. 109 350).
Takáto živica neutralizáciou s alkáliou a emulgáciou vo vodě v přítomnosti povrchovo-aktívnej látky sa može aplikovat aj pri výrobě papierenských glejidiel. S anhydridom kyseliny maleinovej radikálovo lahko kopolymerizujú vinylové monomery oi,-stáhnuté v C9 frakcii a monoolefíny vo frakciách Ci a C5. Tak, pri polymerizácií buténov s anhydrid un kyseliny maleinovej, vzniká kopolymér, ktorý sa zhlukuje a vyzráža na povrchu sticn reakčnej nádoby. Použitie esterov ako rozpúšfadla zabraňuje ukladaniu častíc na povrchu stien, čo dovoluje uskutečňoval! polymerizáciu v stabilnej suspenzii (jap. patent 74—6 396; jap. patent 74—19 110; jap. patent 74—16 551).Such a resin by neutralization with alkali and emulsification in water in the presence of a surfactant can also be applied in the manufacture of paper sizes. With maleic anhydride, the vinyl monomers α, which are withdrawn in the C 9 fraction and the monoolefins in the C 1 and C 5 fractions are radically copolymerized readily. Thus, in the polymerization of butenes with maleic anhydride, a copolymer is formed which aggregates and precipitates on the surface of the shield reaction vessel. The use of esters as a solvent prevents the deposition of particles on the wall surface, allowing it to be carried out! polymerization in a stable suspension (Japanese Patent 74-6396; Japanese Patent 74-1910; Japanese Patent 74-16161).
V takejto- kopolymerizačnej reakcii sa dá molekulová hmotnost produkované] živice účinné regulovat přítomnostmi stopových množstiev zlúčenín obsahujúcich atom dusíka ďalej oxidmi, hydroxidmi alebo sofami kovov I--IV skupiny (jap. patent 74—43 388).In such a copolymerization reaction, the molecular weight of the resin produced can be effectively controlled by the presence of trace amounts of nitrogen-containing compounds furthermore with oxides, hydroxides or salts of Group I-IV metals (Japanese Patent 74-43 388).
Vzniknutý kopolymér po neutralizácii al·· káliami je rozpustný vo vodě a v kombi·ηίcii s viacsýtnymi alkoholmi a dalšími látkami je ho možné aplikovat pre rozličné účely (íaP· patent 74—34 181, jap, patent 74—34 185],The resulting copolymer after neutralization with alkali is soluble in water and in combination with polyhydric alcohols and other substances can be applied for a variety of purposes (i and P 74-34 181, jap, 74-34 185),
Polymerizáciou piperilénu ;; katalyzáb rom na báze halogénidu kovu v přítomnosti anhydridu kyseliny maleinovej vzniká kopolymérna živica obsahujúca v molukulo funkčně skupiny anhydridu (jap. páleni 74—38 028). Výťažok živice sa však uiekedy znižuje zvyšováním množstva maleínan· hydridu v reakčnej zmesi. Kopolymerizáciou Cn frakcie s teplotou varu 150 až 200 rC 3 anhydrídom kyseliny maleinovej pri 40 až 100 'C v přítomnosti chloridu hlinitého AlCh vzniká živica, ktorá sa hodí ako glejidlo pre papier (franc. patent 2 304 625). Příprava hydrofilných živíc jednoduchou katiónovou kopolymerizáciou polárných monomérov nenasýtenými frakciami uhlovodíkov je však stažená tým, že polárné monoméry sa koordinují! s katalyzátorom, například Lewi sovou kyselinou, takže katalytická aktivita sa v určitých případech, a to zvlášť pri vyšších koncentráciách kopolymerizovanébo polárného monoméru, znižuje. Postupy žalo žené na hydrofilizácii nepolárných uhlovodíkových živíc, například oxidáciou, op xidáciou, reakciou s nenasýtenými polárnými monomérmi a pod., sú zasa energeticky náročnejšie, nakolko sa vyžaduje vybrievanie ťažko tavitelných ropných živíc na teploty okolo 200 °C aj vyššie. Pri týchto opcráciácb sa znižuje aj kvalita získaného produktu, hlavně sa zhoršuje jeho farba.Polymerization of piperilene ;; a metal halide catalyst in the presence of maleic anhydride results in a copolymer resin containing anhydride functional groups in molkulo (Japanese tan 74-38 028). However, the yield of resin is always reduced by increasing the amount of maleic anhydride in the reaction mixture. Copolymerization of C n fraction of boiling point 150 to 200 C r 3 of maleic anhydride at 40 to 100 ° C in the presence of aluminum chloride AlCl formed resin which is suitable as a sizing agent for paper (French. U.S. Patent 2,304,625). However, the preparation of hydrophilic resins by simple cationic copolymerization of polar monomers with unsaturated hydrocarbon fractions is compromised by the coordination of polar monomers! with a catalyst such as Lewiic acid, so that the catalytic activity decreases in certain cases, especially at higher concentrations of copolymerized or polar monomer. Processes based on the hydrophilization of non-polar hydrocarbon resins, for example by oxidation, oxidation, reaction with unsaturated polar monomers, and the like, are in turn more energy intensive, as it is required to remove the refractory petroleum resins to temperatures of about 200 ° C and above. In these operations, the quality of the obtained product also decreases, mainly its color deteriorates.
Uvedené nedostatky sú odstránené byrtr. filnou ropnou živicou a sposobom jej přípravy podlá vynálezu, ktorého podstata spočívá v tom, že hydrofilná ropná živica na báze nenasýtených uhlovodíkov s teplotou varu 30 až 240 °C v molekule s priemeruou molovou hinotnosťou 450 až 900 kg. mól 1 obsahuje 10 až 80 % hmot. kolofónie a/alebo jej derivátov, pričom číslo kyslosti je 30 až 170 mg KOH.g-1. Hydrofilná ropná živica móže obsahovat až do 40 % hmot. an260342 hydridu a/alebo kyseliny maleínovej a/alebo ich derivátov.These shortcomings are removed by the bureau. The invention relates to a hydrophilic unsaturated hydrocarbon-based petroleum resin having a boiling point of from 30 to 240 [deg.] C. in a molecule having a molar average diameter of 450 to 900 kg. mol 1 contains 10 to 80 wt. rosin and / or derivatives thereof, wherein the acid number is 30 to 170 mg KOH.g -1 . The hydrophilic petroleum resin may contain up to 40 wt. an260342 hydride and / or maleic acid and / or derivatives thereof.
Podstata spňsobu přípravy liydrofilnej ropnej živice na báze nenasýtených uhfovodíkov spočívá v tom, že uhlovodíkové frakcie vriaco v intervale teplot 30 až 240 °C obsahujuce nenasýtené uhlovodíky v množstve 8 až 65 % hmot., sa termicky polymerizujú pri teplotě 170 až 270 °C v přítomnosti 5 až 500 % hmot. kolofónie a/alebo jej derivátov, pričom % hmot. sú vztiahnuté na hmotn sť nenasýtených uhlovodíkov. Reakcia sa i skutočňuje aj za přítomnosti anhydridů a/ kilebo kyseliny maleínovej a/alebo ich aduktov v množstve 5 až 200 % hmot. vztiahnuté na hmotnost kolofónie a/alebo jej derivátov. Ako nenasýtené uhlovodíky sa najčastejšie používajú frakcie uhfovodíkov z tepelného alebo katalytického spracovania ropných produktov. Najbežnejšie je používáme frakcií C-„ C8, C,,, príapdne iných destilačných rezov pyrolýzneho benzínu, ktoré destiluji! v intervale teplot 30 až 240 rG. Pri volbě jednotlivých frakcií je třeba prihliadať k tomu, aby v týchto frakciách bili zastúpené příslušné nenasýtené monoméry v určitých koncentráciách a vzájomných poměrech s inými monomérmi. Je to potřebné pre získanie živíc s požadovanými vlastnosťami. Z hladiska tvorby hydrofilnui živice je výhodné, ak obsah nenasýtených uhlovodíkov v spracovávanej frakcií je v intervale 8 až 65 % hmot., s výhodou 30 až 50 % hmot. Hydrofilnosť živice sa dosahuje tým, že kolofónia a/alebo jej deriváty, připadne v kombinácii s anhydridom a/alebo kyselinou maleinovou a/alebo ich aduktami sa v procese polymerizácie nenasýtených uhlovodíkových frakcií chemicky zabuduje do molekuly ropnej živice.The essence of the process for preparing a hydrophilic petroleum resin based on unsaturated hydrocarbons is that the hydrocarbon fractions boiling in the temperature range of 30 to 240 ° C containing unsaturated hydrocarbons in an amount of 8 to 65% by weight are thermally polymerized at 170 to 270 ° C in the presence of 5 to 500 wt. % of rosin and / or derivatives thereof; are based on the weight of unsaturated hydrocarbons. The reaction is also carried out in the presence of anhydrides and / or maleic acid and / or adducts thereof in an amount of 5 to 200% by weight. based on the weight of the rosin and / or its derivatives. The unsaturated hydrocarbons most commonly used are hydrocarbon fractions from the thermal or catalytic treatment of petroleum products. They are most commonly used by fractions C- "C 8 , C", or other distillation slices of pyrolysis gasoline which distil! in the temperature range of 30 to 240 [deg .] G. In the selection of the individual fractions, account should be taken of the fact that the respective unsaturated monomers are present in certain fractions in certain concentrations and proportions with other monomers. This is necessary to obtain resins with the desired properties. In view of the formation of hydrophilic resin, it is preferred that the content of unsaturated hydrocarbons in the fraction to be treated is in the range of 8 to 65% by weight, preferably 30 to 50% by weight. The hydrophilicity of the resin is achieved in that the rosin and / or its derivatives, optionally in combination with anhydride and / or maleic acid and / or their adducts, are chemically incorporated into the petroleum resin molecule in the polymerization process of the unsaturated hydrocarbon fractions.
Tento proces sa uskutečňuje termicky při zvýšených teplotách 170 až 270 °C, a to za stálého premiešavanla reakčnej zmesi. Keďže koiofónia ako aj iné polárné mon iméry majú teploty topenia poměrně vysoké, tak v připadne používania vyšších koncentraci! íakýchto látok je výhodné používat v procese polymerizácie aj rozpúšťadlo, čím sa docioli lepšie premiešavanie reagujúcich zložtek a odvod reakčného tepla. Kolofónia a jej deriváty sa přidávají! do· systému v ran žstve, ktoré je závislé od obsahu nenasýteuých uhfovodíkov v spracovávanej frakcií. Obvykle sa pohybuje od 5 do 500 % hmot., počítané na množstvo nenasýtených uhfovodíkov. Zvýšenie hydrofilných vlastností finálneho produktu sa dosahuje jednak množstvom použitej kolofónie vzhladom k mn· žstvu nenasýtených uhlovodíkov alebo dalším prídavkom maleínanhydridu a/alebo kyseliny maleínovej a/alebo ich aduktov s diénmi. Posledně menované látky sa do procesu přidávají! hned na začiatku reakcie alebo postupné v priebehu reakcie.This process is carried out thermally at elevated temperatures of 170 to 270 ° C, with constant stirring of the reaction mixture. Since the coiophony as well as other polar monomers have relatively high melting points, higher concentrations can be used! It is advantageous to use a solvent in the polymerization process to improve the mixing of the reactants and the removal of the heat of reaction. Rosin and its derivatives are added! to a system in early age which is dependent on the content of unsaturated hydrocarbons in the fraction being processed. It is usually from 5 to 500% by weight, based on the amount of unsaturated hydrocarbons. The increase in the hydrophilic properties of the final product is achieved, on the one hand, by the amount of rosin used relative to the amount of unsaturated hydrocarbons or by the further addition of maleic anhydride and / or maleic acid and / or diene adducts thereof. The latter are added to the process! at the beginning of the reaction or sequentially during the reaction.
V určitých prípadoch sa móže postupovat’ aj tak, že kolofónia a/alebo jej deriváty sa najprv podrobia reakcii s maleínanhydridom a/alebo dalšími prv spomínanýml látkami a potom sa pridajú k olefinickým ubďovodíkom, s ktorými reagujú na příslušné hydrofilné ropné živice. Postupovat je možné aj opačné a to tak, že maleínanhydrid a/alebo kyselina maleínová a/alebo ich adukty najprv reagujú s olefinickými uivcvodíkmi, a to do rozličného stupě a konverzio a potom sa přidá kolofónia a reakcia pokračuje dalej. Množstvo přidávaného maleínauhydridu a/alebo kyseliny maleínovej a/alebo ich aduktov je závislé od množstva definických uhlovodíkov vc frakcií a hlavně množstva používanéj kolofónie a/alcho jej da· rivátov.In certain cases, it is also possible to first treat the rosin and / or its derivatives with maleic anhydride and / or the other substances mentioned above and then to add to the olefinic hydrocarbons with which they react to the respective hydrophilic petroleum resins. Alternatively, the maleic anhydride and / or maleic acid and / or their adducts are first reacted with olefinic hydrocarbons to varying degrees and conversions, followed by the addition of a rosin and the reaction proceeding further. The amount of maleic anhydride and / or maleic acid added and / or adducts thereof is dependent on the amount of the defined hydrocarbons in the fractions and, in particular, the amount of rosin and / or its derivatives used.
Obvykle sa pohybuje od 5 do 200 % hmot. počítané na množstvo kolofónie alebo joj derivátov. Najčastejšie sa používá koloffi· nia získaná pri spracovaní dřeva a surového tújového oleja. Z významných derivátov kolofónie, ktorá sa použvajú na přípravu hydrofilných ropných živíc sú predovšetkýni adukty s alfa.bola-nenasýtenýrai karboxylo· vými kyselinami alebo ich anhydridmi, hlavně maleínanhydridom.It is usually from 5 to 200 wt. calculated on the amount of rosin or iodine derivatives. The most commonly used is colloquia obtained in the processing of wood and crude oil. Among the important derivatives of rosin that are used for the preparation of hydrophilic petroleum resins, the adducts with alpha-unsaturated carboxylic acids or their anhydrides, in particular maleic anhydride, are in particular.
Ďalej sú to reakčné produkty kolofónie s formaldehydom alebo hydrogenované deriváty kolofónie alebo jej aduktov. Tieto látky majú teploty muknuti? 45 až 130 'C a číslo kyslosti od 30 do 180 mg KOH.”'1. Reakčná doba přípravy hydrofilných ropných živíc bývá obvykle 1 ež 10 hodin. Jzo lácia živice sa uskutečňuje eddestilovuním a/alebo odstropovaním nezreagovaných uhlovodíkov, připadne rozpúšťadla o dobo inýcii prchavých produktov, ktoré zhoršuji! teplotu miiknutia, odparivosť a zápach živíc.Further, they are the reaction products of rosin with formaldehyde or hydrogenated derivatives of rosin or its adducts. Do these substances have melting temperatures? 45 to 130 ° C and an acid number of 30 to 180 mg KOH. " 1 . The reaction time for the preparation of hydrophilic petroleum resins is usually 1 to 10 hours. Resinisation of the resin is effected by the redistillation and / or de-trimming of unreacted hydrocarbons, or solvents, of the volatile products which deteriorate! melt temperature, evaporation and resin odor.
Výhody přípravy hydrofilných ropných živíc sposobom podlá vynálezu je vidieť z nasledovných príkladov.The advantages of the preparation of hydrophilic petroleum resins according to the method of the invention can be seen from the following examples.
P r i k 1 a d 1Example 1 and d 1
Pro polymerizáciu sa používal tlakovv nerezavý reaktor o objeme 1 dm3, opatřený elektrickým ohrevom a miešadlom pohana ným elektromotorom. Teplota reakcie sa regulovala a snímala termočlánkům Fe Ko uiniestneným v tenkostennoj jímko, ktorá bola ponořená priamo v reakčnej zmesi. Na polymerizáciu sa použilo 400 g nehydrogenovanej frakcie pvrolýzneh benzínu vri;·cej v intervale teplot 130 až 190 °C, hustoty 889 kg . m~3, ktorá obsahovala 36,2 % hmot. nenasýtených uhlovodíkov, do ktorej sa navážilo 60 g kol fónie s teplotou inaknutia 80 °C a číslorn kyslosti 139 mg KOH.The polymerization was used tlakovv a stainless reactor of a volume of 1 dm3, provided with electric heating and stirring Pagan Ným electric motor. The reaction temperature was controlled and sensed by Fe Ko thermocouples placed in a thin-walled well which was immersed directly in the reaction mixture. For the polymerization, 400 g of a non-hydrogenated fraction of petroleum gasoline boiling in the temperature range of 130-190 ° C, density 889 kg were used. m- 3 , which contained 36.2 wt. of unsaturated hydrocarbons, into which 60 g of phony wheels were weighed, with a pour point of 80 ° C and a numerical acidity of 139 mg KOH.
. g-1. Po uzavretí reaktora a propláchnutí dusíkom sa reaktor za stálého miešania postupné vyhrial na teplotu 230 rC a pri tejto teplote reakcia prebiehala 6 hodin. Po ochladení reaktora, odtlakovaní sa celý obsah prelial do 1,5 dm3 destilačnej banky. Z polymerizačnej zmesi sa za normálneho tlaku oddestilovali podiely vriace do teplot 150 °C. fialšie oddestilovanie nezreagova269342 ných látok sa robilo za vákua a ukončilo sa, keď pri tlaku 1,3 kPa dosiahla teplota 150 stupňov Celzia. Zvyšok v banke, ktorý je vlastně hydrofilná ropná živica, sa po úpravě tlaku na 100 kP za horúca vylial do kovověj nádoby, ochladil a zvážil. Po homogenizácii vzorky, jej rozdrvením na prášok, sa stanovili jej fyzikálno-chemické parametre. Za uvedených podmienok polymerizáclou vznikla hydrofilná ropná živica vo výtažku 47,9 % s teplotou máknutia 76 °C, číslom kyslosti 61,2 mg KOH.g', priemernou molovou hmotnosťou 520 g.mól1 a farbou podta Gardnerovej metody (ako 50 %-ný roztok v toluene] 3.. g -1 . After closing the reactor and purging with nitrogen, the reactor gradually with stirring, heated at a temperature of 230 degrees C, at which temperature reaction was run for 6 hours. After cooling the reactor, depressurizing, the entire contents were poured into a 1.5 dm 3 distillation flask. The fractions boiling up to 150 ° C were distilled off from the polymerization mixture under normal pressure. the violet distillation of the unreacted substances was done under vacuum and ended when the temperature reached 150 degrees Celsius at 1.3 kPa. The residue in the flask, which is actually a hydrophilic petroleum resin, was poured into a metal vessel after cooling to 100 kP, cooled and weighed. After homogenization of the sample, by pulverizing it, its physico-chemical parameters were determined. Under the above conditions, polymerization produced a hydrophilic petroleum resin in 47.9% yield with a wetting temperature of 76 ° C, an acid number of 61.2 mg KOH.g ', an average molecular weight of 520 g.mol 1 and a color according to the Gardner method (as 50% - solution in toluene] 3.
Příklad 2Example 2
Podmienky ako v příklade 1, ale do ruakčnej zmesi sa přidalo 60 g frakcie vriacej v intervale 40 až 70 °C, obsahujúce]' 8,6 % limot. cyklopentadiénu a 2,4 % hn.ot. dicyklopentadiénu a 20 g maleínanhydridu. Posledně menovaná frakcia a inaleínanhydrid sa najprv ziuiešali, v uzavretej nádobě zahriali na 60 °C, čím došlo k reakcii maleínanhydridu s diénmi za vzniku příslušných aduktov a až potom sa táto zmesi přidala do reakčnej zmesi. Po uzatvorení reaktora a prepláchnutí dusíkom sa za stálého miešania reaktor postupné vyhrial na teplotu 240 stupňov Celzia a pri tejto teplote udržoval 4 hodiny. Po spracovaní reakčnej zmesi postupom ako v příklade 1 sa získalo 236 g hydrofilnej ropnej živice s teplotou máknutia 83 °C, číslom kyslosti 96,7 mg . KOH . g~' a priemernou molovou hmotnosťou 542 g . . mól“’.Conditions as in Example 1, but to the hand mix was added 60 g of a fraction boiling in the range of 40-70 ° C, containing 8.6% limot. cyclopentadiene and 2.4% w / w. dicyclopentadiene and 20 g maleic anhydride. The latter fraction and inaleine anhydride were first mixed, heated in a sealed vessel to 60 ° C, whereby maleic anhydride was reacted with the dienes to form the appropriate adducts before the mixture was added to the reaction mixture. After closing the reactor and purging with nitrogen, the reactor was gradually heated to 240 degrees Celsius with stirring and maintained at that temperature for 4 hours. After working up the reaction mixture as in Example 1, 236 g of a hydrophilic petroleum resin having a steeping temperature of 83 ° C and an acid number of 96.7 mg were obtained. KOH. g ~ 'and an average molecular weight of 542 g. . mol " '.
Příklad 3Example 3
Podmienky ako v příklade 1, ale na polymerizáciu sa použilo 30 g liydrogenačne rafinovanej kolofónie s teplotou máknutia 83 stupňov Celzia s číslom kyslosti 112 mg KOH.g“’ a 30 g maleínanhydridu a 5 g kyseliny maleínovej. Reakciou vznikla ropná živica vo výtažku 57,2 % hmot., s teplotou máknutia 79 CC, číslom kyslosti 89,6 mg. .KOH.g“1 a priemernou molovou hmotnosťou 493 g . mól“'.Conditions as in Example 1, but for polymerization, 30 g of a liydrogen-refined rosin having a softening temperature of 83 degrees Celsius with an acid number of 112 mg KOH / g and 30 g of maleic anhydride and 5 g of maleic acid was used. The reaction gave an oil resin in a yield of 57.2% by weight, with a softening point of 79 ° C, an acid number of 89.6 mg. .KOH.g "1 and an average molecular weight of 493 g. mol "'.
Příklad 4Example 4
Na polymerizáciu sa použilo· 230 g frakcie pyrolýzneho benzínu vriacej v intervale 130 až 160 °C obsahujúcej 26,7 % hmot. nenasýtených uhfovodíkov. K nej sa přidalo 180 g kolofónie, ktorá bola predtým tavená v inertnej atmosféře pri teplote 170 °C 3 hodiny s 30 g maleínanhydridu. Polymerizáciou pri teplote 220 nC a reakčnoin čase 6 hodin vzniklo po spracovaní reakčnej zmesi ako v příklade 1,246 g hydrofilnej ropnej živice s teplotou máknutia 86 °C, farbou pod?a Cardnera (50 %-ný toluenový roztok) 2, priemernou molovou hm tnosťou 496 g . .mól“’ a číslom kyslosti 133 mg KOH.g“’. Příklad 5230 g of a pyrolysis gasoline fraction boiling in the range of 130 to 160 [deg.] C. containing 26.7 wt. unsaturated hydrocarbons. To this was added 180 g of rosin, which had been previously melted in an inert atmosphere at 170 ° C for 3 hours with 30 g of maleic anhydride. Polymerization at 220 C and n reakčnoin at 6 hours was formed after workup that in Example 1.246 g of hydrophilic petroleum resin having a softening point 86 ° C, color of pod and Cardnera (50% toluene solution) 2, the average molecular weight tnosťou 496 g. "mol" and an acid number of 133 mg KOH.g "". Example 5
Do reaktora sa navážilo 250 g kolofónie ako v příklade 1 a přidalo sa 150 g pyrolýznej frakcie s teplotou varu 40 až 70 °C zbavenej cyklopentadiénu, ktorá obsahovala 23,3 % hmot. nenasýtených uhfovodíkov.250 g of rosin as in Example 1 were weighed into the reactor and 150 g of the pyrolysis fraction having a boiling point of 40 to 70 ° C, depleted of cyclopentadiene, containing 23.3% by weight, was added. unsaturated hydrocarbons.
Polymerizáciou pri teplote 210 CC po dobu 8 hodin a oddestilovaní nezreagovaných uhřovodíkov sa získalo 315 g produktu s teplotou tnpenia 76 C’C, číslom kyslosti 114 mg KOH.g”1 a farbou podťa Cardnera 2.Polymerization at 210 C C for 8 hours, distilling off unreacted, polyolefins are obtained 315 g of product, melting tnpenia C 76 ° C, an acid value of 114 mg KOH.g "1 and the color of the sub-topic Cardnera second
Hydrofilné ropné živice připravené pódia vynálezu sa používajú pri výrobě lakov a farbív, v přítomnosti zásad sa fahko emulguji! vo vodě a dajú sa použiť ako papierenské glejidlá.The hydrophilic petroleum resins prepared according to the invention are used in the production of paints and dyes, they are easily emulsified in the presence of bases! in water and can be used as paper glue.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS871351A CS260342B1 (en) | 1987-03-02 | 1987-03-02 | Hydrophylic naphtha bitumen and method of its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS871351A CS260342B1 (en) | 1987-03-02 | 1987-03-02 | Hydrophylic naphtha bitumen and method of its preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
CS135187A1 CS135187A1 (en) | 1988-05-16 |
CS260342B1 true CS260342B1 (en) | 1988-12-15 |
Family
ID=5347682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS871351A CS260342B1 (en) | 1987-03-02 | 1987-03-02 | Hydrophylic naphtha bitumen and method of its preparation |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS260342B1 (en) |
-
1987
- 1987-03-02 CS CS871351A patent/CS260342B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS135187A1 (en) | 1988-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3775381A (en) | Process for preparing a modified petroleum resin for use in gravure ink | |
US4315863A (en) | Highly maleated wax and process for producing the same | |
US4028436A (en) | Melt phase process for the preparation of emulsifiable polyethylene waxes | |
Aglietto et al. | Radical bulk functionalization of polyethylenes with ester groups | |
US3005800A (en) | Method of maleinizing petroleum resin | |
US4218263A (en) | Process for preparing oxygen-containing waxes | |
EP1299436B1 (en) | Maleated liquid c5 hydrocarbon resins | |
US4028291A (en) | Process for the production of resins for printing ink | |
US3306868A (en) | Dicyclopentadiene-dicarboxylic acid reaction products and polyesters thereof | |
CS260342B1 (en) | Hydrophylic naphtha bitumen and method of its preparation | |
US2928816A (en) | Process for increasing the emulsifiability of a polyethylene/isopropanol telomer wax | |
US4292221A (en) | Preparation of modified petroleum resins | |
US3804788A (en) | Paper sizing agent | |
US3859385A (en) | Emulsifiable polyethylene compositions prepared from thermally degraded low molecular weight polyethylene and crotonic acid | |
EP0260140A2 (en) | Hydrocarbyl anhydrides, hydraulic fluid compositions and epoxy curing agents threfrom | |
EP0712420B1 (en) | Resinous copolymer comprising monomer units of each of the groups of phenol compounds and olefinically unsaturated non-acidic terpene compounds | |
US3316231A (en) | Cracking of high molecular weight ethylene polymers and resulting products | |
US2544365A (en) | Acylated phenol-formaldehyde resins containing ketene polymers of higher fatty acids | |
US3271432A (en) | Process for the manufacture of polybasic araliphatic carboxylic acids and products thereof | |
US5403391A (en) | Rosin dicyclopentadiene resins containing ink formulations | |
US3929736A (en) | Process for preparing resin for printing ink use | |
JPH0229411A (en) | Novel production of petroleum resin suitable for production of printing ink, varnish and paint | |
US3376362A (en) | Carboxylation of hydrocarbon resins | |
JPH02163102A (en) | Method for producing butadiene low polymer adduct | |
US2689231A (en) | Copolymers of conjugate and nonconjugate drying oils, cyclopentadiene, and styrene |