CS245543B1 - Process for producing olefins by pyrolysis of hydrocarbons initiated by inorganic compounds - Google Patents
Process for producing olefins by pyrolysis of hydrocarbons initiated by inorganic compounds Download PDFInfo
- Publication number
- CS245543B1 CS245543B1 CS101185A CS101185A CS245543B1 CS 245543 B1 CS245543 B1 CS 245543B1 CS 101185 A CS101185 A CS 101185A CS 101185 A CS101185 A CS 101185A CS 245543 B1 CS245543 B1 CS 245543B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- pyrolysis
- hydrocarbons
- coke
- additive
- effect
- Prior art date
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Účelom riešenia je výroba olefínov akými sú etylén, propylén, 1,3-butadién, izoprén, cyklopentadién pyrolýzou uhlovodíkov zo zemného plynu, ropy a spracovania uhlia v přítomnosti dusitanov a dusičnanov kovov 1. a 2. skupiny periodickej tabulky a sirníka fosforečného v množstve 0,001 až 2,0 % hmotnostných. Týmto sposobom sa zhodnocuje uhlovodíková surovina vo vačšej miere na žiadané olefíny alko doteraz. Súčasne dochádza k potláčaniu tvorby koksu, čím sa predížia prevádzkové cykly. Riešenie sa může využiť v odbore spracovania ropy a petrochemie.The purpose of the solution is the production of olefins such as ethylene, propylene, 1,3-butadiene, isoprene, cyclopentadiene by pyrolysis of hydrocarbons from natural gas, oil and coal processing in the presence of nitrites and nitrates of metals of groups 1 and 2 of the periodic table and phosphorus pentasulfide in an amount of 0.001 to 2.0% by weight. This method valorizes the hydrocarbon raw material to a greater extent into the desired olefins alcohols than before. At the same time, coke formation is suppressed, thereby extending operating cycles. The solution can be used in the field of oil processing and petrochemicals.
Description
Vynález sa týká sposobu výroby olefínov pyrolýzou individuálnych uhtovodíkov alebo ich zmesi, ktorá je iniciovaná látkami anorganické] povahy.The invention relates to a method for producing olefins by pyrolysis of individual hydrocarbons or their mixture, which is initiated by substances of inorganic nature.
Doteraz patria nízkomolekulové olefíny akými sú etylén a propylén spolu s aromátmi BTX medzi základné petrochemikálie. Olefíny sa v1 súčasnosti v rozhodujúcej miere získavajú tepelným rozkladom uhlovodíkov zo zemného a rafinérskych plynov, ropy a spracovania uhlia. Pyrolýza uhřovodíkov na olefíny prebieha za tvrdých podmienok, ktoré sú energeticky velmi náročné. Maximálně výtažky etylénu v případe pyrolýzy primárných benzínov sa dosahuje pri teplotách okolo 820 až 830 C a zdržných dobách pod 0,3 sekúnd. Za týchto podmienok sa sice pracuje v optimálnom etylénovom režime, ale súčasne klesá selektivita procesu. Prejavuje sa to poklesom tvorby, například v tomto· čase velmi žiadaného propylénu ,a vzrastom výťažkov nežiadúceho metánu, pyrolýzneho oleja, smol a koksu. Preto sa intenzívně hfadajú také zlúčeniny, ktoré sú schopné ovplyvňovat radikálový proces tepelného rozkladu uhtovodíkov· v tom smere, aby sa mohlo pracovat pri nižších teplotách. Tým by sa zlepšili kinetické parametre procesu a vzrástla selektivita. Medzi zlúčeniny, ktoré sa za tým účelom sledovali, patria aj niektoré zlúčeniny dusíku. Známa je pyrolýza uhlovodíkov v přítomnosti amoniaku; amínov, nitro-, nitrozlúčenín (AO ČSSR 190 747); sírnodusíkatých zlúčenín akými sú sírnik amonný, tiomočovina, nitrotiofenol a tiazin (AO ČSSR 210 039). Napriek tomu, že tieto dusíkaté zlúčeniny sa vyznačujú vysokou účinnosťou, ich širšiemu zavedeniu v prevádzkovom meradle bráni predovšetkým dostuposť a cena.Until now, low-molecular olefins such as ethylene and propylene, together with the aromatics BTX, have been among the basic petrochemicals. Olefins are currently obtained to a decisive extent by thermal decomposition of hydrocarbons from natural and refinery gases, crude oil and coal processing. Pyrolysis of hydrocarbons to olefins takes place under harsh conditions that are very energy-intensive. Maximum ethylene yields in the case of pyrolysis of primary gasolines are achieved at temperatures of around 820 to 830 C and residence times below 0.3 seconds. Under these conditions, although the operation is in the optimal ethylene regime, the selectivity of the process decreases at the same time. This is manifested by a decrease in the formation, for example, of propylene, which is very desirable at this time, and an increase in the yields of undesirable methane, pyrolysis oil, tars and coke. Therefore, there is an intensive search for compounds that are capable of influencing the radical process of thermal decomposition of hydrocarbons in such a way that it is possible to work at lower temperatures. This would improve the kinetic parameters of the process and increase selectivity. Some nitrogen compounds are also among the compounds that have been studied for this purpose. The pyrolysis of hydrocarbons in the presence of ammonia is known; amines, nitro-, nitro compounds (AO ČSSR 190 747); sulfur-nitrogen compounds such as ammonium sulfide, thiourea, nitrothiophenol and thiazine (AO ČSSR 210 039). Despite the fact that these nitrogen compounds are characterized by high efficiency, their wider introduction on an operational scale is primarily hindered by availability and price.
Vyššie uvedené nedostatky sú v podstatnej miere odstránené spósobom výroby olefínov pyrolýzou uhlovodíkové]' suroviny v přítomnosti vodnej páry a anorganických zlúčenín v teplotnom intervale 600 až 1 300 ° Celsia pri reakčnom čase kratšom ako 1 sekunda, podlá vynálezu, ktorého podstata spočívá v tom, že sa do suroviny před pyrolýzou pridávajú v množstve 0,001 až 2,0 % hmotových dusitany, dusičnany kovov prvej a druhej skupiny periodickej tabulky a sirník fosforečný.The above-mentioned shortcomings are substantially eliminated by the method of producing olefins by pyrolysis of hydrocarbon raw materials in the presence of water vapor and inorganic compounds in the temperature range of 600 to 1,300 ° Celsius with a reaction time of less than 1 second, according to the invention, the essence of which consists in adding to the raw material before pyrolysis in an amount of 0.001 to 2.0 mass% nitrites, nitrates of metals of the first and second groups of the periodic table and phosphorus pentasulfide.
Vynálezom sa dosahuje pokrok v tom, že sa pósobením kovových dusitanov a dusičnanov vo vačšom rozsahu zhodnocuje uhlovodíkový nástrek. Zvýši sa rýchlosť a selektivita premeny. Dalším přínosem vynálezu je využitie účinku sirníka fosforečného, ktorý efeiktívne zabraňuje konverzii uhlovodíkov· na pyrouhlík, takže sa neukládá vo formě koksu na vnútornom povrchu pyrolýzneho zariadenia. Tým sa umožní pred7ženie doby kontinuálnej prevádzky pyrolýznych pecí a predíde zložitej operácii vypalovania koksu z pecných rúr. Urýchlujúci účinok dusitanov a dusičnanov pri pyrolýze uhlovodíkov vyplývá z ich rozkladu na oxid dusnatý a oxid dusičitý. Molekuly obidvoch •oxidov majú nepárny počet elektrónov, takže sú paramagnetické. Svojim atakom molekúl reaiktantu umožňujú vznik uhlovodíkových radikálov predovšetkým v iniciačnej fáze pyrolýzy.The invention achieves progress in that the hydrocarbon feed is utilized to a greater extent by the action of metal nitrites and nitrates. The speed and selectivity of the conversion are increased. Another benefit of the invention is the use of the effect of phosphorus pentasulfide, which effectively prevents the conversion of hydrocarbons to pyrocarbon, so that it is not deposited in the form of coke on the inner surface of the pyrolysis device. This allows for an increase in the period of continuous operation of pyrolysis furnaces and avoids the complex operation of burning coke from the furnace tubes. The accelerating effect of nitrites and nitrates in the pyrolysis of hydrocarbons results from their decomposition into nitric oxide and nitrogen dioxide. The molecules of both oxides have an odd number of electrons, so they are paramagnetic. By attacking the reactant molecules, they enable the formation of hydrocarbon radicals, especially in the initial phase of pyrolysis.
Sirník fosforečný P2S5 sa za podmienok pyrolýzy rozkládá na reakčné medziprodukty reagujúce s vnútorným povrchom reaktora za vzniku kovových sulfidov a fosfidov, ktoré majú pasivačný účinok na tvorbu koksu.Phosphorus pentasulfide P2S5 decomposes under pyrolysis conditions into reaction intermediates that react with the inner surface of the reactor to form metal sulfides and phosphides, which have a passivating effect on coke formation.
Charakter a vlastnosti přísad určovali sposob dávkovania do pyrolýzneho systému. Vodorozpustné zlúčeniny sa dávkovali vo formě vodných roztoikov a přísady, ktoré sú rozpustné v uhlovodíkoch, sa pridávajú do uhlovodíkového nástreku.The nature and properties of the additives determined the method of dosing into the pyrolysis system. Water-soluble compounds were dosed in the form of aqueous solutions and additives that are soluble in hydrocarbons were added to the hydrocarbon feed.
Predmet vynálezu je ozřejměný na príkladoch prevedenia, bez toho, aby sa na uvedené příklady vztahoval.The subject matter of the invention is illustrated by examples of embodiments, without referring to the examples given.
Příklad 1Example 1
Experimenty sa uskutečnili v prietočných rúrkových reaktorech z nehrdzavejúcej ocele v teplotnom intervale 600 až 1 300 °C. Tlak sa pohyboval od 0,05 do 0,5 MPa, výhodné od 0,1 do 0,2 MPa, zdržná doba bola kratšia ako 1 s. Pracovalo sa v přítomnosti vodnej páry v množstve 20 až 300 % na uhlovodíkový nástrek. Pyrolyzovali sa individuálně uhlovodíky a ropné frakcie s teplotou varu 30 až 400 °C, najma lahký a ťažký primárný benzín, benzín z katalytického· reformovania po extrakcii aromátov (rafinát), petroleje a plynové oleje.The experiments were carried out in stainless steel flow-through tubular reactors in the temperature range of 600 to 1300 °C. The pressure ranged from 0.05 to 0.5 MPa, preferably from 0.1 to 0.2 MPa, the residence time was less than 1 s. The operation was carried out in the presence of water vapor in an amount of 20 to 300% of the hydrocarbon feed. Hydrocarbons and petroleum fractions with a boiling point of 30 to 400 °C were pyrolyzed individually, especially light and heavy primary gasoline, gasoline from catalytic reforming after extraction of aromatics (raffinate), kerosene and gas oils.
Vplyv anorganických přísad sa sledoval pri pyrolýze n-heptánu a primárného benzínu. Na určenie iniciačného účinku kovových dusitanov, dusičnanov a sirníka fosforečného sa použila rýchlostná konštanta z rovnice 1. poriadku. Výsledky z pyrolýzy n-heptánu sú uvedené v tabuíke 1 a z pyrolýzy primárného benzínu v tabuíke 2,The effect of inorganic additives was investigated in the pyrolysis of n-heptane and primary gasoline. The rate constant from the first-order equation was used to determine the initiation effect of metal nitrites, nitrates and phosphorus pentasulfide. The results from the pyrolysis of n-heptane are given in Table 1 and from the pyrolysis of primary gasoline in Table 2,
TABULKA 1TABLE 1
Vplyv kovových dusitanov a dusičnanov na pyrolýzu n-heptánuEffect of metal nitrites and nitrates on the pyrolysis of n-heptane
TABULKA 2TABLE 2
Příklad 2Example 2
Účinok sirníka fosforečného na tvorbu koksu sa sledoval pri pyrolýze benzínového rafinátu v rúrkovom reaktore bez přítomnosti vodnej páry. Pri pyrolýze samotného benzínového rafinátu pri 820 °C v priebehu troch hodin vzniká 0,83 g koksu. Pri pyrolýze benzínového rafinátu, ktorý obsahoval 0,5 % hm. P2S5, vzniklo za rovnaký časový úsek len 0,12 g koksu. Výsledok svědčí o výraznom inhibičnom účinku sirníka fosforečného na tvorbu koksu.The effect of phosphorus pentasulfide on coke formation was monitored during the pyrolysis of gasoline raffinate in a tubular reactor without the presence of water vapor. During the pyrolysis of gasoline raffinate alone at 820 °C, 0.83 g of coke was formed within three hours. During the pyrolysis of gasoline raffinate containing 0.5 wt. % P2S5, only 0.12 g of coke was formed within the same period of time. The result indicates a significant inhibitory effect of phosphorus pentasulfide on coke formation.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS101185A CS245543B1 (en) | 1985-02-13 | 1985-02-13 | Process for producing olefins by pyrolysis of hydrocarbons initiated by inorganic compounds |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS101185A CS245543B1 (en) | 1985-02-13 | 1985-02-13 | Process for producing olefins by pyrolysis of hydrocarbons initiated by inorganic compounds |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS245543B1 true CS245543B1 (en) | 1986-10-16 |
Family
ID=5343391
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS101185A CS245543B1 (en) | 1985-02-13 | 1985-02-13 | Process for producing olefins by pyrolysis of hydrocarbons initiated by inorganic compounds |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS245543B1 (en) |
-
1985
- 1985-02-13 CS CS101185A patent/CS245543B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| GB2150150A (en) | Process for the thermal treatment of hydrocarbon charges in the presence of additives which reduce coke formation | |
| Sahu et al. | Effect of benzene and thiophene on rate of coke formation during naphtha pyrolysis | |
| US3877879A (en) | Apparatus for handling ammonia-containing acid gas streams | |
| EP0007426B1 (en) | Catalytic cracking process | |
| US2334583A (en) | Process for converting heavy petroleum oil into vapors and coke | |
| CS245543B1 (en) | Process for producing olefins by pyrolysis of hydrocarbons initiated by inorganic compounds | |
| US1932369A (en) | Removal of sulphur compounds from crude hydrocarbons | |
| Bajus et al. | Coke formation during the pyrolysis of hydrocarbons in the presence of sulphur compounds | |
| Ongarbayev et al. | Thermocatalytic cracking of Kazakhstan’s natural bitumen | |
| US4409094A (en) | Process for detoxifying coal tars | |
| US12275900B2 (en) | Processes for upgrading a hydrocarbon feed | |
| US4900426A (en) | Triphenylphosphine oxide as an ethylene furnace antifoulant | |
| EP0871686B1 (en) | Steam cracking of hydrocarbons | |
| US2965558A (en) | Process for treating acid sludge | |
| SU141481A1 (en) | Method for producing lower olefins | |
| CS210039B1 (en) | Method of pyrolysis of hydro carbons in presence of admixtures with inhibitory effect on the coke formation | |
| RU2168533C2 (en) | Method for decoking of tubular furnaces for hydrocarbon stock pyrolysis | |
| GB1578896A (en) | Thermal cracking of hydrocarbons | |
| RU2679610C1 (en) | Coke formation in the hydrocarbons pyrolysis reactors reduction method | |
| CS214923B1 (en) | Method of shifting the reactor by pyrolisis | |
| Bajus | Sulfur compounds in hydrocarbon pyrolysis | |
| RU2566244C2 (en) | Chemical treatment method for inner surface of hydrocarbon pyrolysis reactor | |
| NL8101844A (en) | PROCESS FOR HYDROGENATING TREATMENT OF CARBON-CONTAINING COMPOUNDS. | |
| US2322850A (en) | Treatment of hydrocarbons | |
| SU454244A1 (en) | The method of processing of acid tar |