CS260263B1 - Method of hard surfacing - Google Patents

Method of hard surfacing Download PDF

Info

Publication number
CS260263B1
CS260263B1 CS861402A CS140286A CS260263B1 CS 260263 B1 CS260263 B1 CS 260263B1 CS 861402 A CS861402 A CS 861402A CS 140286 A CS140286 A CS 140286A CS 260263 B1 CS260263 B1 CS 260263B1
Authority
CS
Czechoslovakia
Prior art keywords
layer
nickel
chromium
cobalt
low
Prior art date
Application number
CS861402A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS140286A1 (en
Inventor
Jan Novotny
Original Assignee
Jan Novotny
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jan Novotny filed Critical Jan Novotny
Priority to CS861402A priority Critical patent/CS260263B1/en
Publication of CS140286A1 publication Critical patent/CS140286A1/en
Publication of CS260263B1 publication Critical patent/CS260263B1/en

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Riešenie sa týká strojárenskej technológie, ked sa robia nánosy na opotřebované súčiastky, alebo kde sa robia kvalitně činné vrstvy na nové pracovně nástroje. Podstata spočívá v tom, že základný materiál z nízkouhlíkatej, alebo nízkolegovanej oceli sa ohřeje na teplotu 150 až 200 °C, potom sa nanesie plameňopráškovým spůsobom prvá vrstva zo zliatiny nikel-bór, alebo nikel- -bór-chróm o hrúhke od 0,1 až 0,2 mm, na ktorú sa nanesie druhá vrstva z přídavného materiálu na báze kobaltu. Vrstvy takto vyhotovené majú zvýšenú odolnost voči abrázll, korózii a opálu.The solution concerns engineering technology, when deposits are worn out parts or where they are doing well layers on a new work tool. nature is that the basic material from low carbon or low alloy steel is heated to a temperature of 150 to 200 ° C, then is first applied by flame-dusting nickel-boron alloy or nickel- -bromium-chromium with a thickness of 0.1 to 0.2 mm; which is applied a second layer of the additive cobalt-based material. Layers made in this way have increased abrasion resistance, corrosion and opal.

Description

Vynález sa týká sposobu navárania tvrdonávarových vrstiev na báze zliatin kobaltu na povrch nízkouhlíkatých alebo nízkolegovaných ocelí.The present invention relates to a method of welding cobalt-based hard-facing layers to the surface of low-carbon or low-alloy steels.

Ocelové materiály aj naipriek svojim dobrým vlastnostiam nevyhovujú niekedy požiadavkám z hlediska namáhania, například Zvýšeným teplotám, abrazívnemu opotrebefoiu, korózii v různých prostrediach a preto sa obyčej,ne funkčně plochy nanášajú materiálmi s odpovedajúcimi vlastnosťami pre dané namáhanie. V praxi sú známe různé spůsoby nanášania neželezných materiálov na ocelové. Pri nanášaní sa spravidla vyžaduje, aby povrch materiálu bol kovové čistý, zbavený povrchových nečistůt a hruběj kysličníkovej vrstvy. Pri ohřeve materiálu a spájkovaciu alebo naváraciu teplotu dochádza k tvorbě kysličníkovej vrstvy, ktorá sťažuje a niekedy úplné znemožňuje spojenie základného materiálu s materiálom nanášaným. V případe, že vytvořený kysličník má vyššiu teplotu tavenia ako nanášaňý materiál, tvoří tento kysličník prirodzenú bariéru pre metalické spojenie zúčastněných sa materiálov. Odstraňovanie kysličníkovej vrstvy sa robi pomocou prípravkov, obyčajne taviv, ktoré narušujú kysUčníkovú vrstvu a tak vytvárajú podmienky pre kovové spojenia materiálov. Tavivá podlá charakteru chemického zloženia můžu mať korózne účinky na spojované materiály.In spite of their good properties, steel materials sometimes do not meet the stress requirements, such as elevated temperatures, abrasive wear, corrosion in various environments, and therefore surfaces are usually applied functionally to materials with the corresponding stress properties. Various methods of applying non-ferrous materials to steel are known in practice. The coating generally requires that the surface of the material be metallic clean, free of surface impurities and a coarser oxide layer. The heating of the material and the brazing or welding temperature lead to the formation of an oxide layer which makes it difficult and sometimes impossible to bond the base material to the material to be deposited. When the formed oxide has a higher melting point than the deposited material, the oxide forms a natural barrier to the metallic connection of the materials involved. The removal of the oxide layer is accomplished by means, usually fluxes, that disrupt the oxide layer and thus create conditions for metal bonding of the materials. Fluxes according to the nature of the chemical composition may have corrosive effects on the materials to be bonded.

Uvedené nevýhody sa do značnej miery odstraňuijú spflsobom podlá vynálezu, pri ktorom sa na povrch ohriateho základného materiálu práškovo plameňovým sposobom nanesie prvá vrstva zo zliatiny nikelbór alebo nikel-bór-chróm o hrúbke od 0,1 až 0,2 mm, pričom podstata spočívá v tom, že prvá vrstva sa nanesie na základný materiál ohriaty na 150 až 200 °C a túto vrstvu sa nanesie druhá vrstva z přídavného materiálu na báze kobaltu.These disadvantages are largely eliminated by the method according to the invention, in which a first layer of nickel-boron or nickel-chromium-alloys having a thickness of 0.1 to 0.2 mm is applied to the surface of the heated base material in a powder-flame manner. in that the first layer is applied to a base material heated to 150 to 200 ° C and the second cobalt-based additive layer is applied.

Pri naváření spůsobom podlá vynálezu nie je potřebné použit žiadne tavivá, čo robí technologický proces technicky 1'ahšie realizovatelný. Mnohé doteraz používané tavívá sú korozívneho charakteru a teda odpadajú problémy s následnou koróziou po ich použití. Tvrdonávarové vrstvy na báze kobaltu sa velmi dobré nanášajú, nakolko prvá vrstva pri teplote nanášania druhej vrstvy neoxiduje a sú vytvořené priaznivé pomienky na difúzne spojenie materiálov. Pri tomto spňsobe tavenia s medzivrstvou dochádza k minimálnemu premiešaniu základného a přídavného materiálu a tým májů návary už pri minlmálnych vrstvách požadované vlastnosti.No welding flux is required in the welding process according to the invention, which makes the technological process more technically feasible. Many of the fluxes used hitherto are of a corrosive nature and hence there are no problems with subsequent corrosion after use. The cobalt-based hardfacing layers are very well applied since the first layer does not oxidize at the deposition temperature of the second layer and favorable conditions are created for the diffusion bonding of the materials. In this method of melting with the intermediate layer there is minimal mixing of the base and filler material and thus the welds already have the desired properties even at the minimum layers.

Spůsobom podlá vynálezu je možné navárať tvrdonávary na ocelové mteriály.It is possible by the method of the present invention to weld hardeners to steel materials.

Spůsobom podlá vynálezu boli urobené nánosy na čapy nástroj,ov na zemné práce ako sú dláta pri geologickom prieskume alebo ťažbe, ktoré sú z nízkouhlikatého materiálu ohriateho na teplotu 165 °C sa práškovo plameňovým spůsobom naniesla 0,2 milimetrov hrubá prvá vrstva zo zliatiny na báze nikel-bór s tvrdosťou 40 HRc. Za túto vrstvu bola nanesená druhá vrstva z kobaltovej zliatiny směrného chemického zloženia, uhlík 2,0 % hmot., chróm 28 % hmot., •wolfrám 12 % hmot., železo 7 % hmot., zvyšok kobalt. Kobaltová zllatina bola nanesená metódou netaviacou sa elektrčdou, kde ako ochranný plyn bol použitý argůn.In accordance with the present invention, deposits have been made on pegs for earthworks such as chisels during geological exploration or extraction, which are made of a low-carbon material heated to 165 ° C and a 0.2 mm thick first layer of alloy-based alloy has been applied in a powder-flame manner. Nickel-boron with a hardness of 40 HRc. A second layer of cobalt alloy of chemical composition, carbon 2.0% by weight, chromium 28% by weight, tungsten 12% by weight, iron 7% by weight, the rest of the cobalt were applied after this layer. The cobalt alloy was deposited by a non-melting electrode method using argon as the shielding gas.

V ďalšorn případe spůsobom podlá vynálezu boli urobené nánosy na čapy vrtných dlát z nízkolegovanej ocele. Základný materiál sa najprv ohrial na teplotu 190 °C a plameňovým práškovým nanášaním sa urobila prvá vrstva hrubá 0,1 mm zo zliatiny na báze nikel-bór-chróm s tvrdosťou 40 HRc. Na túto vrstvu sa netaviacou elektródou v ochraně argonu naniesla druhá vrstva z kobaltovej zliatiny směrného chemického zloženia uhlík 2,0 % hmot., wolfrám 12 % hmot., železo, zvyšok kobalt.In another case, deposits of low alloy steel drill bits were made by the method of the invention. The base material was first heated to 190 ° C and a first layer of 0.1 mm thick of a nickel-boron-chromium alloy with a hardness of 40 HRc was made by flame powder coating. A second layer of cobalt alloy with a chemical composition of 2.0% by weight, tungsten 12% by weight, iron, the rest of the cobalt was deposited on this layer with a non-melting electron in argon protection.

Takto vyhotovené nánosy boli na pracovných nástrojoch realizované bez mikro a makro trhlin a mali požadované vlastnosti a to najma tvrdosť a odolnost voči otěru aj za vyšších teplůt.The coatings produced in this way were realized without micro and macro cracks on the working tools and had the required properties, namely hardness and abrasion resistance even at higher temperatures.

Spůsobom podlá vynálezu je možné vyhotovovat nánosy vzdorné korózii, odolné voči opálu a abrázii ,a na nástroje ipracujúce za stažených podmienok.With the method according to the invention, it is possible to produce deposits resistant to opal and abrasion resistant to corrosion, and to tools working under contracted conditions.

Claims (1)

PREDMETSUBJECT Spůsob navárania tvrdonávarových vrstiev na báze zliatin kobaltu na povrch nízkouhlíkatých alebo nízkolegovaných ocelí najmá valivých vrtných dlát, pri ktorom sa na ohriaty základný materiál plameňopráškovým spůsobom nanesie prvá vrstva zo vynalezu zliatiny nikelbór, alebo nikel-bór-chróm o hrúbke od 0,1 až 0,2 mm, vyznačujúci sa tým, že prvá vrstva sa nanesie na základný materiál ohriaty na 100 až 200 °C a na ktorú sa nanesie druhá vrstva z přídavného materiálu na báze kobaltu.Method of welding cobalt-based hard-facing layers to the surface of low-carbon or low-alloy steels, in particular rolling chisels, in which the first layer of the inventive nickel-boron-nickel-chromium-chromium-nickel-chromium-nickel-chromium-alloys 2 mm, characterized in that the first layer is applied to a base material heated to 100 to 200 ° C and to which a second layer of cobalt-based additive material is applied.
CS861402A 1986-02-28 1986-02-28 Method of hard surfacing CS260263B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS861402A CS260263B1 (en) 1986-02-28 1986-02-28 Method of hard surfacing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS861402A CS260263B1 (en) 1986-02-28 1986-02-28 Method of hard surfacing

Publications (2)

Publication Number Publication Date
CS140286A1 CS140286A1 (en) 1988-05-16
CS260263B1 true CS260263B1 (en) 1988-12-15

Family

ID=5348299

Family Applications (1)

Application Number Title Priority Date Filing Date
CS861402A CS260263B1 (en) 1986-02-28 1986-02-28 Method of hard surfacing

Country Status (1)

Country Link
CS (1) CS260263B1 (en)

Also Published As

Publication number Publication date
CS140286A1 (en) 1988-05-16

Similar Documents

Publication Publication Date Title
US20100101780A1 (en) Process of applying hard-facing alloys having improved crack resistance and tools manufactured therefrom
US4814234A (en) Surface protection method and article formed thereby
US4938991A (en) Surface protection method and article formed thereby
US10086462B2 (en) Hardfacing with low carbon steel electrode
US20130266820A1 (en) Metal alloy compositions and applications thereof
Eroglu Boride coatings on steel using shielded metal arc welding electrode: Microstructure and hardness
US6888088B2 (en) Hardfacing materials & methods
US20130266798A1 (en) Metal alloy compositions and applications thereof
US20130220523A1 (en) Coating compositions, applications thereof, and methods of forming
CN1609477B (en) Sprocket wheel having a metallurgically bonded coating and method for producing same
US4923511A (en) Tungsten carbide hardfacing powders and compositions thereof for plasma-transferred-arc deposition
US3819364A (en) Welding hard metal composition
Deshmukh et al. Analysis of deposition efficiency and distortion during multitrack overlay by plasma transferred arc welding of Co–Cr alloy on 316L stainless steel
WO2019043369A1 (en) Iron based alloy
US4810464A (en) Iron-base hard surfacing alloy system
US3496682A (en) Composition for producing cutting and/or wearing surfaces
US3340049A (en) Copper base alloy
Berns et al. Surface Integrity Of Hard Alloys After Machining Using PCBN
Das et al. Experience with advanced welding techniques (RMD & P-GMAW) with seamless metal cored wire for Oil & Gas pipeline industries
CS260263B1 (en) Method of hard surfacing
Northrop The joining of tungsten carbide hardmetal to steel
Simson et al. Comparison of plasma transferred arc and submerged arc welded abrasive wear resistant composite hardfacings
Badisch et al. Hardfacing for wear, erosion and abrasion
Singh et al. Influence of nickel-based cladding on the hardness and wear behaviour of hard-faced mild steel using E-7014 electrode using shielded metal arc welding
RU2828804C1 (en) Method for induction surfacing of “пг-ср2” alloy on structural steel part