CS254182B1 - Device for analyzing arsenic content in gases - Google Patents
Device for analyzing arsenic content in gases Download PDFInfo
- Publication number
- CS254182B1 CS254182B1 CS858211A CS821185A CS254182B1 CS 254182 B1 CS254182 B1 CS 254182B1 CS 858211 A CS858211 A CS 858211A CS 821185 A CS821185 A CS 821185A CS 254182 B1 CS254182 B1 CS 254182B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- arsenic
- solution
- beta
- gas
- gases
- Prior art date
Links
- 239000007789 gas Substances 0.000 title claims description 36
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 title claims description 31
- 229910052785 arsenic Inorganic materials 0.000 title claims description 30
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 30
- 238000010521 absorption reaction Methods 0.000 claims description 13
- 239000000523 sample Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 abstract 2
- -1 alkyl polysaccharide Chemical class 0.000 abstract 2
- 229920001282 polysaccharide Polymers 0.000 abstract 2
- 239000005017 polysaccharide Substances 0.000 abstract 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 abstract 1
- 102000004190 Enzymes Human genes 0.000 abstract 1
- 108090000790 Enzymes Proteins 0.000 abstract 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 abstract 1
- 229920001503 Glucan Polymers 0.000 abstract 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract 1
- 239000002253 acid Substances 0.000 abstract 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 abstract 1
- 238000009585 enzyme analysis Methods 0.000 abstract 1
- 150000004676 glycans Chemical class 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 150000003839 salts Chemical class 0.000 abstract 1
- 229910052708 sodium Inorganic materials 0.000 abstract 1
- 239000011734 sodium Substances 0.000 abstract 1
- 238000006467 substitution reaction Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 1
- MJLGNAGLHAQFHV-UHFFFAOYSA-N arsenopyrite Chemical compound [S-2].[Fe+3].[As-] MJLGNAGLHAQFHV-UHFFFAOYSA-N 0.000 description 1
- 229910052964 arsenopyrite Inorganic materials 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Očelom riešenia je spůsob přípravy rozpustného chromolytického substrátu na stanovenie beta(l->3) glukanázy, EC 3.2.1.6. Uvecieného účelu sa dosiahne tak, že v prvom stupni sa beta (l->3 j glukán alkyluje etyienoxidom alebo beta-chlóretylénsulfonátom sodným alebo kyselinou monochlóroctovou v alkalickom prostředí na stupeň substitúcie 0,35 až 0,8 a v druhom stupni sa na alkyl-polysacharid naviaže farbivo; dvojsodná sol kyseliny 8-amíno-[3-(sulfoetylsulfonyl) anilíno ] 6-ant.rachinon-sulfonovej v množstve 6 až 10 % hmot. na hmotnost polysacharidu pri teplote 15 až 25 °C a koncentrácii hydroxidu sodného 1,0 až 3,0 % nmot. po dobu 2 až 4 hodin. Riešenie može nájsť použitie v analytike enzýmov, biotechnológii a všade kde třeba pohotovo merať beta,[l-»3) glukanázovú enzýmovú aktivituThe solution is based on the process of preparing a soluble one chromolytic substrate for determination beta (1-> 3) glucanase, EC 3.2.1.6. Stolen purpose is achieved by first in step, beta (1-> 3j glucan is alkylated with ethylene oxide or beta-chloroethylene sulfonate with sodium or monochloroacetic acid in an alkaline medium to a degree of substitution From 0.35 to 0.8 and in the second step are binds the dye to the alkyl polysaccharide; dvsodná 8-amino- [3- (sulfoethylsulfonyl) acid salt] aniline] 6-antrachenone sulfonic acid in 6 to 10 wt. weight of polysaccharide at 15-25 ° C and concentration sodium hydroxide 1.0 to 3.0% nmot. for 2 to 4 hours. Solution can find use in enzyme analysis, biotechnology and wherever you need to be measured readily beta, [1-6] glucanase enzyme activity
Description
Vynález sa týká zariadenia pre analýzu obsahu arzénu v plynoch.The invention relates to an apparatus for analyzing arsenic in gases.
V súčasnosti sa pre stanovenie obsahu arzénu v plynoch používajú zložité zariadenia, založené na plynovej chromatografií alebo hmotnej spektroskopií. Ich spoločnou nevýhodou je vysoká cena a zložitosť, ktorá vyžaduje vysokokvaliffikovaný personál. To prakticky znemožňuje širšiu aplikáciu týchto analyzátorov v praxi. Z toho dovodu sa pri stanovení obsahu arzénu v plynoch obvykle používá absorpčně stanovenie, pri ktorom sa arzén z plynu pohlcuje v alkalickom roztoku v premývačke, připadne v sústave premývačiek. Účinnost absorpcie arzénu spravidla kolíše a nedosahuje 100 °/o, čo súvisí s relativné krátkou dobou kontaktu plynovej bubliny s rozíokom. V dosledku toho je stanovenie arzénu nespolehlivé a nezaručuje reprodukovatetnosť výsledkov analýzy.At present, complex devices based on gas chromatography or mass spectroscopy are used to determine the arsenic content of gases. Their common disadvantage is the high cost and complexity required by highly qualified personnel. This makes it practically impossible to apply these analyzers in practice. For this reason, an absorption assay in which arsenic from gas is absorbed in an alkaline solution in a scrubber or in a scrubber system is usually used in determining the arsenic content of gases. Arsenic absorption efficiency generally varies and does not reach 100 ° / o, which is related to the relatively short contact time of the gas bubble with the spacer. As a result, the determination of arsenic is unreliable and does not guarantee reproducibility of the analysis results.
Vyššie uvedené nedostatky sú odstránené zariadením pre stanovenie obsahu arzénu v plynoch podta vynálezu, ktorého podstata spočívá v tom, že pozostáva z reaktora, na ktorý je z jednej strany připojená skloněná sonda a opatřená odporovým vinutím a potrubie pre přívod roztoku hydroxidu sodného zo zásobnej nádrže cez čerpadlo a z druhej strany je připojená absorpčně nádrž, na ktorú je připojený plynoměr cez rotameter, pričom na plynoměr je připojený ventilátor cez regulačný ventil.The aforementioned drawbacks are overcome by a device for determining the arsenic content of gases according to the invention, which consists of a reactor to which a sloping probe is connected on one side and provided with a resistive winding and a pipe for supplying sodium hydroxide solution from the storage tank via pump, and on the other hand, an absorption tank is connected to which a gas meter is connected via a rotameter, and a fan is connected to the gas meter via a control valve.
Výhodou zariadenia podta vynálezu je, že je v ňom zabezpečená dostatočne dlhá doba kontaktu plynu s rozíokom hydroxidu sodného, čím sa dosahuje vysoká účinnost absorpcie arzénu.An advantage of the device according to the invention is that it provides a sufficiently long contact time of the gas with the sodium hydroxide solution, thereby achieving a high arsenic absorption efficiency.
Na výkrese je znázorněná schéma zariadenia pre analýzu obsahu arzénu v plynoch.The drawing shows a diagram of an apparatus for analyzing arsenic content in gases.
Příklad 1Example 1
Zariadenie pre analýzu obsahu arzénu v plynoch pozostáva z prívodného potrubia 1, na ktoré navazuje keramický filter 2. Na tento je napojená skleněná sonda 3 opatřená odporovým vinutím 4, ktorá je spolu s potrubím 6 pre přívod roztoku hydroxidu sodného zo zásobnej nádrže 7 cez čerpadlo 8 napojená na reaktor 5. Na výstup z reaktora 5 je napojená absorpčně nádrž 9, na ktorú je připojený plynoměr 12 cez rotameter 10. Na plynoměr je připojený ventilátor 13 cez regulačný ventil 11. Analyzovaný plyn sa z prívodnéhoi potrubia 1 odvádza ventilátorem cez keramický filter 2, v ktorom sa zachytia prachové částice cez skleněná sondu 3 ohrievanú odporovým vinutím 4 na teplotu plynu v potrubí do reaktora 5, do ktorého sa kontinuálně privádza vodný roztok hydroxidu sodného o koncentrácii 10 až 20 % hmot. Tento roztok sa privádza zo zásobnej nádrže 7 čerpadlom 8, ktoré zabezpečuje konštantný prietok roztoku cez potrubie 6 do reaktora 5.The apparatus for analyzing the arsenic content of gases consists of a supply line 1, which is connected to a ceramic filter 2. To this is connected a glass probe 3 equipped with a resistance winding 4, which together with a line 6 for supplying sodium hydroxide solution from the storage tank 7 via pump 8 connected to the reactor 5. An absorber tank 9 is connected to the outlet of the reactor 5, to which a gas meter 12 is connected via a rotameter 10. The gas meter is connected to a fan 13 via a control valve 11. The analyzed gas is discharged from the supply line 1 via a ceramic filter 2. in which the dust particles are collected through a glass probe 3 heated by a resistance winding 4 to the gas temperature in the pipeline to the reactor 5, to which an aqueous solution of sodium hydroxide at a concentration of 10 to 20 wt. This solution is supplied from the storage tank 7 by a pump 8, which ensures a constant flow of the solution through line 6 to the reactor 5.
V reaktore 5 dochádza k absorpcií arzénu z plynu v roztoku, ktorý sa potom zhromaždí v absorpčnej nádrži 9. Prietok plynu sa kontroluje rotametrom 10 a reguluje sa regulačným ventilem 11 tak, aby poměr objemovej rýchlosti absorpčného roztoku a plynu bol 2 : 1 až 4 : 1 a lineárna rýchlosť prietoku absorpčného roztoku cez analyzátor bola 0,5 až 2,0 cm. s_1. Celkové přetečené množstvo plynu cez reaktor sa registruje plynomerom 12. Po skončení absorpcie sa prietok plynu uzavrie a reaktor 5 sa přeplácíme 50 ml absorpčného roztoku na vyplaveme zbytkov arzénu. Zmeria sa objem získaného roztoku, stanoví sa v ňom běžnými analytickými postupmi koncentrácia arzénu a z celkovej hmotnosti arzénu v roztoku a z objemu přetečeného plynu registrovaného plynomerom 12 sa stanoví koncentrácia arzénu v analyzovanom plyne.In the reactor 5, arsenic is absorbed from the gas in the solution, which is then collected in the absorption tank 9. The gas flow is controlled by the rotameter 10 and controlled by the control valve 11 so that the ratio of the volumetric velocity of the absorption solution to gas is 2: 1 to 4: 1 and the linear flow rate of the absorption solution through the analyzer was 0.5-2.0 cm. s _1 . The total overflow of gas through the reactor is registered with a gas meter 12. After the absorption is complete, the gas flow is closed and the reactor 5 is overflowed with 50 ml of absorption solution to wash out the arsenic residue. The volume of the solution obtained is measured, the arsenic concentration is determined by standard analytical procedures, and the total arsenic mass in the solution is determined, and the arsenic concentration in the analyzed gas is determined from the volume of overflow gas registered by the gas meter 12.
V zariadení podlá vynálezu sa stanovila koncentrácia arzénu v plynoch, pričom sa ešte v sústave premývačiek zachytávali zbytky arzénu v plyne vystupujúceho z reaktora, aby bolo možné vyhodnotit účinnost absorpcie arzénu v roztoku.In the apparatus of the invention, the concentration of arsenic in the gases was determined, while still retaining arsenic residues in the gas exiting the reactor in the washer system to evaluate the absorption efficiency of arsenic in solution.
Příklad 2Example 2
Na analýzu sa použil plyn vystupujúcl z laboratórneho zariadenia používaného pre skúšky odiparovania oxidu arzenitého. Cez analytické zariadenie sa celkom přesálo 1 800 Ncm3 plynu. Na absorpciu arzénu sa použilo 0,5 1 15 % hmot. hydroxidu sodného vo formě vodného! roztoku. Rýchlosť prietoku absorpčného roztoku cez analyzátor bola 1,7 cm. s_1. Po skončeni sa v roztoku stanovil obsah arzénu 0,840 g/1. Celkové pohltené množstvo arzénu bolo 0,420 g a koneentrácia arzénu v plyne bola 233 g/Nm3. Za použité analytické zariadenia bola ešte zaradená sústava troch premývačiek, v ktorých bolo 360 cm3 vodného roztoku NaOH o koncentrácii 15 °/o. Po skončení analýzy sa v zmiešanej vzorke stanovila koncentrácia arzénu 3,08 mg/1. Celkové množstvo arzénu v tomto roztoku bolo 9,24.10-4 g. Účlnnosť zachytenla arzénu v analyzátore bola teda 99,78 %.For the analysis, the gas exiting the laboratory equipment used for the arsenic trioxide evaporation tests was used. A total of 1,800 Ncm 3 of gas was passed through the analytical equipment. 0.5 L of 15 wt.% Was used to absorb arsenic. sodium hydroxide in aqueous form! solution. The flow rate of the absorption solution through the analyzer was 1.7 cm. s _1 . After completion, the arsenic content was determined to be 0.840 g / l. The total amount of arsenic absorbed was 0.420 g and the concentration of arsenic in the gas was 233 g / Nm 3 . The analytical equipment used was a set of three washers containing 360 cm 3 of 15% aqueous NaOH. At the end of the analysis, the arsenic concentration was 3.08 mg / L in the mixed sample. The total amount of arsenic in this solution was 9.24.10 -4 g. Thus, the arsenic capture efficiency in the analyzer was 99.78%.
Příklad 3Example 3
Na analýzu sa použil plyn vystupujúci z laboratórnej rotačnej pece používanej na oxidačně praženie arzenopyritových koncentrátov. Cez analytické zariadenie sa přesálo 2 500 Ncm3 plynov. Na absorpciu sa použilo 850 cm3 10 %-ného roztoku NaOH vo vodě. Rýchlosť prietoku roztoku cez analyzátor bola 0,75 cra.s'1. Po skončeni analýzy sa v roztoku stanovil obsah arzénuFor the analysis, gas leaving the laboratory rotary kiln used for the oxidative roasting of arsenopyrite concentrates was used. 2,500 Ncm 3 of gases were passed through the analytical equipment. 850 cm 3 of a 10% solution of NaOH in water was used for absorption. The flow rate of the solution through the analyzer was 0.75 c / s . At the end of the analysis, the arsenic content was determined in the solution
10,4 mg/1. Celkové pohltené množstvo arzénu bolo 8,84. IQ-3 g a koncentrácia arzénu v plyne bola 3,54 g/Nm3. Za použité analytické zariadenie bola zaradená sústava troch premývačiek, v ktorých bolo 0,3 1 15 %10.4 mg / L. The total amount of arsenic absorbed was 8.84. 3 g IQ- arsenic concentration in the gas was 3.54 g / Nm3. The analytical equipment used was a set of three washers with 0.3 1 15%
5*4182 hmot. hydroxidu sodného vo formě vodného roztoku. Po skončení analýzy sa v zmiešanej vzorke roztoku z týchto kontrolných premývačiek stanovila koncentrácia 0,153 mg/15 * 4182 wt. sodium hydroxide in the form of an aqueous solution. At the end of the analysis, a 0.153 mg / l concentration was determined in a mixed sample of these control washers.
B(B)
As. Celkové množstvo arzénu v kontrolných premývačkach bolo 4,59.10-5 g. Očinnosť zachytenia arzénu v analyzátore bola teda 99,48 %.As. The total amount of arsenic in the control washers was 4.59.10 -5 g. Thus, the arsenic capture efficiency in the analyzer was 99.48%.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS858211A CS254182B1 (en) | 1985-11-14 | 1985-11-14 | Device for analyzing arsenic content in gases |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS858211A CS254182B1 (en) | 1985-11-14 | 1985-11-14 | Device for analyzing arsenic content in gases |
Publications (2)
Publication Number | Publication Date |
---|---|
CS821185A1 CS821185A1 (en) | 1987-05-14 |
CS254182B1 true CS254182B1 (en) | 1988-01-15 |
Family
ID=5432384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS858211A CS254182B1 (en) | 1985-11-14 | 1985-11-14 | Device for analyzing arsenic content in gases |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS254182B1 (en) |
-
1985
- 1985-11-14 CS CS858211A patent/CS254182B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS821185A1 (en) | 1987-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Keuken et al. | Simultaneous sampling of NH3, HNO3, HC1, SO2 and H2O2 in ambient air by a wet annular denuder system | |
CN109342284A (en) | A detection system and detection method for harmful substances in flue gas | |
Van Hall et al. | Rapid Combustion Method for the Determination of Organic Substances in Aqueous Solutions. | |
CN105300744B (en) | System for flue gas NO and mercury of thermal power plant sample simultaneously and detect | |
CN208766151U (en) | SO in a kind of on-line checking flue gas3The system of content | |
CN110398398A (en) | A classification sampling system and method suitable for ammonia emission in high-humidity flue gas | |
CN105181614B (en) | Sulfur trioxide analytical instrument and method | |
CN211627359U (en) | Detecting system for sulfur trioxide content in flue gas | |
CN103439258B (en) | A kind of water nutrition in situ detection instrument based on integrated valve terminal device and detection method | |
CN111982610B (en) | On-line continuous detection device for ammonia in gas by using chemical spectrophotometry | |
CN110687062B (en) | System and method for detecting content of sulfur trioxide in flue gas | |
CN109470813A (en) | The measuring method of chlorine and bromine content in plastics | |
CN205049550U (en) | Device of ammonia escape content in while testing flue gas and smoke and dust | |
CN104226300A (en) | SCR (Selective Catalytic Reduction) catalyst and preparation method thereof | |
CN111366677A (en) | SCR catalyst performance evaluation device for removing nitric oxide, benzene and toluene in cooperation | |
CN212808041U (en) | Continuous detection device for ammonia absorption method in gas | |
CS254182B1 (en) | Device for analyzing arsenic content in gases | |
CN114660229A (en) | Method and device for measuring the content of organic compounds in industrial ammonium nitrate | |
Maddalone et al. | Laboratory and Field Evaluation of the Controlled Condensation System for S03 Measurements in Flue Gas Streams | |
CN205192809U (en) | System for flue gas NO and mercury of thermal power plant sample simultaneously and detect | |
Margel et al. | Reduction of organic mercury in water, urine, and blood by sodium borohydride for direct determination of total mercury content. | |
Flint | A method for the determination of small concentrations of so3 in the presence of larger concentrations of so2 | |
JPS5848853A (en) | Analysis for trace amount of total nitrogen | |
Cohen et al. | A field method for the determination of ozone in the presence of nitrogen dioxide | |
CN108445061B (en) | A kind of determination method for detecting tin in air and its compounds |