CS214923B1 - Method of shifting the reactor by pyrolisis - Google Patents
Method of shifting the reactor by pyrolisis Download PDFInfo
- Publication number
- CS214923B1 CS214923B1 CS501379A CS501379A CS214923B1 CS 214923 B1 CS214923 B1 CS 214923B1 CS 501379 A CS501379 A CS 501379A CS 501379 A CS501379 A CS 501379A CS 214923 B1 CS214923 B1 CS 214923B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- reactor
- pyrolysis
- passivation
- sulfur
- coke
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 7
- 238000000197 pyrolysis Methods 0.000 claims description 26
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 12
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 239000011593 sulfur Substances 0.000 claims description 7
- 150000003464 sulfur compounds Chemical class 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000003208 petroleum Substances 0.000 claims description 5
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- 230000007420 reactivation Effects 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000002161 passivation Methods 0.000 description 18
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 13
- 239000000571 coke Substances 0.000 description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000010517 secondary reaction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- -1 ascoloy Inorganic materials 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical compound CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 239000012991 xanthate Substances 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Vynález sa týká spósobu pasivácie reaktora pri pyrolýze na olefíny.The present invention relates to a process for the passivation of an olefin pyrolysis reactor.
Doteraz patria pyrolýzy na etylén k základným procesom v petrochémii. Pri tepelnom rozklade individuálnych uhlovodíkov a ropných frakcií na žiadané olefíny prebiehajú nielen primárné reakcie za vzniku vodíka, metánu, lahkých alkánov a alkénov, ale i sekundárné reakcie, ktoré vedú k štiepnym, dehydrogenačným, hydrogenačným a kondenzačným produktom. Na výtažky plynných, kvapalných a tuhých pyrolýznych produktov tj. koksu vplýva okrem reakčných podmienok i druh použitého reaktora. Vlastnosti konštrukčného materiálu, poměr vnútorného povrchu k objemu a chemická aktivácia alebo pasivácia vnútorného povrchu reaktora róznymi chemickými látkami sa prejavuje v kinetike procesu a v zložení pyrolýznych produktov. Za tým účelom sa študovala pyrolýza individuálnych uhlovodíkov i ropných frakcií v reaktoroch z nekovov (sklo, křemeň, porcelán), kovov (železo, nikel, zlato, strlebro, kobalt, titán), zliatin (monel, ascoloy, incoloy 800) a nehrdzavejúcej ocele rozdielneho zloženia. Efekt steny sa uplatňuje najmá tam, kde je poměr povrchu k objemu reaktora zváčšený. V železnom reaktore je rýchlosť premeny váčšia než v kremennom alebo v zlatom reaktore. Železo, kobalt a nikel podporujú koksovanie, na rozdiel od kremeňa, porcelánu, stríebra alebo zlata.To date, ethylene pyrolysis is one of the basic processes in petrochemistry. In the thermal decomposition of individual hydrocarbons and petroleum fractions to the desired olefins, not only the primary reactions to produce hydrogen, methane, light alkanes and alkenes take place, but also secondary reactions leading to fission, dehydrogenation, hydrogenation and condensation products. For extracts of gaseous, liquid and solid pyrolysis products ie. In addition to the reaction conditions, the type of reactor used also influences the coke. The properties of the construction material, the internal surface to volume ratio and the chemical activation or passivation of the internal surface of the reactor by different chemicals are manifested in the process kinetics and in the composition of the pyrolysis products. For this purpose, pyrolysis of individual hydrocarbons and petroleum fractions was studied in reactors of non-metals (glass, quartz, porcelain), metals (iron, nickel, gold, silver, cobalt, titanium), alloys (monel, ascoloy, incoloy 800) and stainless steel. different composition. The wall effect applies especially where the surface to volume ratio of the reactor is increased. In an iron reactor, the rate of conversion is greater than in a quartz or gold reactor. Iron, cobalt and nickel promote coking, unlike quartz, porcelain, silver or gold.
Tvorba pyrouhlíka, ktorý sa vo formě koksu usadzuje na vnútornom povrchu pecných rúr vedie k zhoršeniu přestupu tepla, k poklesu výtažku finálnych produktov, k poklesu výkonnosti pece pre pyrolýzu a k zníženiu životnosti pecných rúr. Z uvedeného je zrejme, že znížením koksovania pri pyrolýze by sa dosiahlo podstatné zlepšenie ekonomických ukazovatefov. Mnoho úsilia sa venuje híadaniu přísad s inhibičným účinkom na tvorbu koksu. Ako inhibitory sa odskúšali viaceré typy chemických zlúčenín, pričom ich širšie uplatnenie v prevádzkových podmienkach je najčastejšie limitované účinnosťou, dostupnosťou alebo cenou. Na odkoksovanie pyrolýzneho reaktora sa bežne používajú vzduch, vodná para alebo ich zmes. Tieto oxidačně činidlá reagujú s pyrouhlíkom na kysličníky uhlíka a vodík, pričom dochádza aj k naoxidovaniu vnútorného povrchu na kovové kysličníky. Takto naoxidovaný povrch vo zvýšenej miere fa214923 vorizuje priebeh sekundárných reakcií hlavně tvorbu pyrouhlíka. Prejavuje sa to najma pri náběhu pyrolýzy uhlovodíkovej suroviny. Oxidačně aktivovaný povrch spňsobuje zvýšené koksovanie predovšetkým na exponovaných miestach, akými sú nerovnosti povrchu, ohyby, zúžené prierezy, tepelne namáhané časti. Tvorba koksu može byť tak intenzívna, že dochádza na uvedených miestach až k zapchaniu reaktora.The formation of pyramid, which in the form of coke deposits on the inner surface of the furnace tubes, leads to a deterioration of heat transfer, a decrease in the yield of the final products, a decrease in the performance of the pyrolysis furnace and a reduced service life of the furnace tubes. From this, it is obvious that a reduction in coking in pyrolysis would result in a significant improvement in economic indicators. Much effort has been devoted to the search for ingredients having an inhibitory effect on coke formation. Several types of chemical compounds have been tested as inhibitors, and their wider application under operating conditions is most often limited by efficiency, availability or cost. Air, steam or a mixture thereof is commonly used to decoke the pyrolysis reactor. These oxidizing agents react with the carbon monoxide to form carbon oxides and hydrogen, while also oxidizing the inner surface to the metal oxides. The oxidized surface in this way increases the course of the secondary reactions mainly to the formation of the carbonate. This is particularly evident when pyrolysis of the hydrocarbon feedstock is started. The oxidatively activated surface causes increased coking, especially at exposed locations such as surface irregularities, bends, tapered cross-sections, heat-stressed parts. The formation of coke can be so intense that the reactor becomes clogged at the points mentioned.
Vyššie uvedené nedostatky sú odstránené sposobom pasivácie reaktora pri pyrolýze individuálnych uhlovodíkov a ropných frakcií s teplotou varu 30 až 400 °C v přítomnosti vodnej páry, ktorého podstata spočívá v tom, že sa vnútorný povrcjh pyrolýzneho reaktora před pyrolýzou pasiýuje sírou alebo tepelne rozložitelnými sírnymi zlúčeninami v teplotnom intervale 600 až 900 °C v trvaní od 10 až 180 minút pri priestorovej rýchlosti od 2 kg/m3.h do 3000 kg/m3.h vzhíadom na přítomnu síru v použitej zlúčenine.The above drawbacks are overcome by the method of reactor passivation in the pyrolysis of individual hydrocarbons and petroleum fractions boiling at 30 to 400 ° C in the presence of water vapor, characterized in that the internal coating of the pyrolysis reactor is passaged by sulfur or thermally decomposable sulfur compounds prior to pyrolysis. a temperature range of 600 to 900 ° C for a duration of 10 to 180 minutes at a space velocity of from 2 kg / m 3 · h to 3000 kg / m 3 · h based on the sulfur present in the compound used.
Výhody spůsobu pasivácie reaktora podía vynálezu spočívá v tdm, že sa pasiváciou vnútorného povrchu pyrolýzneho reaktora sírnymi zlúčeninami před pyrolýzou uhlovodíkovej suroviny účinné zabraňuje konverzii uhlovodíkov na pyrouhlík, takže sa neusadzuje vo formě koksu na vnútornom povrchu reaktora. To umožňuje predlžiť dobu pyrolýzneho zariadenia, čím sa zlepší výkonnost pece.Advantages of the method of the reactor passivation according to the invention are that by passivation of the inner surface of the pyrolysis reactor with sulfur compounds prior to pyrolysis of the hydrocarbon feedstock, the conversion of hydrocarbons to the carbon monoxide is effectively prevented from depositing in the form of coke on the inner surface of the reactor. This makes it possible to extend the pyrolysis plant time, thereby improving the performance of the furnace.
Experimenty sa uskutočnili v prietočhóm rúrkovom reaktore z nehrdzavujúcej ocele v teplotnom intervale od 600 do 900 °C. Tlak sa pohyboval od 0,05 do 0,5 MPa, výhodné od 0,1 do 0,2 MPa a zdržná doba bola kratšia ako 1 s. Pyrolyzovali sa individuálně uhlovodíky a ropné frakcie s teplotou varu od 30 do 400 °C, hlavně benzíny, petroleje a plynové oleje.The experiments were carried out in a flow-through stainless steel tubular reactor at a temperature range of 600 to 900 ° C. The pressure ranged from 0.05 to 0.5 MPa, preferably from 0.1 to 0.2 MPa, and the residence time was less than 1 s. Hydrocarbons and petroleum fractions having a boiling point of from 30 to 400 ° C, mainly gasolines, kerosene and gas oils, were individually pyrolyzed.
Na opracovanie pyrolýzneho reaktora šá vyskúšal váčší počet organických i anorganických zlúčenín síry. Z anorganických látok sa přidávali elementárna síra, sirovodík, sirouhlík, kysličník siřičitý, sirníky, sírany, tiosírany kovov prvej a druhej skupiny periodickej tabulky, alebo amóniových zlúčenín. Z organických sirných látok to boli zlúčeniny typu merkaptánov, sulfidov, sulfoxidov, disúlfidov, xantátov, tiofénu a ich aromatických a alifatických derivátov pričom deriváty obsahujú 1 až 32 uhlíkových atomov. Ďalej to boli zlúčeniny fosforu a síry typu alkenyltiofosfóniových kyselin alebo 0,0' — dialkyl-ditiofosforečných kyselin připadne ich anorganické a organické solí alebo estéry, najmá soli kovov prvej a druhej skupiny periodickej tabulky alebo amoniové soli, pričom alkyly obsahujú 1 až 16 uhlíkových atomov.In order to treat the pyrolysis reactor, a greater number of organic and inorganic sulfur compounds was tested. Of the inorganic substances, elemental sulfur, hydrogen sulfide, carbon disulfide, sulfur dioxide, sulfides, sulfates, metal thiosulfates of the first and second groups of the periodic table, or ammonium compounds were added. Among the organic sulfur compounds, these were compounds of the mercaptan, sulfide, sulfoxide, disulfide, xanthate, thiophene type and their aromatic and aliphatic derivatives, the derivatives having 1 to 32 carbon atoms. Furthermore, they were phosphorus and sulfur compounds of the alkenylthiophosphonic acid type or of the 0'-dialkyl-dithiophosphoric acid or their inorganic and organic salts or esters, in particular metal salts of the first and second groups of the periodic table or ammonium salts, the alkyls containing 1 to 16 carbon atoms. .
Spůsob dávkovania do pyrolýzneho systé? mu bol daný charakterom a vlastnosfami sirných zlúčenín. Například sirovodík sa dávkoval priamo do reaktora. Vodorozpustné zlúčeniny (například sirníky, sírany) sa dávkovali vo formě vodných roztokov. Sírne látky, ktoré sú rozpustné v uhlovodíkoch, sa přidávali vo formě uhlovodíkových roztokov.Method of dosing into the pyrolysis system? it was given to the nature and properties of sulfur compounds. For example, hydrogen sulfide was metered directly into the reactor. Water-soluble compounds (e.g. sulfides, sulfates) were dosed as aqueous solutions. Sulfur substances which are soluble in hydrocarbons were added in the form of hydrocarbon solutions.
Účinnost sirovodíka a elementárnej síry na pasiváciu vnútorného povrchu reaktora ša sledoval pri pyrolýze u heptánu a benzínu za katalytického reformovania po extrakcii aromátov (benzínový rafinát). Benzínový rafinát mal teplotu varu 37 °C až 156 °C, hustotu 691 kg/m3. Teplota pyrolýzy a pasivácie reaktora bola 820 °C. Teplota predohrevu bola 400 °C vo všetkých experimentoch.The effect of hydrogen sulphide and elemental sulfur on the passivation of the internal surface of the reactor was monitored by pyrolysis of heptane and gasoline under catalytic reforming after aromatic extraction (gasoline raffinate). The petrol raffinate had a boiling point of 37 ° C to 156 ° C, a density of 691 kg / m 3 . The pyrolysis and passivation temperatures of the reactor were 820 ° C. The preheat temperature was 400 ° C in all experiments.
Výsledky experimentov· sú uvedené v tabulke 1, 2, 3 a 4. >The results of the experiments are shown in Tables 1, 2, 3 and 4.>
T a b u 1 k a 1 Pyrolýza bez pasivácie:T a b u 1 k a 1 Pyrolysis without passivation:
Pasivácia reaktora sa robila čistým plynným sírovodíkom a roztokom elementárnej síry v heptáne (0,2 % hm.) a v benzínovom rafináte (0,1 % hm.).Reactivation of the reactor was done with pure hydrogen sulfide gas and a solution of elemental sulfur in heptane (0.2 wt%) and gasoline raffinate (0.1 wt%).
Tabulka 2 Pasivácia sírovodíkom:Table 2 Hydrogen sulphide passivation:
* Prietok H2S v kg/m3 . h = 652,3* Flow rate H 2 S in kg / m 3 . h = 652.3
Ť a b u I k a 3J a b u I k a 3
Pasivácia elementárnou sírou:Elemental sulfur passivation:
4- Priestorová rýchlosť pasivátora vzťahovaná na množstvo přítomné] síry:4- The spatial velocity of the passivator relative to the amount of sulfur present:
aj 4,28 kg/m3 . hand 4.28 kg / m 3 . h
b) 8,57 kg/m3 . h(b) 8,57 kg / m 3 . h
Tabulka 4Table 4
Pyrolýza po pasivácii reaktora:Pyrolysis after reactor passivation:
Pasivácia sirovodíkom elementárnou sírou vPassivation with hydrogen sulphide by elemental sulfur in
Z porovnania výsledkov pyrolýzy před pasiváciou (příklad 1) a po pasivácii (příklad 4} kovového reaktora z nehrdzavejúcej ocele je vidieť rozhodujúci vplyv sírnych zlúčenín na tvorbu koksu v počiatočnej fáze po náběhu pyrolýzy. Koksovanie buď neprebiehalo, alebo len v minimálnej miere.Comparison of the pyrolysis results before passivation (Example 1) and after passivation (Example 4) of a stainless steel metal reactor shows the decisive influence of sulfur compounds on coke formation in the initial phase after pyrolysis start-up.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS501379A CS214923B1 (en) | 1979-07-18 | 1979-07-18 | Method of shifting the reactor by pyrolisis |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS501379A CS214923B1 (en) | 1979-07-18 | 1979-07-18 | Method of shifting the reactor by pyrolisis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS214923B1 true CS214923B1 (en) | 1982-06-25 |
Family
ID=5394164
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS501379A CS214923B1 (en) | 1979-07-18 | 1979-07-18 | Method of shifting the reactor by pyrolisis |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS214923B1 (en) |
-
1979
- 1979-07-18 CS CS501379A patent/CS214923B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Clark et al. | Chemistry of organosulphur compound types occurring in heavy oil sands: 5. Reaction of thiophene and tetrahydrothiophene with aqueous Group VIIIB metal species at high temperature | |
| US3737291A (en) | Process for reforming heavy hydrocarbons | |
| JPH0762134B2 (en) | Pyrolysis method for gas streams containing hydrocarbons | |
| US3252774A (en) | Production of hydrogen-containing gases | |
| JPS6137894A (en) | Method for lowering formation of coke in thermal cracking process and coke formation reducing anti-staining composition | |
| US3567623A (en) | Antifoulant agents for petroleum hydrocarbons | |
| US3877879A (en) | Apparatus for handling ammonia-containing acid gas streams | |
| Dutta et al. | Hydrogenation/dehydrogenation of polycyclic aromatic hydrocarbons using ammonium tetrathiomolybdate as catalyst precursor | |
| US1949109A (en) | Reaction with hydrogen and in apparatus therefor | |
| DE4405884C1 (en) | Heat exchange surface in reactors and / or heat exchangers and method for producing a catalytically deactivated metal surface | |
| US2628890A (en) | Process for the decomposition of hydrocarbons | |
| CS214923B1 (en) | Method of shifting the reactor by pyrolisis | |
| US4663018A (en) | Method for coke retardant during hydrocarbon processing | |
| US3957960A (en) | Method for recovering sulfur from ammonia-containing acid gas streams | |
| US2137275A (en) | Process of reconstituting and dehydrogenating heavier hydrocarbons and making an antiknock gasoline | |
| US3201215A (en) | Production of combustible gas | |
| EP0871686B1 (en) | Steam cracking of hydrocarbons | |
| RU2005766C1 (en) | Method of processing petroleum bottom products | |
| WO1994006889A1 (en) | Process for obtaining lower olefins | |
| JPS6325039B2 (en) | ||
| JPS5975985A (en) | Cracking of heavy oil under basic condition by use of alkaline earth metal to increase yield of distillate oil | |
| US1257829A (en) | Eliminating sulfur from oils. | |
| US1921478A (en) | Production of valuable liquid hydrocarbons | |
| RU2087523C1 (en) | Method of hydrogenation processing of residual petroleum derivatives | |
| Laine et al. | Conversion of heavy oils into more desirable feedstocks |