CS245313B1 - Method of plant organism directed dediferential transformation by means of 3-benzyloxycarbonylmethyl-2-benzothiazolinone - Google Patents

Method of plant organism directed dediferential transformation by means of 3-benzyloxycarbonylmethyl-2-benzothiazolinone Download PDF

Info

Publication number
CS245313B1
CS245313B1 CS841726A CS172684A CS245313B1 CS 245313 B1 CS245313 B1 CS 245313B1 CS 841726 A CS841726 A CS 841726A CS 172684 A CS172684 A CS 172684A CS 245313 B1 CS245313 B1 CS 245313B1
Authority
CS
Czechoslovakia
Prior art keywords
concentration
mol
benzyloxycarbonylmethyl
transformation
benzothiazolinone
Prior art date
Application number
CS841726A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS172684A1 (en
Inventor
Vladimir Sekerka
Viktor Sutoris
Slavoj Mikulasek
Original Assignee
Vladimir Sekerka
Viktor Sutoris
Slavoj Mikulasek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vladimir Sekerka, Viktor Sutoris, Slavoj Mikulasek filed Critical Vladimir Sekerka
Priority to CS841726A priority Critical patent/CS245313B1/en
Publication of CS172684A1 publication Critical patent/CS172684A1/en
Publication of CS245313B1 publication Critical patent/CS245313B1/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Vynález sa týká spůsobu usmernenej dediferenciačnej transformácie rastlinného organizmu. Podstata spůsobu vynálezu spočívá v tom, že na rasťínný organizmus, pletiva alebo kalusové buňky sa působí derivátom 3-benzyloxykarbonylmetyl-2-benzotiazolinónom štruktúrneho vzorca = 0 ζ? H 9 C O O C o koncentrácii 10~4 až 10"3 mol . dm-3 v podmienkách „in vivo“ a 10“5 až 5 . 10“4 mol . dni“3 v podmienkách „in vitro“. Skúmaná látka spůsobu analogické morfogénne procesy a morfologické efekty ako fytohormóny a to v podmienkách „in vivo“ a „in vitro“. Čerstvá hmotnost biomasy po působení účinnou látkou na kalusové buňky sa zvyšuje v závislosti na koncentrácii a čase pósobenia látky s maximom účinnosti pri koncentrácii 10~5 mol. dm-3.The invention relates to a directed dedifferentiation method transformation of plant organism. The essence of the invention lies in that the rasťínný organism, the mesh or callus cells are treated with a derivative 3-benzyloxycarbonylmethyl-2-benzothiazolinone structural formula = 0 ζ? H 9 C O O C with a concentration of 10-4 to 10 -3 moles dm-3 in in vivo and 10 5 to 5. 10 "4 mol. days "3 in" in vitro "conditions. The substance under examination is a method analogous to morphogenic processes and morphological effects as phytohormones in "in vivo" conditions and "in vitro". Fresh weight of biomass after treatment with callus cells is increased depending on the concentration of a time of action of the substance with maximum efficacy at a concentration of 10 -5 mol. dm-third

Description

Vynález sa týká spósobu usmernenej dediferenciačnej transformácie bunlek a pletiv rastlinného organizmu v podmienkach „in vivo“ a „in vitro“ pomocou 3-benzyloxykarbonylmetyl-2-benzotiazolinónu.The invention relates to a method for directed dedifferentiation transformation of cells and tissues of a plant organism under " in vivo " and " in vitro " conditions by 3-benzyloxycarbonylmethyl-2-benzothiazolinone.

Chemické regulátory rastu a delenía s vysokou biologickou aktivitou a selektivitou majú dnes vedúcu úlohu v usmernenej regulácii životné dóležitých procesov rastlinného organizmu. Používajú sa na zvyšovanie výnosnosti rastlín (Šebánek, J.: Sborník VŠZ, Brno, 2, 322—333, 1965; Nátr, L., Kousalo vá, I.: Studijní informace — základní a pomocné vědy v zemědělství. ŮVTI, Praha, 1973; Kutina J.: Regulátory rástu a její využití v zemědělství a zahradnictví, SZN, Praha, 1977) a pri štúdiu diferenciácie a dediferenciácie rastlinných buniek, pletiv a orgánov v podmienkach „in vivo“ a „in vitro“ (Thimann, Κ. V.: The auxins. In: Wilkins, M. B.: Thy Physiology of Plant Growth and Development — Ms Graw-Hill, London, p. 3 až 48, 1969; Gambur K. Z.: Biochimija auxina i jego dejstvije na kletky rastenij, Nauka, 272, 1976; Reinert, J., Bajaj Y. P. S.: Plant Cell, Tissune and Organ Culture, SpringerVerlag Berlin, Heidelberg, New York, p. 803, 1977).Today, chemical regulators of growth and division with high biological activity and selectivity play a leading role in the directed regulation of vital plant processes. They are used to increase the yield of plants (Šebánek, J .: VŠZ, Brno, 2, 322-333, 1965; Nátr, L., Kousalo va, I .: Study information - basic and auxiliary sciences in agriculture. 1973; Kutina J .: Growth Regulators and its Use in Agriculture and Horticulture, SZN, Praha, 1977) and in the study of differentiation and dedifferentiation of plant cells, tissues and organs under "in vivo" and "in vitro" conditions (Thimann, Κ. In: Wilkins, MB: Thy Physiology of Plant Growth and Development - Ms Graw-Hill, London, pp. 3 to 48, 1969; Gambur KZ: Biochimija auxina i jego dejstvije na kletky rastenij, Nauka, 272 (1976) Reinert, J., Bajaj YPS: Plant Cell, Tissune and Organ Culture, Springer Verlag Berlin, Heidelberg, New York, p. 803 (1977).

Škálu látok, ktoré indukujú dediferenciáclu rastlinných buniek, okrem známých hormonálnych efektorov ako je napr. IAA, 2, 4-D, NAA, deriváty kinínu, giberelíny a retardanty, dnes rozširujú aj deriváty fluóru, amínofluoridy a morfaktíny — syntetické fluór-9-karbónové kyseliny a ich deriváty, ktoré zapríčiňujú depolarizáciu a degradáciu reprodukčného procesu, stimulujú činnost kambia, indukujú kalogenézu (Schneider G.: Morphactins: Physiology and Performance. Ann Rev. Plant Physiol., 21, 499 až 536, 1970; Miller, J. A.: Carcinogenesis by Chemicals: An OverView Cancer. Res., 30, 559—576, 1970).The range of substances that induce dedifferentiation of plant cells, in addition to known hormonal effectors such as IAA, 2, 4-D, NAA, kinin derivatives, gibberellins and retardants, is now also being extended by fluorine derivatives, amine fluorides and morphactins - synthetic fluorine-9-carbon acids and their derivatives, which cause depolarization and degradation of the reproductive process, stimulate the activity of cambium, induce calogenesis (Schneider G .: Morphactins: Physiology and Performance, Ann Rev. Plant Physiol., 21, 499-536, 1970; Miller, JA: Carcinogenesis by Chemicals: An OverView Cancer. Res., 30, 559-576 (1970).

V posledných rokoch boli dokázané dediferenciačné účinky aj u niektorých dalších auxinoidov indolylového radu. Niektoré z nich, napr. benazolín (4-chlór-2-oxo-benzotiazolín-3-octová kyselina) alebo benzotiazoliloctová kyselina (Ingram, D. S.; Butcher, D. N. Z. Pflanzenphysiol., 66, 206, 1972), ale aj deriváty 2-R-3-R1-substituovaných benzotiazóllových solí (Sekerka V., Sutoris V.: AO 231 242), či deriváty kyseliny 2-oxo-3-benzotiazolín octovej (Sekerka V., Sutoris V. AO 231 241) sú rovnako aktivně v iníciácii a raste kalusov mnohých rastlín ako 2,4-D, alebo ju dokonca prevyšujú.In recent years, dedifferentiation effects have also been demonstrated in some other indolyl-line auxinoids. Some of them, such as benazoline (4-chloro-2-oxo-benzothiazoline-3-acetic acid) or benzothiazolileacetic acid (Ingram, DS; Butcher, DNZ Pflanzenphysiol., 66, 206, 1972), but also 2-R derivatives -3-R 1 -substituted benzothiazolium salts (Sekerka V., Sutoris V .: AO 231 242) or derivatives of 2-oxo-3-benzothiazoline acetic acid (Sekerka V., Sutoris V. AO 231 241) are also actively involved in the initiation and growth of calluses of many plants such as 2,4-D, or even exceed it.

Podstata spósobu usmernenej dediferenciačnej transformácie buniek a pletiv rastlinného organizmu „in vivo“ a „in vitro“ spočívá v tom, že na rastlinný materiál sa pósobí derivátom 3-benzyloxykarbonylmetyl-2-benzotiazolinónom štruktúrneho vzorca sThe principle of directed, in vivo and "in vitro" dedifferentiated transformation of cells and tissues of plant organisms is that the plant material is treated with a 3-benzyloxycarbonylmethyl-2-benzothiazolinone derivative of the structural formula s

@ -nch5lC00Ch2-<O>@ -Nch5lC00Ch 2 - <O>

Preukazná transformácia rastlinných pletiv a buniek nastáva po pósobení látky v koncentrácii 10-4 až 10~3 mol . dm3. Viditelné je inhibovaný predlžovací rast stonky a primárného koreňa. Pletivá hrubnú v prolongačnej zóně. Morfózy sa objavujú na apexoch stonky a koreňa. Na kořeni diferencujú bočné kořene následkom rýchlejšieho rastu vnútornej časti pletiv dochádza k roztrhnutiu povrchových vrstiev apexu, diferenciačnej a prolongačnej zóny a k tzv „vyzlečeniu koreňa“, oddeleniu povrchových kortikálnych vrstiev od vnútornej stržňovej časti, buňky ktorej intenzívně proliferujú. V obnaženej diferenciačnej zóně následkom inhibície rastu primárného koreňa bočné kořene vyrastajú husto vedl'a seba a vytvárajú pilkovité, alebo vejárovité morfózne útvary s typickou teratoidnou formou organlzácie.Demonstrative transformation of plant tissues and cells occurs after exposure of the substance at a concentration of 10 -4 to 10 -3 mol. dm 3 . Visible growth inhibition of the stem and primary root is inhibited. The meshes coarse in the prolongation zone. Morphoses appear on the apexes of the stem and root. At the root, the lateral roots differentiate due to the faster growth of the inner part of the tissues, the apex surface layers, differentiation and prolongation zone are torn and the so-called "root stripping", separation of the surface cortical layers In the exposed differentiation zone, as a result of inhibition of primary root growth, the lateral roots grow densely side by side and form sawtooth or fan-like morphous formations with a typical terematical form of organization.

Amorfně kalusy vznikajú dediferenciáciou v podmienkach „in vitro“. V štádiu primokalusu pletivo je rozpadavé na buňky. Po preočkovaní na čerstvé médium analogického zloženia ako bolo médium počas dediferenciácle, kalus zachovává typický neorganizovaný rast. Po aplikácii predmetnej látky na kalusové buňky čerstvá hmotnost' biomasy počas pretrvávajúcej dediferenciácie sa zvyšuje v závislosti od koncentrácie a času pósobenia látky s maximom účinnosti pri koncentrácii 10-5 mol . dm-3 (grafy 1.2).Amorphous calluses are formed by dedifferentiation in "in vitro" conditions. At the stage of the primocalus, the tissue is disintegrating into cells. Upon inoculation with fresh medium analogous to that of the medium during dedifferentiation, callus retains typical unorganized growth. After application of the subject substance to callus cells, the fresh biomass weight during persistent dedifferentiation increases depending on the concentration and exposure time of the substance with a maximum efficiency at a concentration of 10 -5 mol. dm -3 (graphs 1.2).

Zlúčenina aplikovaná podlá vynálezu spósobuje morfogénne procesy a morfologické efekty známe po pósobení hormonálnych efektorov a to v podmienkach „in vivo“ a „in vitro“ (Obraz). Stupeň účinnosti predmetnej látky závisí od použitej koncentrácie.The compound applied according to the invention causes morphogenic processes and morphological effects known after hormonal effector effects under "in vivo" and "in vitro" conditions (Figure). The degree of effectiveness of the subject substance depends on the concentration used.

Uvedené biologické účinky zvýrazňujú význam derivátu 3-benzyloxykarbonylmetyl-2-benzotiazolinónu ako potenciálneho induktora usmernenej dediferenciačnej transformácie organizmu a buniek rastlín, za účelom biotechnologických manipulácií.Said biological effects emphasize the importance of the 3-benzyloxycarbonylmethyl-2-benzothiazolinone derivative as a potential inducer of directed dedifferentiation transformation of organism and plant cells, for the purpose of biotechnological manipulations.

Přiklad 1Example 1

V prvej sérii pokusov v podmienkach „in vivo“ k indukcii dediferenciácie boli použité klíčence rastlín (Vicia sativa L. var. Fatima; Vicia faba L. var. Inovec; Pisum sativum L. var. Smaragd j. Po inhibícii (6—16 hj v destílovanej vodě semená klíčili v expandovanom perlíte, v tme v termostate 72 ho245313 din. Potom bolí klíčence po omytí od perlitu osušené papierovou vatou, selektované a na ďalšie testy bolí použité klíčence s koreňom dlhým 25 až 30 mm +1 mm. Súbory klíčencov (5 ks) bolí vysadené v horizontálně) polohe na navlhčený filtračný papier do Petriho misiek priemerne] velkosti 17 centimetrov. Filtračný papier bol nasýtený účinnou látkou v koncentráciách 102, 10-3, ΙΟ“4, ΙΟ-5, ΙΟ6, 10“7, 10~8, 10“9 mol . dm-3. Kontrolná séria klíčencov bola inkubovaná na filtračnom papieri, ktorý bol nasýtený destilovanou vodou. Indukcia dediferenciácie sa uskutočnila v termostate, v tme, pri 25 °C +1 °C počas 72 až 96 hodin. Efekt dediferenciačnej transformácie bol stanovený vizuálně pomocou mikroskopické) lupy. Maximálnu dediferenciačnú účinnosť spůsobuje skúmaná látka na klíčencoch rastlín po působení látky v koncentráciách 10“4 a 10~3 mol . dm-3.In the first series of experiments under "in vivo" conditions, plant germs were used to induce dedifferentiation (Vicia sativa L. var. Fatima; Vicia faba L. var. Inovec; Pisum sativum L. var. Emerald j. After inhibition (6-16 hj). in distilled water, the seeds germinated in expanded nacre, in the dark in a thermostate 72 ho245313 din, after which the germs were washed with cotton wool, washed and then selected for further tests using germs with a root length of 25 to 30 mm +1 mm. 5 pcs) are placed in horizontal position on moistened filter paper in Petri dishes, average size 17 centimeters Filter paper was saturated with active substance in concentrations of 10 2 , 10 -3 , ΙΟ “ 4 , ΙΟ- 5 , ΙΟ 6 , 10“ 7 , 10 ~ 8 , 10 -9 mol dm- 3 The control series of germs were incubated on filter paper saturated with distilled water Induction of dedifferentiation was performed in a thermostate, in the dark, at 25 ° C +1 ° C for 72 to 96 hours The effect of dedifferentiation transformation was determined visually by microscopic magnifying glass. The maximum dedifferentiation efficiency is caused by the test substance on the plant germs after treatment with the substances in concentrations of 10 -4 and 10 -3 mol. dm- 3 .

Příklad 2Example 2

V druhej sérii pokusov v podmienkach „in vitro“ kalogenéza bola indukovaná na apikálnych segmentoch primárných koreňov viky siatej (Vicia sativa L. var. Solarka). Selektované semená) přibližné rovnakej velkosti a farby osemenia) boli sterilizované roztokom 5 % chloramínu 1 hodinu a niekolkokrát opláchnuté sterilnou destilovanou vodou. Sterilně semená klíčili v Petriho miskách na 0,8 % agarovom médiu 48 hodin v tme pri 25 °C +1 °C. K indukcii kalogenézy boli použité sterilně klíčence 25 až 30 mm +1 mm dlhé. Z nich boli dekapitované apikálne segmenty primárných koreňov v dížke 10 až 15 mm, ktoré boli vysadené do Petriho misiek v horizontálně] polohe na 0,6 % modifikované pevné agarovo médium podlá Murashige-Skooga. V pokusných variantoch médium obsahovalo účinná látku v koncentrácii 10~2 až 10~9 mol.In a second series of experiments under "in vitro" conditions, calogenesis was induced on apical segments of the primary roots of the vetch (Vicia sativa L. var. Solarka). The selected seeds (approximately the same size and color of the tegument) were sterilized with 5% chloramine solution for 1 hour and rinsed several times with sterile distilled water. Sterile seeds were germinated in Petri dishes on 0.8% agar medium for 48 hours in the dark at 25 ° C +1 ° C. Sterile 25 to 30 mm + 1 mm long germs were used to induce calogenesis. Of these, apical primary root segments of 10-15 mm length were decapitated and placed in Petri dishes horizontally at 0.6% modified solid agar medium according to Murashige-Skooga. In the experimental variations, the medium contained the active ingredient in a concentration of 10 -2 to 10 9 mol.

. dm'3. V kontrolnej variante médium obsahovalo 2,4-D v koncentrácii 10-5 mol .. dm ' 3 . In a control variant, the medium contained 2,4-D at a concentration of 10 -5 mol.

. dm“3.. dm ' 3 .

ββ

Kalogenéza bola indukovaná pri teplote 25 °C, v tme, počas 14 dní. Příprava skúmaného materiálu, ako aj kultivácia boli robené v aseptických podmienkach. Maximálna dediferenciačná účinnosť bola zistená pri koncentrácii 5 . 10“4 mol. dm“3.Calogenesis was induced at 25 ° C, in the dark, for 14 days. Preparation of the study material as well as cultivation were performed under aseptic conditions. Maximum dedifferentiation efficacy was found at concentration 5. 10 “ 4 mol. dm ' 3 .

Příklad 3Example 3

V tretej sérii pokusov bol zistený účinok látky na tvorbu čerstvej hmotnosti kalusového pletiva Haplopappus grácilis. Ako inokulum bol použitý kalus z kultúry nachádzajúcej sa v 53 pasáži, pestovanej na pevnom agarovom médiu podlá Murashige a Skooga. Počiatočná hmotnost inokula sa pohybovala od 1,1 do 2,3 g“1.In a third series of experiments, the effect of the substance on the formation of fresh weight of the callus tissue of Haplopappus grácilis was determined. Callus from culture found in passage 53 grown on solid agar medium according to Murashige and Skooga was used as the inoculum. The initial weight of the inoculum ranged from 1.1 to 2.3 g -1 .

V pokusnej sérii inokulum bolo vysadené do 100 ml Erlenmayerových baniek na pevné agarovo médium podlá Murashige a Skooga s obsahom účinnej látky ΙΟ“7, 10, 10 ~5, 10“3 mol . dm-3 v jednotlivých variantoch. Kontrolná séria obsahovala ako fytohormonálny efektor 2,4-D v koncentrácii 10~5 mol . dm“3. Kultivácia prebiehala v termostate, v tme, pri teplote 25 °C. Odběry vzoriek boli robené na 7, 14 a 21 deň kultivácie v 10 opakovaniach. Gravimetricky bola vyhodnotená produkcia čerstvej hmotnosti (grafy). Maximálny nárast čerstvej hmotnosti bol dosiahnutý po působení účinnou látkou v koncentrácii 10“5 mol . dm“3. Legenda ku grafom:In the test series, the inoculum was seeded in 100 ml Erlenmeyer flasks on solid agar medium according to Murashige and Skooga with an active substance content of ΙΟ " 7 , 10 " , 10 ~ 5 , 10 " 3 mol. dm -3 in individual variants. The control series contained 2,4-D as a phytohormonal effector at a concentration of 10 -5 mol. dm ' 3 . Cultivation was carried out in a thermostate, in the dark, at 25 ° C. Samples were taken on 7, 14 and 21 days of culture in 10 replicates. Fresh weight production (graphs) was evaluated gravimetrically. The maximum increase in fresh weight was achieved after treatment with the active ingredient in a concentration of 10 -5 mol. dm ' 3 . Legend to graphs:

Obr. 1 Čerstvá relativná hmotnost kalusov Haplopappus grácilis po působení účinnou látkou v g/1 g inokula.Giant. 1 Fresh relative weight of callus Haplopappus grácilis after treatment with active substance in g / 1 g of inoculum.

Obr. 2 Percento čerstvej hmotnosti kalusov Haplopappus grácilis gak kontrola = 100 pere.) po působení účinnou látkou.Giant. 2 Percent fresh weight of callus Haplopappus grácilis gak control = 100 pere.) After treatment with the active substance.

K = kontrolaK = control

10“7, 10-6, 10~5, 10~3 mol. dm-3 — účinná látka10 7 7 , 10 -6 , 10 ~ 5 , 10 ~ 3 mol. dm -3 - active substance

Claims (1)

Sposob usmernenej dediferenciačnej transformácie rastlín vyznačujúci sa tým, že na rastlinný organizmus, pletivá alebo kalusové buňky sa pósobí derivátom 3-benzyloxykarbonylmetyl-2-benzotiazolinónom štruktúrneho vzorca o koncentrácii 104 až 10“3 mol . dm-3 v podmienkach ,,in vivo“ a 10“5 až 5 . 10-4 mol . dm-3 v podmienkach „in vitro“.A method of directed dedifferentiation transformation of plants characterized in that the plant organism, tissues or callus cells are treated with a 3-benzyloxycarbonylmethyl-2-benzothiazolinone derivative of a structural formula having a concentration of 10 4 to 10 -3 mol. dm -3 under "in vivo" and 10 "conditions of 5 to 5. 10 -4 mol. dm -3 under "in vitro" conditions.
CS841726A 1984-03-12 1984-03-12 Method of plant organism directed dediferential transformation by means of 3-benzyloxycarbonylmethyl-2-benzothiazolinone CS245313B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS841726A CS245313B1 (en) 1984-03-12 1984-03-12 Method of plant organism directed dediferential transformation by means of 3-benzyloxycarbonylmethyl-2-benzothiazolinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS841726A CS245313B1 (en) 1984-03-12 1984-03-12 Method of plant organism directed dediferential transformation by means of 3-benzyloxycarbonylmethyl-2-benzothiazolinone

Publications (2)

Publication Number Publication Date
CS172684A1 CS172684A1 (en) 1985-06-13
CS245313B1 true CS245313B1 (en) 1986-09-18

Family

ID=5352351

Family Applications (1)

Application Number Title Priority Date Filing Date
CS841726A CS245313B1 (en) 1984-03-12 1984-03-12 Method of plant organism directed dediferential transformation by means of 3-benzyloxycarbonylmethyl-2-benzothiazolinone

Country Status (1)

Country Link
CS (1) CS245313B1 (en)

Also Published As

Publication number Publication date
CS172684A1 (en) 1985-06-13

Similar Documents

Publication Publication Date Title
渡辺哲郎 et al. The characteristics of probenazole (Oryzemate®) for the control of rice blast
Kamada et al. Studies on the organogenesis in carrot tissue cultures I. Effects of growth regulators on somatic embryogenesis and root formation
Vijayakumar et al. In vitro propagation of Bacopa monnieri L.-a multipurpose medicinal plant
渡辺哲郎 Effects of probenazole (Oryzemate®) on each stage of rice blast fungus (Pyricularia oryzae Cavara) in its life cycle
Eisinger et al. Ethylene-induced pea internode swelling: Its relation to ribonucleic acid metabolism, wall protein synthesis, and cell wall structure
Upadhyaya et al. Mode of dinitroaniline herbicide action I. Analysis of the colchicine-like effects of dinitroaniline herbicides
Bocion et al. Some effects of dikegulac on the physiology of whole plants and tissues; interactions with plant hormones
CS245313B1 (en) Method of plant organism directed dediferential transformation by means of 3-benzyloxycarbonylmethyl-2-benzothiazolinone
Sabovljević et al. Gibberellin influence on the morphogenesis of the moss Bryum argenteum Hedw. in in vitro conditions
CN112956483B (en) Compound phytocin A for inhibiting growth of weed seeds
Reis Moura et al. In vitro culture of tree fern spores from Cyatheaceae and Dicksoniaceae families
US5107066A (en) Method of producing potato cyst nematode hatching stimulus
CN113785765A (en) Kit for visually researching interaction relation between plant and nematode, method and application
Virtue et al. Potential use of isothiocyanates in branched broomrape eradication
Wu et al. Marigold (Tagete erecta): an effective Meloidogyne incognita trap plant.
Jeyaprakasam et al. Development of protocols for in vitro culture of Momordica cymbalaria
Posalaky et al. Fate of spermatozoa not participating in the fertilization process
Orr et al. The effect of kinetin, kinetin ribofuranoside and gibberellic acid upon cultures of skin and mammary carcinoma and cystic disease
JPH03190807A (en) Production of promoter of hatching of globodera rostochiensis
RU2797013C1 (en) Method of increasing the efficiency of in vitro cultivation of common basil (ocimum basilicum) callus culture
RU2826724C1 (en) Method of producing aseptic cultures of plant explants in vitro
CS231242B1 (en) Method of directional dedifferential transformation of bean plants
SU1596251A1 (en) Method of screening nematicides
Varma Control of Abscission in Cotton Boll Explants with Plant Regulators
JPH01153087A (en) Method for tissue culture of marigold