CS259391B1 - A method of preparing acetylene monoaddition with isopropyl alcohol by photochemical synthesis - Google Patents
A method of preparing acetylene monoaddition with isopropyl alcohol by photochemical synthesis Download PDFInfo
- Publication number
- CS259391B1 CS259391B1 CS865154A CS515486A CS259391B1 CS 259391 B1 CS259391 B1 CS 259391B1 CS 865154 A CS865154 A CS 865154A CS 515486 A CS515486 A CS 515486A CS 259391 B1 CS259391 B1 CS 259391B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- acetylene
- isopropyl alcohol
- reaction
- radiation
- acetone
- Prior art date
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Rieši sa spósob přípravy monoaduktu acetylénu s izopropylalkoholom fotochemicky iniciovanou radikálovou adíciou za přítomnosti 0,1 až 10 % mól. acetonu ako· UV senzihilizátora, tlaku 0 až 1 MPa acetylénu uskutočňovaný expozíciou homogénnej reakčnej zmesi cirkulujúcej v tenkej vrstvě okolo zdroja UV žiarenia v reakčnom čase umožňujúc nlekoďkonásohné zvýšenie selektivity tvorby monoaduktu. Postup je možné využit ako nový spósob výroby di* metylvinylkarbonylu.The method for preparing the monoadduct of acetylene with isopropyl alcohol by photochemically initiated radical addition in the presence of 0.1 to 10% mol is addressed. acetone as a UV sensitizer, pressure 0 to 1 MPa acetylene carried out by exposure of a homogeneous reaction mixture circulating in a thin layer around the source of UV radiation during the reaction time, allowing a non-liquid increase in the selectivity of monoadduct formation. The procedure can be used as a new way of producing dimethyl vinyl carbonyl.
Description
259391259391
Vynález sa týká spSsobu přípravy mono-duktu acetylénu s izopropylalkoholom fo-tochemicky iniciovanou reakciou acetylénus izopropylalkoholom za přítomnosti 0,1 až10 % mól. acetónu ako absorbenta UV žia-renia, tlaku acetylénu 0 až 1 MPa ozařová-ním homogénnej reakčnej zmesi cirkulujú-cej v tenkej vrstvě okolo zdroje UV žiare-nia vhodnej intenzity a spektrálnej charak-teristiky. Příprava uvedených aduktov acetylénu sizopropylalkoholom bola v patentovej lite-ratúre publikovaná v roku 1967 v pat. USA3 304 277 a s danou problematikou sa ajneskor zaoberá iba niekofko autorov v od-borné] literatúre. Všetky publikované spo-soby přípravy novej C—C vazby fotoche-micky a volnoradikálovoiniciovanej adíciealkoholov na acetylén sa vyznačujú nese-lektivitou a velmi nízkými výťažkami pro-duktov.The present invention relates to a process for the preparation of an acetylene mono-isopropyl alcohol mono-chemically initiated reaction of acetylene with isopropyl alcohol in the presence of 0.1 to 10% mol. acetone as the UV radiation absorbent, an acetylene pressure of 1 to 1 MPa by irradiating a homogeneous thin-film circulating reaction mixture around a UV radiation source of suitable intensity and spectral character. The preparation of said acetylene adducts with isopropylalcohol was published in the patent literature in 1967 in Pat. U.S. Pat. No. 3,304,277, and only a few authors in the specialist literature deal with the subject matter. All published processes for the preparation of a new C-C bond by photochemical and free radical-initiated addition of alcohols to acetylene are characterized by inactivity and very low product yields.
Reakcie prebiehajú vo fázovo heterogen-nom systéme disperzie plyn — kvapalina,čo spSsobuje nedefinovatefnosť chemickéhomechanizmu reakcie. Pri príprave reakč-ných zmesí sa vychádza z velkého přebytkuUV absorbenta, čo sposobuje pestrosť vol-noradikálových reakcií už v inicačnej pe-riodě alebo z nepřítomnosti UV senzibilizá-tora, čo vedie k nedostatečnému využívaniuUV žiarenia a spomaleniu rýchlosti reakcií.V prácach nie je vyhodnotený vplyv inten-zity žiarenia absorbovaného v reakčnom sy-stéme na selektivitu tvorby monoaduktu akvantový výťažok fotochemickej syntézy mo-no- a polyaduktov acetylénu s izopropylal-koholom. Uvedený sposob přípravy aduktovacetylénu s alkoholmi vedie k náhradě kla-sického dvojstupňového sposobu přípravytýchto aduktov etinyláciou karbonylovýchzlúčenín s následnou selektívnou hydroge-náciou alkínalkoholov na alkénalkoboly,ktorý je už priemyselne zvládnutý.The reactions take place in a phase-heterogeneous gas-liquid dispersion system, causing undefined chemical reaction mechanisms. The preparation of the reaction mixtures is based on a large excess of UV absorbent, which results in a variety of free-radical reactions already in the initiation period or in the absence of the UV sensitizer, resulting in insufficient use of UV radiation and slowing down the rate of reaction. the effect of the intensity of the radiation absorbed in the reaction system on the selectivity of the monoadduct formation by the aquant yield of the photochemical synthesis of the acetylene mono- and polyadducts with isopropanol. Said process for the preparation of adduct ethylene with alcohols leads to the substitution of the classical two-stage process of the prepared adducts by the ethynylation of the carbonyl compounds followed by the selective hydrogenation of the alkyne alcohols to the alkaloalkols already industrially mastered.
Sposob přípravy adičných produktov (¾]¾s IPA (US pat. 3 304 247) popisuje reakciuIPA s C2H2 a jehO' zlúčeninami za teploty 30až 80 °C a reakčný čas 1 až 5 hodin v pří-tomnosti UV senzibilizátora. Reakcia sa u-skutočňovala v pyrexovom ponornom typereaktora temperovaného vonkajším dupliká-torom. Ako zdroj UV žiarenia bola použitá450 W ortuťová výbojka. Do reaktora bolonasadené 963 ml (12,5 mélu) izopropylal-koholu (IPA) a 88 ml (1,2 molu) acetónu a-ko UV senzibilizátora. Acetylén bol privád-zaný do reaktora rýchlosfou 0,5 l.min-1a účinné rozptylovaný. Reakčná zmes bolaozařovaná 3 hodiny za teploty 28 °C pričombolo získané 21 g 2-metyl-3-buten-2-olu(DVK) (2,5 % hmot.) a 30 g (3,6 «/o hmot.) 2,5-dimetyl-2,5-hexándiolu. Množstvo UV sen-zibilizátora nie je považované za kritické,hoci za optimálně sa považuje 0,08 dielu a-cetónu na 1 diel izopropylalkoholu.The process for the preparation of the addition products (¾) of IPA (U.S. Pat. No. 3,304,247) discloses the reaction of PIA with C2H2 and ω2 compounds at a temperature of 30 DEG to 80 DEG C. and a reaction time of 1 to 5 hours in the presence of a UV sensitizer. in a pyrex immersion typereactor tempered by an external duplicator, a 450 W mercury vapor lamp was used as the source of UV radiation, and 963 ml (12.5 µl) of isopropanol (IPA) and 88 ml (1.2 mol) of acetone were charged to the reactor. Acetylene was fed to the reactor at a rate of 0.5 l.min-1 and was efficiently dispersed, and the reaction mixture was heated at 28 DEG C. for 3 hours to give 21 g of 2-methyl-3-buten-2-ol (DVK). (2.5 wt.%) And 30 g (3.6 wt.%) Of 2,5-dimethyl-2,5-hexanediol. The amount of UV sensitizer is not considered critical, although 0 , 08 part of acetone per 1 part of isopropyl alcohol.
Obdobný sposob přípravy acetylénových aduktov (US pat. 3 352 929) avšak vofnora- dikálovou iniciáciou peroxidmi využívá vyš- šie teploty a tlaky acetylénu. Tento sposobje výťažkami rovnocenný UV žiarením ini-ciovanému systému. Ako vedfajšie produk-ty voči DVK a dimetylhexandiolu vznikajúnízkomolekulové teloméry acetylénu, kto-rých tvorba je tiež iniciovaná izopropylal-kobolovými radikálmi. Tvorba DVK je u-prednostňovaná nižšími tlakmi. Vyššie tla-ky acetylénu uprednostňujú tvorbu diolu.Produkty sa získavajú postupným oddesti-lovávaním nezreagovaných surovin.However, a similar process for the preparation of acetylene adducts (U.S. Pat. No. 3,352,929), however, by the use of peroxydic peroxide initiation utilizes higher acetylene temperatures and pressures. This is due to yields equivalent to UV radiation of the target system. As byproducts of DVK and dimethylhexanediol, acetylene molecular telomeres are formed, which is also initiated by isopropyl-cobol radicals. The formation of DVK is preferred by lower pressures. Higher acetylene pressures favor diol formation. The products are obtained by sequentially distilling off unreacted feedstocks.
Kinetickú studiu acetónom senzibilizova-nej fotoadície vybraných rozpúšťadiel naacetylén představuje (Cand. J. of Chem. 45,3 209, 1967). Ako rozpúšťadlá boli použitélátky cyklohexán, etanol, dietylester ace-tón, 2-metyltetrahydrofurán. Zmerané bolirozpustnosti acetylénu, kvantový výťažokproduktu a rýchlostné konštanty tvorby vi-nylových aduktov. Práca poukazuje na to,že hlavný produkt vinylderivát rozpúšťadlalineárně narastá počas iniciačnej periody,ale smeruje k úbytku, ak je reakcia vedenádo viac ako niekolkých percent produktu.Obytok je spósobený sekundárnou reakciouproduktu s volnými radikálmi. Adícia pre-biehala za atmosferického tlaku pri teplo-tě 25 °C v reaktore s vonkajším zdrojom UVžiarenia.The kinetic study of acetone-sensitized photoacid of selected solvents naacetylene is (Cand. J. of Chem. 45,3 209, 1967). The solvents used were cyclohexane, ethanol, diethyl and acetone, 2-methyltetrahydrofuran. Acetylene solubilities, quantum product yields, and rate constants of vinyl adducts were measured. The work points out that the main product vinyl derivative solvent increases during the initiation period, but tends to decrease if the reaction is more than a few percent of the product. The residue is due to the secondary reaction of the free radical product. The addition proceeded at atmospheric pressure at 25 ° C in an external source of reactor.
Priama fotoadícia acetylénu a jeho deri-vátov na izopropylalkohol je predmetomštúdie (Žur. org. chimii 9, 1606, 1973). Vpráci je porovnaná priama i acetónom sen-zíbilizovaná fotochemicky iniciovaná adíciaacetylénu a jeho derivátov na izopropylal-kohol voči priamej i senzibilizovanej adíciivybraných olefínov, ako etylén a 1-hexén.Reakcia bola uskutečněná vo valcovitomsklenom reaktore s účinným rozptylovačomacetylénu. Vo vnútri reaktora bola umiesí-nená 375 W ortuťová výbojka vysokotlaká,chráněná plášťom s vysokokvalitného kre-meňa, chladená cirkulujúcou vodou. Hrúb-ka reakčnej vrstvy v pracovnej časti zaria-denia bola 8 mm. Teplota sa udržiavala pri18—20 °C. Rýchlosť prebublávania acety-lénu bola 200 ml/min. Pri priamej fotoadí-cii izopropylalkoholu na acetylén sa za 3hodiny expozíciou 500 ml izopropylalkoho-lu získalo 3,8 g (0,96 % hmot.) Z-metyl-3-butén-2-olu a 0,5 g (0,13 % hmot.) 2,5-di-metyl-2,5-hexándiolu. Při acetónom senzibilizovanej fotoadíciisa expozíciou zmesi 500 ml izopropylalkoho-lu a 50 ml acetónu počas 3 hodin za stálé-ho prebublávania acetylénu získalo 11,8 g(2,6 % hmot.) 2-metyl-3-butén-2-olu a 31 g(7,2 % hmot.) 2,5-dimetyl-2,5-hexándiolu.The direct photoaddition of acetylene and its derivatives to isopropyl alcohol is the subject of study (Jur. Org. Chimii 9, 1606, 1973). The work is compared by both direct and acetone-sterilized photochemically initiated addition of acetylene and its derivatives to isopropyl alcohol against both direct and sensitized additive olefins such as ethylene and 1-hexene. The reaction was carried out in a cylindrical glass reactor with effective scattering of ethylene. Inside the reactor was a 375 W high pressure mercury lamp, protected by a high quality creme casing, cooled by circulating water. The thickness of the reaction layer in the working part of the device was 8 mm. The temperature was maintained at 18-20 ° C. The bubbling rate of acetetylene was 200 ml / min. 3.8 g (0.96% by weight) of Z-methyl-3-buten-2-ol and 0.5 g (0.13%) of isopropyl alcohol were obtained by exposure to 500 ml of isopropyl alcohol for 3 hours under direct exposure to isopropyl alcohol. % by weight of 2,5-dimethyl-2,5-hexanediol. In an acetone-sensitized photoaddition, exposure of a mixture of 500 ml of isopropyl alcohol and 50 ml of acetone for 3 hours while still bubbling acetylene yielded 11.8 g (2.6% by weight) of 2-methyl-3-buten-2-ol and 31% by weight. g (7.2 wt.%) of 2,5-dimethyl-2,5-hexanediol.
Pri predížení expozície do 8 hodin sa vý-ťažok karbinolu ustáli na 14,4 g (3,3 %) adiolu vzrástol na 55 g (12,7 % hmot.). Pripokusoch bol acetylén zbavený acetónu vy-mrazovaním a vypieraný v konc. H2.SO4 alúhu. Bolo zistené, že v 5. až 7. hodině do-sahuje konc. karbinolu maximum a postup-né sa znižuje na úkor sekundárnej reakcie. 2 5 9 3 91 5 βAt an exposure delay of up to 8 hours, the yield of carbinol was stabilized at 14.4 g (3.3%) of adiol, increasing to 55 g (12.7% by weight). The acetylene was freed from acetone by freeze-drying and washed in conc. H2.SO4 aluhu. It was found that at 5 to 7 hours the conc. carbinol peak and gradually decreases at the expense of the secondary reaction. 2 5 9 3 91 5 β
Tvoriaci sa olefín nesposobuje dezaktivá-ciu UV žiarením exilovaných molekul. Vpráci bol navrhnutý mechanizmus procesu.Proces acetónom senzibilizovanej reakcie sapovažuje v dosledku vysokej koncentrácie 2-hydroxyizopropylových radikálov počasexpozície za neselektívny, pretože už počasindukčnej periody vzniká velké množstvodiolu. Pri priamej fotoadícii acetylénu naizopropylalkohol v dosledku nízkej extink-cie acetylénu v UV oblasti je nízká i konc.ketylradikélov a následné sa tvoriaceho dio-lu. Tento sposob přípravy označujú autořiza technologicky vhodný.The forming olefin does not cause UV-inactivation of the extracted molecules. The process mechanism of the process has been proposed. The process of acetone sensitized reaction is considered to be non-selective due to the high concentration of 2-hydroxyisopropyl radicals during exposure because large amounts of diol are formed during the induction period. In the direct photo-acetylation of acetylene naisopropanol due to the low extinction of the acetylene in the UV region, even the tert-butyl radicals and the subsequent forming diol are low. This method of preparation indicates that the technique is technically appropriate.
Nevýhody uvedených postupov sa odstra-ňujú sposobom podlá tohto vynálezu, priktorom sa sposob přípravy monoaduktu a-cetylénu s izopropylalkoholom fotochemic-ky iniciovanou reakciou acetylénu s izopro-pylalkoholom za přítomnosti 0,1 až 10 %mól. acetonu ako absorbenta UV žiarenia,tlaku acetylénu 0 až 1 MPa expozíciou ho-mogénnej reakčnej zmesi cirkulujúcej v ten-kej vrstvě okolo zdroja UV žiarenia vhod-nej intenzity a spektrálnej charakteristikyžiarenia uskutečňuje tak, že reakcia pre-bieha ozařováním reakčnej zmesi za reakč-ný čas, v, ktorom selektivita tvory DVKXsdvk 90 % a kvantový výťažok DVKO’DVK 10. Výhoda postupu podlá vynálezu je v tom,že vymedzením kritickei koncentrácie UVabsorbenta a maximálnej hrůbky ožarova-nej vrstvy sa stane pohlcovanie UV žiare-nia rovnoměrné v celom objeme reaktora.Tým nedochádza k lokálnej absorbcii UVžiarenia v tenkej vrstvě na stěnách reakto-ra bližších k zdrojů UV žiarenia a tým ajlokálnemu přebytku 2-hydroxyizopropylo-vých radikálov oproti rozpuštěnému acetylé-nu. Ďalšou výhodou s podstatným významomje vymedzenie intenzity žiarenia absorbova-ného v jednotkovom objeme reakčnej zme-si v medziach 1. 1017 až 1.1019 kvánt/sdm3 v rozsahu vlnových dlžok 253,7 až 320nm z dovodu známej účasti kvant žiareniana chemizme procesu excitácie a fotoreduk-cie karbonylovej zlúčeniny. Významný vplyvintenzity žiarenia absorbovaného v systémepotvrdzuje reťazový mechanizmus adície 2--hydroxyizopropylového radikálu na acety-lén. Z reťazového charakteru vyplývá vyso-ký kvantový výťažok o 10, čo má kladnývplyv na energetické náklady iniciáčnej e-nergie.The disadvantages of these processes are avoided by the process of the present invention, whereby a photochemical initiated reaction of acetylene with isopropanol is carried out by reacting acetylene with isopropanol in the presence of 0.1 to 10% moles. acetone as the UV absorbent, acetylene pressure of 0 to 1 MPa by exposing the homogeneous reaction mixture circulating in a thin layer around the UV radiation source of appropriate intensity and spectral characteristics to the radiation by passing the reaction through the reaction mixture to the reaction mixture. the time at which DVKXsdvk selectivity is 90% and DVKO'VVK quantum yield 10. The advantage of the process of the invention is that by defining the critical UVabsorbent concentration and the maximum irradiation ridge, the UV radiation absorption becomes uniform throughout the reactor volume. This does not result in the local absorption of the thin-layer radiation on the reactor walls closer to the UV sources and hence the overall excess of 2-hydroxyisopropyl radicals over the dissolved acetylene. Another advantage with substantial significance is the definition of the radiation intensity absorbed in the unit volume of the reaction mixture between 1 1017 and 1 1019 quan / sdm3 in the wavelength range of 253.7 to 320nm from the known participation of the quartz chemistry of the excitation and photoreduction process. carbonyl compound. Significant influence of the radiation intensity absorbed in the system confirms the chain mechanism of addition of the 2-hydroxyisopropyl radical to acetylenene. The chain nature results in a high quantum yield of 10, which has a positive effect on the energy costs of the initiating allergy.
Zvolené kritické hodnoty reakčnej teplo-ty neovplyvňujú primárné fotochemické de-je medzi UV žiarením a absorbentom UVžiarenia, ale sa optimálnym rozmedzím, ke-dy je už rýchlosť abstrakcie vodíka z izo-propylalkoholu excitovaným senzibilizáto-rom dostatečné vysoká. Ďalšia výrazná vý-hoda přípravy aduktov acetylénu s izopro-pylalkoholom spočívá v tom, že zariadenieumožňuje pracovnými tlakmi 0 až 1 MPaC2H2 zvýšiť koncentráciu acetylénu v reakč- nej zmesi. Keďže předmětná adícia je reak-ciou prvého poriadku vzhladom na acetylén,vysšia koncentrácia acetylénu zvyšuje v pr-vých hodinách procesu selektivitu tvorbydimetylvinylkarbinolu a rýchlosť tvorby mo-noaduktu v prvých hodinách procesu. Výhodou je i oddelenie absorpcie acetylé-nu v samoetatnom funkčnom zariadení odreakčného priestoru. Reakčná zmes pri-chádzajúca do priestoru expozície UV žia-rením je homogénnou kvapalnou zmesoureaktantov na rozdiel od disperzií u dote-raz známých postupov. To umožňuje defino-vatelnosť procesu fotoredukcie karbonylo-vého senzibilizátora v kvapalnej fáze a od-straňuje pestrost primárných fotochemic-kých pochodov v plynnej fáze.The selected reaction temperature critical values do not affect the primary photochemical deterioration between the UV radiation and the radiation absorber, but the optimum range when the rate of hydrogen removal from the isopropyl alcohol already excited by the sensitizer is already high. Another significant advantage of the preparation of acetylene adducts with isopropyl alcohol is that it allows the pressures of 0 to 1 MPaC2H2 to increase the concentration of acetylene in the reaction mixture. Since the present addition is a first order reaction with respect to acetylene, a higher concentration of acetylene increases the selectivity of the formation of dimethylvinylcarbinol and the rate of monoadduct formation in the first hours of the process in the first hours of the process. The advantage is also the separation of acetylene absorption in a self-contained functional device from the reaction space. The reaction mixture entering the UV radiation exposure area is a homogeneous liquid reactant mixture as opposed to dispersions in known processes. This allows for the definition of the process of photoreduction of the carbonyl sensitizer in the liquid phase and removes the variety of primary gas photochemical processes.
Technologický postup osvetlujúci podsta-tu vynálezu je schematicky znázorněný naobrázku.The technological process illuminating the essence of the invention is shown schematically on the figure.
Do aparatúry sa vsadí reakčná zmes izo-propylalkoholu a senzibilizátora cez ventil1 tak, že reaktor 2 je zaplněný a systémzložený z reaktora a absorbéra 3 umožňujecirkuláciu čerpadlom 4 s měnitelným vý-konom. Reaktor pozostáva z reakčnej expo-zíčnej zóny S, temperačnej a filtračnej zó-ny 6 a zdroja UV žiarenia dostatečného vý-konu 7, kterým sú ortuťové vhodnej inten-zity UV žiarenia a spektrálnej charakteris-tiky.The apparatus is charged with a reaction mixture of isopropyl alcohol and a sensitizer through the valve 1 such that the reactor 2 is filled and assembled from the reactor and the absorber 3 allows circulation through the pump 4 with variable output. The reactor consists of a reaction exposition zone S, a tempering and filtering zone 6 and a source of UV radiation of sufficient output 7, which are mercury suitable UV intensity and spectral characterization.
Volbu tlaku acetylénu umožňuje redukč-ný ventil 8 na acetylénovej tlakovej flaši.Z bezpečnostných dfivodov a z potřeby i-nertizácie před a po skončení procesu jeparalelné s acetylénom privádzaný dusíkcez redukčný ventil 9. Temperačná zóna jenapojená na termostat 10.The acetylene pressure selection is enabled by the reduction valve 8 on the acetylene pressure bottle from the safety supply and from the need for inertization before and after the process, the nitrogen is fed with the reduction valve 9. The temperature zone only connected to the thermostat 10.
Cirkulačný systém je doplněný jednýmpřídavným tlakovým čerpadlom 11 na pří-vod reaktantov počas procesu. Po naplněnísystému reaktantami sa 1 hodinovým prefu-kovaním acetylénom odstráni rozpustný kys-lík. Acetylén sa od acetonu čistí vymrazo-vaním v práčke 12 s následnou adsorpciouna vrstvě alumíny 13. Acetylén z aparatúryje odvádzaný cez vymrazovač 14 a ventil15 od odťahu digestora. Volbou reakčnýchpodmienok je proces modulovaný k žiada-ným aduktom. Příklad 1The circulation system is supplemented by one additional pressure pump 11 for the supply of reactants during the process. After the system has been filled with the reactants, the soluble oxygen is removed by acetylene for 1 hour. The acetylene is purified from the acetone by freezing in a washing machine 12 followed by adsorption of the alumina layer 13. The acetylene from the apparatus is discharged through the freezer 14 and the valve 15 from the hood exhaust. By selecting the reaction conditions, the process is modulated to the desired adducts. Example 1
Do aparatúry schematicky znázorněnéj naobrázku bolo vsadené 650 g izopropylalko-holu a 13,4 g acetónu. Za stálej cirkuláciereaktantov bola zmes sýtená počas 1 hod.acetylén. Reakčná zmes po 1 h ozařovaníMPa a teplote reakčnej zmesi 20 °C. Po na-sýtení bol zapnutý zdroj UV žiarenia s in-tenzitou žiarenia pohlteného v jednotkovomobjeme 4.10¾ kvánt/s dm3 v oblasti 253,7až 320 nm. Za ustálenej cirkulácie bol re-dukčným ventilom doplňaný spotřebovanýacetylén. Reakčná zmes po 1 h ozařovaníobsahovala 2,15 % hmot. 2-metyl-2-butén-3-650 g of isopropanol and 13.4 g of acetone were introduced into the apparatus shown schematically. Under continuous circulation, the mixture was saturated for 1 hour with ethylene. Reaction mixture after 1 h irradiation with MPa and reaction temperature 20 ° C. After saturation, the source of UV radiation with the radiation intensity absorbed in a unit volume of 4 x 10 4 quart / s dm 3 in the area of 253.7 to 320 nm was switched on. Consumed acetylene was charged with the reducing valve under steady circulation. The reaction mixture after irradiation for 1 h contained 2.15 wt. 2-methyl-2-butene-3
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS865154A CS259391B1 (en) | 1987-06-10 | 1987-06-10 | A method of preparing acetylene monoaddition with isopropyl alcohol by photochemical synthesis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS865154A CS259391B1 (en) | 1987-06-10 | 1987-06-10 | A method of preparing acetylene monoaddition with isopropyl alcohol by photochemical synthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
CS515486A1 CS515486A1 (en) | 1988-03-15 |
CS259391B1 true CS259391B1 (en) | 1988-10-14 |
Family
ID=5395899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS865154A CS259391B1 (en) | 1987-06-10 | 1987-06-10 | A method of preparing acetylene monoaddition with isopropyl alcohol by photochemical synthesis |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS259391B1 (en) |
-
1987
- 1987-06-10 CS CS865154A patent/CS259391B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS515486A1 (en) | 1988-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hamersma et al. | Diimide reductions using potassium azodicarboxylate | |
Napier et al. | The photolysis and pyrolysis of nitromethane and methyl nitrite | |
Adam et al. | Thermally and photochemically initiated radical chain decomposition of ketone-free methyl (trifluoromethyl) dioxirane | |
Sato et al. | A new route to polycondensed aromatics: photolytic formation of triphenylene and dibenzo [fg, op] naphthacene ring systems | |
US4388242A (en) | Method of production of vitamin-D | |
US4686023A (en) | Sensitized photochemical preparation of vitamin D | |
US4417964A (en) | Method of preparing olefinic compounds | |
Strausz et al. | Formation and reactions of monovalent carbon intermediates. III. Reaction of carbethoxymethyne with olefins | |
SU971097A3 (en) | Process for producing alkylmercaptanes | |
McCarroll et al. | Exploitation of aldoxime esters as radical precursors in preparative and EPR spectroscopic roles | |
Whetten et al. | Laser photocatalytic isomerization and hydrogenation of olefins in the gas phase | |
Banks et al. | The laser-drop method: a new approach to induce multiple photon chemistry with pulsed lasers. Examples involving reactions of diphenylmethyl and cumyloxyl radicals | |
Bercovici et al. | Photosensitized coloration of photochromic spiropyrans | |
Mitchenko et al. | A novel stereoselective and catalytic CC coupling reaction: acetylene dimerization accompanied by addition of iodine to yield (E, E)-1, 4-diidobuta-1, 3-diene in the Pt IV-I--I 2-MeOH system | |
Salomon et al. | Photochemical reactions of nucleic acid constituents. Peroxide-initiated reactions of purines with alcohols | |
CS259391B1 (en) | A method of preparing acetylene monoaddition with isopropyl alcohol by photochemical synthesis | |
Hayakawa et al. | Sunlight-induced CC bond formation reaction: Radical addition of alcohols/ethers/acetals to olefins | |
Danen | Infrared laser induced organic reactions. 2. Laser vs. thermal inducement of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols | |
Tomioka et al. | [3+ 2] Cycloaddition of cyclopropane with vinyl ether via photoinduced electron transfer | |
Silva et al. | Unprecedented E-stereoselectivity on the sigmatropic Hurd–Claisen rearrangement of Morita–Baylis–Hillman adducts: a joint experimental–theoretical study | |
Chow et al. | Photochemistry of nitroso compounds in solution. X. The reaction pattern of photo-excited nitrosamides | |
Adam et al. | Two-photon cleavage of benzil in the laser jet: intermolecular reactions of transient benzoyl and tert-butoxy radicals in the photolysis of tert-butyl peroxide mixtures | |
Hata et al. | The Photochemistry of 2-Quinolinecarbonitriles. I. The Photochemical Reactions of 2-Quinolinecarbonitriles with Alcohols, Ethers, or Carboxylic Acids | |
Huseya et al. | Photochemical reactions of 3-Alkyl-4-phenylsydnones | |
Tomioka et al. | Chemistry of 1-alkylfluorenylidenes. Steric effects on arylcarbene reactivities |