CS259289B1 - Method of yeast's cytoplasmatic content liberation by means of induced autolysis - Google Patents
Method of yeast's cytoplasmatic content liberation by means of induced autolysis Download PDFInfo
- Publication number
- CS259289B1 CS259289B1 CS8610163A CS1016386A CS259289B1 CS 259289 B1 CS259289 B1 CS 259289B1 CS 8610163 A CS8610163 A CS 8610163A CS 1016386 A CS1016386 A CS 1016386A CS 259289 B1 CS259289 B1 CS 259289B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- autolysate
- yeast
- sodium chloride
- content
- autolysis
- Prior art date
Links
- 208000035404 Autolysis Diseases 0.000 title claims abstract description 9
- 206010057248 Cell death Diseases 0.000 title claims abstract description 9
- 230000028043 self proteolysis Effects 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title claims description 28
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 37
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 36
- 239000011780 sodium chloride Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims abstract description 4
- 230000001086 cytosolic effect Effects 0.000 claims description 3
- 102000005877 Peptide Initiation Factors Human genes 0.000 abstract description 2
- 108010044843 Peptide Initiation Factors Proteins 0.000 abstract description 2
- 235000019441 ethanol Nutrition 0.000 description 13
- 239000006228 supernatant Substances 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 10
- 239000000725 suspension Substances 0.000 description 8
- 210000002421 cell wall Anatomy 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 230000002101 lytic effect Effects 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- 230000002358 autolytic effect Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 102000005367 Carboxypeptidases Human genes 0.000 description 1
- 108010006303 Carboxypeptidases Proteins 0.000 description 1
- 241000186221 Cellulosimicrobium cellulans Species 0.000 description 1
- 241000222511 Coprinus Species 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- 241000237369 Helix pomatia Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000000164 protein isolation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Uvedené riešenie rozšiřuje paletu doposial' používaných iniciačných faktorov autolýzy. Podstata riešenia spočívá v tom že na vstupnú surovinu o sušině 5 až 30 % hmot. sa pósobí aktívnym autolyzátom v objemovom pomere 1 : 3 až 1 : 12, zmes sa lyžuje za miešania pri teplote 45 až 55 °C počas 5 až 30 hodin. Na vstupnú surovinu sa súčasne s autolyzátom móže pósobiť etanolom v hmotnostnom pomere 1 : 99 až 1 : 9 a/alebo chloridom sodným v hmotnostnom pomere 1 : 999 až 1 : 9.This solution extends the palette so far used autolysis initiation factors. The essence of the solution lies in the fact that a feedstock with a dry matter content of 5 to 30 wt. is treated with active autolysate in volume a ratio of 1: 3 to 1: 12, the mixture is lysed with stirring at 45-55 ° C during 5 to 30 hours. The feedstock is simultaneously with autolysate may be ethanol-induced in a weight ratio of 1: 99 to 1: 9 and / or sodium chloride in weight 1: 999 to 1: 9.
Description
Vynález sa týká spósobu uvoíňovania cytoplazmatického obsahu kvasiniek indukovanou autolýzou za účelom získavania potravinářsky a farmaceuticky využitelných buňkových komponent.The invention relates to a method of releasing the cytoplasmic content of yeast by induced autolysis to obtain food and pharmaceutically useful cellular components.
Na rozrušenie bunkovej steny a tým sprístupnenie proteínov a ostatných zložiek biomasy kvasiniek sa používajú rózne fyzikálně, chemické a biochemické spósoby dezintegrácie, pričom potřebný stupeň rozrušenia buňky sa dosahuje často kombináciou týchto metod.Different physical, chemical and biochemical disintegration methods are used to disrupt the cell wall and thereby make proteins and other components of yeast biomass available, and the necessary degree of cell disruption is often achieved by a combination of these methods.
Jednou z fyzíkálnych metod dezintegrácie je balotínová dezlntegrácia, čo je vlastně drvenie alebo mletie biomasy v zariadeniach s róznymi abrazívami (Mogren, H., Lindblom, H., Hedenskog, G., Biotechnol. Bioeng. 16, 261—274, 1974). Nevýhodou tohto spósobu je poměrně velký otěr abrazíva, s čím súvisí potřeba viacnásobného premývania a lokálně zahrievanie susepnzie vyžadujúce chladenie.One of the physical methods of disintegration is ballotin disintegration, which is actually the crushing or grinding of biomass in plants with different abrasives (Mogren, H., Lindbl, H., Hedenskog, G., Biotechnol. Bioeng. 16, 261-274, 1974). The disadvantage of this method is the relatively high abrasion of the abrasive, which entails the need for multiple washing and locally heating susepnzie requiring cooling.
Vysokotlaková metoda dezintegrácie (Brookman, J. S., Biotechnol. Bioeng. 17, 465—479, 1975} spočívá v tom, že suspenzia kvasiniek prechádza z oblasti vysokého tlaku cez trysky dezintegračného zariadenia do oblasti normálneho tlaku. Rozbitie buniek je v priamej závislosti na hodnotě hydrostatického tlaku a na rýchlosti změny tlaku v prostředí, v ktorom sú buňky suspendované. Aj pri poměrně vysokých hodnotách tlaku sa však tento spósob vyznačuje poměrně nízkou účinnosťou, nesúcou so sebou nutnost viacnásobne opakovat proces, čím vznikajú fragmenty róznych velkostí a problémy pri ich separácii. Navýše zahrievanie pri změnách tlaku móže viesť k inaktivácii intrancelulárnych enzýmov.The high-pressure disintegration method (Brookman, JS, Biotechnol. Bioeng. 17, 465-479, 1975} consists in the yeast suspension passing from the high pressure region through the disintegrator nozzles to the normal pressure region. Cell breakage is directly related to the hydrostatic value. However, even at relatively high pressure levels, this method is characterized by relatively low efficiency, with the necessity to repeat the process multiple times, resulting in fragments of different sizes and problems in their separation. heating under pressure changes may lead to inactivation of intrancellular enzymes.
Principem dezintegrácie explozívnou dekompresiou je nasýtenie suspenzie vhodným plynom pod tlakom a rýchle zníženie tlaku (Nesterov, A. I., Stavoroitova, G. A., Prikl. Biochim, Mikrobiol. 11, 593—597, 1975). Následkom vyrovnávania tlakového rozdielu vo vnútri buňky a jej okolí dochádza k rozrušeniu buňkových stien. Vnútrobunečný obsah však zostáva z velkej časti vnútri buniek, natoofko rozrušená buňka po krátkodobom pósobení dezintegrácie už nie je mechanicky namáhaná. To si vyžaduje nutnost viacnásobného opakovania dezintegrácie.The principle of disintegration by explosive decompression is to saturate the suspension with a suitable gas under pressure and to rapidly reduce the pressure (Nesterov, A.I., Stavoroitova, G.A., Prikl. Biochim, Microbiol. 11, 593-597, 1975). As a result of equalizing the pressure difference inside and around the cell, cell walls are destroyed. However, the intracellular content remains largely within the cells, so that the cell is severely disrupted after a brief disintegration effect is no longer mechanically stressed. This requires multiple repetitions of disintegration.
Okrem týchto najznámejších spósobov dezintegrácie sa zriedkavo využívá aj ultrasonikácia, zmrazovanie, sušenie.In addition to these well-known methods of disintegration, ultrasonication, freezing, drying are rarely used.
Chemické spósoby spočívajú v pósobení určitých látok (napr. tiolovj na zložky bunkovej steny, čím sa buňková stená labilizuje až ropzadá (Shetty, J. K., Kinsella, J. E., Biotechnol. Bioeng. 20, 755—766, 1978].Chemical methods involve the action of certain substances (e.g., thiols on cell wall components, whereby the cell wall is labilized to crude oil (Shetty, J. K., Kinsella, J. E., Biotechnol. Bioeng. 20, 755-766, 1978).
Biochemické metody sú založené na enzymatickom pósobení cudzleho alebo vlastného lytického aparátu na bunkovú stenu. V experimentálnych podmienkach je hojné rozšířené napíná využívanie exogénnych systémov (Phaff, M. J., Adv. Chem. Ser. 160, 249—282, 1977) získaných z baktérií Arthrobacter luteus, Bacillus subtilis, húb Oerskowia, Albus, Coprinus, Flavus a dalších, alebo- sa v laboratórnom rozsahu využívá tráviaca šťava slimáka Helix pomatia.Biochemical methods are based on the enzymatic action of a foreign or own lytic apparatus on the cell wall. In experimental conditions, the widespread tensions of exogenous systems (Phaff, MJ, Adv. Chem. Ser. 160, 249-282 (1977)) obtained from Arthrobacter luteus, Bacillus subtilis, Oerskowia, Albus, Coprinus, Flavus and others, or - the digestive juice of Helix pomatia is used on a laboratory scale.
Poměrně menej sa využívá endogénny lytický systém kvasiniek (Chrenova, Ν. M., Bezrukov, M. G., Kogan, A. S., Sergejev, W. A., Nahrung 25-, 837—844, 1981). Buňka za určitých okolností (vyčerpáme živin, nevhodná teplota, Ph) produkuje lytické enzýmy — andopeptidázy, karboxypeptidázy, aminopeptidázy, kyslú řosfatázu, j3-(l,3)glukanázu, ktoré pósohie na vlastnú bunkovú stenu a rozkladajú ju. Tento proces — autolýza priebeha v konečnom dósledku až dorozloženia buniek na základné zložky ako sú aminokyseliny, patidy, nukleotidy, nízkomolekulové sacharidy, vitamíny atď. Ak sa však vedle len do určitého požadovaného stupňa, móže slúžiť ako vhodný prostriedok na dezintegráciu buňky a uvoíňovanie proteínov a iných vnútrobunečných zložiek do prostredia. Doba prirodzeného autolytického procesu je poměrně dlhá (niekolko dní), čo vyvolává riziko bakteriálnej kontaminácie.The endogenous lytic system of yeasts is relatively less used (Chrenova, M., Bezrukov, M.G., Kogan, A.S., Sergejev, W.A., Nahrung 25-, 837-844, 1981). The cell under certain circumstances (depleted of nutrients, inappropriate temperature, Ph) produces lytic enzymes - andopeptidases, carboxypeptidases, aminopeptidases, acid phosphatase, β- (1,3) glucanase, which affects and decomposes its own cell wall. This process - autolysis proceeds ultimately to the decomposition of cells into basic components such as amino acids, patides, nucleotides, low-molecular carbohydrates, vitamins, etc. However, if only to a certain degree desired, it can serve as a suitable means for disintegrating the cell and releasing proteins and other intracellular components into the environment. The time of the natural autolytic process is relatively long (several days), causing a risk of bacterial contamination.
Tento nedostatok v podstanej miere odstraňuje spósob podía vynálezu, ktorého podstata spočívá v tom, že na vstupná surovinu o sušině 5 až 30 % hmot. sa pósobí aktívnym autolyzátom v objemovom pomere 1 : 3 až 1 : 12, zmes sa lyžuje za miešania pri teplote 45 až 55 °C počas 5 až 30 hodin. Na vstupná surovinu sa súčasne s autolyzátom móže pósobiť etanolom v hmotnostnom pomere 1 : 99 až 1 : 9 a/alebo- chloridom sodným v hmotnostnom pomere 1 ku 999, až; 1 : 9.This drawback is largely eliminated by the process according to the invention, which consists in that from 5 to 30 wt. is treated with active autolysate in a volume ratio of 1: 3 to 1: 12, the mixture is lysed with stirring at 45 to 55 ° C for 5 to 30 hours. The feedstock may be treated simultaneously with the autolysate with ethanol in a weight ratio of 1: 99 to 1: 9 and / or with sodium chloride in a weight ratio of 1 to 999 to; 1: 9.
Spósob podía vynálezu rozšiřuje paletu doposial1 používaných inřciačných faktorov autolýzy. Spočívá v iniciácii autolýzy přidáním. vhodného množstva už zhyzovanej suspenzie tohoistého mikroorganizmu. V pridávanom lyzáte sú už neprodukované a uvolněné lytické enzýmy, ktoré móžu hned atakovat buňkové steny,, tieto sa stávajú prístupnejšle vlastnému lýtickému systému, ktorý sa zatial utvoří a proces rozloženia buňky sa takto podstatné skráti na 5 až 30 hodin.The process of the invention extends the range of 1 heretofore used inřciačných factors autolysis. It consists in initiating autolysis by addition. a suitable amount of a suspension of the same microorganism already hydrolyzed. In the added lysate, lytic enzymes are no longer produced and released, which can immediately attack the cell walls.
Kombináciou s inými iniciačnými faktormi, ako je chlorid sodný a etanol sa ešte zefektivni pósobenie autolytického systému. Ak ako kritérium autolytickej dezintegrácie buniek používáme množstvo uvolněných proteínov, tak potom sa týmto spósobom, t. j. prídavkom etanolu, chloridu sodného a aktívneho autolyzátu k suspenzii za niekolko hodin z buňky uvolní 50—80 θ/o z celkových proteínov, stanovených Lowryho metodou.Combination with other initiation factors, such as sodium chloride and ethanol, makes the autolytic system more effective. If the amount of protein released is used as a criterion for autolytic cell disintegration, then in this way, e.g. j. adding ethanol, sodium chloride and active autolysate to the suspension in a few hours releases 50-80% of total proteins determined by the Lowry method from the cell.
Vhodný poměr přidávaného aktívneho autolyzátu k biomase zabezpečuje, že sa k mikrobiálnej suspenzii přidá dostatočné množstvo lytických enzýmov a přitom čo ných spósoboch iniciácie autolýzy udává tanajmenej ulitizovatefných živin. bulka 1.A suitable ratio of the added active autolysate to biomass ensures that a sufficient amount of lytic enzymes is added to the microbial suspension, while indicating at least the ulitizable nutrients in what ways of initiating autolysis. bulka 1.
Množstvo uvolněných proteínov pri rózTabulka 1Amount of Protein Released by Rosy Table 1
Množstvo proteínov uvolněných do supernatantu (v %) z póvodného obsahu proteínov v intaktnom droždí, pri roznych dobách a spósoboch iniciácie autolýzy. Etanol, respektive chlorid sodný přidávaný vo· výsledČas 50 °C 50 °C (h) NaClThe amount of protein released into the supernatant (in%) of the original protein content of the intact yeast, at various times and methods of initiating autolysis. Ethanol and sodium chloride, respectively, added as a result of 50 ° C 50 ° C (h) NaCl
Příklad 1 te 3 1 kvasničnej suspenzie o sušině 10 % a obsahu proteínov 32,8 mg/ml sa přidá 600 ml štandardného autolyzátu, 30 g chloridu sodného, 150 g etanolu a zmes sa inkubuje za miešania pri 50 °C. Po 5 hodinách sa suspenzia scentrifuguje, pričom sa získá 730 g sedimentu, využitelného na izoláciu například ergosterolu a 2 812 ml supernatantu o sušině 4,1 % a obsahu proteínovEXAMPLE 1 A 3 L yeast suspension having a dry weight of 10% and a protein content of 32.8 mg / ml is added with 600 ml of standard autolysate, 30 g of sodium chloride, 150 g of ethanol and the mixture is incubated with stirring at 50 ° C. After 5 hours, the suspension is centrifuged to give 730 g of sediment useful for the isolation of, for example, ergosterol and 2812 ml of a 4.1% solids supernatant with a protein content
15,5 mg/ml využitelného na izoláciu proteínov.15.5 mg / ml useful for protein isolation.
Příklad 2Example 2
Postup rovnaký ako v příklade 1, lýza sa však nepřeruší po 5. hodině, ale po 24. hodině. Po centrifugách sa z rovnakého množstva suspenzie získá 639 g sedimentu a 3 044 ml supernatantu o sušině 6 % a obsahu proteínov 25 mg/ml.The procedure was the same as in Example 1, but the lysis was not interrupted after 5 o'clock but after 24 o'clock. After centrifugation, 639 g of sediment and 3044 ml of a 6% solids supernatant with a protein content of 25 mg / ml are obtained from the same amount of suspension.
Příklad 3Example 3
Postup rovnaký ako v příklade 2, přidá sa však 1 000 ml aktívneho autolyzátu a 60 g chloridu sodného. Získaný supernatant má sušinu 9,1 % a obsah proteínov 48,5 mg/ml. Příklad 4The procedure is the same as in Example 2 except that 1000 ml of the active autolysate and 60 g of sodium chloride are added. The supernatant obtained has a dry matter content of 9.1% and a protein content of 48.5 mg / ml. Example 4
Postup rovnaký ako v příklade 2, přidá sa však 3 g chloridu sodného a 30 g etylaikoholu. Získaný supernatant má sušinu 7,4 % a obsah proteínov 43,0 mg/ml.The procedure is the same as in Example 2, except that 3 g of sodium chloride and 30 g of ethyl alcohol are added. The supernatant obtained has a dry matter of 7.4% and a protein content of 43.0 mg / ml.
Příklad 5Example 5
Postup rovnaký ako v příklade 2, přidá sa však 150 g chloridu sodného a 300 g etylaikoholu. Získaný supernatant má sušinu 11 % a obsah proteínov 44 mg/ml.The procedure is the same as in Example 2, except that 150 g of sodium chloride and 300 g of ethyl alcohol are added. The supernatant obtained has a dry weight of 11% and a protein content of 44 mg / ml.
nej koncentrácii 5 % hmot., autolyzát v množstve zodpovedájúcom 1/6 objemu vstup-5% by weight, autolysate in an amount corresponding to 1/6 of the
Postup rovnaký ako v příklade 2, přidá sa 500 ml aktívneho autolyzátu, 60 g chloridu sodného a 30 g etylaikoholu. Získaný supernatant má sušinu 8,2 θ/o a obsah proteínov 44 mg/ml.Following the procedure of Example 2, 500 ml of active autolysate, 60 g of sodium chloride and 30 g of ethyl alcohol are added. The supernatant obtained has a dry weight of 8.2 θ / o and a protein content of 44 mg / ml.
Příklad 7Example 7
Postup rovnaký ako v příklade 2, přidá sa však 150 g chloridu sodného a 500 ml aktívneho autolyzátu, získaný supernatant má sušinu 11,2 % a obsah proteínov 41,5 mg/ml. Příklad 8The procedure is the same as in Example 2, except that 150 g of sodium chloride and 500 ml of active autolysate are added, the supernatant obtained having a dry matter of 11.2% and a protein content of 41.5 mg / ml. Example 8
Postup rovnaký ako v příklade 2, přidá sa však 500 ml aktívneho autolyzátu, 3 g chloridu sodného a 300 g etylaikoholu. Získaný supernatant má sušinu 6,9 % a obsah proteínov 46,2 mg/ml.The procedure is the same as in Example 2, except that 500 ml of active autolysate, 3 g of sodium chloride and 300 g of ethyl alcohol are added. The supernatant obtained has a solids content of 6.9% and a protein content of 46.2 mg / ml.
Příklad ‘9Example ‘9
Postup rovnaký ako v příklade 2, přidá sa však 100 ml aktívneho autolyzátu, 150 g chloridu sodného^ a 30 g etylaikoholu, Získaný supernatant má sušinu 10,7 % a obsah proteínov 46,2 mg/ml.The procedure was as in Example 2, except that 100 ml of the active autolysate, 150 g of sodium chloride and 30 g of ethyl alcohol were added. The supernatant obtained had a dry matter of 10.7% and a protein content of 46.2 mg / ml.
Příklad 10Example 10
Postup rovnaký ako v příklade 2, přidá sa však 100 ml aktívneho autolyzátu, 3 g chloridu sodného. Získaný supernatant má sušinu 6,2 % a obsah proteínov. 36,2 mg/ml. Příklad 11The procedure was the same as in Example 2, except that 100 ml of active autolysate, 3 g of sodium chloride were added. The supernatant obtained has a dry matter of 6.2% and a protein content. 36.2 mg / ml. Example 11
Postup rovnaký ako v příklade 2, přidá sa však 100 ml aktívneho autolyzátu, 60 g chloridu sodného a 300 g etylaikoholu. Získaný supernatant má sušinu 7,0 % a obsah proteínov 40,5 mg/ml.The procedure is the same as in Example 2, except that 100 ml of the active autolysate, 60 g of sodium chloride and 300 g of ethyl alcohol are added. The supernatant obtained has a dry matter of 7.0% and a protein content of 40.5 mg / ml.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS8610163A CS259289B1 (en) | 1986-12-29 | 1986-12-29 | Method of yeast's cytoplasmatic content liberation by means of induced autolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS8610163A CS259289B1 (en) | 1986-12-29 | 1986-12-29 | Method of yeast's cytoplasmatic content liberation by means of induced autolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CS1016386A1 CS1016386A1 (en) | 1988-02-15 |
CS259289B1 true CS259289B1 (en) | 1988-10-14 |
Family
ID=5448195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS8610163A CS259289B1 (en) | 1986-12-29 | 1986-12-29 | Method of yeast's cytoplasmatic content liberation by means of induced autolysis |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS259289B1 (en) |
-
1986
- 1986-12-29 CS CS8610163A patent/CS259289B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS1016386A1 (en) | 1988-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Merrick et al. | Depolymerization of poly-β-hydroxybutyrate by an intracellular enzyme system | |
John et al. | Purification and some properties of five endo-1, 4-β-D-xylanases and β-D-xylosidase produced by a strain of Aspergillus niger | |
Malamy et al. | Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation | |
Harrison | Bacterial cell disruption: a key unit operation in the recovery of intracellular products | |
Shimosaka et al. | Chitosanase from the plant pathogenic fungus, Fusarium solani f. sp. phaseoli: purification and some properties | |
US5306637A (en) | Method for recovery of intracellular material by disruption of microbial cells with carbon dioxide under pressure | |
KR970043056A (en) | Extraction method of useful components in cultured mycelium | |
US3991215A (en) | Manufacture of yeast protein isolate having a reduced nucleic acid content by a thermal process | |
Vogels et al. | Combination of enzymatic and/or thermal pretreatment with mechanical cell disintegration | |
Ferguson et al. | Purification and Properties of an Inhibitor of the Tryptophan‐Synthase‐Inactivating Enzymes in Yeast | |
Kawata et al. | Autolytic formation of spheroplasts and autolysis of cell walls in Clostridium botulinum type A | |
US3862112A (en) | Alkali extraction of microbial cellular proteins at high temperature | |
Brock | Mating reaction in the yeast Hansenula wingei: Preliminary observations and quantitation | |
US3996104A (en) | Process for preparing from a microbial cell mass a protein concentrate having a low nucleic acid content, and the protein concentrate thus obtained | |
Souzu | Location of polyphosphate and polyphosphatase in yeast cells and damage to the protoplasmic membrane of the cell by freeze-thawing | |
CS259289B1 (en) | Method of yeast's cytoplasmatic content liberation by means of induced autolysis | |
Satomura et al. | Studies on the Glucanase of Sclerotinia Libertiana: Part I. Activity of the Glucanase on Glucans of Yeast and Sclerotia of the Fungus | |
Trilisenko et al. | The content and chain length of polyphosphates from vacuoles of Saccharomyces cerevisiae VKM Y-1173 | |
Kobayashi et al. | Preparation and evaluation of an enzyme which degrades yeast cell walls | |
Brock | Protein as a specific cell surface component in the mating reaction of Hansenula wingei | |
Monnier et al. | Enzyme activities associated with an invertebrate iridovirus: protein kinase activity associated with iridescent virus type 6 (Chilo iridescent virus) | |
Subramanyam et al. | An enzymic method for the determination of chitin and chitosan in fungal cell walls | |
Barsukov et al. | Manipulation of Phospholipid Composition of Membranes with the Aid of Lipid Exchange Proteins: Incorporation of Phosphatidylcholine into Protoplasts of Micrococcus lysodeikticus | |
McKeehan et al. | Two distinct transfer enzymes from rabbit reticulocytes with ribosome dependent guanosine triphosphate phosphohydrolase activity | |
Cortez et al. | Extraction by reversed micelles of the intrecellular enzyme xylose reductase |