CS235440B1 - Method of 4-deoxy-4-fluor-d-fructose preparation - Google Patents
Method of 4-deoxy-4-fluor-d-fructose preparation Download PDFInfo
- Publication number
- CS235440B1 CS235440B1 CS485383A CS485383A CS235440B1 CS 235440 B1 CS235440 B1 CS 235440B1 CS 485383 A CS485383 A CS 485383A CS 485383 A CS485383 A CS 485383A CS 235440 B1 CS235440 B1 CS 235440B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- deoxy
- fluoro
- fructose
- fluor
- solution
- Prior art date
Links
- HDCVZSRAPONRHD-UYFOZJQFSA-N (3R,4R,5R)-4-fluoro-1,3,5,6-tetrahydroxyhexan-2-one Chemical compound OC[C@@H](O)[C@@H](F)[C@H](O)C(=O)CO HDCVZSRAPONRHD-UYFOZJQFSA-N 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims abstract description 5
- 238000002360 preparation method Methods 0.000 title claims description 4
- 150000002772 monosaccharides Chemical class 0.000 claims abstract 3
- 241000894006 Bacteria Species 0.000 claims description 5
- ZEGLBRXQLUKRML-KVTDHHQDSA-N (2r,3r,4r,5r)-4-fluorohexane-1,2,3,5,6-pentol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](F)[C@H](O)CO ZEGLBRXQLUKRML-KVTDHHQDSA-N 0.000 claims description 4
- 241000589236 Gluconobacter Species 0.000 claims description 3
- 241000589220 Acetobacter Species 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 241000588748 Klebsiella Species 0.000 claims 1
- 241000589516 Pseudomonas Species 0.000 claims 1
- 241000607720 Serratia Species 0.000 claims 1
- 230000001580 bacterial effect Effects 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 238000000855 fermentation Methods 0.000 abstract description 9
- 230000004151 fermentation Effects 0.000 abstract description 9
- 238000006356 dehydrogenation reaction Methods 0.000 abstract description 7
- 108010051210 beta-Fructofuranosidase Proteins 0.000 abstract description 3
- 241000589232 Gluconobacter oxydans Species 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 239000003112 inhibitor Substances 0.000 abstract description 2
- 239000001573 invertase Substances 0.000 abstract description 2
- 235000011073 invertase Nutrition 0.000 abstract description 2
- 230000004060 metabolic process Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- 235000010633 broth Nutrition 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- ZEGLBRXQLUKRML-SLPGGIOYSA-N (2r,3r,4r,5s)-4-fluorohexane-1,2,3,5,6-pentol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](F)[C@@H](O)CO ZEGLBRXQLUKRML-SLPGGIOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical class CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000012029 Fehling's reagent Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- UBJLBNGSWJBOGI-UHFFFAOYSA-N bis(3-fluorophenyl)methanone Chemical compound FC1=CC=CC(C(=O)C=2C=C(F)C=CC=2)=C1 UBJLBNGSWJBOGI-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- UREBWPXBXRYXRJ-UHFFFAOYSA-N ethyl acetate;methanol Chemical compound OC.CCOC(C)=O UREBWPXBXRYXRJ-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004140 ketosis Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004816 paper chromatography Methods 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- HAAYBYDROVFKPU-UHFFFAOYSA-N silver;azane;nitrate Chemical compound N.N.[Ag+].[O-][N+]([O-])=O HAAYBYDROVFKPU-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Způsob přípravy nového monosacharidu, 4-deoxy-4-fluor-D-fruktozy, který byl získán fermentační dehydrogenací 3-deoxy-3-fluor- -D-mennitolu kmenem Gluconobacter oxydans. Jeho struktura byle potvrzena elementární analýzou a protonovou magnetickou resonancí. Získaný fluorovaný monosacharid je cenná sloučenina pro studium metabolismu cukrů a potenciální inhibitor invertasyMethod of preparing a new monosaccharide 4-deoxy-4-fluoro-D-fructose, which was obtained fermentation dehydrogenation of 3-deoxy-3-fluoro- -D-mennitol by Gluconobacter oxydans strain. His structure was confirmed as elementary analysis and proton magnetic resonance. The fluorinated monosaccharide obtained is valuable a compound for the study of sugar metabolism a a potential invertase inhibitor
Description
Vynález se týká přípravy 4-deoxy-4-fluor-D-fruktózy, potenciálního inhibitoru invertázy (beta-D-fruktofuranozidázy) a cenná sloučeniny pro studium biochemie cukrů. 4-deoxý-4-fluor-D-fruktóza nebyle dosud v literatuře popsána.The invention relates to the preparation of 4-deoxy-4-fluoro-D-fructose, a potential invertase inhibitor (beta-D-fructofuranosidase), and a valuable compound for the study of sugar biochemistry. 4-Deoxy-4-fluoro-D-fructose has not been previously described in the literature.
Způsob přípravy 4-deoxy-4-fluor-D-fruktózy spočívá v biochemická dehydrogeneci 3-deoxy-3-fluor-D-mennitolu (M. Černý, J. Doležalová, J. Mácová. J. Pacák. J. Trnka,The preparation of 4-deoxy-4-fluoro-D-fructose consists in the biochemical dehydrogenation of 3-deoxy-3-fluoro-D-mennitol (M. Cerny, J. Dolezalova, J. Macova. J. Pacak. J. Trnka,
M. Buděšinský: Collec. Czech. Chem. Commun. 48 /1983/ v tisku) působením enzymovéhosystému octových bakterií, tj. bakterií rodu Oluconobecter nebo Acetobaoter, a výhodou druhu Gluconobacter oxydens, dříve označovaného jako Acetobacter auboxydens. Bylo zjištěno, že dehydrogenace probíhá podle Bertrandova a Hudsonova pravidla (M. Kulhánek, li. Tedra:M. Buděšinský: Collec. Czech. Chem. Commun. 48 (1983) in the press) by the action of an enzyme system of acetic bacteria, i.e. bacteria of the genus Oluconobecter or Acetobaoter, and preferably of the species Gluconobacter oxydens, formerly referred to as Acetobacter auboxydens. It was found that dehydrogenation proceeds according to Bertrand and Hudson rules (M. Kulhánek, li. Tedra:
Zbl. Bakt. Abt. II 128 /1973/ 25), to znamená selektivně na C-5 3-deoxy-3-fluor-D-mannltolu ze vzniku 4-deoxy-4-fluor-D-fruktózy. Bertrendovo a Hudsonovo previdlo určuje závislost mezi strukturou alditolů s jejich dehydrogeneci v ketosy působením buněk Gluconobscter oxydans s některých jiných octových bakterií. Postup podle vynálezu rozěiřuje jeho plet nost i ne dehydrogeneci 3-deoxy-3-fluor-hexitolu.Zbl. Bakt. Abt. 128 (1973) (25), i.e. selectively on C-5 3-deoxy-3-fluoro-D-mannitol to produce 4-deoxy-4-fluoro-D-fructose. Bertrend's and Hudson's preconditions determine the relationship between the structure of alditols and their dehydrogenation in ketosis by the action of Gluconobscter oxydans with some other acetic bacteria. The process of the invention extends its complexity beyond the dehydrogenation of 3-deoxy-3-fluoro-hexitol.
Vhodný kmen byl vybrán z octových bekteril, které úplně dehydrogenovaly D-gluoitol za vzniku L-sorbózy i v koncentraci 20 g ve 100 ml. Bylo zjiětěno, že růst octových bakterií není inhibován přítomností 3-deoxy-3-fluor-D-mennitolu nejméně do koncentrace 2 g ve 100 ml. Jejich růst věek probíhá jen pokud je ve fermentečním prostředí alespoň malé množství asimilovatelného cukru. Tato zjiětění umožňují připravovat 4-deoxy-4-fluor-D-fruktózu běžným aseptickým fermentačním postupem, tj. inokulecí živných půd obsahujících 3-deoxy-3-fluor-D-mannitol a aerobní kultivací do úplné konverze. Výhodnější způsob přípravy spočívá v použití biomasy vybraného kmenu připravené eseptickou fermentací na některé běžné živné půdě.A suitable strain was selected from acetic becterils which completely dehydrogenated D-gluoitol to form L-sorbose even at a concentration of 20 g in 100 ml. It was found that the growth of acetic bacteria was not inhibited by the presence of 3-deoxy-3-fluoro-D-mennitol to a concentration of at least 2 g per 100 ml. Their age increases only when there is at least a small amount of assimilable sugar in the fermentation medium. These findings make it possible to prepare 4-deoxy-4-fluoro-D-fructose by a conventional aseptic fermentation process, i.e. by inoculating nutrient broths containing 3-deoxy-3-fluoro-D-mannitol and aerobic culture to complete conversion. A more preferred method is to use biomass of a selected strain prepared by eseptic fermentation on some conventional nutrient media.
Buněčná suspenze se pak izoluje odstředěním a po prbmytí přidá k roztoku 3-dsoxy-3-fluor-D-mannitolu ve vodě s přísadou vhodného konzervačního činidla. Dehydrogenace pak probíhá na třepacím stroji do vymizení výchozí látky. Fermentací vodného roztoku transformovaného sacharidu promytou buněčnou suspenzí se v tomto případě zláká roztok metabolitů neznečištěný složkami živné půdy, což je velmi výhodné pro dalěí Izolaci.The cell suspension is then isolated by centrifugation and, after washing, added to a solution of 3-dsoxy-3-fluoro-D-mannitol in water with the addition of a suitable preservative. The dehydrogenation is then carried out on a shaker until the starting material disappears. In this case, fermentation of the transformed carbohydrate aqueous solution washed with the cell suspension attracts a solution of metabolites not contaminated with nutrient components, which is very advantageous for further isolation.
Struktura získané 4-deoxy-4-fluor-D-fruktózy o teplotě tání 123 až 126 °C (po krystalizací z etanolu) a hodnotě optické otáčivosti O»Jp0 -116° (c = 0,45 voda) byl® potvrzena elementární enelýzou a protonovou magnetickou rezonancí.The structure of the obtained 4-deoxy-4-fluoro-D-fructose having a melting point of 123 DEG-126 DEG C. (after crystallization from ethanol) and an optical rotation value of 0 DEG -116 DEG (c = 0.45 water) was confirmed by enelysis and proton magnetic resonance.
Následující příklad uvedený vynález pouze ilustruje, nikoliv omezuje.The following example illustrates the present invention, but does not limit it.
Kultura bakterie Gluconobacter oxydans CCM 2370 udržovaná ve sbírce byla dvakrát přeočkována na šikmé tuhé půdy obsahující 5 g D-glukózy, 2 g uhličitanu vápenatého, autolyzát z 2,5 g pekařských kvasnic a 2,5'g egaru ve 100 ml teplé půdy. Po růstu vždy 2 dny bylo získanou kulturou zeočkováno 80 ml půdy obsahující 5 g D-glucltolu a autolýzát ze 2,5 g pekařských kvasnic ve 100 ml. Po dvoudenní inkubaci na třepacím stroji byla fermentační půda odstředěna. Odstředěná biomass byla promyta dvakrát opakovaným rozmícháním v 80 ml sterilní destilované vody a novým odstředěním.The Gluconobacter oxydans CCM 2370 culture maintained in the collection was re-inoculated twice on sloping solid soils containing 5 g of D-glucose, 2 g of calcium carbonate, autolysate of 2.5 g of baker's yeast and 2.5 µg of egar in 100 ml of warm soil. After growth for 2 days, the resulting culture was inoculated with 80 ml of soil containing 5 g of D-glucltol and autolysate of 2.5 g of baker's yeast in 100 ml. After a two-day incubation on a shaker, the fermentation broth was centrifuged. The centrifuged biomass was washed twice by repeated mixing in 80 ml of sterile distilled water and centrifuging again.
Získaná promytá biomass byle přidána do 17 ml sterilní destilované vody obsahující 0,319 g 3-deoxy-3-fluor-D-msnnitolu e 3,2 mg D-chloremfenikolu. Baňka s roztokem e suspendovanými buňkami byla uzavřena vatovou zátkou a umístěna ne třepacím stroji. Veěkeré kultivační práce byly prováděny při 32 °C za aerobních podmínek. Průběh dehydrogenace byl sledován chromatografií na papíře. Na chromatografický papír Whatman č. 1 impregnovaný protažením 3% vodným roztokem metefosforečné kyseliny a usušením dvojmo bylo naneseno 50 ,ul fermentujiclho roztoku a 200 A>g 3-deoxy-3-řluor-D-mannitolu. Po vyvíjení v soustavě 2-butanon nasycený vodou měl výchozí 3-deoxy-3-fluor-D-msnnitol Rf kolem 0,12, redukující sacharid vzniklý fermentací, tj. 4-deoxy-4-fluor-D-fruktoza, měl Rf kolem 0,18.The obtained washed biomass was added to 17 ml of sterile distilled water containing 0.319 g of 3-deoxy-3-fluoro-D-msnnitol and 3.2 mg of D-chloremphenicol. The flask with the suspended cell solution was sealed with a cotton plug and placed on a shaker. Many cultivation work was performed at 32 ° C under aerobic conditions. The course of dehydrogenation was followed by paper chromatography. 50µl of fermentation solution and 200µg of 3-deoxy-3-fluoro-D-mannitol were loaded onto Whatman # 1 chromatography paper impregnated by passing 3% aqueous metaphosphoric acid solution and drying in duplicate. After developing in the water-saturated 2-butanone system, the starting 3-deoxy-3-fluoro-D-mennitol Rf had about 0.12, reducing the saccharide resulting from fermentation, i.e. 4-deoxy-4-fluoro-D-fructose, had an Rf around 0.18.
Uspokojivé rozdílení se doséhne při vyvíjení na přetečení po cca 16 h. Chromatogrsmy byly detegovény: (1) jodistanem a amoniakálním roztokem dusičnanu stříbrného, (2) hydrogenftslanem anilinu. Již po 24 h roztok obsahoval pouze 1 redukující sacharid vzniklý fermentací. Filtrací přes asbestocelulózovou filtrační vložku EK s přísadou karborafinu se získal čirý, téměř bezbarvý roztok. Odpařením za sníženého tlaku se získalo 0,27 g sirupu.A satisfactory distinction is reached when developing to overflow after about 16 h. Chromatograms were detected by: (1) periodate and ammoniacal silver nitrate solution, (2) aniline hydrogen phthalate. After only 24 hours, the solution contained only 1 reducing saccharide resulting from fermentation. Filtration through an asbestocellulosic filter cartridge EK with the addition of carboraffin gave a clear, almost colorless solution. Concentration in vacuo afforded 0.27 g of a syrup.
Po přidání 10 ml metanolu byl vzniklý zákal odfiltrován a roztok znovu odpařen. Získaný sirup byl rozpuštěn ve směsi metanol-etylacetát 1:1 a roztok byl znovu odpařen. Zbylý sirup vykrystalovsl. Po dvojí krystalizaci z etanolu bylo získáno 0,19 g 4-deoxy-4-fluor-D-fruktózy ve formě bezbarvých krystalů o t. t. 123 až 126 °C, [ci] D -116° (c = 0,45, voda). Látka redukuje za tepla Fehlingovo činidlo.After adding 10 ml of methanol, the resulting haze was filtered off and the solution was evaporated again. The obtained syrup was dissolved in 1: 1 methanol-ethyl acetate and the solution was evaporated again. The remaining syrup crystallized. After two crystallizations from ethanol, 0.19 g of 4-deoxy-4-fluoro-D-fructose was obtained as colorless crystals of mp 123-126 ° C, [α] D -116 ° (c = 0.45, water) . The substance reduces by heat the Fehling's reagent.
Pro CgH,,FO5 (182,2) vypočteno: 39,56 » C, 6,08 % H, 10,43 % F;For C 8 H 11 FO 5 (182.2) calculated: 39.56 ° C, 6.08% H, 10.43% F;
nalezeno: 39,56 % C, 5,88 % H, 10,55 % F.Found: C, 39.56; H, 5.88; F, 10.55.
Protonová magnetická resonance: 3,72 delte (H-1), 3,56 delta (H-ť), 4,06 delta (H-3),Proton Magnetic Resonance: 3.72 delta (H-1), 3.56 delta (H-1), 4.06 delta (H-3),
4,78 delta (H-4), 4,26 delta (H-5), 4,03 de-lta (H-6), 3,75 delta (H-6').4.78 delta (H-4), 4.26 delta (H-5), 4.03 delta (H-6), 3.75 delta (H-6 ').
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS485383A CS235440B1 (en) | 1983-06-29 | 1983-06-29 | Method of 4-deoxy-4-fluor-d-fructose preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS485383A CS235440B1 (en) | 1983-06-29 | 1983-06-29 | Method of 4-deoxy-4-fluor-d-fructose preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
CS235440B1 true CS235440B1 (en) | 1985-05-15 |
Family
ID=5392198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS485383A CS235440B1 (en) | 1983-06-29 | 1983-06-29 | Method of 4-deoxy-4-fluor-d-fructose preparation |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS235440B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001512424A (en) * | 1997-02-05 | 2001-08-21 | フォックス・チェイス・キャンサー・センター | Compounds and methods for therapeutic intervention in the prevention of diabetic complications |
-
1983
- 1983-06-29 CS CS485383A patent/CS235440B1/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001512424A (en) * | 1997-02-05 | 2001-08-21 | フォックス・チェイス・キャンサー・センター | Compounds and methods for therapeutic intervention in the prevention of diabetic complications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3907639A (en) | Method for producing 2-keto-L-gulonic acid | |
Clements Jr et al. | The distribution of polyol: NADP oxidoreductase in mammalian tissues | |
Kragl et al. | New synthetic applications of sialic acid aldolase, a useful catalyst for KDO synthesis. Relation between substrate conformation and enzyme stereoselectivity | |
CH629530A5 (en) | STABILIZED GLUCOSE ISOMERASE ENCYME CONCENTRATE AND METHOD FOR THE PRODUCTION THEREOF. | |
Schepartz et al. | The nature of the binding of penicillin by bacterial cells | |
Doten et al. | Production of D-and L-xylulose by mutants of Klebsiella pneumoniae and Erwinia uredovora | |
Jones et al. | Synthesis of sugars from smaller fragments: part XII. Synthesis of D-glycero-D-altro-, L-glycero-L-galacto-, D-glycero-L-gluco-, and D-glycero-L-galacto-octulose | |
DE2757980C2 (en) | ||
CS235440B1 (en) | Method of 4-deoxy-4-fluor-d-fructose preparation | |
EP0322571B1 (en) | Method for manufacturing 2-amino-2-deoxy-d-mannitol | |
Tomlinson et al. | The metabolism of carbohydrates by extremely halophilic bacteria: the identification of lactobionic acid as a product of lactose metabolism by Halobacterium saccharovorum | |
Emiliani et al. | Induced autolysis of Aspergillus oryzae (A. niger group) IV. Carbohydrates | |
Amein et al. | Mechanism of cellobiose epimerase | |
JP2876417B2 (en) | Method for producing D-sorbose | |
US5744023A (en) | Method for separation and recovery of organogermanium compound | |
US4463093A (en) | Process for isomerizing L-glucose to L-fructose | |
Duff et al. | Identification of 6-O-acetyl-d-glucopyranose in Bacillus megaterium cultures. Synthesis of 6-O-acetyl-d-glucopyranose and 6-O-acetyl-d-galactopyranose | |
JP3194160B2 (en) | Method for producing L-tagatose | |
Kulhanek et al. | Biochemical dehydrogenation of saccharides IV. Secondary products of biochemical dehydrogenation of D-sorbitol and D-mannitol | |
JP2876416B2 (en) | Method for producing D-psicose | |
US3037016A (en) | B12 coenzymes and processes for preparing the same | |
US2788346A (en) | Process of preparing orotidine | |
US3998698A (en) | Process for producing antibiotic U-51,640 | |
Kawai et al. | Enzymatic Formation of D-Pantothemc Acid-β-Glucoside by Various β-Glucosidases | |
Walker et al. | Formation of gentiobiose, sophorose and other oligosaccharides by Acetobacter species growing in glucose media |