CS252718B1 - Method of high-alloy steel instruments and machine parts borizing - Google Patents

Method of high-alloy steel instruments and machine parts borizing Download PDF

Info

Publication number
CS252718B1
CS252718B1 CS851385A CS138585A CS252718B1 CS 252718 B1 CS252718 B1 CS 252718B1 CS 851385 A CS851385 A CS 851385A CS 138585 A CS138585 A CS 138585A CS 252718 B1 CS252718 B1 CS 252718B1
Authority
CS
Czechoslovakia
Prior art keywords
steel
machine parts
boride
boriding
borizing
Prior art date
Application number
CS851385A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS138585A1 (en
Inventor
Kamil Matisovsky
Marta Chrenkova-Paucirova
Pavel Fellner
Vitazoslav Moric
Original Assignee
Kamil Matisovsky
Chrenkova Paucirova Marta
Pavel Fellner
Vitazoslav Moric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamil Matisovsky, Chrenkova Paucirova Marta, Pavel Fellner, Vitazoslav Moric filed Critical Kamil Matisovsky
Priority to CS851385A priority Critical patent/CS252718B1/en
Publication of CS138585A1 publication Critical patent/CS138585A1/en
Publication of CS252718B1 publication Critical patent/CS252718B1/en

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

Účelom sposobu boridovania nástrojov a strojových ocelí je zjednodušenie a zrýchlenie súčasných sposobov boridovania týchto súčastí. Uvedené zlepšenie sa dosiahne tak, že sa ocelové súčiastky galvanicky poželezia z vodných roztokov a potom boridujú elektrolyticky alebo termicky v prostředí roztavených solí. Sposob boridovania nástrojov a strojových súčastí z vysokolegovaných ocelí má použitie v strojárenskom priemysleThe purpose of tool management and. \ T machine steels is simplification and acceleration current arrangements for these components. This improvement will be achieved by that steel parts are galvanized from aqueous solutions and then boride electrolytically or thermally in a molten environment salt. Tool management tools and machine tools high-alloyed steel parts are used in the engineering industry

Description

Vynález sa týká sposobu boridovania vysokolegovaných ocelí.The invention relates to a method of boronizing high alloy steels.

Jedným z najúčinnejších spůsobov zvýšenla povrchovej tvrdosti ocelových súčasti je vytváranie boridových vrstiev na povrchu základného materiálu. Okrem zvýšenia tvrdosti sa boridovaním zvyšuje tiež oteruvzdornosť a odolnost voči korózii pri zvýšených teplotách. Boridovanie sa realizuje vačšinou elektrolytickým alebo termickým (chemickým) sposobom v taveninách rózneho zloženia [L. G. Vorošnín, L. S. Bachovič: Boridovanie stali, vyd. Metallurglja, Moskva (1978); V. Daněk, K. Matiašovský: Surface Technology 5, 65 (1977)]. Rýchlosť boridovacieho procesu závisí od pracovnej teploty, doby boridovania a od aktivity bóru na povrchu boridovaného materiálu. V případe elektrolytického boridovania možno aktivitu bóru na povrch vzorky ovplyvniť tiež změnou katodovej prúdověj hustoty. Tavenina pri elektrolytickom boridovaní obsahuje 40 až 80 % hmot. štvorboritanu dvojsodného a 20 až 60 % hmot. chloridu sodného, pričom teplota boridovania je 850 až 1 000 °C, alebo obsahuje 27 až 40 % hmot. fluoridu lítneho, 50 až 63 % hmot. fluoridu draselného a 10 percent hmot. fluoroboritanu draselného, pričom teplota boridovania je 700 až 850 JC. Tavenina pri termickom boridovaní obsahuje 40 až 60 % hmot. štvorboritanu dvojsodného· a 40 až 60 % hmot. karbidu štvorbóru, pričom teplota boridovania je 900 až 950 °C. Pri boridovaní vysokolegovaných ocelí sa však zistilo, že legujúce prvky, najmá chróm, volfrám a vanád, vytvárajú tzv. difúznu bariéru, ktorá výrazné znižuje rýchlosť rastu boridovej vrstvy a pri vysokých koncentráciach móžu legúry prakticky znemožniť jej tvorbu.One of the most effective ways to increase the surface hardness of steel components is to form boride layers on the surface of the base material. In addition to increasing hardness, boring also increases wear resistance and corrosion resistance at elevated temperatures. Boriding is usually carried out by an electrolytic or thermal (chemical) method in melts of different composition [LG Vorošnín, LS Bachovič: Boridovanie stali, vyd. Metallurglja, Moscow (1978); V. Danek, K. Matiasovsky: Surface Technology 5, 65 (1977)]. The speed of the boriding process depends on the working temperature, the boriding time and the boron activity on the surface of the boridated material. In the case of electrolytic boriding, the activity of boron on the sample surface can also be influenced by changing the cathode current density. The electrolytic melt contains 40 to 80 wt. % disodium borohydride and 20 to 60 wt. % sodium chloride, wherein the boriding temperature is 850 to 1000 ° C, or comprises 27 to 40 wt. % lithium fluoride, 50 to 63 wt. % of potassium fluoride and 10 wt. potassium fluoroborate, the boriding temperature is 700-850 J C. The melt in the thermal boriding comprises 40 to 60% by weight. % disodium tetroborate and 40 to 60 wt. quaternary boron carbide, wherein the boriding temperature is 900 to 950 ° C. However, when boring high-alloy steels, it has been found that the alloying elements, in particular chrome, tungsten and vanadium, form so-called " a diffusion barrier which greatly reduces the growth rate of the boride layer, and at high concentrations, the legumes can virtually prevent its formation.

Uvedené nevýhody v podstatnej miere odstraňuje spósob boridovania nástrojov a strojových súčasti z vysokolegovaných ocelí, ktorého podstata spočívá v tom, že sa oceíové súčiastky galvanicky poželezia z vodných roztokov. Poželeznené súčiastky z vysokolegovaných ocelí sa potom boridujú elektrolyticky alebo termicky v prostředí roztavených solí.The above-mentioned disadvantages are substantially eliminated by the method of boronizing tools and machine parts from high-alloy steels, which is based on the fact that the steel parts are galvanically ironed from aqueous solutions. The ferrous parts of high-alloy steels are then boridized electrolytically or thermally in the molten salt environment.

Výhodou navrhovaného sposobu boridovania nástrojov a strojových súčiastok vysokolegovaných ocelí je možnost boridovať aj také legované ocele, na ktorých sa pri použití doteraz používaných metod netvoria boridové vrstvy o požadovanej hrúbke ani pri dlhých expozičných časoch. Ďalšia výhoda je, že pri boridovaní poželezených ocelí dochádza len v malej miere k dlfúzii legujúcich prvkov zo základného materiálu do galvanicky vylúčenej železnej vrstvy, a v důsledku toho legúry nevytvárajú v železnej vrstvě difúznu bariéru. Naproti tomu difúzia železa do legovaného základu je podstatné rýchlejšia, čo zaručuje dobré spojenie medzi základom a boridovanou železnou vrstvou. Okrem značného zvýšenia rýchlosti boridovacieho procesu pri tomto spůsobe nie je potřebné náročné stanovenie optimálnych operačných parametrov, ktoré sú pre každú ocel' specifické, nakolko celá problematika sa redukuje na elektrolytické, resp. termické boridovanie železa, ktoré je dobré zvládnuté tak z teoretického, ako aj z technického hladiska.The advantage of the proposed method of boring tools and machine parts of high-alloy steels is the possibility to boride such alloyed steels, where the methods used hitherto do not form boride layers of the required thickness even at long exposure times. A further advantage is that the boronization of the ironed steel results in only a minor extent of alloying elements from the base material into the electrodeposited iron layer and, as a result, the alloys do not form a diffusion barrier in the iron layer. On the other hand, the diffusion of iron into the alloyed base is substantially faster, which guarantees a good connection between the base and the borated iron layer. In addition to the significant increase in the speed of the boriding process in this process, it is not necessary to determine the optimum operating parameters that are specific to each steel, since the whole problem is reduced to electrolytic or electrolytic processes. thermal boriding of iron, which is well managed both from theoretical and technical point of view.

PřikladlEXAMPLE

Ocel obsahujúca 0,75 % hmot. uhlíka, 0,5 percenta hmot. kremíka, 0,5 % hmot. mangánu., 4,34 % hmot. chrómu, 1,32 % hmot. vanádu a 17,2 % hmot. volfrámu (ocel ČSN 19824) sa poželezí v elektrolyte obsahujúcom 300 g. 1~' chloridu železnatého a 5 g.Steel containing 0.75 wt. %, 0.5 wt. % silicon, 0.5 wt. % of manganese., 4.34 wt. % chromium, 1.32 wt. % vanadium and 17.2 wt. tungsten (steel ČSN 19824) is ironed in an electrolyte containing 300 g. Of ferrous chloride and 5 g.

. Jiter1 chloridu manganatého pri teplote 90 °G a prúdovej hustotě 5 A. dm-2. V priebehu 80 minút sa na oceli vylúči železná vrstva o hrúbke 90 μτη. Poželezená časť sa elektrolyticky boriduje v tavenine obsahujúce] 80 % hmot. štvorboritanu dvojsodného a 20 % hmot. chloridu sodného, pri teplote 850 °C a prúdovej hustotě 0.05 A . cm-2 počas dvoch hodin, čím sa vytvoří boridová vrstva o hrúbke 75 μΐη. Pri boridovaní tejto ocele bez poželezenia je na získanie vrstvy o rovnakej hrúbke potřebný čas elektrolýzy 30 hodin.. Miter 1 of manganese chloride at a temperature of 90 ° C and a current density of 5 A. dm -2 . Within 80 minutes, a steel layer with a thickness of 90 μτη is deposited on the steel. The ironed portion is electrolytically borid in a melt containing 80 wt. % disodium quinoborate and 20 wt. sodium chloride, at a temperature of 850 ° C and a current density of. cm -2 for two hours to form a 75 μΐη boride layer. When boronizing this steel without ironing, an electrolysis time of 30 hours is required to obtain a layer of the same thickness.

Příklad 2Example 2

Postupuje sa ako v příklade 1 s tým rozdlelom, že sa poželezí ocel' obsahujúca 0,8 percenta hmot. uhlíka, 0,45 % hmot. kremíka, 0,45 % hmot. mangánu, 4,2 % hmot. chrómu, 2,0 % hmot. vanádu, 6,0 °/o hmot. volfrámu, 0,5 % hmot. molybdénu, (ocel' ČSN 19830). Pri elektrolytickom boridovaní v tavenine obsahujúcej 40 % hmot. štvorboritanu dvojsodného a 60 % hmot. chloridu sodného, pri teplote 950 °C sa za jednu hodinu vytvoří boridová vrstva o hrúbke 110 /(in. Na vytvorenie tejto vrstvy na nepoželezenej oceli CSN 19830 je potřebný čas boridovania 17 hodin.The procedure is as in Example 1 except that steel containing 0.8 percent by weight is ironed. % of carbon, 0.45 wt. % silicon, 0.45 wt. % manganese, 4.2 wt. 2.0 wt. vanadium, 6.0% w / w. tungsten, 0.5 wt. molybdenum, (steel 'ČSN 19830). In electrolytic boronization in a melt containing 40 wt. % disodium borohydride and 60 wt. of sodium chloride, at 950 [deg.] C., a boride layer with a thickness of 110 [mu] m is formed in one hour. A boride time of 17 hours is required to form this layer on non-ferrous steel CSN 19830.

Příklad 3Example 3

Postupuje sa ako v příklade 1 s tým rozdielom, že sa poželezí ocel o zložení 1,85 % hmot. uhlíka, 0,5' % hmot. kremíka, 0,26 % hmot. mangánu a 11,25 % hmot. chrómu (ocel' ČSN 19436J. Poželezená časť sa elektrolyticky boriduje v tavenine obsahujúcej 27 θ/o hmot. fluoridu lítneho, 63 % hmot. fluoridu draselného a 10 % hmot. fluoroboritanu draselného, pri teplote 750 “C sa za šest hodin vytvoří boridová vrstva o hrúbke 50 /zrn. Pri boridovaní tejto ocele bez poželezenia je na získanie vrstvy o hrúbke 50 ,wtn potřebný čas elektrolýzy 40 hodin. Příklad 4The procedure is as in Example 1, except that 1.85% by weight of steel is ironed. % of carbon, 0.5 wt. % silicon, 0.26 wt. % manganese and 11.25 wt. The iron part is electrolytically borated in a melt containing 27% by weight of lithium fluoride, 63% by weight of potassium fluoride and 10% by weight of potassium fluoroborate. In the boride of this steel without ironing, an electrolysis time of 40 hours is required to obtain a layer of 50, wtn.

Postupuje sa ako v příklade 3 s tým roz252718 dielom, že sa pri termickom boridovaní v tavenine o zložení 60 % hmot. štvorboritanu dvojsodného a 40 % hmot. karbidu štvorbóru a teplote 950 °C za 1,5 hodiny vytvoří boridová vrstva o hrúbke 90 μηα, Pri termickom boridovaní nepoželezenej súčasti je na vytvorenie boridovej vrstvy o rovnakej hrúbke potřebný čas boridovania 14 hodin.The procedure is as in Example 3, with the difference that in the case of thermal boriding in the melt a composition of 60 wt. % disodium borohydride and 40 wt. The quartz carbide at a temperature of 950 ° C in 1.5 hours produces a 90 μηα thick boride layer. For thermal boriding of the non-ferrous component, a boride time of 14 hours is required to form a boride layer of the same thickness.

Příklad 5Example 5

Postupuje sa ako v příklade 1 s tým rozdielom, že sa poželezená ocel' termicky boriduje v tavenine o zložení 40 % hmot. štvorboritanu dvojsodného a 60 % hmot. karbidu štvorbóru, pri teplote 950 °C počas jednej hodiny, čím sa vytvoří boridová vrstva o hrúbke 65 ^m. Pri boridovaní bez poželezenia je potřebný čas boridovania 12 hodin.The procedure is as in Example 1 except that the ironed steel is thermally borated in a melt of 40% by weight. % disodium borohydride and 60 wt. quaternary boron carbide, at 950 ° C for one hour to form a 65 µm boride layer. When boring without ironing, a borating time of 12 hours is required.

Příklad 6 ·Example 6 ·

Postupuje sa ako v příklade 4 s tým, rozdielom, že teplota boridovania je 900 °C. Po 2 hodinách boridovania sa získá boridová vrstva o hrúbke 70 ,uro. Pri termickom boridovaní nepoželezenej ocele o hrúbke 70 μπι je potřebný čas boridovania 16 hodin.The procedure is as in Example 4 except that the boronization temperature is 900 ° C. After 2 hours of boronization, a 70 µl boride layer was obtained. For thermal boriding of 70 μπι non-ferrous steel, a borating time of 16 hours is required.

Vynález može nájsť široké použitie v strojárenskom priemysle pri boridovaní nástrojových a strojových súčiastok z legovaných ocelí.The invention can be widely used in the mechanical engineering industry for borating tool and machine parts from alloyed steels.

Claims (1)

PREDMETSUBJECT Sposob boridovania nástrojov a strojových súčasti z vysokolegovaných ocelí, elektrolyticky alebo termicky v prostředí roztavenýchBoring of tools and machine parts of high-alloy steels, electrolytically or thermally in molten environments YNÁLEZU solí, vyznačujúci sa tým, že sa súčiastky před boridovaním galvanicky poželezia z vodných roztokov.The invention is characterized in that the components are galvanically ironed from aqueous solutions prior to boronization.
CS851385A 1985-02-27 1985-02-27 Method of high-alloy steel instruments and machine parts borizing CS252718B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS851385A CS252718B1 (en) 1985-02-27 1985-02-27 Method of high-alloy steel instruments and machine parts borizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS851385A CS252718B1 (en) 1985-02-27 1985-02-27 Method of high-alloy steel instruments and machine parts borizing

Publications (2)

Publication Number Publication Date
CS138585A1 CS138585A1 (en) 1987-03-12
CS252718B1 true CS252718B1 (en) 1987-10-15

Family

ID=5348090

Family Applications (1)

Application Number Title Priority Date Filing Date
CS851385A CS252718B1 (en) 1985-02-27 1985-02-27 Method of high-alloy steel instruments and machine parts borizing

Country Status (1)

Country Link
CS (1) CS252718B1 (en)

Also Published As

Publication number Publication date
CS138585A1 (en) 1987-03-12

Similar Documents

Publication Publication Date Title
Naka et al. High corrosion resistance of chromium-bearing amorphous iron alloys in neutral and acidic solutions containing chloride
Tassin et al. Carbide-reinforced coatings on AISI 316 L stainless steel by laser surface alloying
EP0252479B1 (en) Method for surface treatment and treating material therefor
CN1926265B (en) Iron-phosphorus electroplating bath and method
EP0668375A1 (en) Process for forming composite galvanic coatings of hard chromium with a disperse phase, and wear-resistant coating formed thereby
US4250208A (en) Method for forming a two-layered carbide surface on a ferrous-alloy article and resulting product
JP3381812B2 (en) Casting mold or molten metal material with excellent erosion resistance
CS252718B1 (en) Method of high-alloy steel instruments and machine parts borizing
US2950233A (en) Production of hard surfaces on base metals
CA1195645A (en) High-rate chromium alloy plating
JPS6053776A (en) Crucible into which salt bath in which steel is treated by boron is entered
US3671297A (en) Method of chromizing in a fused salt bath
CA1131947A (en) Corrosion-protection layer for heat-resistant alloys
Chiba et al. Some corrosion characteristics of stainless surface alloys laser processed on a mild steel
US4332653A (en) Method of nitriding by high temperature electrolysis
Takemoto et al. Effect of composition on the corrosion behavior of stainless steels brazed with silver-base filler metals
JPS61291962A (en) Surface treatment method for iron alloy materials
JPS622628B2 (en)
US2331751A (en) Process of electrodepositing hard nickel plating
Marder Effects of surface treatments on materials performance
JPH0351796B2 (en)
Fazluddin Corrosion behaviour of vanadium carbide coating produced by a thermal diffusion process
Song et al. Surface Modification of A Cr–mo Steel Using Laser Surface Alloying with B4C Powder Injection
US6159355A (en) Process for the electrolytic production of cyanide in nitrocarburizing melts
SU1763518A1 (en) Method for electrolysis borating of steel articles