CS259391B1 - Method of acetylene's monoaduct's preparation with isopropylalcohol by means of photochemical synthesis - Google Patents

Method of acetylene's monoaduct's preparation with isopropylalcohol by means of photochemical synthesis Download PDF

Info

Publication number
CS259391B1
CS259391B1 CS865154A CS515486A CS259391B1 CS 259391 B1 CS259391 B1 CS 259391B1 CS 865154 A CS865154 A CS 865154A CS 515486 A CS515486 A CS 515486A CS 259391 B1 CS259391 B1 CS 259391B1
Authority
CS
Czechoslovakia
Prior art keywords
acetylene
reaction
isopropyl alcohol
acetone
radiation
Prior art date
Application number
CS865154A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS515486A1 (en
Inventor
Vladimir Camaj
Ladislav Valko
Milan Polievka
Bohumil Kral
Miroslav Minarovych
Jan Sun
Original Assignee
Vladimir Camaj
Ladislav Valko
Milan Polievka
Bohumil Kral
Miroslav Minarovych
Jan Sun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vladimir Camaj, Ladislav Valko, Milan Polievka, Bohumil Kral, Miroslav Minarovych, Jan Sun filed Critical Vladimir Camaj
Priority to CS865154A priority Critical patent/CS259391B1/en
Publication of CS515486A1 publication Critical patent/CS515486A1/en
Publication of CS259391B1 publication Critical patent/CS259391B1/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Rieši sa spósob přípravy monoaduktu acetylénu s izopropylalkoholom fotochemicky iniciovanou radikálovou adíciou za přítomnosti 0,1 až 10 % mól. acetonu ako· UV senzihilizátora, tlaku 0 až 1 MPa acetylénu uskutočňovaný expozíciou homogénnej reakčnej zmesi cirkulujúcej v tenkej vrstvě okolo zdroja UV žiarenia v reakčnom čase umožňujúc nlekoďkonásohné zvýšenie selektivity tvorby monoaduktu. Postup je možné využit ako nový spósob výroby di* metylvinylkarbonylu.A method for preparing acetylene monoadduct is solved with isopropyl alcohol photochemically initiated by radical addition in the presence 0.1 to 10% mol. acetone as a UV sensor, pressure of 0 to 1 MPa of acetylene carried out exposure to homogeneous reaction a mixture circulating in a thin layer around source of UV radiation in the reaction time making it easier to increase selectivity monoaduct formation. The procedure is can be used as a new way of production. methyl vinylcarbonyl.

Description

Vynález sa týká spůsobu přípravy monoduktu acetylénu s izopropylalkoholom fotochemicky iniciovanou reakciou acetylénu s izopropylalkoholom za přítomnosti 0,1 až 10 % mól. acetónu ako absorbenta UV žiarenia, tlaku acetylénu 0 až 1 MPa ozařováním homogénnej reakčnej zmesi cirkulujúcej v tenkej vrstvě okolo zdroje UV žiarenia vhodnej intenzity a spektrálnej charakteristiky.The invention relates to a process for the preparation of an acetylene monoduct with isopropyl alcohol by a photochemically initiated reaction of acetylene with isopropyl alcohol in the presence of 0.1 to 10 mol%. acetone as an absorbent of UV radiation, an acetylene pressure of 0 to 1 MPa by irradiating a homogeneous reaction mixture circulating in a thin layer around a UV source of suitable intensity and spectral characteristics.

Příprava uvedených aduktov acetylénu s izopropylalkoholom holá v patentovej literatúre publikovaná v roku 1967 v pat. USA 3 304 277 a s danou problematikou sa aj neskor zaoberá iba niekoiko autorov v odbornej literatúre. Všetky publikované spůsoby přípravy novej C—C vazby fotochemicky a vofnoradikálovoiniciovanej adície alkoholov na acetylén sa vyznačujú neselektivitou a vel'mi nízkými výťažkami produktov.The preparation of said acetylene adducts with isopropyl alcohol bare in the patent literature published in 1967 in U.S. Pat. USA 3 304 277 and only a few authors in the literature deal with this issue later. All published methods for the preparation of the novel C-C bond by photochemically and vfnoradical-initiated addition of alcohols to acetylene are characterized by non-selectivity and very low product yields.

Reakcie prebiehajú vo fázovo heterogennom systéme disperzie plyn — kvapalina, čo spůsobuje nedefinovateinosť chemického mechanizmu reakcie. Pri príprave reakčných zmesi sa vychádza z velkého přebytku UV absorbenta, čo sposobuje pestrost vol'noradikálových reakcií už v inicačnej periodě alebo z nepřítomnosti UV senzibilizátora, čo vedie k nedostatečnému využívaniu UV žiarenia a spomaleniu rýchlosti reakcií. V prácach nie je vyhodnotený vplyv intenzity žiarenia absorbovaného v reakčnom systéme na selektivitu tvorby monoaduktu a kvantový výťažok fotochemickej syntézy mono- a polyaduktov acetylénu s izopropylalkoholom. Uvedený sposob přípravy aduktov acetylénu s alkoholmi vedie k náhradě klasického dvojstupňového spůsobu přípravy týchto aduktov etinyláciou karbonylových zlúčenín s následnou selektívnou hydrogenáciou alkínalkoholov na alkénalkoboly, ktorý je už priemyselne zvládnutý.The reactions take place in a phase heterogeneous gas-liquid dispersion system, which makes the chemical reaction mechanism indefinable. The preparation of the reaction mixtures is based on a large excess of UV absorbent, which causes a variety of free radical reactions already in the initiation period or in the absence of a UV sensitizer, resulting in insufficient use of UV radiation and slowing the reaction rate. The effect of the intensity of radiation absorbed in the reaction system on the selectivity of monoaduct formation and the quantum yield of photochemical synthesis of acetylene mono- and polyaducts with isopropyl alcohol is not evaluated. Said process for the preparation of acetylene adducts with alcohols results in the replacement of the classical two-step process for the preparation of these adducts by the ethynylation of carbonyl compounds followed by selective hydrogenation of the alkylalcohol to the alkene alkanol which is already industrially mastered.

Spůsob přípravy adičných produktov (¾]¾ s IPA (US pat. 3 304 247) popisuje reakciu IPA s C2H2 a jeho· zlúčeninami za teploty 30 až 80 °C a reakčný čas 1 až 5 hodin v přítomnosti UV senzibilizátora. Reakcia sa uskutočňovala v pyrexovom ponornom type reaktora temperovaného vonkajším duplikátorom. Ako zdroj UV žiarenia holá použitá 450 W ortuťová výbojka. Do reaktora bolo nasadené 963 ml (12,5 mélu) izopropylalkoholu (IPA) a 88 ml (1,2 molu) acetónu ako UV senzibilizátora. Acetylén bol privádzaný do reaktora rýchlostou 0,5 l.min-1 a účinné rozptylovaný. Reakčná zmes bola ozařovaná 3 hodiny za teploty 28 °C pričom bolo získané 21 g 2-metyl-3-buten-2-olu (DVK) (2,5 % hmot.) a 30 g (3,6 % hmot.) 2,5-dimetyl-2,5-hexándiolu. Množstvo UV senzibillzátora nie je považované za kritické, hoci za optimálně sa považuje 0,08 dielu acetónu na 1 diel izopropylalkoholu.A process for preparing addition products (¾) β with IPA (US Pat. 3,304,247) describes the reaction of IPA with C 2 H 2 and its compounds at a temperature of 30 to 80 ° C and a reaction time of 1 to 5 hours in the presence of a UV sensitizer. was used in a pyrex submerged reactor tempered by an external duplicator, a 450 W mercury lamp was used as the UV source, 963 ml (12.5 ml) of isopropyl alcohol (IPA) and 88 ml (1.2 mol) of acetone as UV were charged to the reactor. Acetylene was fed to the reactor at a rate of 0.5 l.min -1 and effectively dispersed, and the reaction mixture was irradiated for 3 hours at 28 ° C to obtain 21 g of 2-methyl-3-buten-2-ol (DVK). (2.5% by weight) and 30 g (3.6% by weight) of 2,5-dimethyl-2,5-hexanediol The amount of UV sensitizer is not considered critical, although 0.08 parts of acetone is considered optimally. per 1 part of isopropyl alcohol.

Obdobný spůsob přípravy acetylénových aduktov (US pat. 3 352 929) avšak voinoradikálovou iniciáciou peroxidmi využívá vyššie teploty a tlaky acetylénu. Tento sposob je výťažkami rovnocenný UV žiarením iniciovanému systému. Ako vedfajšie produkty voči DVK a dimetylhexandiolu vznikajú nízkomolekulové teloméry acetylénu, ktorých tvorba je tiež iniciovaná izopropylalkobolovými radikálmi. Tvorba DVK je uprednostňovaná nižšími tlakmi. Vyššie tlaky acetylénu uprednostňujú tvorbu diolu. Produkty sa získavajú postupným oddestilovávaním nezreagovaných surovin.A similar process for the preparation of acetylene adducts (US Pat. 3,352,929), however, utilizes higher temperatures and pressures of acetylene by vinoradical peroxide initiation. This method is equivalent to the yields of the UV-initiated system. As by-products to DVK and dimethylhexanediol, low molecular weight telomeres of acetylene are formed, the formation of which is also initiated by isopropylalcobol radicals. The formation of DVK is preferred by lower pressures. Higher acetylene pressures favor diol formation. The products are obtained by gradually distilling off unreacted raw materials.

Kinetickú štúdiu acetónom senzibilizovanej fotoadície vybraných rozpúšťadiel na acetylén představuje (Cand. J. of Chem. 45, 3 209, 1967). Ako rozpúšťadlá boli použité látky cyklohexán, etanol, dietylester acetón, 2-metyltetrahydrofurán. Zmerané boli rozpustnosti acetylénu, kvantový výťažok produktu a rýchlostné konštanty tvorby vinylových aduktov. Práca poukazuje na to, že hlavný produkt vinylderivát rozpúšťadla lineárně narastá počas iniciačnej periody, ale smeruje k úbytku, ak je reakcia vedená do viac ako niekolkých percent produktu. Úbytek je spůsobený sekundárnou reakciou produktu s volnými radikálmi. Adícia prebiehala za atmosferického tlaku pri teplote 25 °C v reaktore s vonkajším zdrojom UV žiarenia.A kinetic study of acetone sensitized photoaddition of selected solvents to acetylene is presented (Cand. J. of Chem. 45, 3 209, 1967). The solvents used were cyclohexane, ethanol, acetone diethyl ester, 2-methyltetrahydrofuran. Acetylene solubilities, product quantum yield, and vinyl adduct formation rate constants were measured. The paper points out that the major product of the vinyl solvent derivative increases linearly during the initiation period, but tends to decrease if the reaction is conducted to more than a few percent of the product. The loss is due to the secondary reaction of the free-radical product. The addition was carried out at atmospheric pressure at 25 ° C in an external UV reactor.

Priama fotoadícia acetylénu a jeho derivátov na izopropylalkohol je predmetom štúdie (Žur. org. chimii 9, 1606, 1973). V práci je porovnaná priama i acetónom senzíbilizovaná fotochemicky iniciovaná adícia acetylénu a jeho derivátov na izopropylalkohol voči priamej i senzihilizovanej adícii vybraných olefínov, ako etylén a 1-hexén. Reakcia bola uskutečněná vo valcovitom sklenom reaktore s účinným rozptylovačom acetylénu. Vo vnútri reaktora bola umiesínená 375 W ortuťová výbojka vysokotlaká, chráněná plášťom s vysokokvalitného břemena, chladená cirkulujúcou vodou. Hrubka reakčnej vrstvy v pracovnej časti zariadenia bola 8 mm. Teplota sa udržiavala pri 18—20 °C. Rýchlosť prebublávania acetylénu bola 200 ml/min. Pri priamej fotoadícii izopropylalkoholu na acetylén sa za 3 hodiny expozíciou 500 ml izopropylalkoholu získalo 3,8 g (0,96 % hmot.) 2-metyl-3butén-2-olu a 0,5 g (0,13 % hmot.) 2,5-dimetyl-2,5-hexándiolu.The direct photoradiation of acetylene and its derivatives to isopropyl alcohol is the subject of a study (Žur. Org. Chimii 9, 1606, 1973). The work compares direct and acetone sensitized photochemically initiated addition of acetylene and its derivatives to isopropyl alcohol with respect to both direct and sensitized addition of selected olefins such as ethylene and 1-hexene. The reaction was carried out in a cylindrical glass reactor with an efficient acetylene scatterer. Inside the reactor was a 375 W high-pressure mercury lamp, protected by a high-quality jacket, cooled by circulating water. The reaction layer thickness in the working part of the apparatus was 8 mm. The temperature was maintained at 18-20 ° C. The acetylene bubbling rate was 200 ml / min. Direct photoradiation of isopropyl alcohol to acetylene yielded 3.8 g (0.96% by weight) of 2-methyl-3-buten-2-ol and 0.5 g (0.13% by weight) over 3 hours by exposure to 500 ml of isopropyl alcohol. , 5-dimethyl-2,5-hexanediol.

Při acetónom senzihilizovanej fotoadícii sa expozíciou zmesi 500 ml izopropylalkoholu a 50 ml acetónu počas 3 hodin za stálého prebublávania acetylénu získalo 11,8 g (2,6 % hmot.) 2-metyl-3-butén-2-olu a 31 g (7,2 % hmot.) 2,5-dimetyl-2,5-hexándiolu.In acetone sensitized photoaddition, 11.8 g (2.6% by weight) of 2-methyl-3-buten-2-ol and 31 g (7%) were obtained by exposure to a mixture of 500 ml of isopropanol and 50 ml of acetone for 3 hours with continuous bubbling of acetylene. 2% (w / w) 2,5-dimethyl-2,5-hexanediol.

Pri predížení expozície do 8 hodin sa výťažok karbinolu ustáli na 14,4 g (3,3 %) a diolu vzrástol na 55 g (12,7 % hmot.). Pri pokusoch bol acetylén zbavený acetónu vymrazovaním a vypieraný v konc. H2.SO4 a lúhu. Bolo zistené, že v 5. až 7. hodině dosahuje konc. karbinolu maximum a postupné sa znižuje na úkor sekundárnej reakcie.With an increase in exposure of up to 8 hours, the yield of carbinol stabilized at 14.4 g (3.3%) and the diol increased to 55 g (12.7% by weight). In the experiments, acetylene was freed from acetone by freeze drying and washed in conc. H 2 SO 4 and lye. It was found that it reached conc. carbinol maximum and gradually decreases at the expense of the secondary reaction.

Tvoriaci sa olefín nesposobuje dezaktiváciu UV žiarením exilovaných molekul. V práci hol navrhnutý mechanizmus procesu. Proces acetónom senzibilizovanej reakcie sa považuje v dosledku vysokej koncentrácie 2-hydroxyizopropylových radikálov počas expozície za neselektívny, pretože už počas indukčnej periody vzniká velké množstvo diolu. Pri priamej fotoadícii acetylénu na izopropylalkohol v dosledku nízkej extinkcie acetylénu v UV oblasti je nízká i konc. ketylradikélov a následné sa tvoriaceho diolu. Tento sposob přípravy označujú autoři za technologicky vhodný.The forming olefin does not cause inactivation by UV radiation of the exiled molecules. The proposed mechanism of the process. The process of the acetone-sensitized reaction is considered to be non-selective due to the high concentration of 2-hydroxyisopropyl radicals during exposure since large amounts of diol are already formed during the induction period. In direct photoadiation of acetylene to isopropyl alcohol due to the low extinction of acetylene in the UV region, conc. ketyl radicals and the resulting diol. This preparation method is described by the authors as technologically suitable.

Nevýhody uvedených postupov sa odstraňujú sposobom podlá tohto vynálezu, pri ktorom sa sposob přípravy monoaduktu acetylénu s izopropylalkoholom fotochemicky iniciovanou reakciou acetylénu s izopropylalkoholom za přítomnosti 0,1 až 10 % mól. acetonu ako absorbenta UV žiarenia, tlaku acetylénu 0 až 1 MPa expozíciou homogénnej reakčnej zmesi cirkulujúcej v tenkej vrstvě okolo zdroja UV žiarenia vhodnej intenzity a spektrálnej charakteristiky žiarenia uskutečňuje tak, že reakcia prebieha ožarovaním reakčnej zmesi za reakčný čas, v, ktorom selektivita tvory DVK Xsdvk 90 % a kvantový výťažok DVK O’DVK 10.The disadvantages of these processes are eliminated by the process according to the invention, wherein the process for the preparation of an acetylene monoaduct with isopropyl alcohol is photochemically initiated by reacting acetylene with isopropyl alcohol in the presence of 0.1 to 10 mol%. of acetone as an absorber of UV radiation, an acetylene pressure of 0 to 1 MPa by exposing a homogeneous reaction mixture circulating in a thin layer around a UV radiation source of appropriate intensity and spectral characteristics such that the reaction proceeds by irradiating the reaction mixture for reaction time at which 90% and DVK O'DVK quantum yield 10.

Výhoda postupu podlá vynálezu je v tom, že vymedzením kritickej koncentrácie UV absorbenta a maximálnej hrůbky ožarovanej vrstvy sa stane pohlcovanie UV žiarenia rovnoměrné v celotn objeme reaktora. Tým nedochádza k lokálnej absorbcii UV žiarenia v tenkej vrstvě na stěnách reaktora bližších k zdrojů UV žiarenia a tým aj lokálnemu přebytku 2-hydroxyizopropylových radikálov oproti rozpuštěnému acetylénu.An advantage of the process according to the invention is that by limiting the critical concentration of the UV absorbent and the maximum depth of the irradiated layer, the absorption of UV radiation becomes uniform throughout the reactor volume. Thereby, there is no local absorption of UV radiation in the thin film on the reactor walls closer to the sources of UV radiation and hence a local excess of 2-hydroxyisopropyl radicals over dissolved acetylene.

Ďalšou výhodou s podstatným významom je vymedzenie intenzity žiarenia absorbovaného v jednotkovom objeme reakčnej zmesi v medziach 1. 1017 až 1.1019 kvánt/s dm3 v rozsahu vlnových dížok 253,7 až 320 nm z dóvodu známej účasti kvant žiarenia na chemizme procesu excitácie a fotoredukcie karhonylovej zlúčeniny. Významný vplyv intenzity žiarenia absorbovaného v systéme potvrdzuje reťazový mechanizmus adície 2-hydroxyizopropylového radikálu na acetylén. Z reťazového charakteru vyplývá vysoký kvantový výťažok o 10, čo má kladný vplyv na energetické náklady iniciáčnej energie.Another advantage of significant importance is the definition of the intensity of radiation absorbed in the unit volume of the reaction mixture within the limits of 1. 10 17 to 1.10 19 kvm / s dm 3 in the wavelength range 253.7 to 320 nm because of the known photoreduction of the carbonyl compound. The significant effect of the intensity of radiation absorbed in the system is confirmed by the chain mechanism of addition of the 2-hydroxyisopropyl radical to acetylene. The chain character implies a high quantum yield of 10, which has a positive impact on the energy costs of the initiatory energy.

Zvolené kritické hodnoty reakčnej teploty neovplyvňujú primárné fotochemické deje medzi UV žiarením a absorbentom UV žiarenia, ale sa optimálnym rozmedzím, kedy je už rýchlosť abstrakcie vodíka z izopropylalkoholu excitovaným senzibilizátorom dostatočne vysoká. Ďalšia výrazná výhoda přípravy aduktov acetylénu s izopropylalkoholom spočívá v tom, že zariadenie umožňuje pracovnými tlakmi 0 až 1 MPa C2H2 zvýšiť koncentráciu acetylénu v reakčnej zmesi. Keďže předmětná adícia je reakciou prvého poriadku vzhladom na acetylén, vysšia koncentrácia acetylénu zvyšuje v prvých hodinách procesu selektivitu tvorby dimetylvinylkarbinolu a rýchlosť tvorby monoaduktu v prvých hodinách procesu.The critical reaction temperature values selected do not affect the primary photochemical events between UV radiation and UV absorbent, but with an optimal range where the rate of abstraction of hydrogen from isopropyl alcohol by the excited sensitizer is already sufficiently high. A further significant advantage of preparing acetylene adducts with isopropyl alcohol is that the device allows to increase the acetylene concentration in the reaction mixture at operating pressures of 0 to 1 MPa C 2 H 2 . Since the present addition is a first order reaction relative to acetylene, a higher concentration of acetylene increases the selectivity of dimethylvinylcarbinol formation in the first hours of the process and the rate of monoaduct formation in the first hours of the process.

Výhodou je i oddelenie absorpcie acetylénu v samoetatnom funkčnom zariadení od reakčného priestoru. Reakčná zmes prichádzajúca do priestoru expozície UV žiarením je homogénnou kvapalnou zmesou reaktantov na rozdiel od disperzií u doteraz známých postupov. To umožňuje definovatelnosť procesu fotoredukcie kárbonylového senzibilizátora v kvapalnej fáze a odstraňuje pestrost primárných fotochemických pochodov v plynnej fáze.An advantage is also the separation of acetylene absorption in a self-contained functional device from the reaction space. The reaction mixture entering the area of exposure to UV radiation is a homogeneous liquid mixture of the reactants, as opposed to the dispersions of the prior art processes. This allows for a definable liquid phase photoreduction process of the carbonyl sensitizer and removes the variety of primary gas phase photochemical processes.

Technologický postup osvetlujúci podstatu vynálezu je schematicky znázorněný na obrázku.A technological process for explaining the essence of the invention is shown schematically in the figure.

Do aparatúry sa vsadí reakčná zmes izopropylalkoholu a senzibilizátora cez ventil 1 tak, že reaktor 2 je zaplněný a systém zložený z reaktora a absorbéra 3 umožňuje cirkuláciu čerpadlom 4 s měnitelným výkonom. Reaktor pozostáva z reakčnej expozičnej zóny 5, temperačnej a filtračnej zóny 6 a zdroja UV žiarenia dostatečného výkonu 7, kterým sú ortuťové vhodnej intenzity UV žiarenia a spektrálnej charakteristiky.The reaction mixture of isopropyl alcohol and sensitizer is charged through the valve 1 so that the reactor 2 is full and the system consisting of the reactor and the absorber 3 allows circulation through the variable power pump 4. The reactor consists of a reaction exposure zone 5, a tempering and filter zone 6 and a source of UV radiation of sufficient power 7 which are mercury of suitable UV intensity and spectral characteristics.

Volbu tlaku acetylénu umožňuje redukčný ventil 8 na acetylénovej tlakovej flaši. Z bezpečnostných dóvodov a z potřeby inertizácie před a po skončení procesu je paralelné s acetylénom privádzaný dusík cez redukčný ventil 9. Temperačná zóna je napojená na termostat 10.The selection of the acetylene pressure is made possible by a pressure reducer 8 on the acetylene cylinder. For safety reasons and for the need for inertization before and after the process, nitrogen is supplied parallel to acetylene via a pressure reducer 9. The tempering zone is connected to a thermostat 10.

Cirkulačný systém je doplněný jedným přídavným tlakovým čerpadlom 11 na přívod reaktantov počas procesu. Po naplnění systému reaktantami sa 1 hodinovým prefukovaním acetylénom odstráni rozpustný kyslík. Acetylén sa od acetonu čistí vymrazovaním v práčke 12 s následnou adsorpciou na vrstvě alumíny 13. Acetylén z aparatúry je odvádzaný cez vymrazovač 14 a ventil 15 od odtahu digestora. Volbou reakčných podmienok je proces modulovaný k žiadaným aduktom.The circulation system is supplemented by one additional pressure pump 11 for reactant supply during the process. After the system was charged with reactants, the oxygen was removed by blowing it with acetylene for 1 hour. Acetylene is purified from acetone by freeze-drying in a scrubber 12 with subsequent adsorption on an alumina layer 13. Acetylene from the apparatus is discharged through the freezer 14 and the valve 15 from the fume hood. By selecting the reaction conditions, the process is modulated to the desired adducts.

Příklad 1Example 1

Do aparatúry schematicky znázorněnéj na obrázku bolo vsadené 650 g izopropylalkoholu a 13,4 g acetónu. Za stálej cirkulácie reaktantov holá zmes sýtená počas 1 hod. acetylén. Reakčná zmes po 1 h ozařovaní MPa a teplote reakčnej zmesi 20 °C. Po nasýtení bol zapnutý zdroj UV žiarenia s intenzitou žiarenia pohlteného v jednotkovom objeme 4.10¾ kvánt/s dm3 v oblasti 253,7 až 320 nm. Za ustálenej cirkulácie bol redukčným ventilom doplňaný spotřebovaný acetylén. Reakčná zmes po 1 h ozařovaní obsahovala 2,15 % hmot. 2-metyl-2-butén-3259391650 g of isopropanol and 13.4 g of acetone were charged into the apparatus shown schematically in the figure. With continuous circulation of the reactants, the bare mixture was saturated for 1 hour. acetylene. The reaction mixture was irradiated with MPa for 1 h and the reaction mixture temperature was 20 ° C. After saturation, the UV source was switched on with the intensity of radiation absorbed in a unit volume of 4.10 ¾ quanta / s dm 3 in the region of 253.7 to 320 nm. Acetylene consumed was added to the pressure reducing valve while the circulation was steady. The reaction mixture after 2.1 h contained 2.15 wt. 2-methyl-2-buten-3259391

-olu a 0,15 % hmot. vyšších polyaduktov. Po 3 hod. ožarovania sa obsah DVK zvýšil na 4,6 % a vyšších polyaduktov na 1,6 °/o. Po 7 hod. ožarovania sa obsah DVK ustálil na 6,5 % hmot. a obsah vyšších polyaduktov sa neustále zvyšoval.% -ol and 0.15 wt. higher polyadducts. After 3 hours irradiation, the DVK content increased to 4.6% and the higher polyadducts to 1.6%. After 7 hrs. irradiation, the DVK content stabilized at 6.5 wt. and the content of higher polyadducts was constantly increasing.

Příklad 2Example 2

Do aparatúry podl'a schémy bolo vsadené 650 g IPA a 0,65 g acetonu. Podlá postupu uvedenom v bode 1 sa po 1 hod. ozařovaní získalo 0,5 % hmot. DVK so 100 % selektivitou, po 3 hod. ožarovania 1,2 % DVK a 0,05 % vyšších polyaduktov a po 7 hod. sa získalo 1,8 % DVK a 0,25 % vyšších polyaduktov.The apparatus of the scheme was charged with 650 g IPA and 0.65 g acetone. According to the procedure described in point 1, after 1 hour. irradiation obtained 0.5 wt. DVK with 100% selectivity, after 3 hr. irradiation of 1.2% DVK and 0.05% higher polyadducts and after 7 hours. 1.8% DVK and 0.25% higher polyadducts were obtained.

Příklad 3Example 3

Do aparatury podlá schémy bolo vsadené 650 g IPA, 65 g acetonu. Za stálej cirkulácie reaktantov bola zmes sýtená počas 1 hod. acetylénom pri atmosférickom tlaku a teplote 20 °C. Po nasýtení bol zapnutý zdroj UV žiarenia s intenzitou žiarenia pohlteného v jednotkovom objeme 1.1019 kvánt/s dm3 v oblasti 253,7 až 320 nm. Za neustálej cirkulácle bol doplněný spotřebovaný acetylén stálým prietokom 200 m3/min. acetylénu cez absorbér. Reakčná zmes po 1 hod. ozařovaní obsahovala 2,2 % hmot. DVK a 3 % hmot. vyšších polyaduktov. Po 3 hod. 3,1 % hmot, DVK a 7,2 % hmot. vyšších polyaduktov. Po· 3 hod. v reaktore z roztoku vypadávali pevné částice vyšších polyaduktov acetylénu s izopropylalkoholom.The apparatus of the scheme was charged with 650 g IPA, 65 g acetone. While the reactants were circulating continuously, the mixture was saturated for 1 hour. acetylene at atmospheric pressure and 20 ° C. After saturation, the UV light source was switched on with the intensity absorbed in a unit volume of 1.10 19 kvs / s dm 3 in the region of 253.7 to 320 nm. Acetylene consumed at a constant flow rate of 200 m 3 / min was added under continuous circulation. acetylene through the absorber. The reaction mixture after 1 h. irradiation contained 2.2 wt. DVK and 3 wt. higher polyadducts. After 3 hours 3.1 wt.%, DVK and 7.2 wt. higher polyadducts. Mo · 3 hrs in the reactor, solid particles of higher acetylene polyadducts with isopropyl alcohol fell out of solution.

Příklad 4Example 4

Do aparatury podlá schémy bolo vsadené 650 g IPA a 13,4 g acetónu. Za stálej cirkulácie reaktantov bola zmes sýtená počas 1 hod. acetylénOm za tlaku 0,3 MPa a teplote 20 °C. Potom bola zmes ozařovaná zdrojom UV žiarenia s intenzitou žiarenia pohlteného v jednotkovom objeme 3,5.1017 kvánt/s dm3 v oblasti 253,7 až 320 nm. Za ustálenej cirkulácie bol redukčným ventilom dopíňaný spotřebovaný acetylén. Reakčná zmes po 1 hod. ozařovaní obsahovala 1,08 % hmot. DVK a pri 100 % selektivitě po 3 hod. ožarovania 2,2 % DVK a 0,1 % vyšších polyaduktov a po 7 hcd. ožarovania 2,5 % DVK Ča 0,33 % vyšších polyaduktov.650 g of IPA and 13.4 g of acetone were charged into the apparatus of the scheme. While the reactants were circulating continuously, the mixture was saturated for 1 hour. acetylene at a pressure of 0.3 MPa and a temperature of 20 ° C. Thereafter, the mixture was irradiated with a UV source of radiation absorbed in a unit volume of 3.5 x 10 17 kvm / s dm 3 in the region of 253.7 to 320 nm. Acetylene consumed was fed through the pressure reducing valve while the circulation was steady. The reaction mixture after 1 h. irradiation contained 1.08 wt. DVK and at 100% selectivity after 3 hr. irradiation of 2.2% DVK and 0.1% higher polyadducts and after 7 hcd. irradiation 2.5% DVK Ca 0.33% higher polyadducts.

Claims (4)

Sposob přípravy monoaduktu acetylénu s izopropylalkoholom fotochemickou syntézou reakciou acetylénu s izopropylalkoholom vyznačujúci sa tým, že reakcia prebieha za přítomnosti 0,1 až 10 % molových acetónu ako absorbenta UV žiarenia, tlaku 0 až 1 MPa acetylénu, ozařováním homogénnej rekčnej zmesi cirkulujúcej v tenkej vrstvě okolo zdroja UV žiarenia intenzity 1.1017 až 1.1019 kvánt/s dm3 v rozsahu vlnových dlžok 253,7 až 320 nm za reakčný čas, pri ktorom selektivita tvorby DVK je vačšia ako 90 % a kvantový výťažok DVK je váčší ako 10.A process for the preparation of an acetylene monoaduct with isopropyl alcohol by photochemical synthesis of acetylene with isopropyl alcohol, characterized in that the reaction is carried out in the presence of 0.1-10 mol% acetone as UV absorber, at a pressure of 0 to 1 MPa of acetylene, a source of UV radiation of an intensity of 1.10 17 to 1.10 19 kv / s dm 3 in the wavelength range 253.7 to 320 nm in a reaction time at which the selectivity of DVK formation is greater than 90% and the quantitative yield of DVK is greater than 10.
CS865154A 1987-06-10 1987-06-10 Method of acetylene's monoaduct's preparation with isopropylalcohol by means of photochemical synthesis CS259391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS865154A CS259391B1 (en) 1987-06-10 1987-06-10 Method of acetylene's monoaduct's preparation with isopropylalcohol by means of photochemical synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS865154A CS259391B1 (en) 1987-06-10 1987-06-10 Method of acetylene's monoaduct's preparation with isopropylalcohol by means of photochemical synthesis

Publications (2)

Publication Number Publication Date
CS515486A1 CS515486A1 (en) 1988-03-15
CS259391B1 true CS259391B1 (en) 1988-10-14

Family

ID=5395899

Family Applications (1)

Application Number Title Priority Date Filing Date
CS865154A CS259391B1 (en) 1987-06-10 1987-06-10 Method of acetylene's monoaduct's preparation with isopropylalcohol by means of photochemical synthesis

Country Status (1)

Country Link
CS (1) CS259391B1 (en)

Also Published As

Publication number Publication date
CS515486A1 (en) 1988-03-15

Similar Documents

Publication Publication Date Title
Adam et al. Thermally and photochemically initiated radical chain decomposition of ketone-free methyl (trifluoromethyl) dioxirane
DE10029283A1 (en) Production of chlorinated alkane, e.g. trifluoro-trichloroethane, involves photochlorination of alkane or alkene compounds in the gas or liquid phase with elemental chlorine under irradiation with UV light
US4686023A (en) Sensitized photochemical preparation of vitamin D
JP7508049B2 (en) Method for producing carbonyl halide
SU971097A3 (en) Process for producing alkylmercaptanes
JP7005651B2 (en) How to prepare bromotrichloromethane
US4417964A (en) Method of preparing olefinic compounds
Martin et al. The photochemical decomposition of t-butyl hydroperoxide in solution
Marinković et al. Efficient radical addition of tertiary amines to electron-deficient alkenes using semiconductors as photochemical sensitisers
IE843116L (en) Preparation of glyoxals and acetals
CS259391B1 (en) Method of acetylene's monoaduct's preparation with isopropylalcohol by means of photochemical synthesis
Tomioka et al. [3+ 2] Cycloaddition of cyclopropane with vinyl ether via photoinduced electron transfer
Danen Infrared laser induced organic reactions. 2. Laser vs. thermal inducement of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols
KR100682807B1 (en) Photochemical Preparation of Previtamin D3
Adam et al. Two-photon cleavage of benzil in the laser jet: intermolecular reactions of transient benzoyl and tert-butoxy radicals in the photolysis of tert-butyl peroxide mixtures
US6384239B1 (en) Method for producing monohalogenated 2-oxo-1,3-dioxolanes
US3405046A (en) Process for the manufacture of 2, 2, 3-trichlorobutane
US4383904A (en) Photochemical epoxidation
US4452678A (en) Process and apparatus for the photochemical production of halogeno-alkanes and cycloalkanes
Probst et al. Thermolysis and UV-photolysis of perfluorinated iodo-alkanes and iodo-oxaalkanes: there is a preferred reaction channel
Matsuo et al. Mechanism of redox decomposition of oxymercurated cis-2-butene in aqueous solution
KR19990083343A (en) Process for the photochemical sulphochlorination of gaseous alkanes
US2908622A (en) Photochemical preparation of formaldehyde
JP4810715B2 (en) Process for producing 2,2,3,4,4,4-hexafluoro-1-butanol and use thereof
Mlinaric-Majerski et al. Synthesis and photochemistry of 4-methylene-2-protoadamantanone