CS254182B1 - Device for analyzing arsenic content in gases - Google Patents

Device for analyzing arsenic content in gases Download PDF

Info

Publication number
CS254182B1
CS254182B1 CS858211A CS821185A CS254182B1 CS 254182 B1 CS254182 B1 CS 254182B1 CS 858211 A CS858211 A CS 858211A CS 821185 A CS821185 A CS 821185A CS 254182 B1 CS254182 B1 CS 254182B1
Authority
CS
Czechoslovakia
Prior art keywords
arsenic
solution
beta
gas
gases
Prior art date
Application number
CS858211A
Other languages
Czech (cs)
Other versions
CS821185A1 (en
Inventor
Ludovit Bobok
Vladimir Repcak
Vojtech Spetuch
Peter Szarvasy
Original Assignee
Ludovit Bobok
Vladimir Repcak
Vojtech Spetuch
Peter Szarvasy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludovit Bobok, Vladimir Repcak, Vojtech Spetuch, Peter Szarvasy filed Critical Ludovit Bobok
Priority to CS858211A priority Critical patent/CS254182B1/en
Publication of CS821185A1 publication Critical patent/CS821185A1/en
Publication of CS254182B1 publication Critical patent/CS254182B1/en

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Očelom riešenia je spůsob přípravy rozpustného chromolytického substrátu na stanovenie beta(l->3) glukanázy, EC 3.2.1.6. Uvecieného účelu sa dosiahne tak, že v prvom stupni sa beta (l->3 j glukán alkyluje etyienoxidom alebo beta-chlóretylénsulfonátom sodným alebo kyselinou monochlóroctovou v alkalickom prostředí na stupeň substitúcie 0,35 až 0,8 a v druhom stupni sa na alkyl-polysacharid naviaže farbivo; dvojsodná sol kyseliny 8-amíno-[3-(sulfoetylsulfonyl) anilíno ] 6-ant.rachinon-sulfonovej v množstve 6 až 10 % hmot. na hmotnost polysacharidu pri teplote 15 až 25 °C a koncentrácii hydroxidu sodného 1,0 až 3,0 % nmot. po dobu 2 až 4 hodin. Riešenie može nájsť použitie v analytike enzýmov, biotechnológii a všade kde třeba pohotovo merať beta,[l-»3) glukanázovú enzýmovú aktivituThe solution is based on the process of preparing a soluble one chromolytic substrate for determination beta (1-> 3) glucanase, EC 3.2.1.6. Stolen purpose is achieved by first in step, beta (1-> 3j glucan is alkylated with ethylene oxide or beta-chloroethylene sulfonate with sodium or monochloroacetic acid in an alkaline medium to a degree of substitution From 0.35 to 0.8 and in the second step are binds the dye to the alkyl polysaccharide; dvsodná 8-amino- [3- (sulfoethylsulfonyl) acid salt] aniline] 6-antrachenone sulfonic acid in 6 to 10 wt. weight of polysaccharide at 15-25 ° C and concentration sodium hydroxide 1.0 to 3.0% nmot. for 2 to 4 hours. Solution can find use in enzyme analysis, biotechnology and wherever you need to be measured readily beta, [1-6] glucanase enzyme activity

Description

Vynález sa týká zariadenia pre analýzu obsahu arzénu v plynoch.The invention relates to an apparatus for analyzing arsenic in gases.

V súčasnosti sa pre stanovenie obsahu arzénu v plynoch používajú zložité zariadenia, založené na plynovej chromatografií alebo hmotnej spektroskopií. Ich spoločnou nevýhodou je vysoká cena a zložitosť, ktorá vyžaduje vysokokvaliffikovaný personál. To prakticky znemožňuje širšiu aplikáciu týchto analyzátorov v praxi. Z toho dovodu sa pri stanovení obsahu arzénu v plynoch obvykle používá absorpčně stanovenie, pri ktorom sa arzén z plynu pohlcuje v alkalickom roztoku v premývačke, připadne v sústave premývačiek. Účinnost absorpcie arzénu spravidla kolíše a nedosahuje 100 °/o, čo súvisí s relativné krátkou dobou kontaktu plynovej bubliny s rozíokom. V dosledku toho je stanovenie arzénu nespolehlivé a nezaručuje reprodukovatetnosť výsledkov analýzy.At present, complex devices based on gas chromatography or mass spectroscopy are used to determine the arsenic content of gases. Their common disadvantage is the high cost and complexity required by highly qualified personnel. This makes it practically impossible to apply these analyzers in practice. For this reason, an absorption assay in which arsenic from gas is absorbed in an alkaline solution in a scrubber or in a scrubber system is usually used in determining the arsenic content of gases. Arsenic absorption efficiency generally varies and does not reach 100 ° / o, which is related to the relatively short contact time of the gas bubble with the spacer. As a result, the determination of arsenic is unreliable and does not guarantee reproducibility of the analysis results.

Vyššie uvedené nedostatky sú odstránené zariadením pre stanovenie obsahu arzénu v plynoch podta vynálezu, ktorého podstata spočívá v tom, že pozostáva z reaktora, na ktorý je z jednej strany připojená skloněná sonda a opatřená odporovým vinutím a potrubie pre přívod roztoku hydroxidu sodného zo zásobnej nádrže cez čerpadlo a z druhej strany je připojená absorpčně nádrž, na ktorú je připojený plynoměr cez rotameter, pričom na plynoměr je připojený ventilátor cez regulačný ventil.The aforementioned drawbacks are overcome by a device for determining the arsenic content of gases according to the invention, which consists of a reactor to which a sloping probe is connected on one side and provided with a resistive winding and a pipe for supplying sodium hydroxide solution from the storage tank via pump, and on the other hand, an absorption tank is connected to which a gas meter is connected via a rotameter, and a fan is connected to the gas meter via a control valve.

Výhodou zariadenia podta vynálezu je, že je v ňom zabezpečená dostatočne dlhá doba kontaktu plynu s rozíokom hydroxidu sodného, čím sa dosahuje vysoká účinnost absorpcie arzénu.An advantage of the device according to the invention is that it provides a sufficiently long contact time of the gas with the sodium hydroxide solution, thereby achieving a high arsenic absorption efficiency.

Na výkrese je znázorněná schéma zariadenia pre analýzu obsahu arzénu v plynoch.The drawing shows a diagram of an apparatus for analyzing arsenic content in gases.

Příklad 1Example 1

Zariadenie pre analýzu obsahu arzénu v plynoch pozostáva z prívodného potrubia 1, na ktoré navazuje keramický filter 2. Na tento je napojená skleněná sonda 3 opatřená odporovým vinutím 4, ktorá je spolu s potrubím 6 pre přívod roztoku hydroxidu sodného zo zásobnej nádrže 7 cez čerpadlo 8 napojená na reaktor 5. Na výstup z reaktora 5 je napojená absorpčně nádrž 9, na ktorú je připojený plynoměr 12 cez rotameter 10. Na plynoměr je připojený ventilátor 13 cez regulačný ventil 11. Analyzovaný plyn sa z prívodnéhoi potrubia 1 odvádza ventilátorem cez keramický filter 2, v ktorom sa zachytia prachové částice cez skleněná sondu 3 ohrievanú odporovým vinutím 4 na teplotu plynu v potrubí do reaktora 5, do ktorého sa kontinuálně privádza vodný roztok hydroxidu sodného o koncentrácii 10 až 20 % hmot. Tento roztok sa privádza zo zásobnej nádrže 7 čerpadlom 8, ktoré zabezpečuje konštantný prietok roztoku cez potrubie 6 do reaktora 5.The apparatus for analyzing the arsenic content of gases consists of a supply line 1, which is connected to a ceramic filter 2. To this is connected a glass probe 3 equipped with a resistance winding 4, which together with a line 6 for supplying sodium hydroxide solution from the storage tank 7 via pump 8 connected to the reactor 5. An absorber tank 9 is connected to the outlet of the reactor 5, to which a gas meter 12 is connected via a rotameter 10. The gas meter is connected to a fan 13 via a control valve 11. The analyzed gas is discharged from the supply line 1 via a ceramic filter 2. in which the dust particles are collected through a glass probe 3 heated by a resistance winding 4 to the gas temperature in the pipeline to the reactor 5, to which an aqueous solution of sodium hydroxide at a concentration of 10 to 20 wt. This solution is supplied from the storage tank 7 by a pump 8, which ensures a constant flow of the solution through line 6 to the reactor 5.

V reaktore 5 dochádza k absorpcií arzénu z plynu v roztoku, ktorý sa potom zhromaždí v absorpčnej nádrži 9. Prietok plynu sa kontroluje rotametrom 10 a reguluje sa regulačným ventilem 11 tak, aby poměr objemovej rýchlosti absorpčného roztoku a plynu bol 2 : 1 až 4 : 1 a lineárna rýchlosť prietoku absorpčného roztoku cez analyzátor bola 0,5 až 2,0 cm. s_1. Celkové přetečené množstvo plynu cez reaktor sa registruje plynomerom 12. Po skončení absorpcie sa prietok plynu uzavrie a reaktor 5 sa přeplácíme 50 ml absorpčného roztoku na vyplaveme zbytkov arzénu. Zmeria sa objem získaného roztoku, stanoví sa v ňom běžnými analytickými postupmi koncentrácia arzénu a z celkovej hmotnosti arzénu v roztoku a z objemu přetečeného plynu registrovaného plynomerom 12 sa stanoví koncentrácia arzénu v analyzovanom plyne.In the reactor 5, arsenic is absorbed from the gas in the solution, which is then collected in the absorption tank 9. The gas flow is controlled by the rotameter 10 and controlled by the control valve 11 so that the ratio of the volumetric velocity of the absorption solution to gas is 2: 1 to 4: 1 and the linear flow rate of the absorption solution through the analyzer was 0.5-2.0 cm. s _1 . The total overflow of gas through the reactor is registered with a gas meter 12. After the absorption is complete, the gas flow is closed and the reactor 5 is overflowed with 50 ml of absorption solution to wash out the arsenic residue. The volume of the solution obtained is measured, the arsenic concentration is determined by standard analytical procedures, and the total arsenic mass in the solution is determined, and the arsenic concentration in the analyzed gas is determined from the volume of overflow gas registered by the gas meter 12.

V zariadení podlá vynálezu sa stanovila koncentrácia arzénu v plynoch, pričom sa ešte v sústave premývačiek zachytávali zbytky arzénu v plyne vystupujúceho z reaktora, aby bolo možné vyhodnotit účinnost absorpcie arzénu v roztoku.In the apparatus of the invention, the concentration of arsenic in the gases was determined, while still retaining arsenic residues in the gas exiting the reactor in the washer system to evaluate the absorption efficiency of arsenic in solution.

Příklad 2Example 2

Na analýzu sa použil plyn vystupujúcl z laboratórneho zariadenia používaného pre skúšky odiparovania oxidu arzenitého. Cez analytické zariadenie sa celkom přesálo 1 800 Ncm3 plynu. Na absorpciu arzénu sa použilo 0,5 1 15 % hmot. hydroxidu sodného vo formě vodného! roztoku. Rýchlosť prietoku absorpčného roztoku cez analyzátor bola 1,7 cm. s_1. Po skončeni sa v roztoku stanovil obsah arzénu 0,840 g/1. Celkové pohltené množstvo arzénu bolo 0,420 g a koneentrácia arzénu v plyne bola 233 g/Nm3. Za použité analytické zariadenia bola ešte zaradená sústava troch premývačiek, v ktorých bolo 360 cm3 vodného roztoku NaOH o koncentrácii 15 °/o. Po skončení analýzy sa v zmiešanej vzorke stanovila koncentrácia arzénu 3,08 mg/1. Celkové množstvo arzénu v tomto roztoku bolo 9,24.10-4 g. Účlnnosť zachytenla arzénu v analyzátore bola teda 99,78 %.For the analysis, the gas exiting the laboratory equipment used for the arsenic trioxide evaporation tests was used. A total of 1,800 Ncm 3 of gas was passed through the analytical equipment. 0.5 L of 15 wt.% Was used to absorb arsenic. sodium hydroxide in aqueous form! solution. The flow rate of the absorption solution through the analyzer was 1.7 cm. s _1 . After completion, the arsenic content was determined to be 0.840 g / l. The total amount of arsenic absorbed was 0.420 g and the concentration of arsenic in the gas was 233 g / Nm 3 . The analytical equipment used was a set of three washers containing 360 cm 3 of 15% aqueous NaOH. At the end of the analysis, the arsenic concentration was 3.08 mg / L in the mixed sample. The total amount of arsenic in this solution was 9.24.10 -4 g. Thus, the arsenic capture efficiency in the analyzer was 99.78%.

Příklad 3Example 3

Na analýzu sa použil plyn vystupujúci z laboratórnej rotačnej pece používanej na oxidačně praženie arzenopyritových koncentrátov. Cez analytické zariadenie sa přesálo 2 500 Ncm3 plynov. Na absorpciu sa použilo 850 cm3 10 %-ného roztoku NaOH vo vodě. Rýchlosť prietoku roztoku cez analyzátor bola 0,75 cra.s'1. Po skončeni analýzy sa v roztoku stanovil obsah arzénuFor the analysis, gas leaving the laboratory rotary kiln used for the oxidative roasting of arsenopyrite concentrates was used. 2,500 Ncm 3 of gases were passed through the analytical equipment. 850 cm 3 of a 10% solution of NaOH in water was used for absorption. The flow rate of the solution through the analyzer was 0.75 c / s . At the end of the analysis, the arsenic content was determined in the solution

10,4 mg/1. Celkové pohltené množstvo arzénu bolo 8,84. IQ-3 g a koncentrácia arzénu v plyne bola 3,54 g/Nm3. Za použité analytické zariadenie bola zaradená sústava troch premývačiek, v ktorých bolo 0,3 1 15 %10.4 mg / L. The total amount of arsenic absorbed was 8.84. 3 g IQ- arsenic concentration in the gas was 3.54 g / Nm3. The analytical equipment used was a set of three washers with 0.3 1 15%

5*4182 hmot. hydroxidu sodného vo formě vodného roztoku. Po skončení analýzy sa v zmiešanej vzorke roztoku z týchto kontrolných premývačiek stanovila koncentrácia 0,153 mg/15 * 4182 wt. sodium hydroxide in the form of an aqueous solution. At the end of the analysis, a 0.153 mg / l concentration was determined in a mixed sample of these control washers.

B(B)

As. Celkové množstvo arzénu v kontrolných premývačkach bolo 4,59.10-5 g. Očinnosť zachytenia arzénu v analyzátore bola teda 99,48 %.As. The total amount of arsenic in the control washers was 4.59.10 -5 g. Thus, the arsenic capture efficiency in the analyzer was 99.48%.

Claims (1)

PREDMETSUBJECT Zariadenie pre analýzu obsahu arzénu v plynoch vyznačujúce sa tým, Že pozostáva z reaktora (5), na ktorý je z jednej strany připojená skleněná sonda (3) opatřená odporovým vinutím (4) a ipotrubie (6) pre přívod roztoku hydroxidu sodného zo zásobnejApparatus for analyzing arsenic content in gases, characterized in that it consists of a reactor (5) to which a glass probe (3) equipped with a resistive winding (4) and an ipotube (6) for supplying a sodium hydroxide solution from a storage side VYNALEZU nádrže (7) cez čerpadlo (8) a z druhej strany je připojená absorpčná nádrž (9), na ktorú je připojený plynoměr (12) cez rotameter (10), pričom na plynoměr (12) je připojený ventilátor (13) cez regulačný ventil (11).INVENTION the tank (7) through the pump (8) and from the other side an absorption tank (9) is connected to which the gas meter (12) is connected via a rotameter (10), the gas meter (12) being connected to a fan (13) via a control valve (11).
CS858211A 1985-11-14 1985-11-14 Device for analyzing arsenic content in gases CS254182B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS858211A CS254182B1 (en) 1985-11-14 1985-11-14 Device for analyzing arsenic content in gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS858211A CS254182B1 (en) 1985-11-14 1985-11-14 Device for analyzing arsenic content in gases

Publications (2)

Publication Number Publication Date
CS821185A1 CS821185A1 (en) 1987-05-14
CS254182B1 true CS254182B1 (en) 1988-01-15

Family

ID=5432384

Family Applications (1)

Application Number Title Priority Date Filing Date
CS858211A CS254182B1 (en) 1985-11-14 1985-11-14 Device for analyzing arsenic content in gases

Country Status (1)

Country Link
CS (1) CS254182B1 (en)

Also Published As

Publication number Publication date
CS821185A1 (en) 1987-05-14

Similar Documents

Publication Publication Date Title
Keuken et al. Simultaneous sampling of NH3, HNO3, HC1, SO2 and H2O2 in ambient air by a wet annular denuder system
CN109342284A (en) A detection system and detection method for harmful substances in flue gas
Van Hall et al. Rapid Combustion Method for the Determination of Organic Substances in Aqueous Solutions.
CN105300744B (en) System for flue gas NO and mercury of thermal power plant sample simultaneously and detect
CN208766151U (en) SO in a kind of on-line checking flue gas3The system of content
CN110398398A (en) A classification sampling system and method suitable for ammonia emission in high-humidity flue gas
CN105181614B (en) Sulfur trioxide analytical instrument and method
CN211627359U (en) Detecting system for sulfur trioxide content in flue gas
CN103439258B (en) A kind of water nutrition in situ detection instrument based on integrated valve terminal device and detection method
CN111982610B (en) On-line continuous detection device for ammonia in gas by using chemical spectrophotometry
CN110687062B (en) System and method for detecting content of sulfur trioxide in flue gas
CN109470813A (en) The measuring method of chlorine and bromine content in plastics
CN205049550U (en) Device of ammonia escape content in while testing flue gas and smoke and dust
CN104226300A (en) SCR (Selective Catalytic Reduction) catalyst and preparation method thereof
CN111366677A (en) SCR catalyst performance evaluation device for removing nitric oxide, benzene and toluene in cooperation
CN212808041U (en) Continuous detection device for ammonia absorption method in gas
CS254182B1 (en) Device for analyzing arsenic content in gases
CN114660229A (en) Method and device for measuring the content of organic compounds in industrial ammonium nitrate
Maddalone et al. Laboratory and Field Evaluation of the Controlled Condensation System for S03 Measurements in Flue Gas Streams
CN205192809U (en) System for flue gas NO and mercury of thermal power plant sample simultaneously and detect
Margel et al. Reduction of organic mercury in water, urine, and blood by sodium borohydride for direct determination of total mercury content.
Flint A method for the determination of small concentrations of so3 in the presence of larger concentrations of so2
JPS5848853A (en) Analysis for trace amount of total nitrogen
Cohen et al. A field method for the determination of ozone in the presence of nitrogen dioxide
CN108445061B (en) A kind of determination method for detecting tin in air and its compounds