CS252860B1 - Method of tungsten carbide thin layers formation on conductive substrate - Google Patents
Method of tungsten carbide thin layers formation on conductive substrate Download PDFInfo
- Publication number
- CS252860B1 CS252860B1 CS841756A CS175684A CS252860B1 CS 252860 B1 CS252860 B1 CS 252860B1 CS 841756 A CS841756 A CS 841756A CS 175684 A CS175684 A CS 175684A CS 252860 B1 CS252860 B1 CS 252860B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- conductive substrate
- tungsten carbide
- tungsten
- thin layers
- electrically conductive
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 title claims abstract description 14
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 title claims description 14
- 230000015572 biosynthetic process Effects 0.000 title 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N Acetylene Chemical compound C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 4
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 claims 1
- 238000007733 ion plating Methods 0.000 claims 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 10
- 239000010937 tungsten Substances 0.000 abstract description 10
- 229910052721 tungsten Inorganic materials 0.000 abstract description 8
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 3
- 238000000859 sublimation Methods 0.000 description 3
- 230000008022 sublimation Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Riešenie sa týká spésobu vytvárania tenkých vrstiev karbidu1 wolfrámiu na elektricky vodivom substráte, kitorý je katodou v iónovioplátovaciolm systéme ma zápomnom eleiktriekom poteneiáli oproti uzemnene] vakuovéj komory. Sposob vytvárania vrstvy sa prevádza tak, že sa na substrát posobí plazmou, která je tvořená parami sublimujúceho hexakairbonylu wolframu a etínoím alebo eténom, a to za zmizeného tlaku z intervalu ΙΟ"3 Pa až 102 Pa.The solution concerns the way of creating thin ones tungsten carbide1 electrically conductive substrate, which is the cathode v the ion-plated system has a negative elixir versus grounded vacuum chamber. Layer creation method with converts by feeding plasma onto the substrate which is formed by sublimating vapors tungsten hexacaircarbonyl and ethanoic or ethene, under pressure from the interval ΙΟ "Pa to 102 Pa.
Description
Vynález ®a týká spósobu vytvárania tenkých vrstiev karbidu wolfrámu na elektricky vodivom substráte.The invention relates to a method of forming thin layers of tungsten carbide on an electrically conductive substrate.
V súčasinosti existuje celý rad metod a technologických ipostupov pire vytváranle tenkých vrstiev karbidu wolframu. Medzi najvýznaimnejšie patří metoda priameho odpař ovania karbidu wolfrámu a! chemické metody (tzv. CVD], ďalej sú to metody naipr. založené na elefctroiskrovom mahášainí a metody plazmových nástrekov.At present, there are a number of methods and technological approaches for creating thin layers of tungsten carbide. The most notable is the method of direct evaporation of tungsten carbide and! chemical methods (CVD), methods based on electro-spark mashashi and plasma spraying methods.
Doposial' používané metody založené inia priamoím odpařovaní karbidu wolfrámu siú sprevádzainé ťažkosfami spojenými s vysokou teplotou odparoivainia, maliou rýchlosťou odparovania a nanášania vrstiev, ako aj s problémami pri dodržaní požadovaného poměru v zastúpemí wolfrámu a uihlíka vo vrstvě. Chemické spoisohy přípravy vrstiev karbidu wolfrámu sú známe, avšak značme náročné na dodržanie požadovaných ipodmlenok přípravy, vrstvy majú nízku čistotu a odpadne produkty sú korózne. Vrstvy připravené vyššie uvedenými1 metodami sú taktiež nedostatočne přilnavé.The methods used hitherto, including direct evaporation of tungsten carbide, are accompanied by difficulties associated with high evaporation temperatures, low evaporation and deposition rates, as well as difficulties in maintaining the desired ratio of tungsten to carbon in the layer. The chemical processes for the preparation of tungsten carbide layers are known, but very difficult to maintain the required preparation conditions, the layers are of low purity and the waste products are corrosive. The layers prepared by the above 1 methods are also poorly adherent.
Vyššie uvedené nedostatky odstraňuje sposoh vytvárania tenkých vrstiev karbidu wolfrámu na elektricky vodivom substráte, kterého podstatou je, že na elektricky vodivý substrát, ktorý je katodou na zápornoím elektriekom polteueiáli 0 až 10 ikV oproti uzeminenej vákuovej komoře v iónovoiplátovacom systéme sa posobí plazmou tvořenou suiblimujúclmi paraimi hexiakarboinylu wolfrámu a etínom alebo etéinom pri tlaku z iintervalu 103 Pa až 102 Pa.The above-mentioned drawbacks eliminate the process of forming thin layers of tungsten carbide on an electrically conductive substrate, which is based on the fact that on an electrically conductive substrate, which is a cathode on the negative electrode 0-10 kV polteueial tungsten or ethynyl eteint at a pressure of 10 3 Pa iintervalu to 10 2 Pa.
Výhoda sposobu vytvárania tenkých vrstiev karbidu wolfrámu na elektricky vodivom substráte ipodla vynálezu spočívá v tom, že vrstvy karbidu wolfrámu sú vysoko přilnavé, dosaihujú požadovanú čistotu, s (možnoisťou dosiahnuitia vysofcej rýchlosti rastu vrstvy počais inanášamia, iktorá závisí na rýchlosti sublimácie héxakiarbonylu wolfrámu1, ktorú možno regulovat intenzitou jeho ohřevu. Ďalšou výhodou sposobu podlá vynálezu je možnost ovplyvňovať zloženie, strukturu, a mechanické vlastnosti vrstvy, a to velkoisťou tlaku vo vákuovej komoře, rýichlosťou sulbtimácie ihexafcarboimylu wolfrámu, imnožstvom mapúšťainéhc etínu alebo eténu a elektrickými parametrami stimulácie plazmy. Ďalšia výhoda sposobu podlá vynálezu spočívá v tom, že produkty rozkladu hexafcairbonylu wolfrámu, wolfrám a oxid uholinaitý nepůsobila korózne na substrát a na vákuové zariademie.Preferred methods for forming thin films of tungsten carbide on the electrically conductive substrate IPOD invention is that a layer of tungsten carbide is highly adhesive, dosaihujú the desired purity, the (možnoisťou dosiahnuitia vysofcej growth rate of the layer conceive a inanášamia, iktor depends on the rate of sublimation héxakiarbonylu tungsten 1 by Another advantage of the method according to the invention is the possibility to influence the composition, structure, and mechanical properties of the layer, namely by the vacuum chamber pressure magnitude, ihexafcarboimyl tungsten sulphimation rate, the amount of ethine or ethene mapping, and the electrical parameters of plasma stimulation. According to the invention, the decomposition products of hexafcairbonyl of tungsten, tungsten and carbon monoxide have not been corrosive to the substrate and to the vacuum devices.
Uvedený spósoib bol overemý na matoášaní vrstiev karbidu wolfrámu na substráty z rýchlorezinej ocele a SK. Hexakarhonyl wolfrámu sublimoval do prlestoru plazmy tvorenej napúšťaným etínom, odporovým ohrevom pri tlaků vo vákuovej komoře 5. . 10-1 Pa, a rýchlosti sublimácie 1 g . min-1, zápornoím elektriekom potenciáli na substráte oproti uzemineinej vákuovej Ikoímoire —2,8 kV, pri stimulácii elektrického' výboja pomocným elektrodovým systémům. Za týchto podmleinok. iktoré trvali 20 min., na povrchu subsítrátov vznikli vrstvy karbidu wolfrámu o hrůbkách 1,8 ,um a mikrotvrdlostl 19 000 N . mm 2.Said spósoib was verified by matting tungsten carbide layers onto high-speed steel and SK substrates. Hexacarhonyl of tungsten sublimated into the plasma space formed by impregnated ethine, resistance heating at pressures in a vacuum chamber 5. 10 -1 Pa, and a sublimation rate of 1 g. min -1 , negative electrode potential on the substrate versus a grounded vacuum coil of -2.8 kV when stimulating electrical discharge to the auxiliary electrode systems. Under these conditions. which lasted 20 min., tungsten carbide layers of 1.8 µm and microhardness 19 000 N were formed on the surface of the sub-wires. mm 2 .
V ďalšom případe podobné ako v predoalioim, hexaikairibonyl wolfrámu sublimoval pomoicou odporového ohřevu do priesitoiru plazmy, která však bola vytvořená v eténe pri tlaku voi vákuovej komoře 7.102 Pa, rýchlosti sublimácie 0,7 g. min1, a zápornoím elektriekom potenciáli na substráte z rýcíhloreznej ocele —3 kV oproti uzeminenej vákuovej komoře. V tomto případe na povrchu substrátu vznikla vrstva o hrúbike 0,8 /iiD, mikrotvrdosti 18 000 N . mm2. Vrstva karbidu wolfrámu vytvořená týmto postupem malia oproti vrstvám z predošlého příkladu jeminoznnejšiu strukturu pri porovnatelné velkej mikirotvrdosti a koeficiente trenia v protikuse s ocelou.In another case similar to that of the predoalioim, hexaicairibonyl tungsten was sublimed by resistive heating into a plasma screen, which was however formed in ethene at a vacuum chamber pressure of 7.10 2 Pa, a sublimation rate of 0.7 g. min 1 , and negative electrode potential on a 3 kV bucket steel substrate versus a grounded vacuum chamber. In this case, a 0.8 µm thick layer of microhardness of 18,000 N was formed on the substrate surface. mm 2 . The tungsten carbide layer formed by this process has a finer structure compared to the layers of the previous example at a comparable high microhardness and friction coefficient in contrast to the steel.
Sposoh vytvárania vrstiev karbidu wolfrámu možno využit pri prípraive povlakov na elektricky vodivých materiáloeh, připadne na materiáloeh predupravených elektricky vodivou vrstvou, a to obzvlášť v oblasti nástrojov, súčiastolk tribologíckých uzlov a súčiastok, kitoiré sú namáhané za vysokých teiplQt.The method of forming tungsten carbide layers can be used in the preparation of coatings on electrically conductive materials, possibly on materials pretreated with an electrically conductive layer, especially in the field of tools, tribological node components and components subjected to high stresses.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS841756A CS252860B1 (en) | 1984-03-12 | 1984-03-12 | Method of tungsten carbide thin layers formation on conductive substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS841756A CS252860B1 (en) | 1984-03-12 | 1984-03-12 | Method of tungsten carbide thin layers formation on conductive substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CS175684A1 CS175684A1 (en) | 1987-03-12 |
CS252860B1 true CS252860B1 (en) | 1987-10-15 |
Family
ID=5352740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS841756A CS252860B1 (en) | 1984-03-12 | 1984-03-12 | Method of tungsten carbide thin layers formation on conductive substrate |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS252860B1 (en) |
-
1984
- 1984-03-12 CS CS841756A patent/CS252860B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS175684A1 (en) | 1987-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Archer | The plasma-assisted chemical vapour deposition of TiC, TiN and TiCxN1− x | |
Nakamura et al. | Applications of wear-resistant thick films formed by physical vapor deposition processes | |
Freller et al. | TixAl1− xN films deposited by ion plating with an arc evaporator | |
GB2055403A (en) | Method for depositing hard wear-resistant coatings on substrates | |
ATE10953T1 (en) | DEPOSITION PROCESS FOR A HARD METAL LAYER AND DEPOSITION METHOD FOR SUCH PROCESS, ESPECIALLY A JEWELRY WITH SUCH LAYER. | |
BRPI0811241B1 (en) | INSTALLATION AND VACUUM TREATMENT METHOD | |
US5173328A (en) | Plasma cvd process for coating a basic metallic body with a non-conductive coating material | |
US5272014A (en) | Wear-resistant coating for substrate and method for applying | |
Scheibe et al. | The laser-arc: a new industrial technology for effective deposition of hard amorphous carbon films | |
US5227129A (en) | Method for applying corrosion resistant metallic coating of zirconium nitride | |
JPH0513082B2 (en) | ||
US3321337A (en) | Process for preparing boron nitride coatings | |
ES2140496T3 (en) | HARD METAL SUBSTRATE WITH A HIGH ADHESION DIAMOND COAT. | |
Fleischer et al. | Reactive ion plating (RIP) with auxiliary discharge and the influence of the deposition conditions on the formation and properties of TiN films | |
CS252860B1 (en) | Method of tungsten carbide thin layers formation on conductive substrate | |
Stowell | Ion-plated titanium carbide coatings | |
Vershinin et al. | Vacuum arc deposition of Mo films | |
Wolf | Modification of chemical properties by ion beam mixing techniques | |
Metzner et al. | Plasma-activated electron beam deposition with diffuse cathodic vacuum arc discharge (SAD): a technique for coating strip steel | |
US4528939A (en) | Electrically conductive containment vessel for molten aluminum | |
Sakai et al. | Development of a technique for thick carbon coatings with high deposition rates | |
EP3665315A1 (en) | Arrangement for coating substrate surfaces by means of electric arc discharge | |
DE2153861A1 (en) | Protective coatings - esp of metal carbonitride on heat-sensitive supports eg aluminium glass,carbon-steel | |
KR100193365B1 (en) | How to Form Titanium Nitride Film on Metal Surface | |
Berndt et al. | Vanadium carbide films produced by plasma-assisted metal-organic chemical vapour deposition |