CS251990B1 - Method of 2-alkoxypropenes production - Google Patents
Method of 2-alkoxypropenes production Download PDFInfo
- Publication number
- CS251990B1 CS251990B1 CS856041A CS604185A CS251990B1 CS 251990 B1 CS251990 B1 CS 251990B1 CS 856041 A CS856041 A CS 856041A CS 604185 A CS604185 A CS 604185A CS 251990 B1 CS251990 B1 CS 251990B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- alcohol
- methylacetylene
- alene
- pressure
- mpa
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 27
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000000197 pyrolysis Methods 0.000 claims abstract description 10
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 6
- 239000011591 potassium Substances 0.000 claims abstract description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 5
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 3
- 239000011734 sodium Substances 0.000 claims abstract description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract 3
- 125000003545 alkoxy group Chemical group 0.000 claims abstract 2
- 238000006555 catalytic reaction Methods 0.000 claims abstract 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 15
- 239000003054 catalyst Substances 0.000 claims description 13
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 239000011541 reaction mixture Substances 0.000 claims description 5
- 239000007791 liquid phase Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 150000004703 alkoxides Chemical class 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 22
- 239000000243 solution Substances 0.000 abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 abstract description 3
- 238000007906 compression Methods 0.000 abstract 1
- -1 potassium alkoxide Chemical class 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- YOWQWFMSQCOSBA-UHFFFAOYSA-N 2-methoxypropene Chemical compound COC(C)=C YOWQWFMSQCOSBA-UHFFFAOYSA-N 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 4
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical compound C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 150000001361 allenes Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002638 heterogeneous catalyst Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- RHLWQEFHFQTKNT-UHFFFAOYSA-N (2z)-1-cyclooctyl-2-diazocyclooctane Chemical compound [N-]=[N+]=C1CCCCCCC1C1CCCCCCC1 RHLWQEFHFQTKNT-UHFFFAOYSA-N 0.000 description 1
- LBFTVBIHZPCKME-UHFFFAOYSA-N 1-prop-1-en-2-yloxybutane Chemical compound CCCCOC(C)=C LBFTVBIHZPCKME-UHFFFAOYSA-N 0.000 description 1
- NUWLKADCAHTWLL-UHFFFAOYSA-N 1-prop-1-en-2-yloxypentane Chemical compound CCCCCOC(C)=C NUWLKADCAHTWLL-UHFFFAOYSA-N 0.000 description 1
- PFXWTVDJPSDKSB-UHFFFAOYSA-N [N+](=[N-])=C1C=C(CCCCC1)C1=CCCCCCC1 Chemical compound [N+](=[N-])=C1C=C(CCCCC1)C1=CCCCCCC1 PFXWTVDJPSDKSB-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
2-Alkoxypropény s 1 až 5 atómami uhlíka v alkoxyskupine sa pripravujú reakciou pyrolýznej Cs-fraikcie obsahujúcej min. 5 % hmot. metylacetylénu a alénu s alkoholom s 1 až 5 atómami uhlíka za katalýzy bázických látok (10 až 40%-ný roztok hydroxidu, alebo alkoxidu sodného alebo draselného v alkohole s 1 až 5 atómami uhlíka J. Reakcia iprebieha pri teplote 150 až 270 °C a tlaku 1,0 až 5,0 MPa, pričom molárny poměr metylacetylénu a alénu :k alkoholu ' je 1 :1 až 1: 3.2-Alkoxypropenes having 1 to 5 carbon atoms in the alkoxy group they are prepared by reaction pyrolysis C 5 -compression containing min. 5% wt. methylacetylene and alene with alcohol with 1 to 5 carbon atoms under basic catalysis (10 to 40% hydroxide solution, or sodium or potassium alkoxide in a C 1 -C 5 alcohol. The reaction takes place at 150 to 270 ° C and a pressure of 1.0 to 5.0 MPa, wherein the molar methylacetylene / alene: alcohol ratio is 1: 1 to 1: 3.
Description
Vynález sa týká spósobu výroby 2-alkoxypropénov z pyrolýznej C3-frakcie obsahujúce] metylacetylén a alén.The invention relates to a process for the preparation of 2-alkoxypropenes from a pyrolysis C3-fraction containing 1-methylacetylene and alene.
2-Alkoxypropény (alkyliisopr openylétery) sú zlúčeniny so všestranným poteinciálnym. využitím. Sú to potenciálně monomery a komonoméry do špeciálnych typov plastov, niektoré ako 2-metoxypropéin sú žiadanou surovinou v organickej syntéze (syntéza vitamínov A, E a vonných látok).2-Alkoxypropenes (alkylisopropylene ethers) are compounds with a versatile potential. use. They are potentially monomers and comonomers for special types of plastics, some such as 2-methoxypropéin being a desired raw material in organic synthesis (synthesis of vitamins A, E and fragrances).
Klasicky sa vyrábajú z acetonu a příslušného alkoholu nízkotepelnou kyslo katalyzovainou kondenzáciou, pričom vzniknutý dlalkyloxypropán sa pyrolyzuje ina 2-alkoxypropán, Proces je dvojstupňový, energeticky náročný a druhý stupeň nie je příliš selektívny.They are conventionally produced from acetone and the corresponding alcohol by low-temperature acid-catalyzed condensation, whereby the resulting dlalkyloxypropane is pyrolyzed other than 2-alkoxypropane.
V disikontinuálnom procese je známa syntéza 2-metoxypropénu z obohatenej metylacetylénovej frakcie [Agre B. A. a kol.: Chim. Farm. Ž. 17, No 3, 330 (1983)]. Reakcia bola taktiež uskutečňovaná v plynnej fáze ma ikomtaktnom katalyzátore (NaOH na aktívinom uhlí) [Agre B. A. Neftepererab. Neftechim. 1982, (9) 34]. Reakcia v plynnej fáze je však citlivá na životnost heterogenného katalyzátora, ktorého povrch sa rýchlo zalepuje polymernými látkami, ktoré vznikajú polymeyrizáciou monomérov obsiahnutých v pyrolýznej C3-frakcii.In the discontinuous process, the synthesis of 2-methoxypropene from the enriched methylacetylene fraction is known [Agre B. A. et al .: Chim. Farm. FROM. 17, No. 3, 330 (1983)]. The reaction was also carried out in the gas phase of the catalyst (NaOH on activated carbon) [Agre B. A. Neftepererab. Neftechim. 1982, (9) 34]. However, the gas phase reaction is sensitive to the life of a heterogeneous catalyst, the surface of which is rapidly sealed by polymeric substances formed by the polymerization of the monomers contained in the pyrolysis C3-fraction.
Podía tohto vynálezu sa spůsob výroby 2-alkoxypropénov, uskutočňuje tak, že pyrolýzna Cs-frakcia obsahujúca metylacetylén a alén reaguje s alkoholom s počtom atómov uhlíka 1 až 5 za katalýzy bazických látok pri teplote 150 až 270 °C, s výhodou 165 až 190 °C a tlaku 1,0 až 5,0 MPa, s výhodou 2,5 až 4,5 MPa, pričom molárny poměr metylacetylénu a aléinu k alkoholu jeAccording to the present invention, the process for the preparation of 2-alkoxypropenes is carried out by reacting a pyrolysis C Cs-fraction containing methylacetylene and an alene with an alcohol having a carbon number of 1 to 5 to catalize the basic substances at 150 to 270 ° C, preferably 165 to 190 ° C and a pressure of 1.0 to 5.0 MPa, preferably 2.5 to 4.5 MPa, wherein the molar ratio of methylacetylene to alene to alcohol is
Syntéza 2-metoxypropénu podía tohto vynálezu sa uskutočňuje v tlakovej kontinuálnej aparatúre. Alkohol isa dávkuje cez predohrev do tlakového reaktora. Kvapalná C3 frakcia sa napojuje do prúdu alkoholu. Obidve suroviny sa prlvádzajú na spodok tlakového reaktora, ktorý je do' 2/3 až 3/4 objemu naplněný katalytickým roztokom, ktorým je 10 až 40 %-ný roztok alkalického hydroxidu alebo alkoholátu v použitom alkohole. Roztok je homogénny, nie je však na závadu, ak sa časť hydroxidu alebo alkoholátu z roztoku vylúči. Množstvo katalytického roztoku je funkciou teploty, tlaku nástreku příslušného alkoholu a katalytickej zmesi. Výška hladiny sa reguluje iprepadom alebo vhodným nastavením teploty chladiaceho média deflegmátora. Páry reakčného produktu, ktoré obsahujú 10 až 40 °/o 2-alkoxypropénu, příslušný alkohol a uhíovodky C3 frakcie prechádzajú cez deflegmátor, ktorý vracia časť alkoholu spát do reaktora cez kondenzátor a ďalej do tlakového zásobníka. Z tlakového zásobníka postupuje kondenzát ďalej do deliacej časti.The synthesis of 2-methoxypropene according to the invention is carried out in a pressurized continuous apparatus. The alcohol is dosed via preheating to a pressure reactor. The liquid C3 fraction is fed to an alcohol stream. Both raw materials are fed to the bottom of the pressurized reactor, which is filled up to 2/3 to 3/4 of the volume with a catalyst solution which is a 10 to 40% solution of alkali hydroxide or alcoholate in the alcohol used. The solution is homogeneous, but it does not matter if part of the hydroxide or alcoholate is excluded from the solution. The amount of catalyst solution is a function of the temperature, the feed pressure of the respective alcohol and the catalyst mixture. The level is controlled by the overflow or by an appropriate adjustment of the deflegmator coolant temperature. The reaction product vapors containing 10 to 40% of 2-alkoxypropene, the respective alcohol and the C3 fraction hydrocarbons pass through a deflector that returns a portion of the alcohol back to the reactor via a condenser and further into a pressurized container. From the pressure reservoir, the condensate flows further into the separating section.
Ako východisková surovina okrem čistého metylacetylénu a alénu sa využívá pyrolýzna Cs-frakcia, ktorá obsahuje 20 až 40 % hmot. metylacetylénu a propadiénu, dalej okolo 20 až 30 % hmot. propánu, 10 až 20 % hmot. propylénu, okolo 0,3 % hmot. acetylénu, 0,5 % hmot. izobuténov, 0,6 % hmot. butadiénu. Zloženie Cj-Erakcie kolíše podía typu pyrolýzy, može sa použiť bez akejkoívek úpravy. Je možné použiť celú škálu alkoholov, podmienkou je, aby bol počas reakcie kvapalný (tvoří reakčné prostredie), aby sa v ňom rozpúšťal katalyzátor, reagujúce uhlovodíky (metylacetylén a alén) a aby mal dostatočnú prchavosť pri reakčných podmínekach. Obecme, čím sa použije vyšší alkohol, tým sa reakcia uskutočňuje pri nlžšom tlaku.In addition to the pure methylacetylene and the alene, the pyrolysis Cs-fraction, which contains 20 to 40 wt. % of methylacetylene and propadiene, further about 20 to 30 wt. % propane, 10 to 20 wt. % propylene, about 0.3 wt. % of acetylene, 0.5 wt. isobutene, 0.6 wt. butadiene. The C 1 -Eraction composition varies according to the type of pyrolysis, and can be used without any modification. A wide variety of alcohols can be used, provided that it is liquid during the reaction (it forms the reaction medium), that the catalyst, the reactive hydrocarbons (methylacetylene and alene) are dissolved in it, and that it has sufficient volatility under the reaction conditions. In general, the higher the alcohol is used, the reaction is carried out at a lower pressure.
Ako> katalyzátor je možné aplikovať 10 až 40 % hmot., s výhodou 25 až 35 % hmot. KOH, NaOH, alkoholáty draslíka a sodíka, ktoré sa prldávajú do alkoholu priamo, alebo sa katalytický roztok tvoří přidáním alkalického kovu do příslušného alkoholu.10 to 40 wt.%, Preferably 25 to 35 wt. KOH, NaOH, potassium and sodium alcoholates which are added directly to the alcohol, or the catalytic solution is formed by adding an alkali metal to the corresponding alcohol.
Pri použití alkoholických roztokov lúhov (ktoré sú najlacnejšími katalyzátormi) je výhodné přidat do katalytického roztoku 1 až 5 % hmot. alkoholátu příslušného kovu alebo inú velmi silnú bázu ako katalyzátor (diazobicyklooktén, trialkylbenzylamónium hydroxid a dalšie velmi bázické látky). Optimálně]' konverzie metylacetylénu a alénu a výtažku 2-alkoxypropénu sa v prietočinom systéme bez pridania týchto katalyzátorov dosiahne až po 8 až 12 h. Přidáním týchto látok sa táto nežíadúca počiatočná nabiehacia doba odstráni.When using alcoholic liquor solutions (which are the cheapest catalysts), it is preferable to add 1 to 5 wt. a metal alkoxide or other very strong base as a catalyst (diazobicyclooctene, trialkylbenzylammonium hydroxide and other very basic substances). Optimally, the conversion of methylacetylene and allene and 2-alkoxypropene yield in the flow system is achieved after 8 to 12 hours without the addition of these catalysts. The addition of these substances eliminates this undesired initial start-up time.
Reakčná teplota závisí od použitého alkoholu. Spodná hranica je okolo 150 °C, horná hranica je daná reaktivitou alkoholu a jeho prchavosťou. Bežne sa používá teplota 150 až 270 °C, pre použitie metanolu je aplikovatelná teplota 165 až 220 CC, s výhodou 165 až 190 °C.The reaction temperature depends on the alcohol used. The lower limit is about 150 ° C, the upper limit is given by the reactivity of the alcohol and its volatility. Normally a temperature of 150 to 270 ° C is used, for the use of methanol a temperature of 165 to 220 ° C, preferably 165 to 190 ° C is applicable.
Reakčný tlak tiež závisí od použitého alkoholu, jeho prchavosti a rozpustnosti uhlovodíkov (metylacetylénu a alénu v ňom). Najpoužívanejší je tlak 1,0 až 5,0 MPa, pre použitie metanolu 2,5 až 4,5 MPa.The reaction pressure also depends on the alcohol used, its volatility and the solubility of the hydrocarbons (methylacetylene and the alene therein). The most used pressure is 1.0 to 5.0 MPa, for methanol use 2.5 to 4.5 MPa.
Suroviny isa dávkujú do reaktora v mólovom pornere 1:1 až 1:3. Výhodnější je nadbytek alkoholu.The isa feeds are fed into the reactor in a 1: 1 to 1: 3 molar beater. An excess of alcohol is more preferred.
Výhodou procesu je spracovávanie druhotnej suroviny, ktorá sa váčšinou vracela do pyrolýzy. V deliacom procese sa nezreagované uhlovodíky oddelia tlakovou destiláciou od reakčnej zmesi alkohol-2-alkoxyproipén a uhlovodíky sa vraeajú do pyrolýzy. Oplynená reakčná zmes obsahujúca 20 až 40 % hmot. 2-alkoxypropénu v príslušnom alkohole sa vedie ina dalšie spracovanie. V případe 2-metoxypropénu sa tento izoluje extrakčnou rektifikáciou, kde sa ako extrakčné rozpúšťadlo použije voda (1 %-ný roztok NaOH, KOH), glykoly, moinoetano,laminy atd. Proces pracuje s 55 % až 65 %-nou konverziou metylacetylénu a alé251990 nu pri takmer 100 %-nej selektivitě. Za uvedených reakčných podmienok neprebieha adícia alkoholu na propylén. V produkte boli nájdené lem stopy 2,2‘-dialkoxypropánu a stopy acetonu, 2-Alkoxypropény sú za tlaku citlivé .na polymerizáciu .a je potřebné ich klasicky stabilizovat, (napr. hydrochinonom, pyrofcatechinom, alkylfenolmi, alkyl/alebo alkylaryl-amínmi). Inhibitory sa přidávájň do příslušného alkoholu, ktorý vstupuje do syntézy. Sú taktiež citlivé na kyslosť (.rozkladajú sa na alkohol a aceton), a preto sa stabilizujú s K2CO3, ktorý sa přidává do. konečného· .produktu.The advantage of the process is the processing of secondary raw material, which has mostly returned to pyrolysis. In the separation process, unreacted hydrocarbons are separated by pressure distillation from the alcohol-2-alkoxyproipene reaction mixture and the hydrocarbons are returned to pyrolysis. Gassed reaction mixture containing 20 to 40 wt. The 2-alkoxypropene in the respective alcohol is subjected to another further treatment. In the case of 2-methoxypropene, this is isolated by extraction rectification, using water (1% NaOH, KOH), glycols, moinoethano, lamina, etc. as the extraction solvent. The process operates with a 55% to 65% conversion of methylacetylene and all1990990 at almost 100% selectivity. Under the reaction conditions mentioned, the addition of alcohol to propylene does not take place. Traces of 2,2'-dialkoxypropane and traces of acetone have been found in the product, 2-Alkoxypropenes are pressure sensitive to polymerization and need to be classically stabilized (e.g., hydroquinone, pyrophatechin, alkylphenols, alkyl / or alkylaryl-amines) . Inhibitors are added to the appropriate alcohol that is involved in the synthesis. They are also sensitive to acidity (they break down into alcohol and acetone) and therefore stabilize with K2CO3 which is added to the. of the final product.
Oproti klasické) dvojstupňovej syntéze ina báze acetonu má syntéza 2-alkoxypropénu podta tohto- vynálezu niekoíko výhod. Proces je jedno,stupňový a podstatné menej energeticky náročný. Vstupná surovina (C3-frakcia) je podstatné lacne jšia ako· acetóin. Proces podta tohto vynálezu sa vyznačuje vyššou selektivitou a nižšími nárokmi na deliaci proces, pretože reakčná zmes neobsahuje aceton.Compared to the classical two-step synthesis of another acetone base, the synthesis of 2-alkoxypropene of the present invention has several advantages. The process is one, stepped and substantially less energy intensive. The feedstock (C3-fraction) is substantially cheaper than acetone. The process according to the invention is characterized by higher selectivity and lower demands on the separation process since the reaction mixture does not contain acetone.
Proces je kontinualizovaný a oproti známému sposobu má niekoíko dalších výhod. Katalytický systém je vetmi statilný, má dlhú životnost a je možnost jeho kontinuálnej výměny počas reakcie. Známe hete.rogénne katalyzátory, napr. NaOH na aktívnom uhlí, okrem nižšej aktivity sa vyznačujú nízkou životnosťou (rádovo v hodinách). Okrem straty alkality je povrch katalyzátore zalepovaný polymérmi.The process is continual and has several other advantages over the known method. The catalytic system is highly stable, has a long lifetime, and is capable of continuous replacement during the reaction. Known heterogeneous catalysts, e.g. NaOH on activated carbon, besides lower activity, are characterized by low lifetime (in the order of hours). In addition to the loss of alkalinity, the surface of the catalyst is sealed with polymers.
Vynález je doložený prikladmi hez toho, aby jeho predmet obmedzovali.The invention is well exemplified to limit its scope.
Příklad 1Example 1
Do kontinuálnej tlakové) aparatury sa čerpadlom načerpá 490 ml katalytickej zmesi (30%-ný KOH v metanole] až po přepad reaktora. Dusíkom sa tlak v aparatuře upraví na 4,0 MPa. Metanol sa do reaktora dávkuje v množstve 93 ml/h [2,33 mol/hl cez predohrev, ktorý je nastavený na 100 °C. Zohriaty metanol sa na vstupe do reaktora mieša s pyrolýznou C3-frakciou v množstve 123,5 g/h [0,096 ml/h] (obsahuje 31% hmot. metylacetylénu a alénu). C3-frakcia má následovně zloženie v % hmot.:490 ml of catalytic mixture (30% KOH in methanol) is pumped into the continuous pressure apparatus until the overflow of the reactor. The nitrogen pressure in the apparatus is adjusted to 4.0 MPa. Methanol is metered into the reactor at 93 ml / h [ 2.33 mol / hl via preheating set at 100 [deg.] C. The heated methanol is mixed with the pyrolysis C3-fraction at 123.5 g / h [0.096 ml / h] (31% w / w) at the reactor inlet. The C3-fraction has the following composition in% by weight:
propán 47,8 propyléin 19,2 acetylén 0,31 i-butén 0,53 propandién (alén) 13,4 [pd] butadién 0,90 melylacetylén 17,6 [proč.]propane 47.8 propylene 19.2 acetylene 0.31 i-butene 0.53 propanediene (alene) 13.4 [pd] butadiene 0.90 melylacetylene 17.6 [why.]
Suma reaktívnych komponent = pd + prac. = 31 % hmot.Sum of reactive components = pd + working. = 31% wt.
Suroviny sa vedú na dno reaktora, kde sa nastrekujú do katalytického roztoku cez ružicu opatrenú 40 otvormi v priemere min. Reaktor je vyhriaty na 185 °C. Vo vrchnej časti reaktora sa odoberajú páry (časť pár skondenzuje v deílegmátore), ktoré kondenzujú v chladiči a kvapalina sa zachytává v tlakovom zásobníku. Tlaková ftaša s C3-frakciou i tlakový zásobník sú umiestnené na váhách. Ustálenie teplot a prietokov sa uskutečňuje počas 1,5 hodinového zábehu. Vlastný pokus trvá 8 h. Vyrovnáváme tlaku sa robí z tlakového zásobníka do tlaikovej ftaše taktiež umiestnenej na váhe, odpúšťaním kvapalnej fázy. Po 8 hodinách sa odoberie z tlakového zásobníka vzorok plynnej i kvapalnej fáze do tlakových vzorkovacích bombičlek. Získá sa 216 g/h produktu o zložení v % hmot.:The feedstocks are fed to the bottom of the reactor, where they are injected into the catalyst solution through a rosette provided with 40 openings with an average of min. The reactor is heated to 185 ° C. At the top of the reactor, vapors are removed (some of the vapors condense in a de-emulsifier), which condense in the condenser and the liquid is collected in a pressure vessel. The pressure cylinder with the C3-fraction and the pressure reservoir are both placed on the balance. The temperature and flow rate are stabilized over a 1.5 hour run-in period. The actual experiment takes 8 hours. Equalizing the pressure is done from the pressure reservoir to the pressure bottle also placed on the scale, by draining the liquid phase. After 8 hours, the gas and liquid phase samples are taken from the pressure reservoir into the pressure sampling cylinders. 216 g / h of a composition in% by weight are obtained:
Po 8 h prevádzkovania sa získá výťažok 60,5 % 2-metoxypropénu na nasadený mety lacety lén a alén pri konverzii metylacetylénu a alénu 61,8 %. Po odplynení reakčnej zmesi je obsah 2-metoxypropénu v metanole 33 % hmot.After 8 hours of operation, a yield of 60.5% of 2-methoxypropene is obtained for the deployed meta lacetes of lene and allene at a conversion of methylacetylene and an alene of 61.8%. After degassing of the reaction mixture, the content of 2-methoxypropene in methanol is 33% by weight.
Příklad 2Example 2
Pri dodržaní pracovného postupu nástrekových i reakčných podmienok ako v přiklade 1 sa katalytický roztok použije 30 %-ný roztok KOH v metanole, do ktorého sa přidá 0,1 g draslíka. Už po 8 hodinách prevádzkovania sa dosiahne konverzia metylacetylénu a alénu 68 % a výťažok 2-metoxypropénu 66 %-ný na nastrekový metylacetylén a alén.Following the injection and reaction conditions of Example 1, the catalyst solution was a 30% solution of KOH in methanol to which 0.1 g of potassium was added. Already after 8 hours of operation, the conversion of methylacetylene and alene is 68% and the yield of 2-methoxypropene 66% to feed methylacetylene and alene.
Příklad 3Example 3
Při dodržaní pracovného postupu nástrekov vstupných surovin sa ako katalytický roztok použije 25 %-ný roztok NaOH v metanole pri reakčnej teplote 200 °C, tlaku 4,0 MPa. Po 8 h prevádzkovania sa dosiahne 54 %-ná konverzia metylacetylénu a alénu a výťažok 51 % na nasadený metylacetylén a alén.Following the feed procedure, a 25% solution of NaOH in methanol was used as the catalyst solution at a reaction temperature of 200 ° C, 4 MPa. After 8 hours of operation, a 54% conversion of methylacetylene and alene is achieved and a yield of 51% to the methylacetylene and alene employed.
Příklad 4Example 4
Pri dodržaní pracovného postupu a reakčných podmienok podta příkladu 1 (teplota 185 qC, tlak 4,0 MPa, teplota predohrevu 100 CC (sa mění mólový poměr inastrekovaných surovin. Katalytický roztok 30 %-ný KOH s 0,1 g draslíku. Doba prevádzkovania 8 h.Following the procedure and reaction conditions of Example 1 (temperature 185 q C, pressure 4.0 MPa, pre-heating temperature 100 C C), the mole ratio of the feedstock was changed. Catalytic solution of 30% KOH with 0.1 g of potassium. operation 8 h.
Příklad 6Example 6
Příklad 5Example 5
Pri dodržaní pracovného postupu ako' v příklade 1 sa do' reaktora nadávkuje 490 ml 30 %-ného KOH v n-pentanole (amylalkohol) s obsahom 0,1 g draslíka po přepad. Cez predohrievač vyhriaty na 100 °C sa dávkuje 248,6 ml/h amylalkoholu a 127 g/h C3-frakcie pri reakčnej teplote 200 °C, tlaku v aparatuře 1,0 MPa. Po 18 hodinovom prevádzkovaní sa dosiahne konverzia metylacetylénu a alénu 55 % a výťažok 2-pentoxypropénu 52 % na nastreknutý metylacetylén a alén.Following the procedure of Example 1, 490 ml of 30% KOH in n-pentanol (amyl alcohol) containing 0.1 g of potassium after the overflow were charged into the reactor. 248.6 ml / h of amyl alcohol and 127 g / h of the C3-fraction were charged through a preheater at 100 ° C at a reaction temperature of 200 ° C, apparatus pressure of 1.0 MPa. After 18 hours of operation, the conversion of methylacetylene and alene is 55% and the yield of 2-pentoxypropene is 52% to the injected methylacetylene and alene.
Pri dodržaní pracovného postupu ako v příklade 1 sa do reaktora nadávkuje 25 %-ný roztok KOH v n-butanole s prídavkom 0,1 g K a 0,1 g diazobicyklooktánu. Po vyhriatí reaktora na 190 °C a nastavení tlaku na 2,0 MPa sa dávkuje 165,0 ml/h (2,0 mol/ /h) n-hutanolu a 127 g/h Cs-frakcie. Po 8 hodinovém prevádzkovaní sa dosiahne konverzia metylacetylénu a alénu 60 % a výtažek 2-butoxypropénu na nastreknutý metylacetylén a alén 58,5 %.Following the procedure of Example 1, a 25% solution of KOH in n-butanol was added to the reactor with the addition of 0.1 g K and 0.1 g diazobicyclooctane. After heating the reactor to 190 ° C and adjusting the pressure to 2.0 MPa, 165.0 ml / h (2.0 mol / h) of n-hutanol and 127 g / h of Cs-fraction were metered in. After 8 hours of operation, the conversion of methylacetylene and alene is 60% and the yield of 2-butoxypropene to the injected methylacetylene and alene is 58.5%.
PREDMETSUBJECT
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS856041A CS251990B1 (en) | 1985-08-22 | 1985-08-22 | Method of 2-alkoxypropenes production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS856041A CS251990B1 (en) | 1985-08-22 | 1985-08-22 | Method of 2-alkoxypropenes production |
Publications (2)
Publication Number | Publication Date |
---|---|
CS604185A1 CS604185A1 (en) | 1986-12-18 |
CS251990B1 true CS251990B1 (en) | 1987-08-13 |
Family
ID=5406553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS856041A CS251990B1 (en) | 1985-08-22 | 1985-08-22 | Method of 2-alkoxypropenes production |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS251990B1 (en) |
-
1985
- 1985-08-22 CS CS856041A patent/CS251990B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS604185A1 (en) | 1986-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5426207A (en) | Continuous production process of diarylcarbonates | |
US7279592B2 (en) | Process for making dialkyl carbonates | |
CN101918347A (en) | Production of propylene glycol monoalkyl ether | |
US9920000B2 (en) | Synthesis of methyl carbamate and dimethyl carbonate (DMC) in presence of stripping with inert gas or superheated vapours and a reactor for the same | |
CN106588589A (en) | Purification method for polyoxymethylene dimethyl ether(PODE) | |
CN1056877A (en) | The method of improved quick production cyclic ester class | |
KR101808248B1 (en) | A continuous process for preparing neopentyl glycol | |
EP1740529A2 (en) | Process for making dialkyl carbonates | |
Inoue et al. | Synthesis of optically active polymers by asymmetric catalysts. VI. Behavior of organozinc catalyst systems in the stereoselective polymerization of propylene oxide | |
RU2203264C2 (en) | Method of synthesis of acetic acid | |
US6329554B1 (en) | Continuous preparation of unsaturated ketones | |
US4533758A (en) | Alkylation of phenols to alkyl aryl ethers using phosphate catalysts | |
CS251990B1 (en) | Method of 2-alkoxypropenes production | |
JPH0314535A (en) | Production of alpha-substituted cinnamaldehyde amyl or hexyl cinnamaldehyde obtained by said production method and perfume base containing said aryl or hexyl cinnamaldehyde | |
CN106588597B (en) | The method for purifying polyoxymethylene dimethyl ethers | |
EP0265030A1 (en) | Recovery of propylene glycol mono t-butoxy ether | |
US6307106B1 (en) | Process for preparing unsaturated ketones | |
US2157347A (en) | Production of vinyl ethers derived from carbohydrates | |
CN117019019A (en) | Reaction device and method for producing monovinyl ether from divinyl ether | |
CN115385766A (en) | Synthetic method of sulfurized isobutylene | |
Gong et al. | Regioselective substitution of phenols with trifluoroacetaldehyde ethyl hemiacetal | |
US6072021A (en) | Copolymerization of formaldehyde and cyclic ethers using initiators based upon tetraphenyl borates | |
CN113582967A (en) | Device and method for preparing trioxymethylene | |
US5741940A (en) | Process for the production and purification of vinyl carbonyls | |
RU1825366C (en) | Process for simultaneously producing cycloorganosiloxanes and methyl chloride |