CS240459B1 - Method of high-compact basic refractory building materials - Google Patents
Method of high-compact basic refractory building materials Download PDFInfo
- Publication number
- CS240459B1 CS240459B1 CS843343A CS334384A CS240459B1 CS 240459 B1 CS240459 B1 CS 240459B1 CS 843343 A CS843343 A CS 843343A CS 334384 A CS334384 A CS 334384A CS 240459 B1 CS240459 B1 CS 240459B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- magnesite
- temperature
- building materials
- hours
- cooled
- Prior art date
Links
- 239000011822 basic refractory Substances 0.000 title claims abstract description 7
- 238000000034 method Methods 0.000 title claims description 5
- 239000004566 building material Substances 0.000 title abstract description 10
- 239000001095 magnesium carbonate Substances 0.000 claims abstract description 10
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims abstract description 10
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims abstract description 8
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 235000014380 magnesium carbonate Nutrition 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 239000004035 construction material Substances 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical group [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- 230000001143 conditioned effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011452 unfired brick Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Vynález spadá do oblasti výroby žiaruvzdorných materiálov a rieši otázky získavania vysokohutných bázických žiaruvzdorných stavív. Postupuje sa tak, že za studená vylisovaný výlisok magnezitový, magnezitchromitý, a chrómmagnezitový se ohřeje na teplotu 1700 až 2 200 °C rýchlosťou ohřevu · 30 až 300 °C . h_1 po dobu max. 8 hodin, potom sa pri tejto teplote lisuje tlakom 10 až 200 MPa a výlisok sa dalej temperuje pri teplote máknutia 4 hodiny a potom sa ochladzuje rýchlosťou 20 až 300 °C. h_1 a vychladený výlisok sa rozměrovo upraví na požadovaný rozměr mechanickým spracovaním.The invention is in the field of refractory production materials and addresses acquisition issues high-density basic refractory building materials. Proceeding so that the cold pressed magnesite, magnesite, and the chromosmagnesite is heated to temperature 1700 to 2200 ° C heating speed · 30 to 300 ° C. h_1 for max. 8 hours, then is pressed at this temperature with a pressure of 10 to 200 MPa and the molding is further tempered at for 4 hours and then cooled at 20 to 300 ° C. h_1 a the cooled molded part is sized to required dimension by mechanical processing.
Description
Vynález sa týká sposobu výroby vysokohutných bázických ziaruvzdorných stavív magnezitových, magneziochromitých, chrómmagnezitových, připadne iných stavív, ktorých základnou zložkou je oxid horečnatý.The invention relates to a process for the production of high-density basic refractory magnesite, magnesio-chromite, chromium-magnesite, or other construction materials, the principal component of which is magnesium oxide.
Bázické žiaruvzdorné stavivá, ktorých základnou zložkou je oxid horečnatý sa vyrábajú lisováním granulometricky upravených zmesi magnezitových slinkov za, alebo bez přídavku granulometricky upravenej refraktórnej chrómovej rudy, obsahujúcich malé množstvá spravidla organických pojí v. Výlisky sa potom sušia a vypalúvajú pri teplotách 1 600 až 1 850 °.Basic refractory building materials, the principal component of which is magnesium oxide, are produced by pressing granulometrically modified magnesite clinker mixtures with or without the addition of granulometrically modified refractory chrome ore containing small amounts of generally organic binders. The compacts are then dried and baked at a temperature of 1600 to 1850 °.
Bázické žiaruvzdorné stavivá pre zvlášť náročné podmienky použitia za vysokých teplót, tlakových zmien, koróznych vplyvov roztavených kovov a trosiek sa vyrábajú alebo' vyřezáváním z odliatkov přetavených magnezitových slinkov, ku ktorým sa připadne přidala chrómová ruda alebo sa vypatujú lisováním z přetaveného granulometricky upraveného materiálu a výpalom výliskov pri vysokých teplotách.Basic refractory building materials for particularly demanding conditions of use at high temperatures, pressure changes, corrosion effects of molten metals and slags are produced or cut from castings of remelted magnesite clinkers to which chromium ore has been added, or are extruded from remelted granulometrically processed material moldings at high temperatures.
Žiaruvzdorné bázické stavivá vyřezávané z tavených liatých blokov vykazujú vel'mi dobré životnosti v službě, ale ich výroba je energeticky velmi náročná, okolo 80. GJ. . t_1. Životnost týchto stavív znižuje výskyt vekého množstva makropórov, čo sa dá len ťažko obmedzovať chemizmom taveniny a technológiou tavenia a liatia.Refractory basic building materials carved from fused cast blocks have very good service life, but their production is very energy intensive, around 80 GJ. . t _1 . The lifetime of these building materials is reduced by the occurrence of large quantities of macropores, which is difficult to limit by melt chemistry and melting and casting technology.
Vysoko akostné sú aj žiaruvzdorné bázické stavivá vyrobené z taveného zrna. Spotřeba energie pri ich výrobě však je tiež vetmi vysoká a je daná najmá špotrebou energie pri přetavovaní magnezltového stinku alebo jeho zmesi s chrómovou rudou, životnost takto vyrobených stavív je závislá na kvalitě taveného zrna a dosiahnutí vhodných parametrov pórovitosti a objemovej hmotnosti pri výpale výliskov.High quality refractory basic building materials made of fused grain are also of high quality. However, the energy consumption in their production is also very high and is given by the most energy consumed when remelting the magnesite stalk or its mixture with chrome ore, the durability of the thus-made building materials depends on the quality of the fused grain and achievement of appropriate porosity and bulk density parameters.
Uvedené nedostatky technologií výroby najváčších kvalit bázických žiaruvzdorných stavív, a to vysokú spotřebu energie pri ich výrobě a obmedzenú životnost v službě z titulu poměrně vysokej porezity týchto staviv odstraňuje vynález, ktorého podstatou je, že pre zhutnenie za studená připraveného výlisku v skladbě pódia požadovaného horečnatého chemického zloženia sa. výlisok vyhřeje na teploty maknutia 1700 až 2 200 °C rýchlosťou ohřevu 30 až 300 °C . . h“1 po dobu maximálně 8 hodin a pri teplote o. 100 až 150 °C vyššej, ako je teplota počiatku maknutia sa žeravý výlisok dolisuje tlakom 10 až 200 MPa. Dolisovaný výlisok sa potom udržuje na teplote máknutia 4 hodiny za účelom odstránenia vzniklých vnútomých napátí a podrobí sa ochladzovaniu rýchlosťou 20 až 300 °C . tr1, odpovedajúcou chemizmu spracovávaného materiálu. Vychladené výlisky sa rozměrově upravia frézováním a brúsením.The aforementioned shortcomings of the production technologies of the highest qualities of basic refractory construction materials, namely the high energy consumption in their production and the limited service life due to the relatively high porosity of these construction materials are eliminated by the invention. composition. The molding is heated to a firing temperature of 1700 to 2200 ° C at a heating rate of 30 to 300 ° C. . h ' 1 for a maximum of 8 hours at o. 100 to 150 ° C higher than the start-up temperature, the glowing molding is compressed at a pressure of 10 to 200 MPa. The pressed compact is then held at the softening temperature for 4 hours to remove internal stresses and subjected to cooling at a rate of 20 to 300 ° C. tr 1 , corresponding to the chemistry of the material to be treated. Chilled moldings are dimensioned by milling and grinding.
Vysokohmotné magnezitové, magnezitchrómové, chrómmagnezitové žiaruvzdorné stavivo vyrobené postupom podťa tohto vynálezu, sa vyznačuje tým, že vykazuje o 0,5 až 6 % nižšiu zdánlivá pórovitosť, ako stavivo rovnakého chemického zloženia vyrobené klasickým postupom, t. j. lisováním za studená a výpalom výliskov pri teplotách do 1 800 °C bez lisovania za tepla.The high-mass magnesite, magnesic-chromium, chromium-magnesite refractory building material produced by the process of the present invention is characterized by having an apparent porosity 0.5 to 6% lower than a building material of the same chemical composition produced by the classical process, i. j. cold pressing and firing of pressings at temperatures up to 1 800 ° C without hot pressing.
Přikladl:EXAMPLE:
Za studená vylisovaná nevypálená maghezitchrómová tehla sa ohriala na teplotu 1 800 °C rýchlosťou ohřevu 150 °C . h_1, potom sa lisovala tlakom 83 MPa a po lisovaní sa ochladzovala rýchlosťou 60 °C . h“1. Ochladený výlisok mal objemovú hmotnosť 3,21 g. cm*3 a zdánlivá porózitu 13,8 %.The cold-pressed unburned maghezitchrom brick was heated to 1800 ° C at a heating rate of 150 ° C. h1 , then compressed at 83 MPa and cooled after compression at 60 ° C. h “ 1 . The cooled molding had a bulk density of 3.21 g. cm * 3 and an apparent porosity of 13.8%.
P r í k 1 a d 2 :Example 1:
Za studená vylisovaná nevypálená magnezitchrómová tehla sa ohriala na teplotu 1 950 °C rýchlosťou ohřevu 150 “C.h1 a potom sa lisovala tlakom 166 MPa. Po lisovaní sa ochladzovala rýchlosťou 60 °C . h_1. Výsledný výlisok mal objemovú hmotnosť 3,28 g. cm'3 a zdánlivá porózitu 12,6 %>.Cold-pressed unfired brick magnezitchrómová is heated to a temperature of 1950 ° C at a heating rate of 150 "Ch 1, and then pressed pressure of 166 MPa. After compression, it was cooled at 60 ° C. h _1 . The resulting molding had a bulk density of 3.28 g. cm 3 and apparent porosity 12.6%>.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS843343A CS240459B1 (en) | 1984-05-07 | 1984-05-07 | Method of high-compact basic refractory building materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS843343A CS240459B1 (en) | 1984-05-07 | 1984-05-07 | Method of high-compact basic refractory building materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CS334384A1 CS334384A1 (en) | 1985-07-16 |
CS240459B1 true CS240459B1 (en) | 1986-02-13 |
Family
ID=5373202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS843343A CS240459B1 (en) | 1984-05-07 | 1984-05-07 | Method of high-compact basic refractory building materials |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS240459B1 (en) |
-
1984
- 1984-05-07 CS CS843343A patent/CS240459B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS334384A1 (en) | 1985-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5283215A (en) | Refractories for casting process | |
US4126474A (en) | Refractory for aluminum-melting furnaces | |
JPS6035292B2 (en) | glass manufacturing method | |
CN1050591C (en) | Fired microporous carbon-aluminium brick | |
CN100453502C (en) | Production method of electric melting magnesium-aluminium-zirconium synthetic material | |
US3008842A (en) | Basic refractory insulating shapes | |
CS240459B1 (en) | Method of high-compact basic refractory building materials | |
NO116890B (en) | ||
CN111996475A (en) | Titanium-aluminum refractory metal piece and preparation method thereof | |
CN110615670A (en) | High-performance magnesium sliding brick and preparation method thereof | |
US3403213A (en) | Electric furnace having refractory brick of specific composition in the critical wear areas | |
CN110039012B (en) | A kind of cast steel riser covering agent and its preparation and use method | |
JP3719304B2 (en) | Ceramic products | |
JPH08259313A (en) | Method for producing maguro refractory bricks | |
CN107032806A (en) | One kind produces converter body brick and preparation method thereof using black magnesia | |
CN1040976C (en) | Method for producing ladle brick by adding chromium ore | |
KR100310050B1 (en) | method for forming canbon brick with fire resistance and corrosion resestance | |
NO149175B (en) | PROCEDURE FOR THE PREPARATION OF ANTIBACTERY ACTIVE RIFAMYCINE P DERIVATIVES | |
CA1046262A (en) | Heat-insulating agent for molten metal | |
JPS5919073B2 (en) | Method for manufacturing sintered compacts | |
CN116396063B (en) | 99 castable for resisting copper liquid erosion and peeling in low-oxygen copper rod production | |
US3340078A (en) | Fused refractory castings | |
RU2238169C2 (en) | Composition used at casting construction steels | |
SU1201270A1 (en) | Charge for producing refractories | |
SU687032A1 (en) | Method of making cast slag articles |