CS259353B1 - Method of microelectronics quality sulphuric acid production - Google Patents

Method of microelectronics quality sulphuric acid production Download PDF

Info

Publication number
CS259353B1
CS259353B1 CS85780A CS78085A CS259353B1 CS 259353 B1 CS259353 B1 CS 259353B1 CS 85780 A CS85780 A CS 85780A CS 78085 A CS78085 A CS 78085A CS 259353 B1 CS259353 B1 CS 259353B1
Authority
CS
Czechoslovakia
Prior art keywords
sulfuric acid
microelectronics
weight
sulphuric acid
acid production
Prior art date
Application number
CS85780A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS78085A1 (en
Inventor
Ivan Gaspierik
Jozef Benza
Boris Kotupanov
Stefan Husar
Original Assignee
Ivan Gaspierik
Jozef Benza
Boris Kotupanov
Stefan Husar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ivan Gaspierik, Jozef Benza, Boris Kotupanov, Stefan Husar filed Critical Ivan Gaspierik
Priority to CS85780A priority Critical patent/CS259353B1/en
Publication of CS78085A1 publication Critical patent/CS78085A1/en
Publication of CS259353B1 publication Critical patent/CS259353B1/en

Links

Abstract

Kysličník sírový získaný tepelným vytěsněním z olea sa absorbuje v kyselině sírovej pre mikroelektroniku a/alebo vodě čistoty pre mikroelektroniku, pričom sa zvyšuje koncentrácia absorpčnej kyseliny sírovej. Opatovným zriedením vodou Čistoty pre mikroelektroniku je upravovaná na požadovaná koncentráciu. Kysličník sírový používaný k absorpcii v kyselině sírovej a/alebo vodě čistoty pre mikroelektroniku je čištěný filtračnými zarladeniami. Riešenie je možné použit v elektrotechnickom prlemysle.Sulfur trioxide obtained by thermal displacement from olea is absorbed in sulfuric acid for microelectronics and / or water purity for microelectronics, while increasing the concentration of absorbent sulfuric acid. Careful dilution with water Purity for microelectronics is edited to desired concentration. Sulfur trioxide used for absorption in sulfuric acid and / or Water purity for microelectronics is purified filtering devices. The solution is can be used in the electrical industry.

Description

Vynález sa týká výroby kyseliny sírovej pre mikroelektroniku, ktorá je vhodná predovšetkým na využitie v planarnej technologií výroby integrovaných obvodov.The invention relates to the production of sulfuric acid for microelectronics, which is particularly suitable for use in planar integrated circuit technology.

Výroba kyseliny sírovej je jedna ž najrozšírenejších výrob v chemickom priemysle. V súčasnosti je najpoužívanejší sposob přípravy kvalitnej kyseliny sírovej termickou oxidáciou síry na kysličník siřičitý, ktorý sa katalyticky oxiduje na kysličník sírový, a tento je kontaktným sposobom absorbovaný v cca 98 % kyselině sírovej. Takto připravená kyselina však ešte nespíňa požiadavky na čistotu nutnú pre použitie v planárnej technologii pri výrobě integrovaných obvodov.The production of sulfuric acid is one of the most widespread production in the chemical industry. Currently, the most widely used method of preparing high-quality sulfuric acid is by thermal oxidation of sulfur to sulfur dioxide, which is catalytically oxidized to sulfur trioxide, and this is absorbed in about 98% sulfuric acid by contact. However, the acid thus prepared does not yet meet the purity requirements necessary for use in planar technology in the production of integrated circuits.

V súčasnej době sa připravuje kyselina sírová pre tieto účely čistěním od chemických příměs rektifikáciou a následné od heteročastíc mikrofiltráciou cez náročné zariadenia obsahujúce filtračně sviečky s vel'kosťou ok 0,2 až 0,45 μΐη.Sulfuric acid is currently being prepared for this purpose by purification from chemical impurities by rectification and subsequently from heteroparticles by microfiltration through sophisticated devices containing filter candles with a mesh size of 0.2 to 0.45 μΐη.

Nakolko bežne připravovaná kyselina sírová obsahuje řádové 106 až 107 heteročastíc na jeden liter vSčších ako 0,5 μπι je ich odstraňovanie mikrofiltráciou z kyseliny sírovej vel'mi nákladné.Since the currently prepared sulfuric acid contains orders of magnitude of 10 6 to 10 7 heteroparticles per liter greater than 0.5 µm, their removal by microfiltration from sulfuric acid is very expensive.

Samotná rektifikácia kyseliny sírovej je vefmi energeticky náročný proces.The rectification of sulfuric acid itself is a very energy-intensive process.

Uvedené poznatky boli čerpané z nasledovných práč a materiálov: E. O. Stepun a kol. — Metody polučenija osobo čistých neorganičeskich veščestv. Moskva — 1969; Katalog fy Sartórius 1984; Katalog fy Millipore 1983; Katalog fy Merck — Selectlpur MOS 1983 a Katalog fy Carlo Erba Montedizon 1983.These findings have been drawn from the following works and materials: E.O. Stepun et al. - Metody polučenija osobo čistých neorganičeskich veščestv. Moscow - 1969; Catalog of Sartórius 1984; Millipore 1983; Merck catalog - Selectlpur MOS 1983 and Carlo Erba Montedizon 1983 catalog.

Súčasne boli robené pokusy o čiastočne vyčistenie koncentrovanej kyseliny sírovej vyrábanej z dýmových plynov získaných z tavenia a zapekania sirnikových rúd. V týchto kyselinách sa však nachádza velké množstvo ťažkých kovov, hlavně ortuti. Ich odstraňovanie je popísané v anglickom patente 6 215 z roku 1884 ako i v amerických patentoch 314 548 (z roku 1885) 1891294 (z roku 1932) a 3 145 080 (z roku 1964), kde sú popisované spůsoby ich odstraňovania pomocou rozpustných sírnikov reagujúcich na nerozpustné sírniky týchto kovov, ktoré sú následné odfiltrované. Podobné aj v patente USA 3 826 819 (z roku 1974) od Orlandinýho a Larzona je popísaný sposob čistenia kyseliny sírovej za pomoci sirovodíka. Vo všetkých týchto opísaných spósoboch sú okrem prašnosti najvačšie ťažkosti s filtráciou nerozpustných zvyškov.At the same time, attempts have been made to partially purify concentrated sulfuric acid produced from flue gases obtained from melting and fusing sulphide ores. However, these acids contain a large number of heavy metals, mainly mercury. Their removal is described in English patent 6 215 of 1884 as well as in US patents 314 548 (1885) 1891294 (1932) and 3,145,080 (1964), which describe methods of their removal by means of soluble sulfides responsive to insoluble sulfides of these metals which are subsequently filtered off. Similarly, Orlando and Larzon, U.S. Patent 3,826,819 (1974) discloses a method for purifying sulfuric acid with hydrogen sulfide. In all these processes described above, besides dustiness, the difficulty of filtering the insoluble residue is the greatest.

Vo všeobecnosti pri príprave kyseliny sírovej premenou SO2 na SO3 cez ložko V2O5 je účinnosť tejto katalytickej oxidácie cca 97 % takže kyselina sirova obsahuje značné množstvo SO2 (cca 80 až 1 260 ppm), ktoré sa prácne odstraňuje prebublávaním suchého vzduchu cez jej objem.Generally, in the preparation of sulfuric acid by converting SO2 to SO3 through a V2O5 bed, the catalytic oxidation efficiency is about 97% so that sulfuric acid contains a significant amount of SO2 (about 80 to 1260 ppm) which is laboriously removed by bubbling dry air through its volume.

Hoře uvedené nedostatky odstránené sposobom výroby kyseliny sírovej pre mikroelektroniku, podstata ktorého je v tom, že sa do vysokočistej kyseliny sírovej pre mikroelektroniku resp. v počiatočnej fáze do vody čistoty pre mikroelektroniku (s parametrami 18 MQcm1 a filtrovanej cez filtračně zariadenie s pórmi 0,2 /xm), absorbuje filtrovaný kysličník sírový získaný vytěsněním z olea a súčasne sa takto získaná, koncentrovaná kyselina sírová riedi na požadovaná koncentráciu op3ť vodov čistoty pre mikroelektroniku.The above-mentioned drawbacks have been eliminated by the method of production of sulfuric acid for microelectronics, the essence of which is that the high-purity sulfuric acid for microelectronics and the like is added to the process. In the initial phase, microelectronics grade water (with parameters of 18 MQcm 1 and filtered through a 0.2 µm filter device) absorbs the filtered sulfuric oxide obtained by displacement from the oleum and at the same time concentrates the concentrated sulfuric acid obtained to the desired concentration again. water purity for microelectronics.

Vynález je možné využit na výrobu kyseliny sírovej pre mikroelektroniku, ktorá nájde využitie hlavně pri výrobě integrovaných obvodov a iných elektrotechnických súčiastok v elektrotechnickom priemysle.The invention is applicable to the production of sulfuric acid for microelectronics, which will find use mainly in the production of integrated circuits and other electrical components in the electrical industry.

Příklad 1Example 1

Z 23 % hmot. olea bol zohriatím vytěsněný SO3, ktorý bol cez filtračně zariadenie přivedený do absorpčnej banky, kde bola daná 98,4 % hmot. kyselina sírová kvality pre mikroelektroniku. Pri cirkulácii absorpčnej kyseliny sírovej sa zvýšila jej koncentrácia na 99,5 % hmot. Táto kyselina bola následné zriadená vodou čistoty pre mikroelektroniku na koncentráciu 96,2% hmot., a mala následovně parametre: odparok 3 . . 104 % hmot., sírany 4 . 104 % hmot., ťažké kovy 3 . 105 % hmot., chloridy 3 . 106 pere. hmot., lítium menej ako 166 hmot., hořčík menej ako 3 . 15 6 % hmot.23% wt. The olea was displaced by heating SO3, which was fed through a filter device to an absorption flask, where 98.4 wt. quality sulfuric acid for microelectronics. During the circulation of absorbing sulfuric acid, its concentration increased to 99.5% by weight. This acid was subsequently set up with a water of purity for microelectronics to a concentration of 96.2% by weight, and had the following parameters: residue 3. . 10 4 % by weight, sulphates 4. 10 4 % by weight, heavy metals 3. 10 5 % by weight, chlorides 3. 10 6 pere. wt., lithium, less than 16 6 wt., Mg up to 3. 15 6 wt.

Počet častíc vilo velkostnom intervale:Number of particles per size range:

až 5 μΐη bol 9 670 až 25 /tm bol 350 nad 25 μτη bol 36to 5 μΐη was 9 670 to 25 / tm was 350 above 25 μτη was 36

Příklad 2Example 2

Postup bol rovnaký ako v prvom případe, avšak počas absorpcie SO2 sa kontinuálně přidávala voda čistoty pre mikroelektroniku, a tak sa udržiavala konštantná koncentrácia absorpčnej kyseliny v rozmedzí 98,3 až 98,6 % hmot. Súčasne bola táto kyselina odoberaná a dorieďovaná na koncentráciu 96,3 % hmot. pri súčasnom chladení zariadenia vodou. Takto získaná kyselina sírová mala následovně parametre: odparok 2 . 104 % hmot., sírany 2 . 104 % hmot., ťažké kovy 3 . 105 % hmot., sodík 4 . 105 pere. hmot., draslík 2 . 106 % hmot., vápník 166 % hmot., hořčík menej ako 3 . 10 % hmot.The procedure was the same as in the first case, but during the absorption of SO 2, microelectronics grade water was continuously added to maintain a constant concentration of the absorbing acid in the range of 98.3 to 98.6% by weight. At the same time, the acid was collected and graded to a concentration of 96.3% by weight. while cooling the device with water. The sulfuric acid thus obtained had the following parameters: residue 2. 10 4 % by weight, sulphates 2. 10 4 % by weight, heavy metals 3. 10 5 % by weight, sodium 4. 10 5 pere. wt., potassium 2. 10 6 % by weight, calcium 16 6 % by weight, magnesium less than 3%. _O 10% by weight.

SWITH

Počet častíc vilo veikostnom intervale: 1 až 5 μϊα bol 6 354 až 25 μτη bol 937 nad 25 μία bol 84Number of particles vilo size interval: 1 to 5 μϊα was 6 354 to 25 μτη was 937 over 25 μία was 84

Claims (2)

1. Spósob výroby kyseliny sírovej kvality pře mikroelektroniku vyznačujúci sa tým, že sa oxid sírový tepelne vytěsněný z oleo zavádza do vody a/alebo zriedenej kyseliny sírovej kvalit pre mikroelektroniku.Method for producing microelectronics-quality sulfuric acid, characterized in that sulfuric oxide thermally displaced from the oleo is introduced into water and / or microelectronic-grade diluted sulfuric acid. VYNALEZUWe claim: 2. Spósob pódia bodu 1 vyznačujúci sa tým, že případné nečistoty strhávané plynným oxidom sírovým sa zachytávajú filtrom.2. The method of claim 1, wherein any impurities entrained in sulfur trioxide gas are collected by a filter.
CS85780A 1985-02-05 1985-02-05 Method of microelectronics quality sulphuric acid production CS259353B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS85780A CS259353B1 (en) 1985-02-05 1985-02-05 Method of microelectronics quality sulphuric acid production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS85780A CS259353B1 (en) 1985-02-05 1985-02-05 Method of microelectronics quality sulphuric acid production

Publications (2)

Publication Number Publication Date
CS78085A1 CS78085A1 (en) 1988-03-15
CS259353B1 true CS259353B1 (en) 1988-10-14

Family

ID=5340558

Family Applications (1)

Application Number Title Priority Date Filing Date
CS85780A CS259353B1 (en) 1985-02-05 1985-02-05 Method of microelectronics quality sulphuric acid production

Country Status (1)

Country Link
CS (1) CS259353B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047804A1 (en) * 1999-12-28 2001-07-05 Merck Patent Gmbh Method for producing high-purity sulphuric acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047804A1 (en) * 1999-12-28 2001-07-05 Merck Patent Gmbh Method for producing high-purity sulphuric acid

Also Published As

Publication number Publication date
CS78085A1 (en) 1988-03-15

Similar Documents

Publication Publication Date Title
CA1080938A (en) Method of extracting and recovering mercury from gases
CA1119387A (en) Process for the purification of industrial waste gases
DE2462681C2 (en) Process for separating nitrogen oxides from exhaust gas
US3855386A (en) Catalytic fused salt extraction process for removal of sulfur oxides from flue or other gases
AU2013257463B2 (en) A method of recovering sulfur dioxide and heavy metals from metallurgical flue gas
WO2019016808A1 (en) Catalytic oxidation of nox/sox in flue gases with atmospheric oxygen as the oxidation reagent
CN109368668B (en) Waste sulfuric acid treatment method
EP0679426A1 (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
CA1201872A (en) Process and apparatus for the removal of mercury from sulfur dioxide-bearing hot and moist gases
FI117617B (en) A method for removing mercury from a gas
US4366134A (en) Flue gas desulfurization process
JPS63197521A (en) Method of removing gaseous mercury from gas
CS259353B1 (en) Method of microelectronics quality sulphuric acid production
US3251649A (en) Process of producing sulfuric acid
GB1421646A (en) Purification of hydrogen fluoride
US3508868A (en) Method of treating exhaust gases containing sulfur dioxide
JP4359513B2 (en) 15N production method and sulfuric acid or calcium sulfate production method using the same
US4041142A (en) Method for removing sulfur oxide from waste gases and recovering elemental sulfur
JPS602896B2 (en) Method for removing mercury from smelting exhaust gas
CN112079366B (en) Method for separating and recovering sodium nitrate and sodium sulfate from low-temperature flue gas oxidation denitration absorption liquid
RU2167212C2 (en) Method of processing material based on carbon and containing noble metal
CN1120018A (en) Method of wet-extraction for arsenic
JPH08252427A (en) Method for eliminating so2 from so2- containing gas by forming directly elementary sulfur
SU1729277A3 (en) Method of nitrogen oxides removal from excreted gases
JP5057024B2 (en) Method and apparatus for treating selenium-containing water