CS256183B1 - Method of ferromagnetic materials' stresses measuring and device for realization of this method - Google Patents
Method of ferromagnetic materials' stresses measuring and device for realization of this method Download PDFInfo
- Publication number
- CS256183B1 CS256183B1 CS863547A CS354786A CS256183B1 CS 256183 B1 CS256183 B1 CS 256183B1 CS 863547 A CS863547 A CS 863547A CS 354786 A CS354786 A CS 354786A CS 256183 B1 CS256183 B1 CS 256183B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- measured
- output
- stress
- magnitude
- ferromagnetic materials
- Prior art date
Links
- 239000003302 ferromagnetic material Substances 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000005291 magnetic effect Effects 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims abstract description 7
- 230000005284 excitation Effects 0.000 claims description 16
- 238000005070 sampling Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 abstract description 4
- 239000010959 steel Substances 0.000 abstract description 4
- 230000002787 reinforcement Effects 0.000 abstract description 2
- 238000000691 measurement method Methods 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- 230000008859 change Effects 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000013208 measuring procedure Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000011513 prestressed concrete Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Bezkontaktný sposob merania napňtoeti feromagnetických materiálov využívá magnetoelastieký jav, pričom sa stanovuje poměr celkových permeabilft meraného materiálu pFi dvoch různých hodnotách intenzity budiaceho magnetického póla. Riešenie sa týká problematiky bezkontaktného merania napátosti feromagnetického^ materiálu, sily posobiaceji na feromagnetický materiál a momentu sily působiaceho na feromagnetický materiál. Zariadenie a spůsob merania napatosti feromagnetických materiálov sa může použit na meranie tlakových a tahových sil', momentu sily, krútiaeeho momentu, určovanie polohy a krytia ocelověj výstuže v neferomagnetických materiáloch, hfadanie nehomogenít, vnútorných pnutí a trhlin vo feromagnetických materiáloch a sledovanie dynamiky ocelových konštrufceií.Contactless measurement methods of ferromagnetic materials uses magnetoelastic phenomenon while determining the ratio total permeabilft of measured material pFi two different intensity values exciting magnetic pole. solution concerns the issue of contactless measurement the tension of the ferromagnetic material, forces acting on ferromagnetic material and the moment of force acting on the ferromagnetic material. Device and method of measurement of ferromagnetic materials can be used for pressure and tensile measurements forces, moment of force, torque, positioning and steel cover reinforcements in non-ferromagnetic materials searching for inhomogeneities, internal stresses, and cracks in ferromagnetic materials a monitoring of steel constriction dynamics.
Description
Vynález rieši sp&sob merania napatosti feromagnetických materiálov a zariadenie na uskutočňovanie tohoto sposobu.The invention provides a method for measuring the state of stress of ferromagnetic materials and an apparatus for carrying out this method.
Problematika bezkontaktného merania napátosti konštrukčných ocelí nie je zatial' uspokojivo vyriešená. Vačšina známých metód využívá snímače, ktoré musia byť v priamom kontakte s meraným prvkom. V případe feromagnetických materiálov je možné využit změnu ich magnetických vlastností pri mechanickom namáhaní. Na tomto principe sú založené snímače využívajúce magnetoelastický, magnetoanizotropný a inverzný Wiedemannov jav. Všetky uvedené druhy snímačov majú vlastný magnetický obvod, zhotovený zo špeciálnej zliatiny a sú kontaktné, t. j. musia byť mechanickou súčasťou meraného prvku. Samotný meraný materiál bol využitý ako feromagnetické jádro snímača zatial' iba v jedinom případe pri konštrukcii dynamometra, určeného na meranie tahových sil v ocelových drůtoch a lanách. Vlastný snímač, tvořený budiacou a snímacou cievkou, je voíne nasunutý na meraný prvok, s ktorým vůbec nie je v kontakte. Dynamometer meria absolútnu změnu vratnej permeability meraného drůtu alebo lana, ktorá je úměrná působiacej sile. Nevýhodou tohto sposobu, okrem nutnosti používat velký budiaci příkon, je potřeba pre každý meraný prvok vopred, buď v laboratórnych podmienkach alebo v procese napínania, ak je s dostatočnou presnosťou známa působiaca sila, odmerať odpovedajúcu kalibračnú křivku, ktorá spolu so známou teplotou materiálu slúži pre vyhodnotenie všetkých dalších meraní napatosti tohoto prvku.The problem of noncontact measurement of structural steels is not yet satisfactorily solved. Most of the known methods use sensors which must be in direct contact with the measured element. In the case of ferromagnetic materials, it is possible to utilize a change in their magnetic properties under mechanical stress. On this principle are based sensors using magnetoelastic, magnetoanisotropic and inverse Wiedemann effect. All the above-mentioned types of sensors have their own magnetic circuit, made of a special alloy and are contact, i. j. they must be a mechanical part of the measured element. The measured material itself has been used as a ferromagnetic core of the sensor so far in only one case in the construction of a dynamometer designed for measuring tensile forces in steel wires and ropes. The actual sensor, consisting of the excitation and sensing coils, is freely slid onto the measured element, with which it is not in contact at all. The dynamometer measures the absolute change in the reversible permeability of the measured wire or rope, which is proportional to the applied force. The disadvantage of this method, apart from the necessity to use a large excitation power, is to measure the corresponding calibration curve which, together with the known material temperature, for each measured element beforehand, either under laboratory conditions or in the tensioning process. evaluation of all other stress measurements of this element.
Uvedené nedostatky odstraňuje vynález, ktorého podstata je v tom, že meranie sa uskutočňuje bezkontaktně pomocou magnetického póla, ktoré sa vytvoří v okolí meraného prvku budiacim prúdom s intenzitou li a zmeria sa odpovedajúca hodnota výstupného' napátia Ui, potom sa změní intenzita magnetického pol'a změnou intenzity budiaceho prúdu na hodnotu o intenzitě h a odmeria sa odpovedajúca hodnota výstupného napatia U2, nakoniec sa stanoví poměr výstupných napatí a pomocou jeho hodnoty a magnetoelastickej charakteristiky rovnakého druhu materiálu sa určí velkost napátosti meraného materiálu. Magnetoelastic•ká charakteristika sa stanoví v laboratórnych podmienkach určením závislosti posa odpovedajúca hodnota výstupného napameraného prvku, velkosti sily působiacej na působiacej sily alebo momentu sily, pričom pri každej zvolenej hodnotě napatosti sa v tla U2 a zostrojí sa závislost poměru výstupných napatí Ui a U2 od velkosti napatosti pole budiacim prúdom s intenzitou li a zmeokolí meraného prvku vytvoří magnetické ria sa odpovedajúca hodnota výstupného netického poía změnou intenzity budiaceho prúdu na hodnotu o intenzitě I2 a odmeria napatia U2, potom sa změní intenzita magmeraný prvok a velkosti momentu sily půním napatosti skúšaného prvku zvyšováním ného druhu materiálu postupným zvyšova-nieai· psoigdnu po ipideu· po4udnts.ÁA njeui sobiaceho na meraný prvok.The above-mentioned drawbacks are eliminated by the invention, which is based on the fact that the measurement is carried out non-contact by means of a magnetic pole, which is created around the measured element by an excitation current I1 and the corresponding output voltage Ui is measured. by changing the intensity of the excitation current to a value of intensity h, the corresponding value of the output voltage U2 is measured, finally the output voltage ratio is determined and its magnitude and the magneto-elastic characteristic of the same type of material are determined. The magneto-elastic characteristic is determined in the laboratory conditions by determining the dependence of the corresponding value of the output pumped element, the magnitude of the force applied to the applied force or the moment of force, whereby the ratio U1 and U2 is the field current by the field current with the intensity l1 and from the measured element creates a magnetic ria with the corresponding value of the output net field by changing the field current intensity to the value of I2 and measure the voltage U2, then change the magnitude and magnitude of the moment of the type of material by gradually increasing the pH after the addition of the material to the measured element.
Zariadenie na realizáciu popisovaného sposobu obsahuje snímač, tvořený budiacim solenoidem a snímacou cievkou s paralelné připojeným odporom, kde budiaci solenoid je napojený na zdroj prúdu a snímacia cievka na vstup integrátora, ktorého výstup je připojený na vstupy dvoch vzorkovacích zosilňovačov, pričom ich výstupy sú spojené so vstupmi diferenčného zosilňovača, ktorého' výstup je přepojený so vstupom ďalšieho vzorkovacieho zosilňovača, výstup ktorého je napojený na voltmeter.The apparatus for implementing the described method comprises a sensor consisting of an excitation solenoid and a sensing coil with a parallel connected resistor, wherein the exciting solenoid is connected to a power source and a sensing coil to an integrator input whose output is connected to inputs of two sampling amplifiers. the inputs of the differential amplifier, the output of which is coupled to the input of another sampling amplifier, the output of which is connected to a voltmeter.
Uvedený spůsob merania napatosti feromagnetických materiálov a zariadenie na jeho uskutočňovanie má výhody v tom, že pri použití malej a konštantnej rýchlosti premagnetovania meraného materiálu sa vylúčia straty na jeho zohrievanie vířivými prúdmi. Použitie impulzného zdroja a trojuholníkového· priebehu budiaceho prúdu podstatné zníži rozptýlený výkon a oproti doteraz používanej metóde zmenší na třetinu potřebný budiaci příkon. Stanovenie poměru odpovedajúcich výstupných napatí pri dvoch různých hodnotách budiaceho prúdu umožňuje určit velkost napatosti meraného prvku podl'a priemernej magnetoelastickej charakteristiky daného materiálu bez nutnosti vopred premerať konkrétnu vzorku meraného prvku, pričom je možné určit hodnotu napatosti príložným snímačom aj v případe, že sa jedná napr. o predpaté zabetonované lano. Teplotná kompenzácia snímača vylučuje posuv nulového bodu magnetoelastickej charakteristiky pri zmene teploty meraného prvku. Tým istým zariadením a snímačmi je možné bezkontaktně merať tlakové a tahové sily, moment sily, určovat polohu a krytle výstuže, híadať nehomogenity, vnútorné pnutia a trhliny vo feromagnetických materiálech a sledovat dynamiku namáhania feromagnetických prvkov.Said method for measuring the state of stress of ferromagnetic materials and the apparatus for carrying it out have the advantage that, by using a low and constant rate of magnetization of the measured material, losses for its heating by eddy currents are avoided. The use of a pulse source and a triangular excitation current waveform will substantially reduce the dissipated power and reduce the required excitation power to one third of the method used hitherto. Determining the ratio of the corresponding output voltages at two different excitation current values makes it possible to determine the magnitude of the measured element according to the average magnetoelastic characteristic of the material without having to pre-measure a particular sample of the measured element. . o prestressed concrete rope. The temperature compensation of the sensor eliminates the zero point shift of the magnetoelastic characteristic when the temperature of the measured element changes. With the same device and sensors it is possible to measure contact and tensile forces, moment of force, position and cover of reinforcement, to find inhomogeneities, internal stresses and cracks in ferromagnetic materials and to monitor the dynamics of ferromagnetic elements stress.
Spůsob a zariadenie podía vynálezu možno využit najma pri stanovovaní napatosti feromagnetických konštrukčných materiálov a pri skúškach najma v stavebníctve a strojárstve.The method and apparatus according to the invention can be used, in particular, in determining the stresses of ferromagnetic construction materials and in tests in construction and mechanical engineering in particular.
Na obrázku je znázorněná schéma zariadenia na meranie napatosti feromagnetických materiálov.The figure shows a diagram of a device for measuring the stress of ferromagnetic materials.
Zariadenie na meranie napatosti feromagnetických materiálov obsahuje snímač 1 tvořený budiacim solenoidom 2 a snímacou cievkou 3 s paralelné připojeným odporom 4, kde budiaci solenoid 2 je napojený na zdroj prúdu 5 a snímacia cievka 3 na vstup integrátora 6, ktorého· výstup je připojený na vstupy vzorkovacích zosilňovačov 7 a 8, pričom ich výstupy sú spojené so vstupmi diferenčného zosílňovača 9, výstup ktorého je připojený na vstup vzorkovacieho zosilňovača 10, jeho výstupné napatie sa meria voltmetrom 11.The apparatus for measuring the state of ferromagnetic materials comprises a sensor 1 consisting of an excitation solenoid 2 and a sensing coil 3 with a parallel resistor 4, wherein the excitation solenoid 2 is connected to a current source 5 and a sensing coil 3 to an integrator 6 input. the outputs of which are connected to the inputs of the differential amplifier 9, the output of which is connected to the input of the sampling amplifier 10, its output voltage being measured by a voltmeter 11.
Budiaci solenoid 2 nápoje iý na zdroj prúdu 5 vytvoří v okolí meranej vzorky magnetické pole s intenzitou H(t). V snímačej cievke 3 sa indukuje napatie úměrné časovej derivácii magnetického toku Φ(ί) cez plochu snímacej cievky. Na výstupe integrátora 6 dostaneme napatie úměrné okamžitej hodnotě magnetickej indukcie B(t) v meranej vzoake. Vzorkovacie zosilňovače 7 a 8 si zapam&tujú maximálnu a minimálnu hodnotu magnetickej indukcie a diferenčný zosilňovač 9 utvoří ich rozdiel, úměrný celkovej permeabilite meranej vzorky, ktorý sa po každom cykle premagnetovania přepíše do vzorkovacieho zosílňovača 10 a meria voltmetrom 11. Odpor 4 slúži na teplotnú kompenzáciu vzorky a snímača.The excitation solenoid 2 of the beverage per current source 5 creates a magnetic field with intensity H (t) in the vicinity of the sample to be measured. A voltage proportional to the time derivative of the magnetic flux ácii (ί) across the sensor coil surface is induced in the sensor coil 3. At the output of the integrator 6, a voltage proportional to the instantaneous value of the magnetic induction B (t) in the measured pattern is obtained. The sampling amplifiers 7 and 8 memorize the maximum and minimum values of the magnetic induction and the differential amplifier 9 makes a difference, proportional to the total permeability of the sample to be measured, which is rewritten into the sampling amplifier 10 and measured with a voltmeter 11. and sensor.
ββ
Příklad:Example:
Meraná vzorka: predpínacie lano Lp 15,5/ /1 620 MPaSample: pre-tensioned rope L p 15.5 / / 1620 MPa
S == 141,5 raiu2 S == 141.5 raiu 2
Merací snímač: válcový, vnútorný priemerMeasuring sensor: cylindrical, inside diameter
17 mm17 mm
Budiace prúdy: Ji = 1,25 A, Jz = 1,75 A Postup merania:Excitation currents: Ji = 1.25 A, Jz = 1.75 A Measuring procedure:
Meraná vzorka lana so snímačom sa upla v meracom lise s presnosfop čítania sily 1 %. Pósobiaca sila sa postupné zvyšovala až po roztrhnutie vzorky. Pri zvolených hodnotách sily sa odčítali výstupné napatia prístroja Ui a U2 (tab.j a stanovil sa poměr Uz/Ui — 1. Týmto sp&aoboip získaná kalibračná křivka je na přiloženou! obfázku, kde T je napStosť.The sample of the cable with the sensor was clamped in the measuring press with an accuracy reading of 1%. The force was gradually increased until the sample was torn. At the selected force values, the output voltages of the instrument U1 and U2 were read (Table 1 and the ratio Uz / Ui - 1 was determined). The calibration curve obtained is thus applied to the attached diagram, where T is the stress.
100 * < U2/U1-1 >100 * <U2 / U1-1>
Τ / ΜΡα /Τ / ΜΡα /
0.0000:00
100. 00100. 00
200. 00200. 00
300. 00300. 00
400. 00400. 00
500.00500.00
500. 00500. 00
700. 00700. 00
800. 00800. 00
900. 00900. 00
1000. 00100000
1100. 001100. 00
1200. 001200. 00
1300. 001300. 00
1400. 001400. 00
1500. 001500. 00
1600. 001600. 00
Magnetoelastická charakteristika lana Lp 15.5/1 620 MPaMagneto-elastic characteristics of the rope Lp 15.5 / 1 620 MPa
'''•r-Ttfji --·, ; J«'. , β τ»R-Ttfji -; J ''. , β τ »
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS863547A CS256183B1 (en) | 1986-05-15 | 1986-05-15 | Method of ferromagnetic materials' stresses measuring and device for realization of this method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS863547A CS256183B1 (en) | 1986-05-15 | 1986-05-15 | Method of ferromagnetic materials' stresses measuring and device for realization of this method |
Publications (2)
Publication Number | Publication Date |
---|---|
CS354786A1 CS354786A1 (en) | 1987-08-13 |
CS256183B1 true CS256183B1 (en) | 1988-04-15 |
Family
ID=5375875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS863547A CS256183B1 (en) | 1986-05-15 | 1986-05-15 | Method of ferromagnetic materials' stresses measuring and device for realization of this method |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS256183B1 (en) |
-
1986
- 1986-05-15 CS CS863547A patent/CS256183B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS354786A1 (en) | 1987-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3609530A (en) | Magnetic leakage field flaw detector with compensation for variation in spacing between magnetizer and test piece | |
Kvasnica et al. | Highly precise non-contact instrumentation for magnetic measurement of mechanical stress in low-carbon steel wires | |
US20130221950A1 (en) | Method and measurement arrangement for measuring mechanical stresses in ferromagnetic workpieces | |
Stegemann et al. | Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings | |
EP0007963A1 (en) | Method and device for measuring or detecting a mechanical change of state or its time derivative | |
US4689558A (en) | Non-destructive method of measuring the fatigue limit of ferromagnetic materials by use of the mechanical Barkhauser phenomenon | |
JP6352321B2 (en) | Non-contact stress measuring method and measuring apparatus by composite resonance method | |
JP2841153B2 (en) | Weak magnetism measurement method and device, and nondestructive inspection method using the same | |
CN115031893A (en) | Calibration method for detecting residual stress field based on magnetic anisotropy | |
RU2452928C2 (en) | Method of measuring deformation and apparatus for realising said method | |
Langman | Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength-part 2: biaxial stress | |
Ricken et al. | Improved multi-sensor for force measurement of pre-stressed steel cables by means of the eddy current technique | |
Langman | Some comparisons between the measurement of stress in mild steel by means of Barkhausen noise and rotation of magnetization | |
CS256183B1 (en) | Method of ferromagnetic materials' stresses measuring and device for realization of this method | |
JPH0784021A (en) | Weak magnetic measurement device and nondestructive inspection method using the same | |
Schoenekess et al. | Special constructed and optimised eddy-current sensors for measuring force and strain in steel reinforced concrete | |
SU1727004A1 (en) | Method of locating residual stress zones in ferromagnetic products | |
Bieńkowski | Some problems of measurement of magnetostriction in ferrites under stresses | |
SU949355A1 (en) | Method of determination of stresses in steel structures | |
RU2243515C2 (en) | Method of testing mechanical stresses in pipelines | |
JP3191726B2 (en) | Stress measuring method and apparatus utilizing magnetostriction effect | |
RU2073856C1 (en) | Method of determination of mechanical stresses and magneto-elastic transducer for determination of mechanical stresses | |
JPS59147253A (en) | On-line hardness measurement of steel plate | |
SU894624A1 (en) | Method of measuring internal demagnetizing field intensity of ferromagnetic specimen | |
Lambeck | Measuring mechanical properties of ferromagnetic materials by internal induction |